2018年当代大学生数学建模竞赛题目

合集下载

2018年数学建模题目

2018年数学建模题目

2018年数学建模题目数学建模是应用数学方法和计算机技术解决各种实际问题的重要手段。

2018年的数学建模题目涉及多个领域,包括优化问题、数据分析、机器学习、图像处理、统计推断、经济与金融建模以及工程问题建模。

1. 优化问题题目:共享单车调度优化描述:共享单车已成为城市交通的重要组成部分。

然而,单车乱停乱放、过度投放等问题也给城市管理带来困扰。

请你们建立一个数学模型,以优化共享单车的调度和投放,从而使得市民能够更加方便地使用共享单车,并减少乱停乱放现象。

要求:* 建立数学模型,以描述共享单车调度和投放的优化问题。

* 结合实际数据,对模型进行验证和优化。

* 提出可行的方案和建议,以解决共享单车管理中的实际问题。

2. 数据分析题目:股市预测与投资策略优化描述:在股市投资中,数据分析对于预测股票走势和优化投资策略至关重要。

请你们针对某支股票的历史交易数据,建立一个数据分析模型,以预测未来一段时间内的股票价格,并在此基础上制定投资策略。

要求:* 收集某支股票的历史交易数据,并清洗和预处理数据。

* 建立一个数据分析模型,以预测未来一段时间内的股票价格。

* 根据预测结果,制定投资策略,并评估策略的有效性。

* 提出可行的投资建议和建议。

3. 机器学习题目:疾病预测与分类描述:在医疗领域,通过对患者的历史数据进行分析,可以预测患者未来可能出现的疾病。

请你们建立一个机器学习模型,以分析患者的历史健康数据,预测其未来可能出现的疾病,并将疾病进行分类。

要求:* 收集患者的历史健康数据,并清洗和预处理数据。

* 建立一个机器学习模型,以分析患者的历史数据,预测其未来可能出现的疾病。

* 将预测结果进行分类,并评估模型的准确性和可靠性。

* 提出可行的医疗建议和治疗方案。

4. 图像处理题目:人脸识别与安全控制描述:人脸识别技术在安全控制领域具有广泛应用价值。

请你们建立一个图像处理模型,以实现人脸识别和安全控制的功能。

要求模型能够准确识别出特定人物的脸部特征,并判断其是否符合安全控制条件。

全国大学生数学建模比赛题目(18年数学建模)

全国大学生数学建模比赛题目(18年数学建模)
• (4) 建立数学模型计算会员生命周期中非活跃会员的激活率,即从 非活跃会员转化为活跃会员的可能性,并从实际销售数据出发, 确定激活率和商场促销活动之间的关系模型。
• (5) 连带消费是购物中心经营的核心,如果商家将策划某次促销活 动,如何根据会员的喜好和商品的连带率来策划此次促销活动?
全国大学生数学建模比赛题目(18年数学建模)
• 由于该公司的生产线24小时不间断作业,以上总装线和喷涂线的 各项要求对相邻班次(包括当日晚班与次日白班)的车辆同样适 用。
全国大学生数学建模比赛题目(18年数学建模)
不同颜色汽车在总装线上排列时的 具体要求如下:
• (a)黑色汽车连续排列的数量在50-70辆之间,两批黑色汽车在总装线上需 间隔至少20辆。
• (2) 针对会员的消费情况建立能够刻画每一位会员购买力的数学模 型,以便能够对每个会员的价值进行识别。
全国大学生数学建模比赛题目(18年数学建模)
• (3) 作为零售行业的重要资源,会员具有生命周期(会员从入会到 退出的整个过程),会员的状态(比如活跃和非活跃)也会发生变 化。试在某个时间窗口,建立会员生命周期和状态划分的数学模 型,使商场管理者能够更有效地对会员进行管理。
• 为设计专用服装,将体内温度控制在37ºC的假人放置在实验室的 高温环境中,测量假人皮肤外侧的温度。为了降低研发成本、缩 短研发周期,请你们利用数学模型来确定假人皮肤外侧的温度变 化情况,并解决以下问题:
• 附件1. 专用服装材料的参数值 • 附件2. 假人皮肤外侧的测量温度
全国大学生数学建模比赛题目(18年数学建模)
• 公司每天可装配各种型号的汽车460辆,其中白班、晚班(每班12小 时)各230辆。每天生产各种型号车辆的具体数量根据市场需求和销售 情况确定。附件给出了该企业2018年9月17日至9月23日一周的生产计 划。

2018年高教社杯全国大学生数学建模竞赛题目-B-Chinese-Appendix1

2018年高教社杯全国大学生数学建模竞赛题目-B-Chinese-Appendix1

附件1:智能加工系统的组成与作业流程1.系统的场景及实物图说明在附图1中,中间设备是自带清洗槽和机械手的轨道式自动引导车RGV,清洗槽每次只能清洗1个物料,机械手臂前端有2个手爪,通过旋转可以先后各抓取1个物料,完成上下料作业。

