摄像头的工作原理之欧阳光明创编
光电开关工作原理之欧阳地创编
光电开关工作原理(返回)时间:2021.03.04 创作:欧阳地电感式接近开关电容式接近开关红外线光电开关位移传感器霍尔开关磁性开关光电开关工作原理型号说明术语解释接线图号常用发射镜应用图例注意事项眼可见的光波是380n m-780n m,发射波长为780n m-1m m的长射线称为红外线,浙江,它是利用被检测物体对红外光束的遮光或反射,由同步回路选通而检测物体的有无,其外线光电开关可分为器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。
当被检测物体的表面光亮或其反光率极高时,漫反射式的射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。
入接收器。
当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。
当检测物体是不透明时,对射式光,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了检测到的开关量信号。
槽式光电开关比较安全可靠的适合检测高速变化被检测物体不在相近区域的检测。
通常光纤传感器分为对射式和漫反射式。
开关的感应表面)到开关动作时测得的基准位置到检次数。
足够的光线反射回漫反射开关的接受器,所以检测距离和被检测物体的表面反射率将是决定接受发射光线。
常用材料的反射率参考图如下所示:材料反射率材料反射率白画纸90%不透明黑色塑料14%报纸55%黑色橡胶4%餐巾纸47%黑色布料3%包装箱硬纸板68%未抛光白色金属表面130%洁净松木70%光泽浅色金属表面150%干净粗木板20%不锈钢200%透明塑料杯40%木塞35%半透明塑料瓶62%啤酒泡沫70%不透明白色塑料87%人的手掌心75%于最大检测距离状态时,由于光学透镜会被环境中的污物粘住,甚至会被一些强酸性物质腐蚀,以至降低使用参数特性,这些变量尽位移传感器工作原理和参数(返回)1. 原理简介位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,我厂所生产的是电感式位移传感器。
摄像头的工作原理
摄像头的工作原理摄像头是一种用于捕捉图象和视频的设备,广泛应用于监控系统、摄影、视频会议等领域。
它通过光学传感器将光线转化为电信号,并将其转换为数字图象或者视频信号。
本文将详细介绍摄像头的工作原理。
一、光学传感器摄像头的核心是光学传感器,它负责将光线转化为电信号。
常见的光学传感器有CMOS和CCD两种类型。
1. CMOS传感器CMOS(Complementary Metal-Oxide-Semiconductor)传感器是一种集成电路技术,它由光敏元件和像素阵列组成。
当光线照射在CMOS传感器上时,光敏元件会产生电荷,并通过电路传输到像素阵列中的每一个像素。
每一个像素会将电荷转化为电压信号,然后由模数转换器(ADC)将其转换为数字信号。
CMOS传感器具有低功耗、集成度高和成本低的特点,广泛应用于手机、笔记本电脑等便携式设备。
2. CCD传感器CCD(Charge-Coupled Device)传感器是一种通过电荷传输来捕捉图象的传感器。
当光线照射在CCD传感器上时,光敏元件会产生电荷,并通过电荷耦合器件(CCD)传输到图象传感器中。
图象传感器将电荷转化为电压信号,并通过模数转换器将其转换为数字信号。
CCD传感器具有较低的噪音水平和较高的图象质量,被广泛应用于摄影和专业摄像领域。
二、图象处理摄像头在捕捉图象后,需要对图象进行处理和压缩,以便存储和传输。
1. 图象处理图象处理包括去噪、增强、色采校正等操作,以提高图象的质量和清晰度。
常见的图象处理算法有锐化、含糊、边缘检测等。
2. 图象压缩由于图象数据量庞大,需要进行压缩以节省存储空间和传输带宽。
常见的图象压缩算法有JPEG、PNG等。
JPEG是一种有损压缩算法,可以在一定程度上减小图象文件的大小,但会损失一些细节信息。
PNG是一种无损压缩算法,可以保留图象的完整性,但文件大小较大。
三、视频传输摄像头可以通过有线或者无线方式将图象或者视频信号传输到显示设备或者存储设备。
摄像头的工作原理
摄像头的工作原理摄像头是一种用于捕捉图像和视频的设备,广泛应用于监控系统、摄影、视频会议等领域。
它通过光学和电子技术将光信号转换为电信号,然后将电信号传输到其他设备进行处理和显示。
下面将详细介绍摄像头的工作原理。
1. 光学部分:摄像头的光学部分主要由镜头和光敏元件组成。
镜头负责聚焦光线,使其能够准确地投射到光敏元件上。
光敏元件通常采用CMOS或CCD技术,它们能够将光信号转换为电信号。
2. 光信号转换为电信号:当光线通过镜头进入光敏元件时,光敏元件会根据光的强度和颜色产生相应的电信号。
对于CMOS传感器,它将光信号转换为电荷,并通过一系列的电路将电荷转换为电压信号。
对于CCD传感器,光信号会在感光元件上形成电荷,然后通过电荷耦合设备转换为电压信号。
3. 信号处理:摄像头的信号处理部分对电信号进行放大、滤波和数字化处理。
放大电路可以增加信号的强度,滤波电路可以去除噪声和干扰。
数字化处理将模拟信号转换为数字信号,以便后续的存储和传输。
4. 数据传输:经过信号处理后,数字信号可以通过不同的接口进行传输。
常见的接口包括USB、HDMI、网络接口等。
通过这些接口,摄像头可以将图像和视频数据传输到计算机、显示器或网络设备上进行显示、存储或传输。
5. 控制和调节:摄像头通常具有各种控制和调节功能,例如调节焦距、曝光时间、白平衡、对比度等。
这些功能可以通过摄像头的控制接口或软件进行设置和调整,以满足不同场景下的需求。
总结:摄像头的工作原理可以简单概括为光学部分将光信号转换为电信号,信号处理部分对电信号进行处理和数字化,然后通过接口进行传输。
