2021年包络检波器的设计与实现

合集下载

检波器设计(完整版)

检波器设计(完整版)

检波器设计〔完整版〕职业技术学院学生课程设计报告课程名称:高频电路课程设计专业班级:信工102 姓名:学号:20XX0311202 学期:大三第一学期目录1课程设计题目.................................2课程设计目的.................................. 3课程设计题目描述和要求..................... 4课程设计报告内容.............................二极管包络检波电路的设计....................... 同步检波器的设计 ......................... 5结论.......................................... 6 结束语......................................... 7参考书目....................................... 8附录..........................................摘要振幅调制信号的解调过程称为检波.有载波振幅调制信号的包络直接反映调制信号的变化规律,可以用二极管包络检波的方法进行检波.而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变换规律,无法用包络检波进行解调,所以要采用同步检波方法. 同步检波器主要是用于对DSB和SSB信号进行解调.它的特点是必须加一个与载波同频同相的恢复载波信号.外加载波信号电压参加同步检波器的方法有两种.利用模拟乘法器的相乘原理,实现同步检波是很简单的,利用抑制载波的双边带信号Vs,和输入的同步信号Vc,经过乘法器相乘,可得输由信号, 实现了双边带信号解调课程设计作为高频电子线路课程的重要组成局部,目的是一方面使我们能够进一步理解课程内容,根本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手水平以及分析、解决问题的水平.另一方面也可使我们更好地稳固和加深对根底知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的水平,提升电路分析和设计水平.通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定根底.通过设计,一方面可以加深我们的理论知识,另一方面也可以提升我们考虑问题的全面性,将理论知识上升到一个实践的阶段.课程设计题目:AM解调器设计二、课程设计目的:通过课程设计,使学生增强对高频电子技术电路的理解,学会查寻资料、方案比拟,以及设计计算等环节.进一步提升分析解决实际问题的水平,创造一个动脑动手、独立开展电路实验的时机,锻炼分析、解决高频电子电路问题的实际本领,真正实现课本知识向实际水平的转化;通过典型电路的设计与制作,加深对根本原理的了解,增强学生的实践水平. 三、课程设计题目描述和要求输入AM信号,其载波频率为15MHz调制信号为1KHz正弦波;已调波幅度为幅度1V,调制度为60%要求设计AM 解调器,具体要求如下:1)用检波二极管2AP12设计一一AM信号包络检波器,完成给定输入信号参数下的滤波器的计算;完成惰性失真和负峰切割失真条件产生的元件参数分析;2 ) AM信号同步检波器(1)用模拟乘法器MC1496设计一AM信号同步检波器;(2)采用PLL完成参考信号的获取.四、课程设计报告内容二极管包络检波设计工作原理信号包络检波是高频输入信号的振幅大于伏时,利用二极管对电容c充电,加反向电压时截止,电容c上电压对电阻R放电这一特性实现的.分析时采用折线法1.包络检波电路及工作原理图4-1(a)是二极管峰值包络检波器的原理电路.它是输入回路、二极管VD和RC低通滤波器组成.(6-1)式中,3 C为输入信号的载频,在超外差接收机中那么为中频col 为调制频率.在理想情况下,RC网络的阻抗Z应为(6-2)图4-1二极管峰值包络检波器(a)原理电路(b)二极管导通(c)二极管截止图4—2参加等幅波时检波器的工作过程从这个过程可以得由以下几点:(1)检波过程就是信号源通过二极管给电容充电与电容对电阻R 放电的过程.(2)于RC时常数远大于输入电压载波周期,放电慢,使得二极管负极永远处于正的较高的电位(由于输由电压接近于高频正弦波的峰值,即Uo^ Um)o (3)二极管电流iD包含平均分量(此种情况为直流分量)lav及高频分量.图4-3检波器稳态时的电流电压波形图4-4输入为AM信号时检波器的输曲波形图图4—5输入为AM信号时,检波器二极管的电压及电流波形图4—6包络检波器的输由电路检波失真检波器输由电压波形与输入信号包络之间,最好有时间上的延迟或幅度上的线形比例变化,而不能由现非线性或线性失真.但是,但一些条件无法满足时, 就会有一下是真1〕惰性失真在二极管截止期间,电容C两端电压下降的速度取决于RC的时常数.必须满足RC21mamamax图4—9惰性失真的波形2〕底部切削失真底部切削失真产生的原因是由于交直流负载不一致,要防止底部切削失真应满足:maRgRRgR R图6—10底部切削失真元器件参数计算:于电路属于峰值包络检波器,所以一般选用正向电阻小、反向电阻大,结电容小而开关速度较快的2AP12.RC时间常数应同时满足无惰性失真和频率失真条件:①电容C1=C2=C应该对载频及其谐波分量近似短路,故应该5〜10〜RC1,,通常取〔经验公式〕.RCWcWc②将条件代入防止惰性失真条件RC21mamam双得〜105RC103③应该满足无底部切削失真条件设输由电阻,Rl10k oRgRRgR1R5R 贝U R1, R2.为防止底部切R266R RR1R2RRR2//RL.代入条件R削失真,应该有ma可得R11k,由于检波器的输入电阻Ri不应太小,而RiR,所以R不能太2小, 取R3k,另取C=,这样RC6104满足上一步对时间常数的要求.因此R1, R2.④Cc取值应使低频信号有效到负载电阻RL上,即满足CcCc=47uE图二极管包络检波原理图1,取RLmin同步检波设计设计原理在模拟乘法器MC1496的一个输入端输入振幅调制信号如抑制载波的双边带信号UStUsmcosctcost ,另一输入端输入同步信号UctUcmcosct ,经乘法器相乘,式可得输由信号U0为UotKEUstUct 111KEUsmUcmcostKEUsmcos2ctKEUsmUcm2ct244上式中,第一项为哪一项所需要的低频调制信号分量,后两项为高频分量,可用低通滤波器滤掉,从而实现双边带信号的解调假设输入信号USt为单边带振幅调制信号,即 ,那么乘法器的输U0t 为:1UotKEUsmUcmcos2ctcosCt211KEUsmcostKEUsmUcm2ct44b式中,第一项为哪一项所需要的低频调制信号分量,第二项为高频分量,也可以被低通滤波器滤掉.如果输入信号USt为有载波振幅调制信号,同步信号为载波信号UCt,利用乘法器的相乘原理,同样也能实现解调.设UstUsmlmcostcoswct , uctucmcoswct 贝U输由电压u0t为u0tKEustuct111KEusmucmKEmucmcostKEusmucmcos2wct 2221+KEmusmucmcos2wct 41+KEmusmucmcos2wct 4 上式中,第一项为直流分量,第二项是所需要的低频调制信号分量,后面三项为高频分量,利用隔直电容及低通滤波器可滤掉直流分量及高频分量,从而实现了有载波振幅调制信号的解调.