两边排列的是CNC,每台CNC前方各安装有一段物料传送带。

右侧为上料传送带,负责为CNC输送生料(未加工的物料);左边为下料传送带,负责将成料(加工并清洗完成的物料)送出系统。

其他为保证系统正常运行的辅助设备。

附图1:RGV—CNC车间布局图附图2:带机械手臂和清洗槽的RGV实物图附图2是RGV的实物图,包括车体、机械臂、机械手爪和物料清洗槽等。

附图3:RGV机械手臂前端的2个手爪实物图在附图3左图中,机械臂前端上方手爪抓有1个生料A,CNC加工台上有1个熟料B。

RGV机械臂移动到CNC加工台上方,机械臂下方空置的手爪准备抓取熟料B,在抓取了熟料B后即完成下料作业。

在附图3右图中,RGV机械臂下方手爪已抓取了CNC加工台上的熟料B抬高手臂,并旋转手爪,将生料A对准加工位置,安放到CNC加工台上,即完成上料作业。

2.系统的构成及说明智能加工系统由8台CNC、1台带机械手和清洗槽的RGV、1条RGV直线轨道、1条上料传送带和1条下料传送带等附属设备构成。

(1)CNC:在上料传送带和下料传送带的两侧各安装4台CNC,等距排列,每台CNC同一时间只能安装1种刀具加工1个物料。

如果物料的加工过程需要两道工序,则需要有不同的CNC安装不同的刀具分别加工完成,在加工过程中不能更换刀具。

第一和第二道工序需要在不同的CNC上依次加工完成,完成时间也不同,每台CNC 只能完成其中的一道工序。

(2)RGV:RGV带有智能控制功能,能够接收和发送指令信号。

根据指令能在直线轨道上移动和停止等待,可连续移动1个单位(两台相邻CNC间的距离)、2个单位(三台相邻CNC间的距离)和3个单位(四台相邻CNC间的距离)。

大学生数学建模竞赛A题参考答案

大学生数学建模竞赛A题参考答案

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土<0~10 厘M深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1> 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2> 通过数据分析,说明重金属污染的主要原因。

(3> 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4> 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

全国大学数学建模竞赛题目汇总(ABCD)

全国大学数学建模竞赛题目汇总(ABCD)

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒地评价确定葡萄酒质量时一般是通过聘请一批有资质地评酒员进行品评.每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒地质量.酿酒葡萄地好坏与所酿葡萄酒地质量有直接地关系,葡萄酒和酿酒葡萄检测地理化指标会在一定程度上反映葡萄酒和葡萄地质量.附件1给出了某一年份一些葡萄酒地评价结果,附件2和附件3分别给出了该年份这些葡萄酒地和酿酒葡萄地成分数据.请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员地评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄地理化指标和葡萄酒地质量对这些酿酒葡萄进行分级.3. 分析酿酒葡萄与葡萄酒地理化指标之间地联系.4.分析酿酒葡萄和葡萄酒地理化指标对葡萄酒质量地影响,并论证能否用葡萄和葡萄酒地理化指标来评价葡萄酒地质量?附件1:葡萄酒品尝评分表<含4个表格)附件2:葡萄和葡萄酒地理化指标<含2个表格)附件3:葡萄和葡萄酒地芳香物质<含4个表格)2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)B题太阳能小屋地设计在设计太阳能小屋时,需在建筑物外表面<屋顶及外墙)铺设光伏电池,光伏电池组件所产生地直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网.不同种类地光伏电池每峰瓦地价格差别很大,且每峰瓦地实际发电效率或发电量还受诸多因素地影响,如太阳辐射强度、光线入射角、环境、建筑物所处地地理纬度、地区地气候与气象条件、安装部位及方式<贴附或架空)等.因此,在太阳能小屋地设计中,研究光伏电池在小屋外表面地优化铺设是很重要地问题.附件1-7提供了相关信息.请参考附件提供地数据,对下列三个问题,分别给出小屋外表面光伏电池地铺设方案,使小屋地全年太阳能光伏发电总量尽可能大,而单位发电量地费用尽可能小,并计算出小屋光伏电池35年寿命期内地发电总量、经济效益<当前民用电价按0.5元/kWh计算)及投资地回收年限.在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式<串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表.在同一表面采用两种或两种以上类型地光伏电池组件时,同一型号地电池板可串联,而不同型号地电池板不可串联.在不同表面上,即使是相同型号地电池也不能进行串、并联连接.应注意分组连接方式及逆变器地选配.问题1:请根据山西省大同市地气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋<见附件2)地部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应地逆变器地容量和数量.问题2:电池板地朝向与倾角均会影响到光伏电池地工作效率,请选择架空方式安装光伏电池,重新考虑问题1.问题3:根据附件7给出地小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋地外形图,并对所设计小屋地外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果.附件1:光伏电池组件地分组及逆变器选择地要求附件2:给定小屋地外观尺寸图附件3:三种类型地光伏电池<A单晶硅、B多晶硅、C非晶硅薄膜)组件设计参数和市场价格附件4:大同典型气象年气象数据.特别注意:数据库中标注地时间为实际时间减1小时,即数据库中地11:00即为实际时间地12:00附件5:逆变器地参数及价格附件6:可参考地相关概念附件7:小屋地建筑要求2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)C题脑卒中发病环境因素分析及干预脑卒中<俗称脑中风)是目前威胁人类生命地严重疾病之一,它地发生是一个漫长地过程,一旦得病就很难逆转.这种疾病地诱发已经被证实与环境因素,包括气温和湿度之间存在密切地关系.对脑卒中地发病环境因素进行分析,其目地是为了进行疾病地风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病地健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护.同时,通过数据模型地建立,掌握疾病发病率地规律,对于卫生行政部门和医疗机构合理调配医务力量、改善就诊治疗环境、配置床位和医疗药物等都具有实际地指导意义.数据<见Appendix-C1)来源于中国某城市各家医院2007年1月至2018年12月地脑卒中发病病例信息以及相应期间当地地逐日气象资料<Appendix-C2).请你们根据题目提供地数据,回答以下问题:1.根据病人基本信息,对发病人群进行统计描述.2.建立数学模型研究脑卒中发病率与气温、气压、相对湿度间地关系.3.查阅和搜集文献中有关脑卒中高危人群地重要特征和关键指标,结合1、2中所得结论,对高危人群提出预警和干预地建议方案.2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)D题机器人避障问题图1是一个800×800地平面场景图,在原点O(0,0>点处有一个机器人,它只能在该平面场景范围内活动.图中有12个不同形状地区域是机器人不能与之发生碰撞点与障碍物地距离至少超过10个单位).规定机器人地行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径.机器人不能折线转弯,转弯路径由与直线路径相切地一段圆弧组成,也可以由两个或多个相切地圆弧路径组成,但每个圆弧地半径最小为10个单位.为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间地最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走.机器人直线行走地最大速度为50=v 个单位/秒.机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v ,其中ρ是转弯半径.如果超过该速度,机器人将发生侧翻,无法完成行走.请建立机器人从区域中一点到达另一点地避障最短路径和最短时间路径地数学模型.对场景图中4个点O(0,0>,A(300,300>,B(100,700>,C(700,640>,具体计算:(1> 机器人从O(0,0>出发,O→A 、O→B 、O→C 和O→A→B→C→O 地最短路径.(2> 机器人从O (0,0>出发,到达A 地最短时间路径.注:要给出路径中每段直线段或圆弧地起点和终点坐标、圆弧地圆心坐标以及机器人行走地总距离和总时间.图1800×800平面场景图。