摄像头的工作原理的详细过程包括光学部分的镜头聚焦和光敏元件的转换,信号处理部分的放大、滤波和数字化处理,以及数据传输和控制调节等步骤。
这些步骤共同作用,使得摄像头能够准确地捕捉图像和视频,并将其传输到其他设备上进行处理和显示。
摄像头工作原理
摄像头工作原理摄像头是一种能够捕捉图像的设备,广泛应用于摄影、视频通话、监控等领域。
它的工作原理是通过光学和电子技术将光信号转换成电信号,从而实现图像的捕捉和传输。
下面将详细介绍摄像头的工作原理。
一、光学成像1.1 光学透镜:摄像头中的透镜起到聚焦和成像的作用,它能够将光线聚焦到摄像头的感光元件上。
1.2 光圈控制:光圈的大小会影响图像的清晰度和景深,通过控制光圈大小可以调节摄像头的曝光量。
1.3 对焦机制:摄像头通过调节透镜的位置来实现对焦,确保拍摄的图像清晰度。
二、感光元件2.1 CCD传感器:CCD传感器是摄像头中常用的一种感光元件,它能够将光信号转换成电信号,并传输给图像处理器。
2.2 CMOS传感器:CMOS传感器是另一种常见的感光元件,它在成本和功耗上有优势,逐渐取代了CCD传感器。
2.3 感光元件的像素:感光元件的像素数量决定了摄像头的分辨率,像素越多,图像越清晰。
三、图像处理3.1 色彩处理:摄像头会对捕捉到的图像进行色彩校正和处理,保证图像的真实性和准确性。
3.2 对比度调整:对比度是图像中明暗部分的对比程度,摄像头会对图像的对比度进行调整,使图像更加鲜明。
3.3 噪声处理:摄像头会对图像中的噪声进行处理,提高图像的清晰度和质量。
四、数据传输4.1 数字化处理:摄像头会将捕捉到的模拟信号转换成数字信号,以便传输和存储。
4.2 数据压缩:为了减小数据量和提高传输效率,摄像头会对图像数据进行压缩处理。
4.3 数据传输接口:摄像头通常通过USB、HDMI等接口将数据传输到电脑或其他设备。
五、应用领域5.1 摄影领域:摄像头在数码相机、手机相机等设备中被广泛应用,为用户提供拍摄高质量照片的功能。
5.2 视频监控:摄像头在监控系统中起到重要作用,可以实时监控和录制视频,确保安全和防范犯罪。
5.3 视频通话:摄像头在视频通话应用中被广泛使用,可以实现远程通讯和沟通。
综上所述,摄像头通过光学成像、感光元件、图像处理、数据传输等环节实现图像的捕捉和传输,广泛应用于摄影、视频监控、视频通话等领域,是现代科技发展中不可或缺的重要设备。
摄像机镜头与视角角度之欧阳光明创编
摄像机镜头与视角角度欧阳光明(2021.03.07)【技术资料】红外摄像机的鲜为人知的知识1。
红外摄像机的外型基本上分为两种:半球型和枪型,即半球型线外摄像机,和普通枪式摄像机。
2。
红外摄像机跟普通摄像机,最大的区别的是红外摄像机多了CDS感觉系统和红外灯,CDS自动判断光线强暗,一般情况下,当照度低于10LUX时红外灯会自动打开。
3。
随意光线从暗到全黑,红外灯的功率会逐渐加大,直到100%功率。
4。
红外灯的视角有15度,30度,45度,90度等几种,如果红外灯数量相同,但角度不同,反映出来的效果也会不同,这点要根据客户不同的环境来选配。
5。
市场上红外的价格相当极大,单价有0.18元的,有0.3元的,有1.5元的,甚至3元的,所以光是红外灯的不同就会造成红外摄像机有几十元的差价。
可以这么说,价格越贵的红外灯其寿命越长,功率越大,效果就越好,所以选购红外摄像机,不要仅仅局限在红外灯的数量与大小上。
【技术资料】8毫米镜头和16毫米镜头的比较(图)镜头毫米数越小,视角越宽,物体细节越不清晰镜头毫米数越大,视角越窄,适合局部细节监控对比图如下:【技术资料】安防词汇对照集锦Physical Protection 物理技术防范Electronic Protection电子防范技术Biometric Protection生物统计学防范技术Auto Iris 自动光圈Manual Iris 手动光圈Zoom lens 变焦距镜头cradle head 云台Image sensor 图像传感器Signal system 信号制式Chroma compensator 色度补偿器Power indicator 电源指示灯Auto Iris Mount自动光圈接口Electronic shutter 电子快门Power consumption额定电流Power supply 电源Scanning system 扫描系统Auto white balance自动白平衡Auto gain control自动增益Backlight compensation背光补偿Video output 视频输出Lens zoom镜头聚焦Lens Iris 镜头变焦Video bandwidth 视频带宽Input resistance 输出阻抗Focal length 焦距Aperture 孔径Horizontal field of view视角Pinhole lenses针孔镜头Motorized zoom lenses电动变焦镜头Bullet-in lenses 直轴式镜头Camera 摄相机/普通枪机Waterproof Camera 防水摄像机IR Series Camera 红外夜视摄像机CCD Camera 电荷耦合掐摄相机Integrated monitoring system 一体化摄像机Covert CCD Camera 隐蔽式摄像机High Speed Dome 室内高速球Control Keyboard 智能控制键盘interphone 内部对讲机Elevator exclusive intercom 电梯专用对讲系统Healthcare and Nurse Call Series医院护理对讲系统Wireless Paging System 无线呼叫系统Burglary Alarm Kit 防盗报警器Burglary Alarm Master Panel 防盗报警主机Sirens and Lights 报警喇叭及闪灯Sensor 报警探头Emergency Push Button 报警按钮DVR ( Digital Video Recorder) 硬盘录像机Matrix 矩阵Dome Camera 半球摄相机Vandal-Proof Dome 防破坏半球系列【技术资料】监控系统采购指南在您决定安装监控系统时,如下因素是您需要考虑的:摄象机的选择:一般情况下,在室内采用半球摄像机比较美观,可以消除人们的介虑;在室外采用枪型号摄像机;如果现场光照度很差可以考虑采用带红外的摄像机;如果监看的距离比较的远,可以采用一体化摄像机更加经济些。