同步检波电路与包络检波不同,检波时需要同时参加与载波信号同频同相的同步信号.利用乘法器可以实现调幅波的乘积检波功能,普通调幅电压乘积器的原理框图如图所图普通调幅电压乘积器原理框图图中,设输入信号UAM⑴为普通调幅信号:UAMUXM(1macosyt)cosxt限幅器输由为等幅载波信号,乘法器将两输入信号进行相乘后输由信号为: vo(t)KEvs(t)vc(t) 再通过低通滤波器作为乘法器的负载,将所有高频分量去除,并用足够大的电容器隔断直流分量,就可以得到反映调制规律的低频电压.同步检波器原理这种方法是将外加载波信号电压与接收信号在检波器中相乘,再经过低通滤波器,最后检由原调制信号,如下图.图乘积型同步检波器设输入的已调波为载波分量被抑制的DSB信号u1为:u1U1costcost本地载波电压:ucUccos(ct) 上两式中,c1,即本地载波的角频率等于输入信号的角频率,它们的相位不一定相同u2U1UCcostcos1tcos(1) 低通滤波器滤除21附近的频率分量后,得到频率为的低频信号:1 uoU1UCcoscost2上式可见,低频信号的cos成正比.当=0时,低频信号电压最大,随着相位差变大,输由电压变小.所以我们不但要求本地载波与输由信号载波的角频率必须相等.元器件选择根据上述比照,采用乘积型同步检波器.此电路中最关键的电子元件是乘法器,这里我们选择的是集成模拟乘法器,集成模拟乘法器是完成两个模拟信号相乘的电子器件.采用集成模拟乘法器实现上述功能比采用分立器件要简单的多,而且性能优越.从价格和性能的角度我们选择MC1496芯片实现模拟乘法器功能.MC1496是爽平衡四象限*I1拟乘法器, VT1、VT2与VT3 VT4组成双差分对放大器.其内部结构如下图.图MC1496的内部电路及引脚图静态工作点设置MC1496可以采用单电源供电,也可以采用双电源供电.器件的静态工作点外接元件确定.a、静态偏置电压确实定静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集一基极间的电压应大于或等于2V,小于或等于最大允许工作电压.根据MC1496的特性参数,应用时,静态偏置电压应满足以下关系,即u8u10,u1u4,u6u1215V(u6,u12)(u8,u10)2V15V(u8,u10)(u1,u4) 15V(u1,u4)u5b、静态偏置电压确实定一般情况下,晶体管的基极电流很小,对于图7-1 ,三对差分放大器的基极电流18、110、I1和I4可以忽略不记, 因此器件的静态偏置电流主要恒流源I0的值确定.当器件为单电源工作时,引脚14接地,5脚通过一电阻R5接正电源,于I0是I5的镜像电流,所以改变电阻R5可以调节I0的大小,即PD=2I5(V6-V14)+I5(V5-V14)2同步检波亦采用模拟乘法器MC1496]等同步信号与已调信号相乘,其电路图如图下所示.vx端输入同步信号或载波信号vc, vy端输入已调波信号vs,输由端接有电阻R11、C6组成的低通滤波器和1uF的隔直电容, 所以该电路对有载波调幅信号及抑制载波的调幅信号均可实现解调,但要合理的选择低通滤波器的截止频率.图-解调后波形电路图五、结论二极管包络检波的结构简单, 造价廉价,主要是进行AM波的解调;同步检波的结构较复杂,主要进行DSB解调六、结束语本次课程设计选取的是书本上现成的电路原理图,在设计方面相对而言比拟容易,但是在制作仿真过成和做设计报告的过程中确实遇到了很多的问题,而这些问题正是我们今后学习工作的重点问题或者说是应该是必须掌握的技能.首先,设计思路是最重要的,只要你的设计思路是成功的,那你的设计已经成功了一半.因此我们应该在设计前做好充分的准备,像查找详细的资料,为我们设计的成功打下坚实的根底.要熟练地掌握课本上的知识,这样才能对试验中由现的问题进行分析解决.留给我印象最深的是要设计一个成功的电路,必须要有耐心,要有坚韧的毅力.设计过程中,我深刻的体会到在设计过程中,需要反复实践,其过程很可能相当烦琐,有时花很长时间设计由来的电路还是需要重做,那时心中未免有点灰心,有时还特别想放弃,此时更加需要静下心,查找原因.分析问题的原因以及可能由现问题的地方, 在此期间是考验我们学习水平的最关键的时刻,同时也是获取经验的最好的途径.这位今后的工作奠定了坚实的根底, 也是此次课程设计的获益最多的环节.其次,设计报告的书写也是此次课程设计的一个重要环节.可以说设计的好坏都取决于设计报告的好坏.书写报告是对word运用的一大考验,以前很多东西,比方说绘制表格以及很多特殊符号,画图都是很陌生的问题.经过了此次报告的书写根本上熟悉了这些操作,办公软件应用整体上有了提升.总体来说,这次实习我受益匪浅.在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作水平.在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐. 最后感谢老师的指导和各位同学的帮助.七、参考书目:[1]张肃文.高频电子线路.第四版.北京:高等教育由版社,20XX年.[2]杨翠娥.高频电子线路实验与课程设计.哈尔滨工程大学生版社,20XX年.[3]杨欣、王玉凤、刘湘黔,电路设计与仿真基于Multisim 8 与Protel 20XX.清华大学生版社,20XX年[4][日]铃木雅臣著、邓学译上下频电路设计与制作科学生版社,20XX [5]郝晓剑仪器电路设计与应用电子工业生版社,20XX[6]童诗白模拟电子技术根底高等教育由版社, 20XX [7]樊昌信曹丽娜通信原理国防工业由版社, 20XX [8]康晓明卫俊玲电路仿真与绘图快速入门教程国防工业生版社,20XX [9][日]黑田彻著周南生译晶体管电路设计与制作科学生版社,20XX [10]高瑜翔高频电子线路科学生版社20XX八、附录1.二极管包络所需元器件:二极管2AP12, 2个电容,1个47uF电容,1个1k电阻. 1个5k 电阻,1个10k电阻,1个调制信号源,1个双踪示波器.2.同步检波所需元器件:8 个2N2222, 1 个1DH62, 2 个1BH62, 3 个电容,3 个电容,1 个51, 1 个100, 3 个500, 1 个820, 3 个1k, 1 个1个2k, 2个3k, 2个12V直流电源,1个双踪示波器,1个调制信号源.[2]杨翠娥.高频电子线路实验与课程设计.哈尔滨工程大学生版社,20XX年.[3]杨欣、王玉凤、刘湘黔,电路设计与仿真基于Multisim 8 与Protel 20XX.清华大学生版社,20XX年[4][日]铃木雅臣著、邓学译上下频电路设计与制作科学生版社,20XX [5]郝晓剑仪器电路设计与应用电子工业生版社,20XX[6]童诗白模拟电子技术根底高等教育由版社, 20XX [7]樊昌信曹丽娜通信原理国防工业由版社, 20XX [8]康晓明卫俊玲电路仿真与绘图快速入门教程国防工业生版社,20XX [9][日]黑田彻著周南生译晶体管电路设计与制作科学生版社,20XX [10]高瑜翔高频电子线路科学生版社20XX八、附录1.二极管包络所需元器件:二极管2AP12, 2个电容,1个47uF电容,1个1k电阻. 1个5k 电阻,1个10k电阻,1个调制信号源,1个双踪示波器.2.同步检波所需元器件:8 个2N2222, 1 个1DH62, 2 个1BH62 3 个电容,3 个电容,1 个51, 1 个100, 3 个500, 1 个820, 3 个1k, 1 个1个2k, 2个3k, 2个12V直流电源,1个双踪示波器,1个调制信号源.。