2018年数模国赛A题

2018年数模国赛A题

2018年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题高温作业专用服装设计
在高温环境下工作时,人们需要穿着专用服装以避免灼伤。

专用服装通常由三层织物材料构成,记为I、II、III层,其中I层与外界环境接触,III层与皮肤之间还存在空隙,将此空隙记为IV层。

为设计专用服装,将体内温度控制在37ºC的假人放置在实验室的高温环境中,测量假人皮肤外侧的温度。

为了降低研发成本、缩短研发周期,请你们利用数学模型来确定假人皮肤外侧的温度变化情况,并解决以下问题:
(1)专用服装材料的某些参数值由附件1给出,对环境温度为75ºC、II层厚度为6 mm、IV层厚度为5 mm、工作时间为90分钟的情形开展实验,测量得到假人皮肤外侧的温度(见附件2)。

建立数学模型,计算温度分布,并生成温度分布的Excel文件(文件名为problem1.xlsx)。

(2) 当环境温度为65ºC、IV层的厚度为5.5 mm时,确定II层的最优厚度,确保工作60分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。

(3) 当环境温度为80C 时,确定II层和IV层的最优厚度,确保工作30分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。

附件1. 专用服装材料的参数值
附件2. 假人皮肤外侧的测量温度。

2018年西南交通大学数学建模竞赛题目——A题:测点分布问题

2018年西南交通大学数学建模竞赛题目——A题:测点分布问题

2018年西南交通大学数学建模竞赛题目(请先阅读“论文封面及格式要求”)A题:均匀布点问题均匀布点问题在工程领域里面经常遇到。

比如我们在进行天气预报的时候,天气演化的数值计算模型是通过在球面上布置网格进行的。

在地球表面布置计算网格时,这些网格点必须是均匀的(图1给出了两种比较均匀的计算网格),才能保证计算是均匀的,进而在此基础上进行数值演化计算。

图1 两种均匀分布的计算网格在岩土工程领域,在进行地质体的力学计算时,同样需要计算网格是均匀的,这就需要在地质体表面也均匀的分布点。

相对于天气预报的球体,地质体一般是不规则的几何体(图2给出了一个不规则几何体的例子),在不规则形体表面均匀分布点会更加复杂一些。

图2 一些不规则形体的例子除了计算网格的设置,我们在各个工程领域会遇到需要布置测点来测量物理量的问题,这时候常常需要布置的测点也是均匀的,而且很多时候不仅要在空间上是均匀的,对于某些变量来说也是均匀的。