摄像头的工作原理
摄像头的工作原理摄像头是现代科技中不可或缺的一部分,它可以将现实世界的图像转化为数字信号,从而实现图像的捕捉和传输。
在我们日常生活中,摄像头被广泛应用于手机、电脑、监控系统等设备中。
那么,摄像头是如何工作的呢?下面将详细介绍摄像头的工作原理。
一、光学成像1.1 光学透镜系统摄像头的光学透镜系统是实现成像的关键部分。
光线通过透镜系统聚焦在感光元件上,形成清晰的图像。
透镜的种类、结构和焦距等参数会影响图像的质量和成像效果。
1.2 光圈和快门光圈和快门也是摄像头的重要组成部分。
光圈控制进入镜头的光线量,快门控制光线进入感光元件的时间。
通过调节光圈和快门的大小和速度,可以实现对图像的曝光和清晰度的控制。
1.3 感光元件感光元件是摄像头中最核心的部件,它负责将光信号转化为电信号。
常见的感光元件有CMOS和CCD两种类型,它们都有自己的优缺点,但都能实现图像的捕捉和传输。
二、信号处理2.1 信号采集感光元件将光信号转化为电信号后,信号会经过模数转换器(ADC)进行数字化处理。
ADC会将模拟信号转换为数字信号,以便后续的处理和传输。
2.2 图像处理数字信号经过图像处理器进行处理,包括去噪、锐化、色彩校正等操作。
图像处理器能够提高图像的质量和清晰度,使得最终的图像更加真实和逼真。
2.3 数据传输处理后的数字信号通过传输线路传输到显示器或存储设备上。
传输线路的稳定性和传输速度会影响图像的实时性和清晰度,因此传输线路的设计和选择也是摄像头工作原理中的重要环节。
三、控制系统3.1 自动对焦摄像头通常会配备自动对焦功能,通过控制系统可以实现对焦的自动调节。
自动对焦系统会根据拍摄对象的距离和清晰度进行调整,确保图像的清晰度和焦点准确。
3.2 白平衡白平衡是摄像头的另一个重要功能,它可以调整图像中的色温,使得图像在不同光线条件下都能呈现真实的色彩。
通过控制系统对白平衡进行调整,可以避免图像偏色或过曝的情况发生。
3.3 曝光控制曝光控制是摄像头的关键功能之一,它可以根据光线强度和拍摄场景的需要调整光圈和快门,确保图像的曝光度适中。
摄像头的工作原理
摄像头的工作原理摄像头是一种用于捕捉图像和视频的设备,广泛应用于安防监控、视频会议、摄影等领域。
它通过光学传感器和图像处理器的协同工作,将光信号转换为数字信号,进而生成图像或视频。
摄像头的工作原理可以分为以下几个步骤:1. 光学成像:当光线通过镜头进入摄像头时,会经过透镜的折射和聚焦,从而形成一个倒立的实像。
透镜的设计和材料决定了成像的质量和清晰度。
2. 光电转换:实像进一步通过光学传感器接收,光学传感器通常采用CMOS (Complementary Metal-Oxide-Semiconductor)或CCD(Charge-Coupled Device)技术。
CMOS传感器是目前主流的技术,它由一系列微小的光电二极管组成,每个二极管对应图像的一个像素点。
当光线照射到CMOS传感器上时,光电二极管会产生电荷,并将其转换为电压信号。
3. 信号处理:摄像头内部的图像处理器会对从光学传感器获取的电压信号进行放大、滤波和数字化处理。
这些处理包括去除噪声、增强对比度、调整色彩饱和度等,以提高图像质量和细节。
4. 数字编码:经过信号处理后,摄像头将图像或视频转换为数字信号。
常见的编码格式包括JPEG、MPEG和H.264等。
编码的目的是压缩数据量,以便在存储和传输过程中节省带宽和存储空间。
5. 输出和传输:经过编码后,图像或视频可以通过不同的接口输出,如USB、HDMI、网络接口等。
用户可以通过电脑、手机或其他设备查看和处理摄像头捕捉到的图像或视频。
值得注意的是,不同类型的摄像头可能有不同的工作原理。
例如,红外摄像头利用红外光源和红外传感器来捕捉低光环境下的图像,而3D摄像头则使用两个或多个镜头来获取深度信息。
总结起来,摄像头的工作原理包括光学成像、光电转换、信号处理、数字编码和输出传输等环节。
这些步骤的协同工作使得摄像头能够捕捉到清晰、真实的图像和视频。
随着技术的不断进步,摄像头的性能和功能也在不断提升,为我们提供更好的视觉体验和应用场景。
摄像机的工作原理
摄像机的工作原理
摄像机是一种能够将光学影像转换成电信号的设备,它的工作原理主要包括光
学成像、光电转换和信号处理三个方面。
首先,摄像机的光学成像是通过镜头将被拍摄物体的光线聚焦到感光元件上,
形成倒立的实物影像。
在摄像机的镜头中,光线首先通过透镜,然后经过光圈控制,最终聚焦到感光元件上。
透镜的作用是调节光线的透过程度,控制进入摄像机的光线量,从而影响图像的明暗程度;而光圈则是调节透镜的光线通量,控制景深和清晰度。
通过这些光学成像的调节,摄像机能够获得清晰、明亮的实物影像。
其次,摄像机的光电转换是指感光元件将光学影像转换成电信号的过程。
目前
常见的感光元件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。
当光线照射到感光元件上时,感光元件会产生电子,电子的数量与光线的强弱成正比。
感光元件会将这些电子转换成电信号,并输出到摄像机的信号处理部分。
最后,摄像机的信号处理是指对电信号进行放大、滤波、编码等处理,最终输
出成为可供显示或存储的视频信号。