包络检波及同步检波实验报告

包络检波及同步检波实验报告

包络检波及同步检波实验报告篇一:实验十二包络检波及同步检波实验实验十二包络检波及同步检波实验一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。

2.掌握二极管峰值包络检波的原理。

3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。

4. 掌握用集成电路实现同步检波的方法。

二、实验内容1.完成普通调幅波的解调。

2.观察抑制载波的双边带调幅波的解调。

3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。

三、实验原理及实验电路说明检波过程是一个解调过程,它与调制过程正好相反。

检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。

还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。

假如输入信号是高频等幅信号,则输出就是直流电压。

这是检波器的一种特殊情况,在测量仪器中应用比较多。

例如某些高频伏特计的探头,就是采用这种检波原理。

若输入信号是调幅波,则输出就是原调制信号。

这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。

从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1 所示(此图为单音频Ω调制的情况)。

检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。

常用的检波方法有包络检波和同步检波两种。

有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。

图12-1 检波器检波前后的频谱1. 二极管包络检波的工作原理当输入信号较大时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。

大信号检波原理电路如图12-2(a)所示。

检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流iD很大,使电容器上的电压VC很快就接近高频电压的峰值。

2ASK非相干解调器(包络检波法)设计

2ASK非相干解调器(包络检波法)设计

2ASK非相干解调器(包络检波法)设计摘要现代通信系统要求通信距离远、通信容量大、传输质量好。

作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。

从最早的模拟调幅调频技术的日臻完善,到现在数字调制技术的广泛运用,使得信息的传输更为有效和可靠。

二进制数字振幅键控是一种古老的调制方式,也是各种数字调制的基础。

本课程设计主要是利用MATLAB集成环境下的Simulink仿真平台,设计一个2ASK调制与解调系统。

所谓2ASK即振幅键控(也称幅移键控),记做ASK,或称其为开关键控(通断键控),记做OOK 。

二进制数字振幅键控通常记做2ASK用示波器观察调制前后的信号波形;用频谱分析模块观察调制前后信号频谱的变化;本来按照正常的步骤还应该加上各种噪声源,用误码测试模块测量误码率,但是在本次课程设计中老师并没有要求,所以我就不再赘述,此部分也就省略了;最后根据运行结果和波形来分析该系统性能。

通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。

基于以上的时代背景,在我的这次设计中,我首先应用了simulink对2ASK的非相干解调(包络检波法)系统进行了系统仿真;既然要进行2ASK的解调那对信号进行调制产生2ASK的信号就是首要的任务了。

对于振幅键控这样的线性调制来说,在二进制里,2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,无载波输出时表示发送“0”。

根据线性调制的原理,一个二进制的振幅调制信号可以表示完成一个单极性矩形脉冲序列与一个正弦型载波的乘积。

所以在这之后我自己假定了一组输入数字信号序列,输入到了2ASK的调制器中,然后输出地2ASK信号再进入我所设计的2ASK非相干解调器中并且进行了抽样判决;之后根据我自己所设计的仿真系统的各个部分之间的联系给出了每两个模块之间的波形和相应的分析;之后相应的还给出了信号经过各个器件之后的输出的波形;最后,通过给定的输入信号序列,2ASK的输入波形和解调后的输出波形总结并整理2ASK非相干解调器的特点,并加以一定的分析,最后给出了较为详细的2ASK非相干解调的解调原理。

包络检波器的设计与实现

包络检波器的设计与实现

包络检波器的设计与实现包络检波器的设计原理是基于信号的幅度调制(AM)特性。

在AM信号中,载频信号的振幅被调制成与待传输信息的振幅成正比的高频信号。

包络检波器可以将这个高频信号转换成与它的包络成正比的直流电压。

其整体设计由输入滤波器、偏置电路、包络检波、滤波器和输出级组成。

输入滤波器的作用是去除输入信号中的高频分量。

这是因为高频信号主要包含了信号的幅度信息,所以必须先去除它们,以便后续的包络检波和滤波处理。

常用的滤波器包括低通滤波器和带通滤波器,其选择取决于特定应用中信号频率的范围。

偏置电路的作用是为包络检波电路提供恒定的直流偏置电压。

这是因为包络检波电路只能工作在正电压范围内,所以必须将输入信号通过偏置电路上移至正半轴。

常用的偏置电路包括电路电源和耦合电容。

包络检波电路的核心部分是包络检波器。

它将经过滤波器和偏置电路处理过的信号转换成与输入信号包络成正比的直流电压。

常用的包络检波器包括二极管检波器和放大器检波器。

二极管检波器利用二极管的非线性特性实现包络检波,放大器检波器则通过将输入信号放大后再进行整流达到类似的效果。

滤波器的作用是去除包络检波后的直流电压中的噪声和高频分量。

这是因为在包络检波过程中,噪声和高频成分可能会被放大,所以需要通过滤波器进行去除。

常用的滤波器包括低通滤波器和带通滤波器,其选择取决于特定应用中的要求。

输出级的作用是将经过滤波处理的直流电压转换成易于读取和显示的模拟或数字信号。

在这一阶段中,可以使用模拟输出电路、数模转换器以及显示器等设备。

包络检波器的实现可以通过模拟电路、数字电路或其组合来完成。

模拟电路实现简单,但存在温度漂移、干扰和误差累积等问题;数字电路实现复杂,但可提供更高的精度和稳定性。

实际应用中,可以根据需求选择适当的实现方法。

包络检波器在通信、雷达、声波处理等领域中有着广泛的应用。

它可以用于解调和检测各种调幅信号,如振幅调制(AM)、频率调制(FM)和相位调制(PM)等。

高频课程设计AM信号包络检波器

高频课程设计AM信号包络检波器

学院通信电路课程设计AM信号包络检波器系别班级:电气系08通信指导教师:王老师实验日期:第17周2010——2011学年度第一学期目录一.设计目的 (3)二、设计容及原理 (3)三、设计的步骤及计算 (4)1.电压传输系数 (7)2.流通角 (7)3.参数选择 (8)四、设计的结果与结论 (10)1.结果 (10)2.结论 (11)3.心得体会 (11)五、参考文献 (12)AM信号包络检波器一、设计目的:通过课程设计.使学生加强对高频电子技术电路的理解.学会查寻资料﹑方案比较.以及设计计算等环节。

