隧道专业毕业设计外文翻译 精品
地铁隧道毕业设计外文翻译
外 文 翻 译
年 级: 2005 级 学 号:20057375 姓 名: 黄 磊 专 业:铁道工程 指导老师: 钟新樵
2009 年 6 月
西南交通大学本科毕业设计(论文)外文翻译
第1页
【原文】
A study on underground tunnel ventilation for piston effects influenced by draught relief shaft in subway system
西南交通大学本科毕业设计(论文)外文翻译
第3页
Cm
For air inflow,
AvVv Qb AV Qc
(1)
Cm K i
For air outflow,
ቤተ መጻሕፍቲ ባይዱAv A
Cp Cps
(2)
Cm K o where A Av Cm tunnel area (m2) relief shaft area (m2)
CΔHi Ki, Ko Qb, Qc
entrance loss at the bottom of relief shaft empirical constants for inflow and outflow air flow volume rate through relief shaft and upstream(or downstream) (m3/s)
Chi-Ji Lin, Yew Khoy Chuah, Chia-Wei Liu
Abstract
This is a study on underground tunnel ventilation for piston effects influenced by draught relief shaft. Field measurements of transient air movement in the draught relief shaft for a typical Taipei underground subway station were taken under winter and summer conditions. It has been found that the air in the draught relief shaft has a maximum of 2 m/s, and on average lies between 0.7 and 1.1 m/s. This study defines an index ηPE, for evaluating the efficiency of tunnel ventilation by piston effects. This index can be used to analyze the piston effects due to different shaft length and sectional area. The measurement results show that the train piston effects are effective only for certain shaft length and operating conditions. This study also used the authoritative SES computer program to simulate the piston effects. The simulation results for inflow and outflow velocity profile are almost consistent with the measurement. The shaft sectional area was also investigated and has been found that a larger sectional area resulted in larger volume flow rate, but the percentage increase is less than the percentage increase in the sectional area. This will result in smaller air velocity in shaft and less effective air exchange between the tunnel and the outside ambient. It also has been found that length of the draught relief shaft is more so an important design parameter for efficient air exchange by piston effects for underground subway systems. It is suggested here that the design of the draught relief shaft has to consider requirements including ηPE, pressure loss and noise.
日本隧道维修毕业论文外文文献翻译
毕业设计(论文)外文文献翻译文献、资料中文题目:日本隧道维修文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14日本隧道维修Tunnel maintenance in Japan摘要本文论述了日本铁路隧道最近的维修技术和典型的变形情况。
检测隧道衬砌分为初级检查和辅助检查,在可行的检查中本文引进了无损检测的新技术。
修复和加强隧道变形的方法可分为:(一)土压力的对策(二)恶化衬里;(三)防渗漏水和冰霜伤害的应对措施;(4)防止剥落的应对措施。
此外,本文介绍了三个近期典型的日本铁路隧道变形案件;其中之一是Tukayama隧道对塑料的土压力,另一个是关于福冈隧道和Rebunhama隧道由于衬砌剥落造成的事故。
关键词:隧道维修,隧道检查;隧道修复,加固,无损检测1 引言隧道不同于地上建筑物,设计条件(地形,地质,地下水等)依变化情况而定。
因此,它是不容易在各种类型的地形中合理设计和建造,而且它在使用过程中会发生不确定的变形。
由于这些原因,隧道的养护和控制就显得很重要,为保持隧道的良好状态,可采用以下方法:如定期检查,隧道声音的正确判断,以及相应的应对措施。
变形的因素,可分为三组,即:(1)由于地质因素的土压力;(2)劣化的衬里材料;以及(3)漏水和霜冻损害(朝仓等人,1991年)。
1999年,在福冈北九州隧道沿山阳新干线(子弹头列车)和室兰线的Rebunhama隧道发生了混凝土衬砌剥落的的事件。
剥落,在各项建设工程中,已成为一个重要问题。
在本文,对隧道衬砌审查和变形的对策做了调查和评估技术,并介绍了一些典型的例子。
2 检查和诊断方法2.1 隧道的检查和诊断对隧道进行检查和诊断,能及时掌握变形是否影响结构的安全性和耐久性,然后采取适当的应对措施,以确保在评估结果的基础上保持隧道的良好状况。
因此,隧道的诊断和检查,是隧道维护管理最基础的部分。
隧道盾构-毕设论文外文翻译(翻译-原文)
毕业设计(论文)外文文献翻译院系:土木工程与建筑系年级专业:土木工程姓名:学号:附件:盾构SHIELDS指导老师评语:指导教师签名:年月日S HIEL D S【Abstr act】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the form and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to force the shield off line and grade. And working decks inside the shield enable the miners to excavate the face, drill and load holes.【Keywor ds】shield hydraulic jacks ground pressure steering working decksA tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matches the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provides a reaction base for the breast-board system used to control face movement. The shield may have either an open or closed bottom. In a closed-bottom shield, the shield structure and skin provide 360-degree ground contact and the weight of the shield rests upon the invert section of the shield skin. The open shield has no bottom section and requires some additional provision is a pair of side drifts driven in advance of shield excavation. Rails or skid tracks are installed within these side drifts to provide bearing support for the shield.Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the breast-boards. The steel skin of the shield may varyfrom 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments within the tunneling fraternity. Some prefer mild steel in the A36 category because of its ductility and case of welding in the underground environment where precision work is difficult. Others prefer a high-strength steel such as T-1 because of its higher strength/w eight ratio. Shield weight may range from 5 to 500 tons. Most of the heaviest shields are found in the former Sovier Union because of their preference for cast-iron in both structural and skin elements.Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin area and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working pressures in the hydraulic system may range from 20-70 Mpa. To resist the thrust of the shield jacks, a horizontal structure member (collar brace) must be installed opposite each jack location and between the flanges of the steel set. In addition, some structural provision must be made for transferring this thrust load into the tunnel walls. Without this provision the thrust will extend through the collar braces to the tunnel portal.An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Teredo navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-type shield. Later that same year, Beach in New York City produced similar shield. The first use of the circular shield came during 1869 when Barlow and Great Head employed their device in the construction of the 2.1 in diameter Tower Subway under the River Thames. Despite the name of the tunnel, it was used only for pedestrian traffic. Beach also put his circular shield to work in 1869 to construct a demonstration project for a proposed NewYork City subway system. The project consisted of a 2.4 m diameter tunnel, 90 m long, used to experiment with a subway car propelled by air pressure.Here are some tunnels which were built by shield principle.Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid across their exposed ends to counter any strain on the outer ends. The forepoles thus provided an extension of the tunnel support, and the face was extended under them. When the ends of the forepoles were reached, new timbering support was added, and the forepoles were driven into the ground for the next advance of the tunneling.The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment passed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.Another development was the use of hydraulically powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space for men in the tunnel.Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. In more porous ground,compressed air must be used to exclude water. The amount of air pressure that is needed increases as the depth of the tunnel increases below the surface.A circular shield has proved to be most efficient in resisting the pressure of soft ground, so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that workers could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through the doors and into the tunnel, from which the muck was removed. The cylindrical shell of the shield may extend several feet in front of the diaphragm to provide a cutting edge. A rear section, called the tail, extends for several feet behind the body of the shield to protect workers. In large shields, an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel.The pressure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the tunnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the fabrication of a 81.2 cm support ring behind it.Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short time to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that are linked together by bolts. The bolts were tightened by hand and then by machine.Immediately after they were in place, the sections were sealed at the joints to ensure permanent water tightness.Shields are most commonly used in ground condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, liner plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.One of the principle problems associated with shield use is steering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is accomplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering several feet from the required. Although lasers are frequently used to provide continuous line and grade data to operator, once the shield wanders off its course, its sheer bulk resists efforts to bring it back. Heterogeneous ground conditions, such as clay with random boulders, also presents steering problems.One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes the individual ribs.A continuous support system presents a different problem. In this case, a filler material, such as pea gravel or grout, is pumped behind the support system to fill the void between it and the ground surface.The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function undera preselected ground pressure. Designers will select this pressure as a percentage of the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration of the ground pressures it might encounter. When ground pressure exceeds the design limit, the shield gets “stuck”.The friction component of the ground pressure on the skin becomes greater than the thrust capability of the jacks. Several methods, including pumping bentonite slurry into the skin, ground interface, pushing heavy equipment, and bumping with dynamite, have been applied to stuck shields with occasional success.Because ground pressure tends to increase with time, the cardinal rule of operation is “keeping moving”.This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonmoving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the Carly V.Porter Tunnel were caught by excessive ground pressure and deformed beyond repair. One of the Porter Tunnel shields was brought to a halt in reasonably good ground by water bearing ground fault that required full breast-boards. While the contractor was trying to bring the face under control, skin pressure began to increase. While the face condition finally stabilized, the contractor prepared to resume operations and discovered the shield was stuck. No combination of methods was able to move it, and the increasing ground pressure destroyed the shield.To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degree o f ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “w atermelon seed”design. The theory calls for a continuous taper in the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of the tail. With this configuration, any amount of forward movement would create a drop in skin pressure.Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These working decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast doors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.Some form of mechanical equipment is provided on the rear end of the working decks to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.盾构【摘要】隧道盾构是一结构系统,通常用于洞室开挖。
西安工业大学建工院土木工程毕业设计总说明书外文文献翻译
毕业设计(论文)外文翻译题目:Comparative Analysis of Excavation Schemes for a TunnelConstructed through Loose Deposits院(系)建筑工程学院专业土木工程班级130702姓名xxxxx学号xxxxx导师xxxxx2017x年5月1日通过松散堆积物构建了隧道开挖方案的对比分析摘要:由于周围岩石较弱,构造松散沉积物的隧道易于坍塌,二次内衬通常遭受过度变形。
因此,选择适当的挖掘方案是重要的,这将对隧道施工安全和随后的隧道运行产生影响。
本文采用亭子坝隧道,一条浅埋在浅沉积和冲积起源的高速公路隧道为例。
在施工期间,这条隧道经历了很多穹顶倒塌事件和先进的支援破坏。
对重组样品进行各向同性排水(CD)压缩试验,以获得松散沉积物的机械参数。
进行三维建模以模拟三种不同方案开挖后隧道中的应力和变形分布,即上下台阶隧道,三台隧道和单侧方向隧道掘进。
比较分析结果表明,单侧巷道隧道更适合该隧道,既可以减少拱顶沉降,又可以限制塑性区的开发。
对于类似地质环境中的隧道设计和施工,结果应该是重要的。
关键词:松散堆积物;力学参数; 隧道;开挖方案;比较分析。
说明随着中国交通基础设施快速发展,在过去的几十年里,许多新的隧道已经或正在通过具有挑战性的地质条件的地区建设等。
软岩在隧道建设中经常遇到。
软岩的力学特性导致快速变形和各种干扰(Sharifzadeh等人。
2013a;朱某等人。
2013)它能影响地下结构的稳定性。
为此,软岩石已受到很多关于交通隧道建设的关注。
例如,Jeng等人(2002)评价Mushan的变形砂岩和台湾北部对隧道变、形的影响。
Ozsan和Basarr(2003)计算出强风化凝灰岩Urus坝址引水隧洞的支持能力。
李和舒伯特(2008)研究了在软弱围岩中圆形隧道的长度。
Shahrour 等(2010)分析了用软土构建的隧道的地震响应。
大学 毕业设计 城市地下铁道连拱隧道群施工技术研究 英文翻译
Urban Underground Railroad arch tunnel Construction Technology Group Abstract Project in Guangzhou Metro Line, right-arch construction method of tunnels to explore. Subway Construction in Guangzhou for the first time put forward a double-arch tunnel to single-hole tunnel construction technology, and a single type of wall and split in the wall structure, comparison and selection of Technology solutions were obtained to meet the structural safety, construction safety and Economic benefits of better Technology solutions for the future design and construction of similar projects to provide reference and reference.Keywords: double-arch tunnel group; a single type of wall; construction Technology; split in the wall.As the circuit design requirements subway tunnel, the tunnel structure produces a variety of forms, ranging from cross-section from double-arch and the three-arch tunnel composed of double-arch tunnel section is commonly used in the connection lines and crossing lines. In this paper, engineering examples, according to tunnel in which geological conditions, duration requirements, raised through the comparison and selection can achieve rapid construction and the purpose of construction cost savings of the best construction programs.1 Project OverviewGuangzhou Metro Line Road station turn-back line of sports for sports Road station after the return line, structure