在信号处理过程中,摄像机会对电信号进行放大,以增强图像的亮度和对比度;进行滤波,以去除噪声和提高图像清晰度;进行编码,以将电信号转换成标准的视频格式,如PAL、NTSC等。
通过这些信号处理的步骤,摄像机最终能够输出高质量的视频信号,用于监控、录像或实时传输等用途。
总的来说,摄像机的工作原理是通过光学成像、光电转换和信号处理三个步骤,将光学影像转换成电信号,并输出成为可供显示或存储的视频信号。
这些原理的运作,使得摄像机成为了现代社会不可或缺的重要设备,广泛应用于监控、摄像、视频通话等领域。
摄像头工作原理
摄像头工作原理引言概述:摄像头是我们日常生活中常见的设备之一,它在各个领域都有着广泛的应用,如安防监控、电子产品、医疗设备等。
本文将详细介绍摄像头的工作原理。
一、光学成像1.1 光学透镜摄像头中的透镜是实现成像的关键部分。
透镜通过折射和聚焦光线,使得光线能够准确地聚焦在摄像头传感器上。
透镜的形状和材料的选择对成像质量有着重要影响。
1.2 光圈控制光圈是指透过摄像头进入的光线的大小。
光圈的大小会影响到景深和光线的进入量。
通过控制光圈的大小,摄像头可以调整景深,使得被摄物体的前后都能保持清晰。
1.3 曝光控制曝光是指摄像头接收到的光线的数量。
摄像头通过调整曝光时间和增益来控制曝光量。
曝光时间较长可以捕捉到更多细节,而增益的增加会增加图像的噪点。
二、图像传感器2.1 CCD传感器CCD(Charge-Coupled Device)传感器是摄像头中常用的一种图像传感器。
它由一系列光敏元件组成,能够将光线转换为电荷,并通过电荷的传输和放大来形成图像。
CCD传感器具有高灵敏度和低噪点的特点。
2.2 CMOS传感器CMOS(Complementary Metal-Oxide-Semiconductor)传感器是另一种常用的图像传感器。
与CCD传感器相比,CMOS传感器具有低功耗和集成度高的特点。
CMOS传感器通过将光线转换为电荷,并在每个像素上进行放大和转换,实现图像的捕捉和处理。
2.3 分辨率和像素图像传感器的分辨率是指图像中像素的数量。
像素是图像的最小单位,它能够记录图像的细节。
较高的分辨率意味着更多的像素,从而能够呈现更清晰的图像。
三、信号处理3.1 图像处理芯片摄像头中的图像处理芯片负责对传感器捕捉到的图像进行处理和优化。
它可以调整图像的亮度、对比度、饱和度等参数,以及进行降噪和锐化等操作,以提升图像的质量。
3.2 白平衡白平衡是指摄像头校正图像中的颜色偏差,使得白色在不同光源下呈现出真实的白色。
摄像头通过测量光线的颜色温度,调整图像的色彩平衡,以还原真实的色彩。
摄像机的工作原理
摄像机的工作原理摄像机是一种能够记录影像的设备,它的工作原理可以简单概括为光学成像、图像传感和信号处理三个过程。
下面将详细介绍摄像机工作的每个环节。
一、光学成像摄像机的光学成像是基于光的折射和反射原理。
当光线通过透镜进入摄像机时,透镜会使光线发生折射,并将光线汇聚到焦点上。
通过调整透镜的位置,可以改变焦距,从而实现对物体的聚焦和调焦。
根据光学成像的原理,摄像机的镜头设计成了多种类型,如定焦镜头、变焦镜头、广角镜头和长焦镜头等。
不同类型的镜头可以满足不同的拍摄需求。
二、图像传感图像传感是摄像机将光学成像转化为电信号的过程。
在摄像机的传感器上,有大量微小的光敏元件(光电二极管或光电晶体管)组成的阵列。
当光线照射到传感器上时,光敏元件会将光能转化为电信号。
传感器上的每个像素点都对应着图像中的一个点,它们记录了光的强度和颜色信息。
根据传感器的类型,摄像机可以实现不同的像素数和分辨率。
三、信号处理信号处理是将图像传感器捕获到的电信号转化为数字信号的过程。
摄像机内部有一个图像处理芯片,它负责将电信号转化为数字信号,并进行图像增强、色彩校正、噪声抑制等处理。
信号处理还包括对图像的压缩和编码,以便于存储和传输。
常用的图像压缩编码标准有JPEG、H.264等。
在信号处理之后,摄像机会将数字信号输出到显示器或存储设备,使得用户可以观看或保存图像。
摄像机的工作原理可以归纳为光学成像、图像传感和信号处理三个过程。
通过这些过程,摄像机能够将现实世界中的影像转化为数字信号,并实现录制、回放、传输等功能。
摄像机的不断发展和创新,使得我们能够更好地记录和分享生活中的美好瞬间。
摄像头的工作原理
摄像头的工作原理引言概述:摄像头是一种广泛应用于各个领域的设备,它能够将光信号转化为电信号,实现图像的捕捉和传输。
本文将详细介绍摄像头的工作原理,包括感光元件、镜头、信号处理、图像传输和控制等五个部分。
一、感光元件:1.1 光电效应:摄像头的感光元件通常采用光电效应,其中最常见的是CMOS 和CCD传感器。
这些传感器能够将光信号转化为电信号,进而形成图像。
1.2 CMOS传感器:CMOS传感器由一系列光电二极管组成,每个二极管对应图像上的一个像素。
当光照射到二极管上时,产生的电荷被转化为电压信号,进而通过放大电路进行处理。
1.3 CCD传感器:CCD传感器由一系列光电二极管和电荷耦合器件组成。
当光照射到二极管上时,产生的电荷通过电荷耦合器件传输到读出电路,形成图像。
二、镜头:2.1 光学原理:镜头是摄像头的核心部分,它通过光学原理将光线聚焦到感光元件上。
镜头的主要组成部分包括透镜和光圈。
透镜通过折射和反射光线,实现对光线的聚焦。
2.2 焦距和光圈:镜头的焦距决定了成像的清晰度和图像的大小。
光圈的大小则决定了进入镜头的光线量,从而影响图像的亮度和景深。
2.3 镜头类型:根据不同的应用需求,摄像头可以采用不同类型的镜头,如定焦镜头、变焦镜头和鱼眼镜头等。
三、信号处理:3.1 前端处理:摄像头的前端处理主要包括图像增强、去噪和白平衡等。
图像增强可以提高图像的对比度和清晰度,去噪可以减少图像中的噪点,白平衡可以调整图像的色温和色彩平衡。
3.2 数字化处理:摄像头将模拟信号转化为数字信号,通过采样和量化等技术将连续的模拟信号转化为离散的数字信号。