进一步提高分析解决实际问题的能力.创造一个动脑动手﹑独立开展电路实验的机会.锻炼分析﹑解决高频电子电路问题的实际本领.真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作.加深对基本原理的了解.增强学生的实践能力。

要求:掌握串、并联谐振回路及耦合回路、高频小信号调谐放大器、高频功率放大器、混频器、幅度调制与解调、角度调制与解调的基本原理.实际电路设计及仿真。

设计要求及主要指标:用检波二极管2AP12设计一AM信号包络检波器.并且能够实现以下指标。

●输入AM信号:载波频率15MHz正弦波。

●调制信号:1KHz正弦波.幅度大于1V.调制度为60%。

●输出信号:无明显失真.幅度大于5V。

二.设计容及原理:调幅调制和解调在理论上包括了信号处理.模拟电子.高频电子和通信原理等知识.涉及比较广泛。

包括了各种不同信息传输的最基本原理.是大多数设备发射与接收的基本部分。

因为本次课题要求调制信号幅度要大于1V.而输出信号幅度需要大于5V.所以本课题设计需要运用放大电路。

本次实验采用二极管包络检波以及运算放大电路。

在确定电路后.利用EDA 软件Multisim进行仿真来验证设计结果设计框图如下:输入信号→非线性器件→二极管包络检波器→运放电路→输出信号。

检波原理电路图图1三、设计的步骤及计算检波的物理过程如下:在高频信号电压的正半周期.二极管正向导通并对电容C充电.由于二极管正向导通电阻很小.所以充电电流I很大.是电容的电压Vc很快就接近高频电压峰值.充电电流方向如下图2所示:图2这个电压建立后.通过信号源电路.又反向地加到二极管D的两端。

包络检波器的设计与实现之欧阳家百创编

包络检波器的设计与实现之欧阳家百创编

目录欧阳家百(2021.03.07)前言11 设计目的及原理21.1设计目的和要求21.1设计原理22包络检波器指标参数的计算62.1电压传输系数的计算62.2参数的选择设置63包络检波器电路的仿真93.1 Multisim的简单介绍103.2 包络检波电路的仿真原理图及实现104总结135参考文献14前言调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。

广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。

对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。

工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。

为了把低频信号取出来,需要专门的电路,叫做检波电路。

使用二极管可以组成最简单的调幅波检波电路。

调幅波解调方法有二极管包络检波器、同步检波器。

目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。

但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。

为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。

Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。

计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

1设计目的及原理1.1 设计目的和要求通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。

进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。

包络检波器课程设计

包络检波器课程设计

包络检波器课程设计一、课程目标知识目标:1. 学生能理解包络检波器的基本原理,掌握其工作流程和电路组成。

2. 学生能掌握包络检波器的性能参数及其影响因素,并能运用相关公式进行计算。

3. 学生了解包络检波器在无线电通信中的应用,了解不同类型的检波器及其特点。

技能目标:1. 学生能够独立搭建并调试简单的包络检波器电路,观察其工作状态,分析实验现象。

2. 学生能够运用所学知识,解决实际应用中与包络检波器相关的问题,提高实际操作能力。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索无线电通信领域的热情。

2. 培养学生的团队协作意识,提高沟通与交流能力,培养共同解决问题的精神。

3. 增强学生的环保意识,让他们认识到电子设备在实际应用中应遵循节能、环保的原则。

课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生已具备一定的电子基础知识和实验操作能力,对无线电通信有一定了解。

教学要求:注重理论与实践相结合,强化学生的动手能力,培养解决实际问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际工作中,提高综合素养。

二、教学内容1. 理论教学:a. 包络检波器的基本原理及其在无线电通信中的应用。

b. 包络检波器的电路组成、工作流程和性能参数。

c. 不同类型的包络检波器及其特点。

d. 影响包络检波器性能的因素及其计算方法。

2. 实践教学:a. 搭建并调试简单的包络检波器电路,观察实验现象。

b. 分析实验结果,探讨影响包络检波器性能的各种因素。

c. 针对实际应用中的问题,设计改进方案,提高包络检波器性能。

教学大纲安排:第一周:包络检波器的基本原理及其应用。

第二周:包络检波器的电路组成、工作流程和性能参数。

第三周:不同类型的包络检波器及其特点。

第四周:影响包络检波器性能的因素及其计算方法。

第五周:实践操作,搭建并调试包络检波器电路。

第六周:分析实验结果,探讨问题解决方案。

包络检波实验报告总结

包络检波实验报告总结

包络检波实验报告总结
包络检波是一种用于检测信号中包含调制信息的实验技术,通常
用于检测通信系统中的调制解调问题。

以下是包络检波实验报告的总结:
1. 实验目的:介绍实验的目的和意义,包括测试通信系统的性能、验证调制解调器的功能、研究信号处理算法等。

2. 实验原理:阐述包络检波实验的基本原理,包括调制信号的产生、接收信号的处理方式、检波信号的生成和测量等。

3. 实验设计:介绍实验的具体设计,包括实验设备的配置、实验
参数的选择、实验流程的构思等。

4. 实验结果和分析:展示实验结果,包括接收信号的幅度、相位、频率等信息,以及检波信号的幅度、相位、频率等信息。

同时,分析实验数据,讨论实验结果的含义和启示。

5. 实验结论:总结实验结果,并阐述实验结论。

实验结论可以包
括对通信系统性能的评估、对调制解调器功能的验证、对信号处理算法的研究等。

6. 参考文献:列出实验中所引用的参考文献,以便读者查阅。

包络检波实验报告是研究通信系统和信号处理等领域的必需品,
其总结和分析可以帮助读者深入理解实验原理和结果,为后续研究提
供借鉴和启示。

实验十一 包络检波及同步检波实验讲解

实验十一  包络检波及同步检波实验讲解

四、实验步骤
一、二极管包络检波
1. m<1的调幅波检波
按调幅实验中实验内容获得峰-峰值Vp-p=2V、 m<30%的 已调波(音频调制信号频率约为1K) 。将开关S1拨为10,S2拨为 00,将示波器接入TP4处,观察输出波形.
加大调制信号幅度,使m=100%,观察记录检波输出波形.
2、观察对角切割失真
按调幅实验中实验内容获得调制度分别为30%,100%及 >100%的调幅波。将它们依次加至解调器调制信号输入端P8, 并在解调器的载波输入端P7加上与调幅信号相同的载波信号, 分别记录解调输出波形,并与调制信号对比。
2、解调抑制载波的双边带调幅信号
按调幅实验中实验内容的条件获得抑制载波调幅波,加至解 调器调制信号输入端P8,观察记录解调输出波形,并与调制 信号相比较。
五、参考实验波形
包络检波
同步检波
2、同步检波原理
同步检波器用于对载波被抑止的双边带或单边带信号进行 解调。它的特点是必须外加一个频率和相位都与被抑止的载 波相同的同步信号。
同步检波电路原理图
MC1496集成电路构成解调器,载波信号从P7经相位调节网 络W3、C13、U3A加在8、10脚之间,调幅信号VAM 从P8经C14 加在1、4脚之间,相乘后信号由12脚输出,经低通滤波器、 同相放大器输出。
保持以上输出,将开关S1拨为“01”,检波负载电阻由 2.2KΩ变为20KΩ,在TP4处用示波器观察波形并记录,与上述波 形进行比较。
3、观察底部切割失真
将开关S2拨为“10”,S1仍为“01”,在TP4处观察波形,记 录并与正常解调波形进行比较。
二、集成电路(乘法器)构成解调器。
连线框图
1、解调全载波信号