complex, DK3 016.047 ~ 037.157 varying cross-section set the double-arch structure, three-arch structure of tunnels. Ranging from cross-arch tunnel excavation span 20.1m, excavation height of 10.076m, cross-vector ratio of 1:0.5, after lining a hole span 5.2m, large holes, after lining span 11.4m, the wall thickness of 1.6 m. Three double-arch tunnel excavation span 19.9m, excavation height of 7.885m, cross-vector ratio of 1:0.1. -Arch tunnel section of rock from top to bottom are: artificial fill soil, red - alluvial sand, alluvial - alluvial soil, river and lake facies soil, plastic-like residual soil, hard plastic - a hard-like residual soil, all weathered rock, strong weathering rock, the weathered layer and the breeze layer. Tunnel through the rock strata are more homogeneous, the intensity high, carrying ability, good stability. Thickness of the tunnel vault covering 15.5 ~ 18m, of which grade ⅣWai rock vault thickness 5.6 ~ 7.6m.Double-arch tunnel segment groundwater table is 2.28 ~ 4.1m, mainly Quaternary pore water and fissure water.Section 2 dual-arch construction scheme comparisonAs the double-arch tunnel segment structure more complex, the tunnel cross-section changes in large, complicated construction process, construction was very difficult, the construction cycle is long, so I chose a good quality and efficient completion of the construction program segment arch tunnel construction is particularly important. Selection of a construction program, the main consideration the following aspects: (1) construction safety and structural safety; (2) construction difficulties; (3) the construction cycle; (4) cost-effectiveness. Based on these four principles, through the construction of research and demonstration program to select the following two programs to compare the selection of the construction.2.1 a single type of wall construction planThe program's main construction steps and measures are as follows:(1) The right line of double-arch tunnel hole within the return line side of temporary construction access, dual-arch and the three-arch in the wall construction, is completed in a timely support for the wall, the construction to prevent bias.(2) construction of the wall lining is completed, according to "first small then big, closed into a ring" principle, the right line with the step method of construction, with CRD engineering method returned a four-lane span tunnel construction.(3) When the return line side of the construction to the three-arch tunnel in the wall, then in accordance with the right line of the wall construction method and the three-arch-arch in the wall construction, during which the right line to stop excavation until the completion of construction of the wall.(4) The return line side of the wall construction is completed, the right line to continue to move forward the construction.The construction method for the domestic double-arch tunnel of conventional construction method, Guangzhou Metro, Nanjing and Beijing Metro subway both applications, and can secure successful completion of the construction of tunnels. However,examples of past engineering and construction Technology research can be found, the program has weaknesses and shortcomings.(1) The program used in this project, in a short span of 21.11m of double-arch tunnel, the tunnel's opening between the supporting and secondary lining will be converted four times, the conversion too frequently.(2) wall and side holes covered by waterproof layer of tunnel lining construction, steel engineering, formwork, concrete pouring required multiple conversions, the construction period up to 2 months.(3) The lining is completed, the wall of anti-bias materials, equipment, support and input, resulting in higher construction costs, Economic efficiency will drop.2.2 The split in the wall construction planThe program's main construction steps and measures are as follows:(1) ranging from cross-double-arch tunnel into two single-hole, change the formula for the separation wall, the first line of one-way right-forward construction of the tunnel.(2) three arch tunnel in the wall to make the first non-Shi lining, according to single-line working condition through.(3) the right line of large-section double-arch tunnel wall construction method adopted in accordance with CRD.(4) The return line is in accordance with the right line of the opposite side of the construction sequence of construction.Adoption of this program is in fact a one-way in accordance with the construction of two methods, compared with the previous one, after the program has the following advantages:(1) reduction of the construction process to speed up the convergence process conversion.(2) reduce the construction difficulty, shortening the construction cycle.(3) reduce the construction costs and improve Economic efficiency.(4) change a single type of wall to separate the wall, completely solved the structure of double-arch tunnel waterproofing defects.(5) The three-arch tunnel in the latter pArt of the construction hole, equivalent to large-span rock tunnels reserved for the core is conducive to both sides of the double-arch tunnel construction safety (Table 1).Section 3 three-arch construction planRight-line direct access to three double-arch tunnel, the Support parameters to the original designs for grating erection of the whole ring, according to design the whole ring of shotcrete, and enhance the bolt at the wall vault settings (return right side Tong Line Construction method), wall construction in the tunnel when you need to get rid of Office, located at a vertical grill joints strengthened beam.Strict control of excavation footage of each cycle, grid spacing of 0.6m / Pin. Weak in the wall excavation using millisecond blasting program (conditional maximize the use of static blasting programs), minimize the wall rock and the lining of the tunnel has been disturbed, to ensure construction safety. The completion of excavation in the wall immediately after the secondary lining. After the completion of construction of the wall in wall voids of the backfilling, plus jack supports. The side of the construction is completed, carry out the other side of the wall construction. When both sides of the wall construction is complete, in a timely manner on both sides of a single-hole tunnel secondary lining, and then proceed to three-arch tunnel excavation and lining of the middle of rock. Construction, special attention should be three arch tunnel in the wall at the settlement and convergence deformation, such as the unusual phenomenon, an immediate reinforcement.4 construction of the force structure of Behavior AnalysisAcross the range of the double-arched wall canceled, changed to separate the wall, in