数字化处理可以提高图像的精度和稳定性。
3.3 压缩编码:为了减少图像数据的传输和存储成本,摄像头通常采用压缩编码技术,如JPEG和H.264等。
这些技术可以将图像数据进行压缩和编码,从而减少数据量。
四、图像传输:4.1 传输介质:摄像头的图像传输通常通过有线或无线方式进行。
摄像头的工作原理
摄像头的工作原理引言概述:摄像头是现代生活中广泛应用的一种设备,它可以将物体的图象转化为电子信号,并通过相应的处理和传输技术将图象传递给显示设备。
本文将详细介绍摄像头的工作原理,包括图象捕捉、图象传感器、信号处理、图象压缩和传输等五个方面。
一、图象捕捉1.1 光学系统:摄像头的光学系统由镜头、光圈和滤光器等组成。
镜头通过调整焦距和光圈大小来控制光线的进入,滤光器则用于调整图象的颜色和对照度。
1.2 快门:快门控制摄像头的暴光时间,它决定了图象的清晰度和运动含糊程度。
1.3 镜头调节:摄像头的镜头可以手动或者自动调节焦距和焦点,以确保物体的清晰度和对焦准确性。
二、图象传感器2.1 CCD传感器:CCD传感器是一种常用的图象传感器,它由光电二极管阵列组成。
当光线进入传感器时,光电二极管会将光信号转化为电荷,并通过电荷耦合设备传递给后续处理电路。
2.2 CMOS传感器:CMOS传感器是另一种常见的图象传感器,它由像素和读取电路组成。
CMOS传感器具有低功耗和集成度高的优势,逐渐成为摄像头中的主流技术。
2.3 分辨率和感光度:摄像头的图象传感器具有不同的分辨率和感光度,分辨率决定了图象的清晰度,感光度则影响了摄像头在不同光照条件下的表现。
三、信号处理3.1 模数转换:摄像头将传感器输出的摹拟信号转换为数字信号,以便后续的图象处理和压缩。
3.2 色采空间转换:通过色采空间转换算法,摄像头可以将原始的RGB信号转换为其他色采空间,如YUV、HSV等,以满足不同应用的需求。
3.3 图象增强:信号处理还包括图象增强技术,如去噪、锐化和对照度调整等,以提升图象的质量和细节。
四、图象压缩4.1 压缩算法:为了减小图象的存储和传输开消,摄像头通常会采用图象压缩算法,如JPEG、H.264等。
这些算法可以将冗余信息去除,从而降低图象的文件大小。
4.2 压缩参数:摄像头的压缩参数可以根据需要进行调整,包括压缩比、帧率和分辨率等。
摄像头的工作原理
攝像头的工作原理
摄像头是一种可以捕捉和记录图像的装置。
其工作原理可以分为以下几个步骤:
1. 光学系统:摄像头中的光学系统由透镜和光敏元件组成。
透镜通过焦距控制光线的进入角度和聚焦距离,将经过透镜的光线线聚焦在光敏元件上。
2. 光敏元件:光敏元件是一种能够将光信号转化为电信号的元件。
常用的光敏元件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)图像传感器。
当光线照射到光敏元件上时,光敏元件会产生电荷,其数量与光线的强度成正比。
3. 信号处理:光敏元件产生的电荷会被传送到摄像头的信号处理电路中。
在信号处理过程中,电荷会被转换为数字信号,并经过放大、去噪等处理以提高图像质量。
信号处理还可以进行色彩校正、对比度调整和图像压缩等。
4. 数据输出:处理后的数字图像数据会被发送到摄像头的输出接口(如USB、HDMI等),通过这些接口可以将图像数据传输到计算机或显示设备上进行显示或存储。
总体来说,摄像头的工作原理是利用光学系统将光线聚焦在光敏元件上,光敏元件通过转换光信号为电信号,信号经过处理后输出为数字图像数据。
摄像头的工作原理
摄像头的工作原理摄像头是我们日常生活中常见的电子设备,它能够捕捉图象并将其转换为电子信号。
但是,不少人并不了解摄像头的工作原理。
本文将详细介绍摄像头的工作原理,匡助读者更好地理解这一技术。
一、光学成像1.1 光学透镜:摄像头内部通常包含几个光学透镜,它们负责将光线聚焦在感光元件上。
不同的透镜组合可以实现不同的焦距和景深效果。
1.2 光圈和快门:光圈控制进入摄像头的光线量,快门则控制光线的进入时间。
通过调节光圈和快门,可以控制图象的亮度和清晰度。
1.3 成像传感器:光线经过透镜聚焦在成像传感器上,传感器将光信号转换为电信号。
不同类型的传感器(如CMOS和CCD)具有不同的工作原理和性能。
二、图象处理2.1 数字化处理:摄像头内部的处理器会将传感器捕获的摹拟信号转换为数字信号。
这些数字信号可以被计算机或者其他设备读取和处理。
2.2 白平衡和色采校正:摄像头会对捕获的图象进行白平衡和色采校正,以确保图象的色采准确度和质量。
2.3 图象压缩:为了减小文件大小和提高传输效率,摄像头会对图象进行压缩处理。
不同的压缩算法会影响图象的质量和清晰度。
三、自动对焦3.1 对焦传感器:摄像头内部通常包含一个对焦传感器,它可以检测图象的清晰度并自动调节焦距,确保图象清晰。
3.2 对焦算法:通过对焦算法,摄像头可以根据对焦传感器的反馈信号自动调节透镜位置,实现自动对焦功能。
3.3 连续对焦和跟焦:一些高级摄像头还具有连续对焦和跟焦功能,可以实现在拍摄过程中自动跟踪挪移物体并保持清晰焦点。
四、光学防抖4.1 光学防抖系统:为了避免因相机颤动而导致的图象含糊,一些摄像头配备了光学防抖系统,通过调节透镜位置来抵消颤动。
4.2 传感器防抖:另一种防抖方式是通过传感器防抖技术,传感器会根据相机的晃动情况进行微调,确保图象稳定。
4.3 软件防抖:除了硬件防抖,一些摄像头还会通过软件算法来对图象进行稳定处理,提高图象质量。
五、图象输出5.1 存储和传输:摄像头可以将处理后的图象保存在存储卡中,也可以通过USB、Wi-Fi等方式将图象传输到计算机或者其他设备。
摄像头的工作原理
摄像头的工作原理摄像头是一种用于捕捉图象和视频的设备,广泛应用于安防监控、视频会议、摄影等领域。
它能够将光线转换为电信号,并通过处理将其转化为可见的图象或者视频。
下面将详细介绍摄像头的工作原理。