包络检波器

包络检波器

2.性能指标
Vm υo = = cos θ (1) 检波效率: η d = 检波效率: M aVim Vim
(4.4.1) )
可以证明 θ =
3
3π gD R
i
(4.4.2) )
(2)等效输入电阻 R 等效输入电阻
Ri =
1 RL 2
(4.4.3)
证明:功率守恒,输入功率: :功率守恒,输入功率: 输出功率: 输出功率: Vav = (ηdVim ) = Po
4.4.1
例如, 4.4.10是某收音机二极管检波器的实际电路. 例如,图4.4.10是某收音机二极管检波器的实际电路. 是某收音机二极管检波器的实际电路
图4.4.10
收音机中的实际二极管检波电路 4.4.1
4,设计考虑 设计二极管包络检波器的关键在于: 设计二极管包络检波器的关键在于:正确选用晶体 二极管, 二极管,合理选取 RLC 等数值,保证检波器提供尽可 等数值, 能大的输入电阻,同时满足不失真的要求. 能大的输入电阻,同时满足不失真的要求. (1)检波二极管的选择 检波二极管的选择 为了提高检波电压传输系数, 为了提高检波电压传输系数,应选用正向导通电阻rD 或最高工作频率高)的晶体二极管. 和极间电容 CD 小(或最高工作频率高)的晶体二极管. 为了克服导通电压的影响,一般都需外加正向偏置, 为了克服导通电压的影响,一般都需外加正向偏置,提 供(20~50)A静态工作点电流,具体数值由实验确 20~50) A静态工作点电流, 定.
4.4 调幅信号的解调电路
4.4.1 包络检波器
实现包络检波过程的电路为包络检波器. 实现包络检波过程的电路为包络检波器. 包络检波器根据所用器件不同,可分为二极管包 包络检波器根据所用器件不同, 络检波器和三极管包络检波器;根据信号的大小不同, 络检波器和三极管包络检波器;根据信号的大小不同, 又可 分为小信号平方律检波器和大信号检波器. 分为小信号平方律检波器和大信号检波器.

有线通信中包络检波器设计书

有线通信中包络检波器设计书

有线通信中包络检波器设计书1 绪论无线通信的发展经历了三个阶段,首先,远古时期的手段是用烽火和旗语。

其次,到近代出现了有线通信,其中著名的发明就是1837年Morse发明得电报和1876年Bell发明的。

的发明加速了通信领域的发展,为无线通信的出现奠定了坚实的基础。

无线通信的出现加快了现代通信领域的飞速发展。

无线通信(Wireless Communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。

在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。

无线通信主要包括微波通信和卫星通信。

微波是一种无线电波,它传送的距离一般只有几十千米。

但微波的频带很宽,通信容量很大。

微波通信每隔几十千米要建一个微波中继站。

卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。

无线通信系统可以分为:信源、调制、高频功放、天线、高频小放、混频和解调。

其中解调就是从高频已调信号的过程,又称为检波。

对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程。

解调是调制的逆过程,实质上是将高频信号搬移到低频段,这种搬移正好与调制的搬移过程相反。

振幅解调方法可以分为包络检波和同步检波。

包络检波是指解调器输出电压与输入已调波的包络成正比的检波方法。

由于AM信号的包络与调制信号呈线性关系,因此包络检波只适用于AM波。

包络检波是从调幅波包络中提取调制信号的过程:先对调幅波进行整流,得到波包络变化的脉动电流,再以低通滤波器滤除去高频分量,便得到调制信号。

包络检波电路有很多种,无源的有二极管检波,有源的有三极管、运放等;还有单向检波、桥式检波、同步检波等等。

最简单的,也是用得最多的就是二极管和三极管。

此次设计就是利用二极管和低通滤波器实现AM包络检波,得到不失真的调制信号。

2 包络检波器设计原理2.1原理框图包络检波主要用于普通调幅(AM)信号的解调,主要由二极管和低通滤波器组成原理框图如图1:图1包络检波器原理框图因 AM u 经由非线性器件后输出电流中含有能线性反映输入信号包络变化规律的音频信号分量(即反映调制信号变化规律)。

二极管包络检波器实验

二极管包络检波器实验
极管。一般多用点接触型锗二极管2AP系列。2AP系
列二极管的参数请见书后附表。
负载RL和C的选择 设计时考虑的原则:
a.
,
即C对载频等效旁路,对低频等效开路.
b.C»Cd,C大相应Cd的作用减小,从而可忽略不 计.
c.从系统而言:RL↑→Ri↑,RL↑→Kd↑,即负载 增加,对输入阻抗提高及传输效率的改善有利.
若输入US=UC(1+mcosΩt)cosωct 则检波输出U0=KdUC(1+m cosΩt) 2.输入阻抗高:
Zi可等效为一个电容Ci和一个电阻Ri并联。Ri 大小与检波器内阻及导通角有关。 Ci与结电 容及引线分布电容有关。可见Ri越大, Ci越小, 则检波电路对前级(谐振中放)的影响小。理 论分析可按功率守恒计算Ri,即有
实验说明及思路提示
二极管检波器工作原理及性能要求
大信号包络检波器其用途就是从调幅波中取出 低频调制信号。常用的是二极管检波,它是通过 二极管的非线性伏安特性进行频率变换,再通过 低通平滑滤波完成检波作用的。原理电路如图4。
对检波器的基本性能要求有: 1.传输系数Kd大:
图4.检波器原理电路图如下:
图1.检波器实验电路图如下:
输入调幅波形如下:uAM Ucm 1 mcostcosct
检波输出图形如下:uo kdUcm 1 mcost
2. 惰性失真: 仿真条件:Uim=1V,F=1KHZ,RL=10KΩ,接 入0.1μf电容,m=50%,检波输出波形如图8。
3.底部切割失真:
仿真条件:Uim=1V,F=1KHZ,RL=20kΩ,不 接入0.1uf电容,m=50%,输出波形如图9。
Kd=UΩm/mUim=0.25/0.3≈0.83 检波器输入输出波形对比图如下:

包络检波实验报告总结

包络检波实验报告总结

包络检波实验报告总结一、引言在无线通信领域,包络检波技术是一种常用的信号检测方法,可以提取信号的包络部分。

本次实验旨在探究包络检波技术在信号处理中的应用,并对实验结果进行总结与分析。

二、实验设计与步骤2.1 实验设计本次实验采用了以下实验设备与材料:1.示波器:用于显示信号波形及其包络;2.信号源:用于产生需要进行包络检波的信号;3.过程盘:用于控制实验中的各个参数。