比如在布置地震台时,断层附近就要加密,历史上无地震的地区就可以布置的稀疏一些,此时地震台网的分布就应该是在考虑空间位置的同时,对于地震发生概率是均匀的(图3给出了中国国家地震台站分布图);在布置人口监测点时,人口密集的地方就要多布置,人口稀疏的地区就可以少布置一些。

当然上述只是举了一些例子,真实的分布时要考虑多重因素,而且均匀性的定义也是不确定的。

图3 中国国家地震台站分布图请建立数学模型回答以下问题:1、如何在标准的球面上均匀分布测点?如何度量测点分布的均匀性?请给出球面点分布均匀性的度量标准并给出在此标准下最佳的球面均匀分布点的方法及结果。

2、若为非规则几何体,给出任意几何形体表面均匀分布点的数学模型。

3、在地震及环境工程等领域,在分布监测点时,多考虑一个影响因素(如地震发生概率、人口密度等等),建立数学模型,使测点分布也是“均匀”的。

2018数学建模国赛B题

2018数学建模国赛B题

RGV动态调度模型摘要:RGV是智能加工系统的中间环节,控制RGV的动态调度也就是控制了智能加工系统的工作流程。

需要在四种不同的情况下对RGV进行调度分析:单工序、单工序有故障、双工序、双工序无故障。

单工序的情况下建立了三个模型:数学规划模型、单工序分层预测模型、单工序局部最优模型。

数学规划模型将第i件物料的上料时间、下料时间、CNC编号等设为自变量,以RGV的15个初始状态、一台CNC上相邻处理的两件物料的上料时间关系等因素作为约束条件,以最后一件物料的上料时间最小为目标函数。

但因为求解这种模型的程序时间复杂度较高,准确度较低,又建立了单工序分层预测模型和单工序局部最优模型,用算法模拟该智能加工系统的工作流程。

单工序分层预测模型中,RGV每次判断执行请求的次序时,都会预先模拟系统向下选择两次,找到效率最高的一种方案。

单工序局部最优模型是以发出请求的CNC与RGV之间的距离为衡量指标,优先选择距离最近的请求,如果距离一样,优先选择CNC编号为奇数的请求。

三种模型的运行结果表明:系统工作效率由高到低依次是数学规划模型、单工序分层预测模型、单工序局部最优模型。

但是数学规划模型只能算出前88件物料所用时间,8个小时内可以加工的总物料数目只能推测出来,准确度有待验证。

因此判定单工序分层预测模型是三个模型中最优的模型,该模型下得到的第1组、第2组、第3组在8小时内分别可以完成的物料数目为357件、364件、344件。

单工序有故障的情况下,我们在单工序分层预测模型的基础上进行修改。

将1%的故障率转化为每秒钟CNC发生故障的概率,然后产生一个[10,20]间的随机数作为CNC的维修时间,其他算法步骤与无故障的相同。

得到的第1组、第2组、第3组在8小时内分别可以完成的物料数目为307件、336件、319件。

双工序的情况下,我们依然采用局部最优模型。

与单工序不同的是,双工序模型中,当一个物料加工完第一道工序时,发出的请求不是下料而是加工第二道工序。

全国数学建模竞赛题目A,B

全国数学建模竞赛题目A,B

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力地影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低地现象.因为城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道地通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用地情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力地影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1<附件1)和视频2<附件2)中地两个交通事故处于同一路段地同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1<附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力地变化过程.根据问题1所得结论,结合视频2<附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响地差异.构建数学模型,分析视频1<附件1)中交通事故所影响地路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间地关系.假如视频1<附件1)中地交通事故所处横断面距离上游路口变为140M,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车地交通流量,且换算成标准车当量数.附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2地数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试卷专题页面:试卷下载地址:2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片地拼接复原破碎文件地拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要地应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术地发展,人们试图开发碎纸片地自动拼接技术,以提高拼接复原效率.请讨论以下问题:1. 对于给定地来自同一页印刷文字文件地碎纸机破碎纸片<仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果以图片形式及表格形式表达<见【结果表达格式说明】).2. 对于碎纸机既纵切又横切地情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果表达要求同上.3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件地碎纸片拼接复原问题需要解决.附件5给出地是一页英文印刷文字双面打印文件地碎片数据.请尝试设计相应地碎纸片拼接复原模型与算法,并就附件5地碎片数据给出拼接复原结果,结果表达要求同上.【数据文件说明】(1)每一附件为同一页纸地碎片数据.(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片.(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片.附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面.该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片地两面分别对应文件000a、000b.【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2地结果:将碎片序号按复原后顺序填入1×19地表格;(2)附件3、附件4地结果:将碎片序号按复原后顺序填入11×19地表格;(3)附件5地结果:将碎片序号按复原后顺序填入两个11×19地表格;(4)不能确定复原位置地碎片,可不填入上述表格,单独列表.。