1. 光传感器摄像头的核心部件是光传感器,通常采用CMOS(互补金属氧化物半导体)或者CCD(电荷耦合器件)技术。
光传感器负责将光线转换为电信号,它由大量的光敏元件组成,每一个元件都能够感知光的强度。
2. 光学系统摄像头的前端通常配备了一个光学系统,包括镜头和滤光器。
镜头负责将光线聚焦在光传感器上,它的设计和质量直接影响到图象的清晰度和色采还原能力。
滤光器用于过滤掉非常规光线,例如红外线或者紫外线,以确保摄像头能够准确地捕捉到可见光。
3. 图象处理芯片光传感器所捕捉到的电信号需要经过图象处理芯片进行处理。
图象处理芯片负责将电信号转换为数字信号,并进行图象增强、去噪等处理,以提高图象质量。
此外,图象处理芯片还可以进行图象压缩,以减少数据量和传输带宽的需求。
4. 数据传输经过图象处理芯片处理后的数字信号可以通过不同的方式进行传输。
常见的传输方式包括有线传输和无线传输。
有线传输通常使用USB、HDMI或者网络接口,无线传输则使用Wi-Fi或者蓝牙技术。
传输过程中,数字信号可以被编码、压缩和解码,以适应不同的传输环境和需求。
5. 控制系统摄像头通常还配备了一个控制系统,用于调整摄像头的参数和功能。
控制系统可以通过物理按钮、遥控器或者软件界面进行操作。
用户可以通过控制系统调整摄像头的焦距、暴光时间、白平衡等参数,以获得满意的图象效果。
6. 供电系统摄像头需要供电才干正常工作,供电系统通常由电池或者电源适配器提供。
电池供电适合于挪移摄像头或者暂时安装的摄像头,而电源适配器则适合于长期运行的摄像头。
供电系统还可以包含电池管理电路、电源稳压器等组件,以确保摄像头的稳定工作。
总结:摄像头的工作原理主要包括光传感器、光学系统、图象处理芯片、数据传输、控制系统和供电系统。
摄像头工作原理详解
摄像头工作原理详解摄像头的工作原理摄像头的工作原理大致为:景物通过镜头(LENS)生成的光学图像投射到图像传感器表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过USB接口传输到电脑中处理,通过显示器就可以看到图像了感光芯片(SENSOR)是组成数码摄像头的重要组成部分,根据元件不同分为CCD(Charge Coupled Device,电荷耦合元件)应用在摄影摄像方面的高端技术元件。
CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)应用于较低影像品质的产品中。
目前CCD元件的尺寸多为1/3英寸或者1/4英寸,在相同的分辨率下,宜选择元件尺寸较大的为好。
CCD的优点是灵敏度高,噪音小,信噪比大。
但是生产工艺复杂、成本高、功耗高。
CMOS的优点是集成度高、功耗低(不到CCD的1/3)、成本低。
但是噪音比较大、灵敏度较低、对光源要求高。
在相同像素下CCD的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。
而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好。
所以我们在使用摄像头,尤其是采用CMOS芯片的产品时就更应该注重技巧:首先不要在逆光环境下使用(这点CCD同),尤其不要直接指向太阳,否则“放大镜烧蚂蚁”的惨剧就会发生在您的摄像头上。
其次环境光线不要太弱,否则直接影响成像质量。
克服这种困难有两种办法,一是加强周围亮度,二是选择要求最小照明度小的产品,现在有些摄像头已经可以达到5lux。
最后要注意的是合理使用镜头变焦,不要小瞧这点,通过正确的调整,摄像头也同样可以拥有拍摄芯片的功能。
目前,市场销售的数码摄像头中,基本是CCD和CMOS平分秋色。
在采用CMOS 为感光元器件的产品中,通过采用影像光源自动增益补强技术,自动亮度、白平衡控制技术,色饱和度、对比度、边缘增强以及伽马矫正等先进的影像控制技术,完全可以达到与CCD摄像头相媲美的效果。
摄像头工作原理详解
摄像头工作原理详解
摄像头是一个用于捕捉图像和视频的设备,它利用光学技术和传感器来捕捉光信号并转化为电信号。
摄像头的基本工作原理如下:
1. 光学组件:摄像头的光学组件由多个镜头和透镜组成。
镜头负责聚焦光线,使其聚集到感光元件上。
透镜可根据需要进行调整,以改变镜头的焦距和视场。
2. 图像传感器:感光元件是摄像头最重要的部分。
主要的感光元件有两种类型:CCD(电荷耦合器件)和CMOS(互补金
属氧化物半导体)。
这些感光元件能够将光线转换为电荷或电压信号。
3. 色彩滤光片:为了获得彩色图像,摄像头通常附带一个色彩滤光片阵列(通常使用Bayer模式)。
这个滤片阵列可以过滤
不同波长的光线,使摄像头可以获取红、绿和蓝三个颜色的信息。
4. 数字转换:摄像头接收到的模拟电信号需要转换成数字信号,以便通过电缆或其他方式传输给显示设备或计算机。
为了完成这一过程,摄像头内部会有一个模数转换器(ADC),它将
模拟信号转化为数字信号。
5. 控制电路和接口:摄像头通常还有一些控制电路和接口,用于调整图像质量、对焦、曝光等参数。
这些电路和接口还能与
计算机或其他设备进行通信,以实现图像的捕捉、传输和处理。
综上所述,摄像头是通过将光线转换为电信号,并经过一系列的转换和处理,最终将图像传输到显示设备或计算机。
它的工作原理主要包括光学组件聚焦光线、感光元件转换光信号、数字转换和控制电路和接口等部分的协同工作。
摄像头工作原理
摄像头工作原理摄像头是一种用于捕捉图象和视频的设备,广泛应用于监控系统、摄影、视频通话等领域。
它能够将光信号转换为电信号,然后通过图象处理器进行处理,最平生成可视化的图象或者视频。
摄像头的工作原理主要包括光学成像、图象传感器和信号处理三个关键步骤。
1. 光学成像摄像头通过镜头将光线聚焦到图象传感器上。
镜头通常由多个透镜组成,可以调整焦距和光圈大小。
当光线通过镜头时,会发生折射和散射,最终在图象传感器上形成一个倒立的实像。