2.2 实验步骤以下是本次实验的具体步骤:1.确定实验所需的信号源和示波器,并进行连接;2.设置信号源的输出频率和幅度;3.使用示波器采集信号,并进行相应的设置,以显示信号波形及其包络;4.调整信号源的参数,观察包络波形的变化;5.记录实验中的观测结果,并对实验数据进行分析和总结。

三、实验结果与分析3.1 实验观测结果我们在实验中观察到了以下结果:1.随着信号源频率的增加,包络波形的振幅逐渐降低;2.信号源幅度的增加会使包络波形的振幅增加;3.不同的调制方式对包络波形的形状和幅度有着不同的影响;4.在一定范围内调整过程盘参数,可以得到不同形状和幅度的包络波形。

3.2 实验数据分析通过对实验数据的分析,我们可以得出以下结论:1.包络检波技术可以有效地提取信号的包络部分,使得信号波形在示波器上更加直观可见;2.调整信号源的频率和幅度可以改变包络波形的形状和幅度;3.不同调制方式对包络波形的影响可以进一步研究和探索。

四、讨论与展望本次实验仅对包络检波技术进行了初步的探究和验证,还有许多相关的研究和应用可以进一步开展:1.进一步探究包络检波技术在不同调制方式下的应用效果;2.对包络检波技术的性能进行更加详细的研究和评估;3.探索包络检波技术在其他领域的应用,如无线通信、声音处理等。

五、结论通过本次实验,我们深入地了解了包络检波技术在信号处理中的应用。

实验结果表明,包络检波技术可以有效地提取信号的包络部分,并可以通过调整信号源的参数来改变包络波形的形状和幅度。

包络检波器

包络检波器
4.4.1
(2) RLC 和 C 的选择 的乘积值. 首先根据下述考虑确定 RLC 的乘积值. 1)从提高检波电压传输系数和高频滤波能力考虑, 从提高检波电压传输系数和高频滤波能力考虑, 应尽可能大.工程上, RL应尽可能大.工程上,要求它的最小值满足下列条件
RL C = 5 ~ 10
ωc
2)从避免惰性失真考虑,允许 RLC 的最大值满足下 从避免惰性失真考虑, 2 列条件 1 M a max RLC ≤ max M a max 工程分析时, 工程分析时,取 RLC max ≤ 1.5 即可 .
2.性能指标
Vm υo = = cos θ (1) 检波效率: η d = 检波效率: M aVim Vim
(4.4.1) )
可以证明 θ =
3
3π gD R
i
(4.4.2) )
(2)等效输入电阻 R 等效输入电阻
Ri =
1 RL 2
(4.4.3)
证明:功率守恒,输入功率: :功率守恒,输入功率: 输出功率: 输出功率: Vav = (ηdVim ) = Po
4.4.1
(2)底部切割失真(负峰切割失真) 底部切割失真(负峰切割失真) 负峰切割失真产生的原因: 负峰切割失真产生的原因: 与交流(音频) 检波器的直流负载阻抗 Z L (0) 与交流(音频)负载阻抗 不相等, 太大时引起的. Z L () 不相等,而且调幅度 M 太大时引起的.
a
通常情况下,检波器输出须通过耦合电容 CC 通常情况下, 与输入等 效电阻为 Ri 2 的低频放大 器相连接, 器相连接,如 图4.4.7所示. 4.4.7所示. 所示
① 为保证所需的检波输入电阻 Ri ,RL 的最小值应满足 下列条件

包络检波器的设计与实现

包络检波器的设计与实现

包络检波器的设计与实现首先,我们来介绍包络检波器的基本原理。

包络检波器的主要任务是提取模拟信号的包络线。

包络线是信号幅度变化的轨迹,一般情况下是信号瞬时幅度的绝对值。

包络检波器的设计要求对信号进行平滑处理,使得输出信号能够准确地反映信号的变化趋势。

包络检波器的设计可以分为两个主要阶段:信号预处理和包络提取。

信号预处理主要包括信号滤波和增益调整,以便使得输入信号适合包络提取的算法。

信号滤波可以采用低通滤波器实现,使得高频噪声被滤除,从而提高包络提取的准确度。

增益调整则是为了保证被测信号的幅度能够适应检测电路的工作范围。

包络提取可以采用多种方法,如整波检波和平滑滤波等。

整波检波是一种简单且常见的包络提取方法,其原理是将信号的负半周翻转,再与原信号进行加和。

平滑滤波则是通过一系列滤波器对信号进行多次滤波,使其变得平滑。

一般来说,平滑滤波具有更好的稳定性和性能,但是对于需要高速包络检测的应用来说可能存在一些不足。

在包络检波器的实现中,我们可以选择使用模拟电路或数字电路。

模拟电路一般采用运算放大器、二极管等元器件构成,实现简单,响应速度快,但存在灵敏度不高、抗干扰能力不足等问题。

相比之下,数字电路需要进行模数转换和复杂的算法处理,但能够实现高精度、高灵敏度的包络检测。

总结起来,包络检波器的设计与实现需要考虑信号预处理和包络提取两个阶段。

信号预处理主要包括滤波和增益调整,以使输入信号适用于包络提取算法。

包络提取可以采用整波检波或平滑滤波等方法,选择合适的方法根据具体应用需求来定。

最后,根据具体要求选择模拟电路或数字电路进行实现。

[1]张生波.新局域网检测方法的研究与设计[D].河北工程大学。

[2]张吉利,张忠林.基于非平衡传输线的数字孔径雷达微弱信号数处理策略[J].北京航空航天大学学报,2024[3]黄骏.高速数字包络检测芯片的设计与实现[D].北京邮电大学。