the domestic urban underground railway engineering has not yet been a similar engineering design and construction experience, there is no such tunnel structure design, and therefore the structure is safe, as well as the course of construction conversion process of construction is safe, the program will be the focus of the study.Application of ANSYS finite element software for common procedures ranging from cross-arch tunnel numerical simulation, using stratigraphic - structural model of the structure of the tunnel by the force and deformation analysis (Figure 1, Figure 2, Figure 3).The scope of the horizontal direction taken by force along the direction of the tunnel cross-section to cross-hole 3 times the limit, taking the top of the vertical direction to the surface, the bottom-hole span to 3 times the limit, unit model uses the DP formation of elastic-plastic material entity, the tunnel Lining with elastic beam element simulation, beam elements and solid elements used to connect coupling equation. Through the analysis of data in Table 2 we can see that during the construction of large tunnels in a greater impact on small tunnel, if a small section of the tunnel with the necessary strengthening of measures and control the removal of temporary support to the longitudinal spacing, the program is useful and feasible to The.5 Construction of key technologies and corresponding measuresArch tunnel construction segment is required on a strict construction organization and strong technical assurance measures carried out under the good job in organizing the construction of steps to prepare the construction of a variety of technical preventive measures are key to success.5.1 pairs of pull anchor and strengthen the boltAbolition of a single type of wall, the excavation is complete in the wall thickness of 0.8m, pull anchor and strengthen the right bolt set is very necessary. Φ22 steel bolt used on the pull bolt drug volume, pitch, 0.6m × 0.5m, the length of the wall thickness according to the 0.8 ~ 2.0m. Strengthen the bolt in the wall located at the invert and side walls at both sides, using 3.0m of Φ25 hollow grouting anchor, spacing 0.6m × 0.8m.5.2 in the body wall, grouting rock block foldersIn the wall of rock thinnest Department to 0.15m, after repeated blasting excavation process, the impact of the rock wall around the loose, their bearing capacity affected. Therefore, we must separate the wall in the vault, wall, invert Department for loose rock for grouting. Φ42 embedded steel, cement slurry to take - water glass pairs of liquid slurry, the parameter of 1:1 cement and 30 ~ 45Be sodium silicate solution, grouting pressure of 0.2 ~ 1.0MPa. In both excavation grouting in the wall were carried out, after the completion of the final excavation carried out in saturated sandwich wall grouting.5.3 millisecond blasting technology microseismsTunnel excavation construction method used in all drilling and blasting. Because the lot is located in downtown Guangzhou, the ground-intensive buildings, and the Tunnel "0" spacing excavation, blasting must be set aside in accordance with glossy layer of smooth microseismic millisecond blasting program construction blasting vibration control will be allowed within the . For the double-arch tunnel in which strata of Ⅲ, Ⅳgrade rock blasting to take measures as follows:(1) The blasting equipment, using low-speed emulsion explosive shock.(2) strict control of footage per cycle (0.6 ~ 0.8m), around the borehole spacing of 0.4m, reduce the loading dose to control the smooth blasting effect (Figure 4).(3) The use of multiple detonators per blast detonation, using non-electric millisecond detonator initiation network asymmetric micro-vibration technology.(4), excavation and construction of the wall at the second to take first reserve 1m smooth layer, Cutting away from the eyes arranged in the side of the wall on the second floor reserved for smooth blasting around the eyes more than surface layout of the empty eyes, a small charge. Put an end to ultra-digging, digging, when partially due to artificial air pick excavation.Through the above effective measures, in the wall during the construction of the second blast, right in the thick wall of 0.15m basic did not cause damage to the smooth passage of the double-arch tunnel "0" from the excavation.5.4 Auxiliary scissors to strengthen supportingBy ANSYS simulation analysis, in order to ensure that small section of tunnel construction safety, the need for auxiliary support of small section tunnel reinforcement to resist the impact of blasting and rock produced by the instantaneous release of excavation loads generated by bias.Supporting materials, using I20 steel, welded steel plate embedded in the grille on both ends, using high-strength bolt reinforcement. Support arrangement spacing of 0.6m, which are arranged on a grid for each Pin, arranged to extend the scope to a double-arch on each side of 1.2m, and the completion of the excavation before the big end. The height and angle of support arrangements to ensure the smooth passage of construction machinery andequipment. Through the construction of proof, supporting the setting is necessary and effective, small-section tunnels in additional support after the convergence of scissors just 5mm.5.5 Information ConstructionIn order to ensure structural safety and construction safety, in the tunnel construction process to carry out real-time monitoring measurements to study the supporting structure and the surrounding strata deformation characteristics to predict the corresponding supporting structure deformation and verify that the supporting structure is reasonable, for the information technology provide the basis for the construction. Construction Monitoring and Measurement shows a small section of the tunnel maximum settlement of 14.6mm, maximum settlement of large-section tunnel 17.2mm, structural convergence of a maximum of 7.6mm, maximum ground subsidence of 10mm, three-arched vault in the largest settlement of tunnel excavation 22.8mm.6 Construction SummaryThrough this project example, proved that the use of separate programs to ensure that the wall construction of tunnels section of arch construction safety and structural safety, duration of more than a single type of wall construction program faster 1.0 to 1.5 months. This project for similar future subway construction has achieved successful experiences and Application examples.By summarizing the analysis, the following conclusions:(1) In accordance with the actual geological conditions boldly changed a single type of double-arched wall to separate the construction of walls, similar to conventional ultra-small-distance tunnel construction, eliminating double-arch tunnel Construction of the wall must be of conventional construction method, the final lining of structural forces has little effect on the structure of water is more favorable, and shorten the construction duration. Through the construction of this project in two to realize ultra-small space tunnel "0" spacing Excavation of a major breakthrough in technology.