2. 图象传感器图象传感器是摄像头的核心部件,它负责将光信号转换为电信号。
常见的图象传感器有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种类型。
CCD传感器通过光电效应将光信号转换为电荷,并逐行读取电荷值;而CMOS传感器则直接将光信号转换为电压信号。
3. 信号处理图象传感器将光信号转换为电信号后,需要经过信号处理器进行处理。
信号处理器主要包括模数转换器(ADC)、数字信号处理器(DSP)和压缩算法等。
ADC将摹拟信号转换为数字信号,DSP对数字信号进行滤波、增强、降噪等处理,压缩算法可以对图象或者视频进行压缩,减少数据量。
在摄像头工作过程中,还有一些其他的技术和功能:1. 自动对焦摄像头通常具备自动对焦功能,可以根据被拍摄物体的距离自动调整焦距,以保证图象的清晰度。
2. 白平衡摄像头可以通过白平衡技术校正图象的色温,使得拍摄的图象在不同光照条件下保持真正的颜色。
3. 暴光控制摄像头可以通过自动暴光控制技术调整光圈大小和快门速度,以保证图象的亮度适合不同的环境。
4. 分辨率摄像头的分辨率决定了图象的清晰度,普通以水平像素和垂直像素的数量来表示,如1920x1080表示水平像素为1920,垂直像素为1080。
5. 帧率帧率表示每秒传输的图象帧数,常见的帧率有30帧/秒和60帧/秒,帧率越高,图象越流畅。
总结:摄像头工作原理包括光学成像、图象传感器和信号处理三个关键步骤。
摄像头的工作原理之欧阳文创编
摄像头的工作原理是:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。
具体而言(参见下图),摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。
当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如0.3V),并保持一段时间。
这样相当于,紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。
然后,跳过一行后(因为摄像头是隔行扫描的),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着又会出现一段场消隐区。
该区中有若干个复合消隐脉冲,其中有个远宽于(即持续时间长于)其它的消隐脉冲,称为场同步脉冲,它是扫描换场的标志。
场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。
摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。
奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。
摄像头有两个重要的指标:有效像素和分辨率。
分辨率实际上就是每场行同步脉冲数,这是因为行同步脉冲数越多,则对每场图像扫描的行数也越多。
事实上,分辨率反映的是摄像头的纵向分辨能力。
有效像素常写成两数相乘的形式,如“320x240”,其中前一个数值表示单行视频信号的精细程度,即行分辨能力;后一个数值为分辨率,因而有效像素=行分辨能力×分辨率。
值得注意的是,通常产品说明上标注的分辨率不是等于实际分辨率(即每场行同步脉冲数),而是等于每场行同步脉冲数加上消隐脉冲数之和。
因此,产品说明上标注的“分辨率”略大于实际分辨率。
我们要知道实际的分辨率,就得实际测量一下。
摄像头工作原理.jpg摘要:本文基于freescale 16位HCS12单片机的输入捕捉功能设计一种视频信号采集系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摄像头的工作原理是:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。
具体而言(参见下图),摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。
当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如
0.3V),并保持一段时间。
这样相当于,紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步
脉冲,它是扫描换行的标志。
然后,跳过一行后(因为摄像头是隔行扫描的),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着又会出现一段场消隐区。
该区中有若干个复合消隐脉冲,其中有个远宽于(即持续时间长于)其它的消隐脉冲,称为场同步脉冲,它是扫描换场的标志。
场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。
摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。
奇
场时只扫描图像中的奇数行,偶场时则只扫描偶数行。
欧阳光明(2021.03.07)
摄像头有两个重要的指标:有效像素和分辨率。
分辨率实际上就是每场行同步脉冲数,这是因为行同步脉冲数越多,则对每场图像扫描的行数也越多。
事实上,分辨率反映的是摄像头的纵向分辨能力。
有效像素常写成两数相乘的形式,如“320x240”,其中前一个数值表示单行视频信号的精细程度,即行分辨能力;后一个数值为分辨率,因而有效像素=行分辨能力×分辨率。
值得注意的是,通常产品说明上标注的分辨率不是等于实际分辨率(即每场行同步脉冲数),而是等于每场行同步脉冲数加上消隐脉冲数之和。
因此,产品说明上标注的“分辨率”略大于实际分辨率。
我们要知道实际的分辨率,就得实际测量一下。
摄像头工作原理.jpg