数学建模2018年c题

数学建模2018年c题

数学建模2018年c题2018年数学建模C题题目如下:题目:太阳光照射下物体影子的长度随时间发生变化,根据影子的长度变化规律推算日晷计时的原理,并设计一个日晷模型。

要求:1. 解释日晷计时的基本原理,并给出推算过程。

2. 设计一个符合要求的日晷模型,并说明其特点。

3. 描述如何使用该日晷模型进行计时。

这道题目主要考察了物理知识、数学建模和计算机编程等方面的能力,需要结合物理学中的光学原理和数学建模技术,设计出一个符合要求的日晷模型。

首先,我们需要了解影子的形成原理和影子的长度变化规律。

当太阳光照射到物体上时,由于太阳的高度角和方位角的变化,物体的影子会随着时间而发生变化。

影子的长度变化规律与太阳的高度角和方位角有关,因此可以通过测量影子的长度来推算出太阳的位置。

其次,我们需要设计一个符合要求的日晷模型。

日晷模型的设计需要考虑以下几个方面:1. 确定模型的材料和尺寸,使得模型能够准确地反映太阳的位置变化;2. 确定模型的放置角度和方向,使得模型能够准确地反映太阳的高度角和方位角的变化;3. 确定模型的刻度,使得模型能够准确地反映时间的变化。

最后,我们需要描述如何使用该日晷模型进行计时。

使用该日晷模型进行计时需要遵循以下步骤:1. 将日晷模型放置在室外空旷的地方,确保模型能够接收到太阳光;2. 在日出时,将一根细线放在日晷模型上,使其与太阳光垂直;3. 随着时间的推移,观察细线在日晷模型上的移动情况,记录下每个时刻细线所对应的时间;4. 根据记录的时间数据,绘制出时间与太阳位置的关系曲线,从而得到日晷计时的结果。

总之,这道题目需要结合物理学、数学建模和计算机编程等方面的知识,设计出一个符合要求的日晷模型,并描述如何使用该模型进行计时。

2018年全国大学生数学建模大赛D题及三篇优秀论文精选

2018年全国大学生数学建模大赛D题及三篇优秀论文精选

2018年高教社杯全国大学生数学建模竞赛D题目及优秀论文D题汽车总装线的配置问题一.问题背景某汽车公司生产多种型号的汽车,每种型号由品牌、配置、动力、驱动、颜色5种属性确定。

品牌分为A1和A2两种,配置分为B1、B2、B3、B4、B5和B6六种,动力分为汽油和柴油2种,驱动分为两驱和四驱2种,颜色分为黑、白、蓝、黄、红、银、棕、灰、金9种。

公司每天可装配各种型号的汽车460辆,其中白班、晚班(每班12小时)各230辆。

每天生产各种型号车辆的具体数量根据市场需求和销售情况确定。

附件给出了该企业2018年9月17日至9月23日一周的生产计划。

公司的装配流程如图1所示。

待装配车辆按一定顺序排成一列,首先匀速通过总装线依次进行总装作业,随后按序分为C1、C2线进行喷涂作业。

图1汽车总装线的装配流程图二.装配要求由于工艺流程的制约和质量控制的需要以及降低成本的考虑,总装和喷涂作业对经过生产线车辆型号有多种要求:(1)每天白班和晚班都是按照先A1后A2的品牌顺序,装配当天两种品牌各一半数量的汽车。

如9月17日需装配的A1和A2的汽车分别为364和96辆,则该日每班首先装配182辆A1汽车,随后装配48辆A2汽车。

(2)四驱汽车连续装配数量不得超过2辆,两批四驱汽车之间间隔的两驱汽车的数量至少是10辆;柴油汽车连续装配数量不得超过2辆,两批柴油汽车之间间隔的汽油汽车的数量至少10辆。

若间隔数量无法满足要求,仍希望间隔数量越多越好。

间隔数量在5-9辆仍是可以接受的,但代价很高。

(3)同一品牌下相同配置车辆尽量连续,减少不同配置车辆之间的切换次数。

(4)对于颜色有如下要求:1)蓝、黄、红三种颜色汽车的喷涂只能在C1线上进行,金色汽车的喷涂只能在C2线上进行,其他颜色汽车的喷涂可以在C1和C2任意一条喷涂线上进行。