(2) The construction of the key technology is to reduce the damage and disturbance of surrounding rock, as well as the protection of the tunnel structure has been forming.Therefore, in the double-arched wall at the weak control of a weak good millisecond blasting will be the focus of the success of the construction. Smooth layer of smooth blasting using reserved achieved the desired results. If the reserved right to take a static smooth layer of rock blasting will be even better.(3) to strengthen the weak in the wall is also supporting the construction of this important reasons for the success. From the mechanical analysis of view, invert the junction with the side walls are most affected, ensuring adequate capacity to withstand the initial load supporting; second is to strengthen the body in the clip rock column grouting reinforcement of its use of the pull bolt, strengthening bolt and grouting reinforcement, ensuring the stability of surrounding rock. Used in the construction of the pull-bolt if the full use of prestressed reinforcement, the effect may be better.(4) reasonably arrange construction sequence so that all processes in the conversion with minimal impact during the construction of each other.References[1] LIU Xiao-bing. Double-arch tunnel in the form of wall-structured study [J]. Construction Technology 2004-10, 15[2] Wang Junming. Weak rock sections double-arch tunnel Construction Technology [J]. Western Exploration Engineering, 2003-06[3] GB50299-1999 underground railway Engineering Construction and acceptance of norms [S]. Beijing: China Planning Press, 1999城市地下铁道连拱隧道群施工技术研究摘要:利用广州地铁工程实例,对连拱隧道群施工工法进行探讨。
毕业设计外文翻译样本
Influence of underground water seepage flow on surrounding rockdeformation of multi-arch tunnelAbstract: Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in3 dimensions(FLAC ) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7−6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8−6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design. key words: multi-arch tunnel; underground water seepage flow; coupling flow and stress; surrounding rock deformation; vault settlement1 IntroductionWith high speed development of our national economy, the highway is constructed on large-scale all around the country. Along the freeway from Changsha to Chongqing(one section of which is from Changde to Jishou), many tunnels have to be constructed. As these tunnels’s topography and geomorphic conditions are very complex and the rain is very rich, the invasion of underground water and surface water is a difficult problem in the tunnel construction and its future function. In the past railway and highway tunnel construction, some effective waterproof construction technologies were proposed . But the researches on the mechanism of coupling function of fluid and stress and its influence on tunnels are not enough. For example, LIU and CHENcalculated and analyzed the double-arch tunnel structure in water-eroded groove but did not consider the underground water seepage force. YANG et al studied the earthquake response of large span and double-arch shallow tunnel, combining with dynamic stress but without underground water seepage stress. In fact, tunnel excavation forms two secondary stresses fields that can change the distribution of initial rock stress field and theunderground water seepage field. And the seepage flow of underground water also has importantinfluence on the stability of tunnel.Generally speaking, when the surface water seeps in underground, it will constitute the initial seepage flow field together with the underground water. But after tunnel excavation the initial seepage flow field will be destructed. In order to achieve a newbalance, it can produce a new seepage flow field around the tunnel with the underground water flowing into the tunnel. The pore-water pressure can change the stress field of adjacent rock mass. This problem is the coupling flow and stress question on which some scholars study now . LI et al analyzed the subsea tunnel withcoupling process and LEE and NAM discussed the seepage flow force around the tunnel with coupling analysis. In order to know the effect of underground water seepage flow on the surrounding rock deformation of tunnel, a multi-arch tunnel(named Bi-Ma-Xi tunnel) engineering was analyzed with FLAC in this work.2 Engineering and geology conditions2.1 TopographyThe tunnel locates at a hill on long-term weathering and denudation action. In the tunnel area, there are some gullies that primarily s trike towards north and some strike from east to north. Tunnel axis direction and topographic contour line are intersected with orthogonal or a great angle at section K218+087−K218+380 and with a small angle or even parallel at section K218+380− K218+565. The topography is rather steep and forms a “V” type gully. The general hill strike is about 340˚, which is close from north to south. The topography slope is about 15˚−35˚. The green vegetation is mainly the small bamboo and herbaceous plants. The rock bed is visible in some places.2.2 Lithologyccording to engineering geology survey and drilling exposure data, the stratum of3D [1−3] 4][5]surveying area from young to old is as follows.The Quaternary Holocene(Qh): the soil-like loam layer, snuff color, plastic-stiffly,0−4.60 m thick. This layer is ignored in numerical model.The Upper Cretaceous (K2j): Sandstone layer, red brown or palm fibre or dust colour,fine-grained structure. The calcareous cemented rock layer is mixed with mud cemented rock layer and the former is the main part and it is thin and medium thickness structural layer. The horizontal bedding layer develops and the dip angle is small. According to weathered degree the stratum can be divided into three layers from the top down: intensely, weakly and tinily weathered layer. The sketch map of geology section is shown in Fig.1.Fig.1 Sketch of geological profile for tunnel2.3 Geology constitutionIn tunnel area there is no large fracture structure and nor any new tectogenesis. The geology constitution is a monoclinal structure. The rock dip direction of general occurrence is 95˚−115˚. The dip angle distribution ranges from 8˚ to15˚. Three sets of joint crack develop: 1) dip direction 148˚, dip angle 89˚;2) dip direction 350˚, dip angle 56˚; 3) dip direction 225˚, dip angle 77˚. The joint cracks