包络检波解调电路设计

包络检波解调电路设计

包络检波解调电路设计包络检波解调电路是一种常用的解调电路,用于从调制信号中提取出原始的基带信号。

本文将介绍包络检波解调电路的设计原理和实现方法。

我们来了解一下包络检波解调电路的工作原理。

在调制信号中,包络即为调制信号的振幅变化。

包络检波解调电路的目的就是将这个振幅变化提取出来,从而得到原始的基带信号。

包络检波解调电路的设计主要包括两个关键部分:包络检波电路和低通滤波电路。

包络检波电路用于将调制信号的振幅变化提取出来,而低通滤波电路则用于去除高频噪声,得到平滑的基带信号。

在包络检波电路中,常用的设计方案有峰值检波器和整流器。

峰值检波器采用二极管和电容器构成的电路,能够将调制信号的峰值部分提取出来。

整流器则采用二极管进行整流,将负半周的信号转换为正半周的信号。

这两种设计方案各有优缺点,具体选择应根据实际需求来确定。

在低通滤波电路中,常用的设计方案是RC滤波器。

RC滤波器由电阻和电容器构成,能够将高频噪声滤除,得到平滑的基带信号。

滤波器的截止频率应根据调制信号的带宽来确定,以确保基带信号的完整性。

包络检波解调电路的设计还需要考虑一些其他因素。

例如,输入信号的幅度范围、电源电压、工作频率等。

这些因素会对电路的性能和稳定性产生影响,需要进行充分的考虑和调整。

在实际的设计过程中,可以使用电路仿真软件进行模拟,以验证电路设计的正确性和可行性。

同时,还需要进行实际电路的搭建和调试,以确保电路能够正常工作。

总结起来,包络检波解调电路是一种常用的解调电路,用于从调制信号中提取出原始的基带信号。

设计这种电路需要考虑包络检波电路和低通滤波电路两个关键部分,以及其他一些因素。

通过合理的设计和调试,可以实现对调制信号的准确解调。

一种改进型的高频信号包络检波器设计

一种改进型的高频信号包络检波器设计

一种改进型的高频信号包络检波器设计谷朝健;马增强;李延忠【摘要】针对目前常用的传统有源包络检波电路无法处理兆赫级频段的高频信号和毫伏级能量的微弱信号的问题,利用第二代电流传输器(CCⅡ+)和二极管的AB类补偿,设计一种改进型包络检波器;采用Multisim仿真软件对比分析了改进前、后2种包络检波器对高频信号和微弱信号的处理能力.结果表明,改进型包络检波器不仅可以处理兆赫级高频信号,而且可以处理毫伏级微弱信号,同时提高了电路的转换速度,克服了二极管的非线性.%According to the traditional active envelope detection circuit used currently that cannot process high-frequency signal of megahertz band and weak signal of millivolt energy,an improved envelope detector was designed by means of current conveyorⅡ+ (CCⅡ+) and AB compensation of diode.The ability of the two kinds of envelope detecter before and after improvement to process high-frequency and weak signal by using the Multisim Simulation software.The results show that the improved envelope detector can process not only megahertz high-frequency signal but also millivolt weak signal.The circuit conversion speed was improved meanwhile and the nonlinearity of the diode was overcome.【期刊名称】《济南大学学报(自然科学版)》【年(卷),期】2017(031)004【总页数】6页(P346-351)【关键词】包络检波;高频信号;微弱信号;第二代电流传输器;AB类补偿【作者】谷朝健;马增强;李延忠【作者单位】石家庄铁道大学电气与电子工程学院, 河北石家庄050043;石家庄铁道大学电气与电子工程学院, 河北石家庄050043;石家庄铁道大学电气与电子工程学院, 河北石家庄050043【正文语种】中文【中图分类】TN763.1包络检波(解调)器是解调电路必不可少的部分,广泛应用于医学[1]、机械[2]、军事[3]、电力系统[4]、广播通信和电声测量[5]等领域,其中二极管包络检波器电路简单、易于实现,广泛用于检取调制信号的包络。

二极管包络检波器和同步检波器仿真实验报告之欧阳学创编

二极管包络检波器和同步检波器仿真实验报告之欧阳学创编

二极管包络检波器和同步检波器仿真实验报告姓名:学号:班级:09电信二班一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。

2.了解二极管包络检波的主要指标,检波效率及波形失真。

3.掌握用集成电路实现同步检波的方法。

二、实验内容及步骤(1)二极管包络检波电路1.利用EWB软件绘制出如图1.15的二极管包络检波电路。

2.按图设置各个元件参数,其中调幅信号源的调幅度M 为0.8。

打开仿真开关,从示波器上观察波形。

画出波形图。

3.分别将Rp调到最大或最小,从示波器上可以观察到惰性失真和负峰切割失真,画出波形图。

附图1.15二极管包络检波器仿真实验电路(2)同步检波电路1.利用EWB软件绘制出如图1.19的双边带调幅实验电路。

2. 按图设置各个元件参数,打开仿真开关,从示波器上观察同步检波器输入的双边带信号及输出信号。

画出波形图。

3.改变同步检波器参考信号相位,观察输出波形的变化,画出波形图。

附图1.19 双边带调制及其同步检波的仿真实验电路三.实验报告要求1.画出二极管包络检波器的波形。

画出二极管包络检波器的惰性失真和负峰切割失真波形。

RP1=0% RP2=100%RP=0% RP2=0%负峰切割失真RP1=100% RP2=0%负峰切割失真R1=R2=100%惰性失真2.对比画出同步检波电路的正常波形和改变参考信号相位波形。

同步检波电路的正常波形Uc=3.5344V参考信号相位30度波形Uc=3.0668V参考信号相位45度波形Uc=2.5082V随着参考信号相位的增加哦,Uc幅值逐渐较小。

四.思考题1.分析二极管包络检波器的惰性失真和负峰切割失真产生的原因。

答:惰性失真:当输入为调幅波时,过分增大RL和C 值,致使二极管截止期间C通过RL的放电速度过慢,在某t1时刻跟不上输入调幅波包络的下降速度。

输出平均电压就会产生失真,称惰性失真负峰切割失真:检波器与下级电路连接时,一般采用阻容耦合电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录欧阳光明(2021.03.07)前言11 设计目的及原理21.1设计目的和要求21.1设计原理22包络检波器指标参数的计算62.1电压传输系数的计算62.2参数的选择设置63包络检波器电路的仿真93.1 Multisim的简单介绍103.2 包络检波电路的仿真原理图及实现104总结135参考文献14前言调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。

广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。

对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。

工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。

为了把低频信号取出来,需要专门的电路,叫做检波电路。

使用二极管可以组成最简单的调幅波检波电路。

调幅波解调方法有二极管包络检波器、同步检波器。

目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。

但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。

为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。

Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。

计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

1设计目的及原理1.1 设计目的和要求通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。

进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。

要求:掌握串、并联谐振回路及耦合回路、高频小信号调谐放大器、高频功率放大器、混频器、幅度调制与解调、角度调制与解调的基本原理,实际电路设计及仿真。

设计要求及主要指标:用检波二极管设计一AM信号包络检波器,并且能够实现以下指标。

●输入AM信号:载波频率200kHz正弦波。

●调制信号:1KHz正弦波,幅度为2V,调制度为40%。

●输出信号:无明显失真,幅度大于6V。

1.2 设计原理调幅调制和解调在理论上包括了信号处理,模拟电子,高频电子和通信原理等知识,涉及比较广泛。

包括了各种不同信息传输的最基本的原理,是大多数设备发射与接收的基本部分。

因为本次课题要求调制信号幅度大于1V,而输出信号大于5V,所以本课题设计需要运用放大电路。

本次实验采用二极管包络检波以及运算放大电路。

在确定电路后。

利用EAD软件Multisim进行仿真来验证假设结果。

总设计框图如1-1:图1-1总设计框图二极管包络检波器的工作原理:检波原理电路图如图1-2图 1-2检波原理电路图检波的物理过程如下:在高频信号电压的正半周期,二极管正向导通并对电容C充电,由于二极管正向导通电阻很小,所以充电电流I很大,是电容的电压Vc很快就接近高频电压峰值,充电电流方向如下图1-3所示:图1-3这个电压建立后,通过信号源电路,又反向地加到二极管D的两端。