摘要:本文基于freescale 16位HCS12单片机的输入捕捉功能设计一种视频信号采集系统。
在该系统中,将CMOS摄像头的输出信号二值化,利用单片机输入捕捉功能实时对信号采样、处理,提取出黑色导引线的形状特征。
实验证明:系统能很好地满足智能车对路径识别性能和抗干扰能力的要求,实时性好,测量精度高,同时硬件和软件的开销都比较小。
关键词:图像二值化;HCS12单片机;视频图像;比较器
引言
第二届“飞思卡尔”杯全国大学生智能车竞赛中,要求各参赛队赛车在规定的赛道上行驶,速度快者胜出。
由于跑道只有黑、白两色,对图像的灰度没有要求,所以只需要反映反射光线的强弱。
若用
A/D进行采样,不仅软件设计比较麻烦,而且测量的精度和响应时间都不够理想,抗干扰能力也较差。
本文摒弃传统的视频信号采集方法,结合单片机的输入捕捉功能,提出一种新的路径识别方法,并在实际系统中得到应用,实践表明该方法不仅使系统具有良好的性能,而且容易实现。
视频信号的特征
使用CHD-918B面阵CMOS摄像头,通过对内部电路的改造,可以在5V电压环境下正常工作,输出PAL 制式模拟视频信号,如图
1所示。
每秒扫描50场图像,一场又有312.5行,每行图像信号时间为64μs,除去行同步头,其中有效的图像信号约为59.3μs。
所以,若选用S12的A/D转换器采集,转换耗时压力大,图像分辨率低。
系统设计思想
设计是于白色跑道和黑色导引线对光反射能力不同的设计思路,同时又结合单片机的输入捕捉功能模块来实现的。
根据竞赛的实际情况和要求,只需要在白色背景的跑道中提取出黑色的导引线,而与图像的灰度无关,通过分析摄像头输出信号的特点,利用比较器将视频信号二值化,进而把黑色导引线与白色背景区分开来,如图2所示。
同时,由于导引线的宽度是恒定的,行扫描时间和同步头时间也是定值,通过软件简单编程就可以滤除环境干扰,达到不错的滤波效果。
鉴于MC9S12DG128是HCS12系列单片机的一种,片内设有增强型定时器(ECT),具有输入捕捉功能,可通过捕捉系统时钟脉冲来检测导引线。
这样,计算单片机相应阶段内输入捕捉系统时钟脉冲的个数就能反映当前的路径信息。
系统的实现如图3所示。
系统实现
视频信号同步分离:视频信号分离电路主要采用视频同步分离芯片1881,电路原理图如图4所示。
先将经过预处理的视频信号通过一个滤波电路接至LM1881的2脚,为了滤除杂波,匹配阻抗,C4选取0.1μF,C2取510pF,R2取620Ω。
1脚输出行同步信号,3脚输出场同步信号,在实际运用中,二者存在高频干扰,所以必须加上低通滤波器。
选行电路:在一场视频信号中共扫描312.5行,没有必要每一行都进行采样,只需要选择性的采集特定行,计算出跑道的大致形状,同时也为后续处理留出时间。
该部分电路主要由一片二进制计数器74LS161实现,原理图如图5所示。
对行使能信号控制行同步信号的开关,通过对拨码开关的设置,可对行同步2、4、8、16分频,选择采集不同的行。
本文在调试过程中设置成4分频。
二值化电路
视频信号的二值化主要由芯片MAX941完成,通过调节滑动变阻器的阻值来改变阈值电压。
经反复试验本文将阈值定在2.55V。
防止黑色导引线的边界处出现毛刺干扰,在二值化输出端加上RC低通滤波电路。
电路图如图6所示。
时序关系:在上述几个电路模块中,使用了门电路、计数器、比较器,使原有的时序关系发生了变化,后续编程处理和系统的可靠性受到挑战。
在比较器的输出端加入两片非门,增大延时,情况得到
改善。
最后得到的时序关系如图7所示。
其中a为场同步,b为行同步,c是经过4分频后的行同步信号,d为二值化后的视频信号,包含着路径信息。
输入捕捉:MC9S12DG128单片机的外部晶振为16MHz,,由于输入捕捉寄存器为16 位,其计数值最大为65535,需要对系统时钟进行分频处理,设分配系数为a,其中
a=2-n,(n=0,1,2…7) (1)
则分频后的系统时钟可由(2)式得,
f1=f0×a=16MHz×2-3=2MHz (2)
即最小单位为0.5μs,对应的跑道采集精度,远处的分辨率为
0.4cm,近处的为0.2cm ,完全符合路径识别的要求。
输入捕捉的触发方式设置成任意沿捕捉,这样可以简化硬件电路的设计。
以,仅仅需要计算几个沿变化之间输入捕捉系统时钟脉冲的个数,就能精准的反映当前的路径信。
对应图2,BC段是黑线,DE段是同步头,AB与CD段反映的是左右视场边沿到黑线的距离,在后续处理中,可以利用这些信息方便的计算出跑道的曲率和斜率。
由于黑色导引线的宽度是一定的,每行有效图像扫描时间都约为59.3μs,根据这些信息就可以剔除明显的坏点,增强系统得抗干扰能力。
软件实现:为了节约系统时间,在编程中主要采用中断处理,并且
设置成上升沿触发。
在场中断期间,先调用屏蔽场同步消隐子程序,把成像效果不好的部分滤除掉,随后打开行中断。
当经过分频后的行同步头到来时,开始捕捉图像信号的4个任意沿,在相应两个沿之间,所捕捉到的系统时钟脉冲个数就反映了当前的路径信息。
另外,为了消除偶然误差的影响,在不降低系统速度测量精度的前提下,通过使用软件上的循环队列算法,保证了路径信息的准确性。
循环队列的具体实现过程为:通过设置一个长度为L的队列,每发生一次输入捕捉中断就进行一次入队操作,由队列“先进先出”的性质,即替换最先入队数据,能够保证将最新的刷新数据进行数据处理并进行控制,提高了控制的实时性。
该系统部分软件流程图如图8所示。
结语
若采用片内A/D采集,在最高时钟频率2MHZ的情况下,进行一次10位精度A/D转换的时间为7μs。
这样,采集的图像每行只有8个像素,图像分辨率过低。
如果采用超频的手段来补偿,又会降低系统的可靠性。
而本文采集的图像数据分辨率为128×64,每行有128个像素,并且分辨率留有进一步提高的余留量,软件的编写也比较简单。
但是该方法目前还不能区分图像的灰度,是以后需要改进之处。