2)除黑、白两种颜色外,在同一条喷涂线上,同种颜色的汽车应尽量连续喷涂作业。

3)喷涂线上不同颜色汽车之间的切换次数尽可能少,特别地,黑色汽车与其它颜色的汽车之间的切换代价很高。

2018青岛理工大学数学建模竞赛赛题--B题

2018青岛理工大学数学建模竞赛赛题--B题

B题:救灾物资费用优化问题救灾物资生产厂家分布在全国各地。

除了生产厂家的捐赠以外,另外的物资由国家救灾指挥部统一购买,各个地区的民政部门负责本地区的物资集中和运送。

需要付出物资的购买费用以及运输费用。

根据当时的具体情况,初步有一个总费用计划,将根据情况的发展不断修订。

资有5个,用D j=
,1,
j
,如果量。

问题二:根据问题中提供的有关具体数据(图中),求出最小费用和运输路线。

地区分布图
上图中方框表示供应物资生产厂家;大黑点表示地区物资需求地区;小黑点表示道路;每条边的一侧的数据表示里程数。

运输费用表
物资1M 的价格表:
物资2M 的价格表:
各个地区的最低物资需求量表
各个生产厂家的物资供应能力表。

数学建模2018年题目

数学建模2018年题目

数学建模2018年题目
2018年全国大学生数学建模大赛的题目包括:
1. 共享单车调度优化:这是一个关于如何优化共享单车的调度和投放的问题,目标是使得市民能够更加方便地使用共享单车,并减少乱停乱放现象。

要求建立一个数学模型来描述这个问题,并使用实际数据进行验证和优化。

2. 股市预测与投资策略优化:针对某支股票的历史交易数据,建立一个数据分析模型,以预测未来一段时间内的股票价格,并在此基础上制定投资策略。

需要收集并清洗数据,然后建立一个数据分析模型。

3. 高温作业专用服装设计:在高温环境下工作时,人们需要穿着专用服装以避免灼伤。

服装通常由三层织物材料构成,记为I、II、III层,其中I层与外界环境接触,III层与皮肤之间还存在空隙,将此空隙记为IV层。

需要将体
内温度控制在37ºC的假人放置在实验室的高温环境中,测量假人皮肤外侧的温度。

以上信息仅供参考,如需更多数学建模相关的题目和资料,建议登陆数模论坛等数学建模相关的平台或微信公众号。

2018年数模国赛c题

2018年数模国赛c题

2018年数模国赛c题2018年数学建模国际赛(MCM/ICM)共有三个题目,分别是A题、B题和C题。

你提到的是C题,下面我将从多个角度全面完整地回答关于2018年数模国赛C题的问题。

2018年数模国赛C题是关于“高尔夫球场设计”的问题。

题目要求参赛队伍设计一个18洞的高尔夫球场,使得球场的总长度最小,并且满足一定的设计要求。

具体的设计要求包括,每个洞的长度应该在一定范围内,且相邻洞的长度差不应过大;每个洞的长度应该与其对应的标准杆数(即完成该洞所需的标准击球数)相匹配;球场应该有一定的变化和挑战性,不能过于单调。

为了回答这个问题,我们可以从以下几个角度进行思考和分析:1. 设计原则和目标,在回答问题之前,我们可以先讨论设计高尔夫球场的原则和目标。

例如,我们可以考虑球场的整体布局、景观和地形特点,以及球场的难度和挑战性等因素。

2. 数学模型,为了解决这个问题,我们可以建立数学模型来描述球场的设计和优化。

可以使用数学工具和技巧,如最优化理论、线性规划、图论等,来帮助我们优化球场的设计。

3. 数据分析,在设计球场之前,我们需要对相关数据进行分析。

这可能包括对不同洞的长度范围、标准杆数和球道特点等进行统计和分析,以便更好地满足设计要求。

4. 环境和可持续性考虑,设计高尔夫球场时,我们还应该考虑环境和可持续性因素。

例如,我们可以思考如何最大限度地减少对自然环境的干扰,如何合理利用土地和水资源,以及如何降低球场的维护成本等。

5. 实施和评估,设计完成后,我们还需要考虑球场的实施和评估。

这可能涉及到施工计划、费用预算、球场使用情况的监测和评估等方面。

综上所述,设计一个18洞的高尔夫球场涉及到多个方面的考虑和决策。

从设计原则和目标、数学模型、数据分析、环境和可持续性考虑,到实施和评估等多个角度,我们可以全面地回答关于2018年数模国赛C题的问题。

这样的综合回答可以帮助我们更好地理解和解决这个问题。

【7A版】2018年数模国赛A题

【7A版】2018年数模国赛A题

【MeiWei81-优质实用版文档】
2018年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题高温作业专用服装设计
在高温环境下工作时,人们需要穿着专用服装以避免灼伤。

专用服装通常由三层织物材料构成,记为I、II、III层,其中I层与外界环境接触,III层与皮肤之间还存在空隙,将此空隙记为IV层。

为设计专用服装,将体内温度控制在37ºC的假人放置在实验室的高温环境中,测量假人皮肤外侧的温度。

为了降低研发成本、缩短研发周期,请你们利用数学模型来确定假人皮肤外侧的温度变化情况,并解决以下问题:
(1)专用服装材料的某些参数值由附件1给出,对环境温度为75ºC、II层厚度为6mm、IV层厚度为5mm、工作时间为90分钟的情形开展实验,测量得到假人皮肤外侧的温度(见附件2)。

建立数学模型,计算温度分布,并生成温度分布的EGcel文件(文件名为problem1.GlsG)。

(2)当环境温度为65ºC、IV层的厚度为5.5mm时,确定II层的最优厚度,确保工作60分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。