mostly twist with pressure and crack faces are almost close. Minorities of the crack faces are patulous and the distance between two cracks often varies from 5 to 20 cm. The connectivity is fairly good.3 Construction of 3D numerical model3.1 model of numerical calculationThis tunnel is a freeway multi-arch tunnel, of which the left one and right one are general parallel. The two tunnels are about symmetrical by the middle arch wall. The average thickness of middle wall is 2.1 m. The key dimensions of tunnel section are shown in Fig.2.Fig.2 Sketch of multi-tunnel cross section (unit: cm)When modeling the tunnel, the direction along the tunnel is y-axis and in horizontal plane the perpendicularity of tunnel direction is x-axis and plumb upward is z-axis. The influence of tunnel excavation is considered. The radius of influence range is above 3 times of one tunnel span. So in width direction, 50 m extends respectively outside the left and right tunnel, plus the span itself, width direction calculation range is 125 m. Downwards from the original point is 3 times of the height of the tunnel, which equals 45 m and upward is till the earth’s surface (does not consider the clay layer, calculating depth range includes intensely, weakly, tinily weathered red sandstone from above to below respectively). The buried depth of the tunnel is about 25 m. Plus the 10 m of its height, in z-axis the depth is 80 m. Along the tunnel direction an unit length is considered because tunnel excavation can be considered asa plane-strain problem. The size of the 3D numerical model is 125 m×80 m×1 m. The 3D numerical model and its coordinate axis location are shown in Fig.3.Fig.3 3D numerical model of tunnel in FLACThe displacement boundary conditions are adopted in numerical model. Bottom border is constrained with vertical displacement and upper border is free border. Both left and right border are restrained with horizontal displacement. The same boundary conditions are applied in both the front and back borders in y-axis.3.2 Calculation parametersThe mechanics parameters in numerical analysis are provided by geotechnical engineering investigation data and combined with the national criterion need and parameters discount request in numerical simulation. The mechanics parameters of the surrounding rock and the C25 concrete middle arch wall are listed in Table 1. The surrounding rock and the concrete intensity criteria adopted is the elastic-plastic criterion of Mohr-Coulomb. Table 2 shows the surrounding rock relevant seepage flow parameters when coupling problem is considered in numerical simulation. Table 3 lists the parameters of shot concrete(primary lining) and anchor support structure of the multi-arch tunnel. In this calculation process, the parameters of Grade IV surrounding rock supporting system are adopted. And only the affection of the anchor and shotconcrete is considered. The effect of secondary lining is not considered in numerical simulation.4 Discussion on calculation results4.1 Surrounding rock deformation characteristics without underground water seepage flowBased on the established numerical model, the process in which the underground water seepage flow function was not considered was carried on by FLAC . Fig.4 shows the vertical displacement contour-line map in this instance after multi-arch tunnel excavation. From Fig.4 it can be obviously seen that nearby the tunnel excavation region the rock deformation is relatively serious. The vault rock displacement is negative, indicating that the displacement direction is vertical downwards and subsidence occurs. But around the tunnel bottom the surrounding rock displacement is positive, indicating that the direction is vertical upwards and bulging phenomenon occurs.In the process of numerical calculation, the left and right tunnels were simulated simultaneously, namely they were excavated in the identical section plane simultaneously, that is to say, the influence of the construction order is not considered. In the computation process ofFLAC , some interesting grid points were selected to monitor their vertical displacement. The monitored grid points’ number and corresponding coordinate position are listed in Table 4.Fig.5 shows the time process curves of z-displacement (absolute value) of the monitored grid points around left tunnel vault. From Fig.5 it can be seen that the vertical displacement value(or called settlement value) of tunnel vault surrounding rock has relationship with its own position. The clos er the grid point’s position away from the tunnel excavation region, the larger the settlement value. For example, on the middle upper grid point (41 ) of left tunnel, its final calculation settlement value is 3.7 mm, and another grid poi nts’ values are getting smaller with the distance becoming longer.Fig.5 Time process curves of z-displacement of monitored grid points around le ft tunnel vault4.2 Surrounding rock deformation characteristics with underground water seepage flowThe influencing factors of surrounding rock deformation after tunnel excavation in Refs.[10−13], mainly concentrating on the grade of surrounding rock, excavating and supporting method, the neighbor construction load and the construction working procedure. Generally it almost does not consider the influence of underground water seepage flow. But in fact, the underground water existence has important influence on the surrounding rock deformation. For instance, in the excavation and tunnel engineering, the underground water seepage flow can cause quite big displacement of the soil or rock mass and even threaten the safety of engineering . In this study, some quantitative researches on the influence of surrounding rock deformation were carried out by underground water seepage flow.The stratum is fully saturated with water before tunnel is excavated. The seepage flow boundary condition includes that thepore-water pressure of the top surface is limited to zero and the two sides as well as the base boundary are water-proof boundaries . Before tunnel excavation the pore pressure of the stratum is hydro-static pressure. After tunnel excavation, around the tunnel excavation boundary is simulated by a free water seepage flow boundary where the adjacent underground water infiltrates into the excavated area. And the seepage flow field of surrounding rock has been changed with the excavation being carried on. Then the coupling analysis was executed by FLAC .Fig.6 shows the vertical displacement contour-line map after multi-arch tunnel excavation when considering the underground water seepage flow function. Obviously it can be seen that in coupling analysis the arch subsidence quantity is larger than that of not considering