这时二极管是否导通,由电容C上的电压Vc和输入电压Vi共同决定。

当高频信号的瞬时值小于Vc时,二极管处于反向偏置,处于截止状态。

电容就会通过负载电阻R放电。

由于放电时间常数RC远大于调频电压周期,故放电很慢。

当电容上的电压下降不多时,调频信号第二个正半周期的电压又超过二极管上的负压,使二极管导通。

如图1-3中t1到t2的时间为二极管导通(如图1-4)的时间,在此时间内又对电容充电,电容的电压又迅速接近第二个高频的最大量。

如图1-3中t2至t3时间为二极管截止(如图1-5)的时间,在此时间内电容又通过负载R放电。

这样不断地反复循环。

所以,只要充电很快,即充电时间常数RdC 很小(Rd为二极管导通时的内阻)而放电时间很慢即放电时间常数RC很大,就能使传输系数接近1。

另外,由于正向导电时间很短,放电时间常数又远大于高频周期,所以输出电压Vc的起伏很小,可看成与高频调幅波包络基本一致,而高频调幅波的包络又与原调制信号的形状相同,故输出电压Vc就是原来的调制信号,达到解调得目的。

图1-6根据上述二极管包络检波的工作原理可设计出符合本次课程设计“包络检波器的设计与实现”的检波器,其原理电路图如图1-7所示。

图1-4 二极管导通图1-5 二极管截止图1-7 包络检波器电路图2 包络检波器指标参数的计算2.1电压传输系数的计算等幅载频:K d=coscosVo VsVs Vsϕ==ϕAM波:K d=coscosV mVsmVs VsΩϕ==ϕφ仅于RD2R有关,与包络无关。

Kd为常数,理想:R>>R D,φ→0,K d=1理想:R>>R D,φ→0,K d=12.2参数的选择设置①v s较小时,工作于非线性区;②R较小时,R D的非线性作用↑。

解决:R足够大时,R D的非线性作用↓,R的直流电压负反馈作用↑。

但R(RC)过大时,将产生:(a)惰性失真(τ放跟不上v s的变化);(b)负峰切割失真(交流负载变化引起)。

(a)惰性失真(如图)图2-1由图可见,不产生惰性失真的条件:v s包络在A点的下降速率≤C的放电速率。

即:τ=RC≤2maxmax max1+mmΩ(b)负峰切割失真(交流负载的影响及m的选择)图2-2C c为耦合电容(很大)直流负载为:R交流负载为:R交=(RR L)/(R+R L)∵C c很大,在一个周期内,V c(不变)≈V s(K d≈1时) ∴V R=V AB=V c[R/(R+R L)]由图:临界不失真条件:V smin=V c-m V s≈V s-mV s=V s(1-m)m较大时,若V R>V smin,则产生失真。

则要求:τ=RC≤2max max max 1+mmΩ例:m=0.3,R=4.7kΩ时,要求:R L≥2kΩ;m=0.8,R=4.7kΩ时,要求:R L≥4.7kΩ;即:m较大时,要求负载阻抗R L较大(负载较轻)。

负峰切割失真的改进:图2-3检波器的改进电路R直=R1+R2R交=R1+(R2R L)/(R2+R L)=R1+R交'即:R1足够大时,R交'的影响减小,不易负峰切割失真。

但R1过大时,VΩ的幅度下降,一般取R1/R2=0.1~0.2(2)检波电路R i大,即检波电路的R L大。

(3)晶体管和集成电路包络检波,为直接耦合方式,不存在C c。

3包络检波器电路的仿真3.1Multisim的简单介绍Multisim是Interctive Image Technologies公司推出的一个专门用于电子电路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。

该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。

尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。

3.2包络检波电路的仿真原理图及实现如下图所示为Multisim的仿真原理图图3-1 仿真原理图a)如果将仿真原理图中开关A、C闭合,打开仿真按钮,此时二极管包络检波后的波形,如下图:图3-2 检波不失真波形此时输出的为正弦波,输出波形不失真,与试验要求相符。

b)如果将仿真原理图中开关B、C闭合,打开仿真按钮,此时二极管包络检波后的波形,如下图:图3-3 惰性失真的波形此时输出波形呈锯齿状变化,输出发生了失真,为惰性失真,与试验要求相符。

c) 如果将仿真原理图中开关A、D闭合,再将滑动变阻器旋钮移到100%,即使所接电阻为最大。

打开仿真按钮,观察示波器,可得到二极管包络检波后的波形,如下图:图3-4 切割失真此时发现输出的正弦波底部被切割了一部分,输出发生了失真,为底部切割失真,与试验要求相符。

再次旋动滑动变阻器到75%,观察示波器,看到输出波形如下图:图3-5 切割失真发现输出的正弦波底部也被切割了一部分,发生了失真,为底部切割失真,与试验要求相符。

与图3-4相比,发现图3-5切割的更多,即失真变大。

继续旋动滑动变阻器到50%,观察示波器,看到输出波形如下图:图3-6 切割失真结论:滑动变阻器接入电阻越小越易发生切割失真,即失真越明显。

4总结这次的设计,给自己的印象很深刻。

通过本次实验的课题设计,对本课题有了一定的了解。

但是,在对该课题有一定了解的前提下,也发现了很多问题,当然,都是自身的不足。

认识到理论与实践之间的差距,联系实际的应用去理解知识比一大堆理论来的直接与清晰明了。

在设计中难免会遇到很多学习中不会注意到的问题,比如说在调制中,在取某些值后输出是失真的波形,在设计开始并没有想过会存在那样多的问题,当着手时才发现要完成一个信号的调制与解调,在元器件、电路和取值都要有一部分的要求。

当然,在设计中也遇到很多学习上的问题,有些地方自己根本看不明白,但经过同组有些同学一提,才发现有些很简单的地方自己却并不理解,确实是一个很纠结的问题。

不过,我相信,通过自己的努力,不会让自己失望的。

5参考文献[1] 曾兴文,刘乃安,陈健.高频电子线路[M].北京:高等教育出版社,2007[2] 张肃文等.高频电子线路[M](第四版).北京:高等教育出版社,2004[3] 路而红等.虚拟电子实验室[M].北京:人民邮电出版社,2006[4] 华成英,童诗白.模拟电子技术[M](第四版).北京:高等教育出版社,2006[5] 清华大学通信教研组.高频电路[M].北京:人民邮电出版社,1979[6] 杨欣,王玉凤.电子设计从零开始[M].北京:清华大学出版社,2009[7] 谢嘉奎.高频电子线路[M](第二版).北京:高等教育出版社,1984[8] 武秀玲,沈伟慈.高频电子线路[M].西安:西安电子科技大学出版社,1995。

相关文档
最新文档