(3)当环境温度为80C 时,确定II层和IV层的最优厚度,确保工作30分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。

附件1.专用服装材料的参数值
附件2.假人皮肤外侧的测量温度
【MeiWei81-优质实用版文档】。

2018年高教社杯全国大学生数学建模竞赛题目D题附录

2018年高教社杯全国大学生数学建模竞赛题目D题附录

90
5
102
16
9
1
3
1
4
3
7
11
227
107
12
汽油
B2
B3
B5
1
B5 6
6 总计
总计
4 3 188 122 13 5 3
7 11 356
5
9月17日
颜色 两驱
蓝 黑 白 金 棕 银 红 四驱 黑 白 总计
9月18日
颜色 两驱
蓝 黑 白 灰 金 棕 银 红 四驱 黑 白 银 总计 9月19日
颜色 两驱
84
77
2
111
27
12
1
5
1
2
1
10
5
3
233
107
8
总计
5 3 180 139 9 7 3
10 6 2 364
总计 B5
4
3
2
167
4
142
13
6
3
15
3
6
356
9月19日
颜色 两驱
黄 蓝 黑 白 灰 银 红 四驱 黑 白 总计 9月20日
柴油 B1 4
4
颜色
B1
两驱

4
汽油
B1
B2
B3
4
3
87
蓝 黑 白 棕 银 红 四驱 黑 白 银 总计 9月20日
颜色 两驱


3

92

114

7

2

3
四驱

9


2
总计

2018年数学建模c题

2018年数学建模c题

2018年数学建模c题2018年数学建模C题:停车场规划与优化一、问题描述随着城市的发展,停车场的需求越来越大,因此对于停车场的规划与优化变得尤为重要。

本次数学建模C题将围绕停车场规划与优化展开,目标是设计一个高效、公平、可持续的停车场管理系统。

二、问题分析1.确定问题类型:本题是一个优化问题,需要找到最优的停车场设计方案,以最大化停车场的利用率和满足用户需求。

2.明确目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略、停车位分配策略、出入控制策略等来实现。

3.约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

4.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

5.建模方法:可以采用运筹学中的优化算法,如线性规划、整数规划等,结合实际情况建立数学模型。

三、模型建立1.确定目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略来实现。

设停车场的总收益为目标函数,记为Z。

2.确定约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

设停车场的最大容量为C,车辆的平均停车时间为T,车辆的类型数量为N。

3.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

设停车场的收费标准为p,停车位数量为n,停车位分配方式为m,出入控制方式为k。

4.建立数学模型:最大化收益Z=p*n*T,约束条件包括C>=n,T>=0,N>=m>=1,k为布尔值(0或1)。

四、算法设计1.初始化变量:根据实际情况,设定初始的停车位数量n、收费标准p、停车位分配方式m、出入控制方式k等。

2.循环计算:采用循环的方式,逐步增加或减少停车位数量n,同时调整收费标准p、停车位分配方式m、出入控制方式k等,计算每个方案下的收益Z。

2018数学建模赛题

2018数学建模赛题

末端防御是国家防御体系的重要组成部分,是保护重要政治、军事、经济目标,打造安全国防体系的重要支撑。

末端防御系统一般由目标搜索与识别、目标指示、目标跟踪测量、系统管理、射击诸元解算、火力随动、脱靶量测量、载体姿态测量、载体定位与定向、跟踪线与武器线稳定、弹道与气象测量、电源与供配电等子系统组成,主要完成目标探测、目标跟踪、目标测量与航迹预测、目标威胁度判定、目标分配、射击诸元解算、火炮随动控制、选择弹种、火力最佳时刻发射控制等功能。

作为防御的最后屏障,随着技术的发展、来袭空袭目标的变化以及作战模式的转变,末端防御高炮武器系统的作战使命也不断地得以拓展,战术应用也得到了快速发展。

具体来说,末端防御高炮武器系统在未来战争中将承担以下战术使命:一是担负对固定翼飞机的威胁,对无人机和直升机的防御任务;二是担负对巡航导弹、空地导弹和反辐射导弹的防御任务;三是担负对火箭弹、炮弹、迫击炮弹等快小目标的防御任务,保障战斗前沿的安全。

在上述作战使命要求下,防御系统面临着以下迫切的发展需求:1)具备复杂背景下目标提取与跟踪能力。

既要能在复杂背景下,提取目标特征、分析目标类型,同时又要具备在各种干扰或者遮蔽条件下,能对目标进行全程跟踪,特别是复杂背景下(RAM类)小目标的识别跟踪能力,要求对目标提取跟踪概率达到80%以上。