seepage function andthe affected region is also wider than that of the former as shown in Fig.4.Fig.6 z-displacement contour-line map of surrounding rock when considering underground water seepage flow function (unit: mm)coupling analysis, as the change of pore pressure in surrounding rock, the effective stress will be changed and it will cause the rock porosity ratio to reduce, leading to a larger arch subsidence quantity compared with that of not considering the seepage flow effect. But the vertical displacements at the bottom of the tunnel are not changed a lot. Fig.7 shows the calculated vertical displacement value for both vault’s middle position (grid point 41 and gridpoint 52 ). It can be seen that the subsidence quantity gradually increases with computation development, after finally tends to its new balance, both vault’s vertical displacement quantities finally stabilize at about 5.7 mm and the two time process curves are basically consistent.Fig.7 Curves of both vault’s node displacement vs calculation stepsFig.8 shows the time process curves of z -displacement(absolute value) of the monitored grid points around the left tunnel vault when taking the underground water seepage flow intoconsideration. Contrasting with Fig.5 it is obviously seen that the settlement value of 41 grid point is increased and reaches 5.7 mm. And to the other monitored grid points, their subsidence quantities also basically tend to 5.0 mm. The calculation subsidence quantities do not change when their relative positions changes.Fig.8 Time process curves of vault settlement when taking underground water seepage f low into consideration4.3 Comparison of deformation measurement results of surrounding rock In the process of excavating, the Bi Ma-Xi tunnel, the inspecting and consulting company of the fourth investigation and design institute of Chinese Railways Ministry monitored the surrounding rock deformation. Fig.9 shows the monitored vault settlement curves at sections K218+280 and K218+310.#Fig.9 Curves of measured value of vault settlement in process of left tunnel excavationComparing Fig.9 with Fig.5 and Fig.8, the maximal vault settlement calculation value is 3.7 mm when without considering underground water seepage flow, and when taking it into consideration the maximal calculation value is equal to 5.7 mm. And the practical monitored results reach 6.5 mm and tend to be stable after 2 months when the tunnel is excavated. The case fits very well with the coupling analysis result. The vault settlement measurement values in this multi-arch tunnel are all basically leveled off between 5.8 mm and 6.8 mm.The calculation results of coupling fluid-mechanical analysis are slightly smaller than the measured results. The reason is that the numerical calculation is thought as converged when the maximal unbalanced force in surrounding rock tends to a less value after tunnel excavation. And it does not consider the effect of actual time. The parameters in calculating unavoidably exist difference with the parameter of rock mass in reality. These reasons lead to the difference between the coupling analysis and the engineering measurement. But the results obtained in section 4.1 are less than the measuring results considering it indicates that the numerical analysis without underground water seepage flow cannot meet the need of engineering.5 Conclusions1) When underground water seepage flow function is considered in coupling fluid-mechanical analysis, the calculation vault settlements have finally achieved5.7−6.0 mm with the interaction of undergroundwater seepage flow and stress release in surrounding rock around the tunnel. The coupling calculation results are very close to the vault measurement settlement. It indicates that constructing tunnels in aquiferous stratum the underground water seepage flow effect must be considered in the design phase.2) The settlement of the surrounding rock above the tunnel has close relationship with its own position. The region near the tunnel excavation zone has the biggest rock deformation, so it should promptly complete supporting measures. When not considering the seepage flow function, the farther the region, the smaller the rock deformation; but when considering the seepage flow function, the settlement of the surrounding rock is above the tunnel and then basically tends to stable in shallower tunnel and it has obviously influence on the ground surface subsidence.地下水渗流对双连拱隧道围岩变形的影响摘要:一般来说,对于高速公路双连拱隧道,用FLAC3D计算隧道围岩变形时是没有考虑到地下水渗流影响的。
隧道与地下工程毕设关于爆破的外文文献译文
外文文献原文及译文学生姓名:XXX学号:XXXXXXXXX班级: 隧道XX班专业:土木工程(隧道与地下工程方向)指导教师:XXX XXX2014 年3月隧道爆破施工引起的地面振动参数预测ALI KAHRIMAN伊斯坦布尔大学采矿工程系土耳其,伊斯坦布尔,阿牟西拉—34850尽管过去进行了许多研究来消除爆破引发的环境问题,遗憾的是由于问题的复杂性尚未建立一个通用的方法或公式。
震波和地面动力特性,爆破参数和场地因素的复杂性共同制约了这样一个通用标准的发展。
因此,仍然需要做实地研究来预测和控制爆破的影响。
该研究是在伊斯坦布尔地铁隧道中进行的,本文介绍了爆破引起的地面振动参数的测量结果。
在研究范围内,于隧道约300米的进程中使用4种不同类型的振动监测器对所有爆破进行地面振动分量测量,得到质点振动速度的估计峰值,并确定振动衰减曲线斜率与测试区的单段最大装药量。
在统计分析数据对后,得到质点振动速度和比例距离之间的关系。
1.介绍地面振动和空气冲击波等引起的环境问题是岩体爆破的产物,是不可避免的。
炸药周围的区域实际上是破碎且具有流动性的,爆破能通常会使一个相对较小的区域塑性变形和开裂;除此之外的剩余能量以弹性波的形式在地下传播。
如果炸药接近地表,也有可能通过空气传播。
在短距离内波成球状辐射且振幅与爆心距(爆源—测点)成反比。
在较长的范围内,其他两个因素会影响传播过程:(1)波形变化,分割成三种类型,以不同的速度传播;(2)传播介质的变化,如分层或开裂,可能会引起进一步的散射和扩散效应; 一个大断层可以很大程度上防止波在某一特定方向的传播。
若波传播所产生的水平动态应力超过建筑材料或岩石材料的强度,将损坏附近居民的建筑结构。
因此,地面振动和空气冲击波引起的环境问题已经在多种行业中面临并频频讨论,如采矿,建筑,采石等爆破作业不可避免的行业。
所以,爆破引发的地面振动需要被预测,监测和控制。
随着附近居民日益增加的对爆破引发的环境问题的不满,越来越需要设计更精确谨慎的爆破。
Guideline for Design of_Tunnel-翻译版
隧道设计准则Guidelines for the Design of TunnelsThis report is edited by Heinz Duddeck,Animateur o[the ITA Working Group on General Approaches in the Design of Tunnels.Present address:Pro[.Heinz Duddeck,Technical University of Braunschweig,Beethovenstrasse 51,3300Braunschweig,Federal Republic of Germany.翻译翻译日期:日期:2011–03–01隧道设计准则国际隧道协会一般设计方法工作组摘要:这份国际隧道协会工作组的第二份报告是关于隧道一般设计方法,其概括了国际上隧道设计一般程序。
绝大部分的隧道工程,土地都主动提供隧道开挖的稳定性。
因此,隧道设计一般方法包括了实地勘测、地面探查、原位监测以及应力和变形分析。
对于后者,本文介绍了目前应用的各种结构设计模型(包括观察法)。
同时给出了隧道衬砌的详细结构设计准则的和隧道设计的国家推荐准则。
本文基于广泛的隧道工程实践经验,希望能给世界各地的隧道设计者提供参考。
Guidelines for the Design of TunnelsITA Working Group on General Approaches to the Design of TunnelsAbstract :This second report by the ITA Working Group on General Approaches to the Design of Tunnels presents international design procedures for tunnels.In most tunnelling projects,the ground actively participates in providing stability to the opening.Therefore,the general approach to the design of tunnels includes site investigations,ground probings and in-situ monitoring,as well as the analysis of stresses and deformations.For the latter,the different structural design models applied at present--including the observational method--are presented.Guidelines for the structural detailing of the tunnel lining and national recommendations on tunnel design are also given.It is hoped that the information herein,based on experiences from a wide range of tunnelling projects,will be disseminated to tunnel designers throughout the world.1准则的范围国际隧道协会(ITA )隧道一般设计方法研究组成立于1978年。