2)具备对弱RCS目标的探测跟踪能力。

一是提升火控系统的探测力,实现对小目标的探测与跟踪;二是集成多种探测跟踪手段,实现对隐身目标的探测跟踪,要具备对RCS≤0.01m2的目标探测跟踪能力。

3)具备对高速目标的跟瞄能力。

近期要具备对2~4Ma高速目标实现有效跟踪能力。

5~10a内,要满足对4Ma 以上空袭目标的对抗需要。

4)具备行进间稳瞄能力。

即大幅度提升行进间稳定跟踪与火力控制精度,满足行进间打击需求。

5)具备多目标跟踪和抗饱和攻击能力。

一是提升火控系统本身的探测跟踪能力;二是提升火控网络化协同能力;三是提升火控对火力系统的驱动响应速度,进而满足多目标跟踪、连续打击等抗饱和攻击的需求。

2018年全国大学生数学建模比赛题目

2018年全国大学生数学建模比赛题目

2018年全国大学生数学建模比赛题目数学建模是一项广泛应用于科学研究、工程设计、金融分析等领域的技术。

每年,全国各高等院校都会举办数学建模比赛,给大学生提供锻炼自己解决实际问题的能力的机会。

本文将就2018年全国大学生数学建模比赛的题目进行探讨。

题目一:自行车数量与旅行模式问题描述:市中心的自行车共享系统使用无桩自行车,市民可以方便地使用自行车进行短途旅行。

自行车可以在各个自行车站点租借或归还。

现在,为了控制现有自行车站点的数量,减少自行车的维护成本,我们希望通过数学建模来确定每个站点所需的自行车数量。

要求:1. 假设市区划分为若干个网格,每个网格的面积相等。

2. 假设每个网格内居民数量相等,每个居民的日常出行模式相同且固定。

3. 假设市民的出行行为服从正态分布,给定出行距离的概率密度函数。

问题拆解:1. 分析市区的人口分布状况,确定网格划分的数量和大小。

2. 探究不同网格内居民的出行距离的概率密度函数,构建数量与距离的关系模型。

3. 建立目标函数,包括自行车使用率、用户满意度、成本等。

解决方案:1. 利用地理信息系统(GIS)技术分析市区的人口密度分布,并选用合适的网格划分方法。

2. 基于历史数据和问卷调查等方法,统计每个网格内居民的出行距离的概率密度函数。

3. 建立模型,通过数学建模软件对目标函数进行优化,确定每个站点所需的自行车数量。

问题二:降雨量与洪水风险问题描述:随着气候变化的不断加剧,降雨量的变化对城市的洪水风险产生了重要影响。

为了预防城市洪水灾害,我们希望通过数学建模来评估降雨量与洪水风险之间的关系。

要求:1. 假设城市的排水系统是由多个相互连接的下水道组成。

2. 城市的排水系统中包括雨水收集、输送和排放等多个环节。

问题拆解:1. 基于历史气象数据,分析城市的降雨量变化情况,并建立降雨量的时间序列模型。

2. 探究城市排水系统的结构和参数,建立水流模型,分析水的流动规律。

3. 基于降雨量和水流模型,建立洪水风险评估模型,分析降雨量与洪水风险的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题B 智能RGV的动态调度策略
图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC)、1辆轨道式自动引导车(Rail Guide Vehicle,RGV)、1条RGV直线轨道、1条上料传送带、1条下料传送带等附属设备组成。

RGV是一种无人驾驶、能在固定轨道上自由运行的智能车。

它根据指令能自动控制移动方向和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能够完成上下料及清洗物料等作业任务(参见附件1)。

图1:智能加工系统示意图
针对下面的三种具体情况:
(1)一道工序的物料加工作业情况,每台CNC安装同样的刀具,物料可以在任一台CNC上加工完成;
(2)两道工序的物料加工作业情况,每个物料的第一和第二道工序分别由两台不同的CNC依次加工完成;
(3)CNC在加工过程中可能发生故障(据统计:故障的发生概率约为1%)的情况,每次故障排除(人工处理,未完成的物料报废)时间介于10~20分钟之间,故障排除后即刻加入作业序列。

要求分别考虑一道工序和两道工序的物料加工作业情况。

请你们团队完成下列两项任务:
任务1:对一般问题进行研究,给出RGV动态调度模型和相应的求解算法;
任务2:利用表1中系统作业参数的3组数据分别检验模型的实用性和算法的有效性,给出RGV 的调度策略和系统的作业效率,并将具体的结果分别填入附件2的EXCEL表中。

表1:智能加工系统作业参数的3组数据表时间单位:秒
系统作业参数第1组第2组第3组RGV移动1个单位所需时间20 2318
RGV移动2个单位所需时间33 4132
RGV移动3个单位所需时间46 5946
CNC加工完成一个一道工序的物料所需时间560 580545
CNC加工完成一个两道工序物料的第一道工序所需时间400 280455
CNC加工完成一个两道工序物料的第二道工序所需时间378 500182
RGV为CNC1#,3#,5#,7#一次上下料所需时间28 3027
RGV为CNC2#,4#,6#,8#一次上下料所需时间31 3532
RGV完成一个物料的清洗作业所需时间25 3025
附件1:智能加工系统的组成与作业流程
附件2:模型验证结果的EXCEL表(完整电子表作为附件放在解答材料中提交)。

相关文档
最新文档