隧道工程英语专业词汇
隧道工程英语专业词汇隧道工程tunnel engineering隧道tunnel铁路隧道railway tunnel公路隧道highway tunnel地铁隧道subway tunnel;underground railway tunnel;metro tunnel 人行隧道pedestrian tunnel水工隧洞hydraulic tunnel输水隧道raulic tunnel山岭隧道mountain tunnel水下隧道subaqueous tunnel海底隧道水下隧道submarinetunnel;underwater tunnel 土质隧道earth tunnel岩石隧道rock tunnel浅埋隧道shallow tunnel;shallow-depthtunnel;s hallow burying tunnel深埋隧道deeptunnel;deep-depthtunnel;dee p burying tunnel偏压隧道unsymmetrical loading tunnel马蹄形隧道拱形隧道horse-shoe tunnel;arch tunnel圆形隧道circular tunnel矩形隧道rectangular section tunnel 大断面隧道largecross-section tunnel长隧道long tunnel双线隧道twin-track tunnel;double track tunnel曲线隧道curved tunnel明洞open tunnel;open cut tunnel;tunnel without cover;gallery隧道勘测tunnel survey超前探测drift boring工程地质勘测工程地质勘探engineering geological prospecting隧道测量tunnel survey施工测量construction survey断面测量section survey隧道设计tunnel design隧道断面tunnel section安全系数safety coefficient隧道力学tunnel mechanics隧道结构tunnel structure隧道洞口设施facilities of tunnel portal 边墙side wall拱顶arch crown拱圈tunnel arch 仰拱inverted arch底板base plate;floor隧道埋深depth of tunnel隧道群tunnel group隧道施工tunnel construction隧道开挖tunnel excavation分部开挖partial excavation大断面开挖large cross-section excavation全断面开挖full face tunnelling开挖面excavated surface隧道施工方法tunnel construction method 钻爆法drilling and blasting method 新奥法natm;newaustriantunnelling method盾构法shield driving method;shield method顶进法pipe jacking method;jack-in method浅埋暗挖法sallow buried-tunnelling method明挖法cut and cover tunneling;open cut method地下连续墙法underground diaphragm wall method;underground wall method冻结法freezing method沉埋法immersed tube method管棚法pipe-shed method综合机械化掘进comprehensive mechanized excavation辅助坑道auxiliary adit;service gallery 平行坑道parallel adit竖井shaft斜井sloping shaft;inclined shaft 导坑heading衬砌工艺lining process喷锚锚喷anchor bolt spray;anchor bolt-spray管段tube section接缝joint地层加固reinforcing of natural ground 弃碴ballast piling施工监控construction monitor control 超挖overbreak欠挖underbreak施工进度construction progress隧道贯通tunnel holing-through工期work period隧道施工机械tunnel construction machinery隧道掘进机tunnellingmachine;tunnelbor ing machine;tbm单臂掘进机single cantilever tunnelling machine全断面掘进机full face tunnel boring machine隧道钻眼爆破机械machine for tunnel drilling and blasting operation装碴运输机械loading-conveying ballast equipment衬砌机械lining mechanism钢模板steel form模板台车formworking jumbo混凝土喷射机砼喷射机concrete sprayer盾构shield泥水盾构slurry shield气压盾构air pressure shield挤压闭胸盾构shotcrete closed shield 土压平衡盾构soil pressure balancing shield 注浆机械grouting machine凿岩机rock drilling machine;air hammer drill凿岩台车drill jumbo;rock drilling jumbo围岩surrounding rock围岩分类surrounding rock classification围岩加固surrounding rock consolidation围岩稳定surrounding rock stability围岩应力surrounding rock stress围岩压力pressure of surrounding rock 山体压力围岩压力ground pressure;surrounding rock pressure围岩变形surrounding rock deformation围岩破坏surrounding rock failure软弱围岩weak surrounding rock支护support锚喷支护anchor bolt-spray support 锚杆支护anchor bolt-support;anchor bolt support喷射混凝土支护喷射砼支护shotcrete support;sprayed concrete support配筋喷射混凝土支护配筋喷射砼支护reinforced sprayed concrete support钢架喷射混凝土支护钢架喷射砼支护rigid-frame shotcrete support掘进工作面支护excavation face support超前支护advance support管棚支护pipe-shed support;pipe roofing support胶结型锚杆adhesive anchor bolt砂浆锚杆mortar bolt树脂锚杆resin anchored bolt摩擦型锚杆friction anchor bolt楔缝式锚杆slit wedge type rock bolt涨壳式锚杆expansion type anchor bolt 机械型锚杆mechanical anchor bolt预应力锚杆prestressed anchor bolt土层锚杆soil bolt岩石锚杆rock bolt衬砌lining整体式衬砌integral tunnel lining;integral lining拼装式衬砌precast lining组合衬砌composite lining挤压混凝土衬砌挤压砼衬砌shotcrete tunnellining;extruding concrete tunnel lining混凝土衬砌砼衬砌concrete lining喷锚衬砌shotcrete and boltlining;shotcrete bolt lining 隧道通风tunnel ventilation施工通风construction ventilation运营通风operation ventilation机械通风mechanical ventilation自然通风natural ventilation隧道射流式通风隧道射流通风efflux ventilation for tunnel;tunnel efflux ventilation;tunnel injector type ventilation隧道通风帘幕curtain for tunnel ventilation;ventilation curtain 通风设备ventilation equipment隧道照明tunnel illumination;tunnel lighting照明设备lighting equipment隧道防水Tunnelwaterproofing;waterpr oofing of tunnel防水板waterproofingboard;waterproofboard;water proof sheet防水材料waterproof material隧道排水tunnel drainage排水设备drainage facilites隧道病害tunnel defect衬砌裂损lining split;lining **ing隧道漏水water leakage of tunnel;tunnel leak坍方landslide;slip地面塌陷land yielding涌水gushing water隧道养护tunnel maintenance堵漏leaking stoppage注浆grouting化学注浆chemical grouting防寒cold-proof整治regulation限界检查clearance examination;checking of clearance;clearance check measurement隧道管理系统tunnelling management system隧道环境tunnel environment隧道试验隧道实验tunnel test试验段实验段test section隧道监控量测隧道监控测量tunnel monitoring measurement收敛convergence隧道安全tunnel safety隧道防火tunnel fire proofing火灾fire hazard消防fire fighting隧道防灾设施tunnel disaster prevention equipment;tunnelanti-disaster equipment 报警装置报警器alarming device;warning device通过隧道passing tunnel避车洞refuge hole避难洞避车洞refuge recess;refuge hole 电气化铁道工程电气化铁路工程electrified railway construction电气化铁道电气化铁路electrified railway直流电气化铁道dc electrified railway交流电气化铁道交流电气化铁路a.c.electrification railway低频电气化铁道low frequency electrified railway工频电气化铁道工频电气化铁路industry frequency electrified railway电压制voltage system电流制current system。
外文资料翻译---柔弱岩石上短距离隧道的动态施工力学的研究
毕业设计外文资料翻译题目柔弱岩石上短距离隧道的动态施工力学的研究学院土木建筑学院专业土木工程班级土木学生二〇一一年三月四日Modern Applied Science V ol. 4, No. 6; June 2010 柔弱岩石上短距离隧道的动态施工力学的研究吴恒斌(通讯作者)重庆长江三峡大学土木工程系中国重庆万州市二段沙龙路780号电子邮件:hbw8456@贺云翔重庆长江三峡大学土木工程系中国重庆万州市二段沙龙路780号郭良松聊城建宇工程有限公司中国聊城252000摘要基于建设理论的新奥地利方法((NAM)),依赖在柔弱岩石的短距离隧道工程,通过构建数学模型并进行了三维弹塑性有限元法的建构过程中,双边墙的施工方法。
分析隧道周围一些测量点位移的变化和隧道开挖和洞室群围岩的稳定性,通过分析地表塌陷、承担的力量支护结构与塑性区。
结果表明,上述构造法是合理的在以后的隧道开挖,地表沉陷,隧道变形与早期隧道开挖的影响比较明显。
关键词:柔弱的岩石、小距离隧道、动态建筑机械、数值模拟1介绍过程的开挖与支护隧道是一项复杂的机械加工过程,施工过程之间的差别,开挖顺序,支持的时间大为影响工程结构系统(SHE et al., 2006).的力学效应由于周围岩石条件的复杂性普通的类似项目在柔弱岩石特别是小距离隧道工程的复杂连接中是不够的,因此,根据在施工过程中各负荷情况,在不同的围岩中有必要进行机械模拟和分析在柔弱岩石隧道衬砌方面的研究,SUN et al. (1994)考虑了时空效应隧道挖掘表面建立三维数模型。
CHENG et al. (1997) 分析了力学机制和FLAC隧道衬里复杂的承载能力,得到一些有用的结论。
JIN et al. (1996) 应用非线性粘弹性理论进行了三维有限元模拟圆隧道开挖过程。
Karakus(2007)阐述了由平面应变分析造成的三个尺寸挖掘影响。
因为时空效应还不能全部体现,许多研究人员进行了三维弹塑性有限元法和隧道开挖的弹塑性分析(AN, 1994, XIAO, 2000 & ZHU et al. 1996)。
毕业设计外文翻译--隧道工程docx
隧道工程1.导言隧道是一种长而且狭窄,本质特征是在地下直线挖掘的工程,同时、它的长度要远超过它的宽度及高度。
几百年来,人类为了各种各样的用途在地下挖掘了大量的通道,随着设计及建设水平的提高,它们的用途也日趋广泛,已经不再仅仅像过去那样:简单地作为将地下矿产运出来的通道及地下遮蔽场所。
现如今,许多城市运用地下通道为人类活动提供更多的空间,例如:生活居住、储藏物资、通信交流、电力传输及交通运输。
在过去的五十年里,中国在隧道建设方面有了卓越的成就,如:高速公路隧道、地下铁路隧道、水力隧道和地下的发电所。
已经建成或正在修建的铁路隧道,超过五公里的有二十多条,超过十公里的有三条。
中国已经成功的在地理环境恶劣的地区修建了许多铁路隧道,例如、位于湖南省的全长14.29公里的大瑶山铁路隧道。
在中国的大陆地区,已经有总长度超过2500公里的5300条铁路隧道,迄今为止,在世界上排名第一。
在中国、尽管高速公路大量建设的兴起时间要比铁路隧道晚,但是由于近年来兴起的修建高速公路及快速路的浪潮,带来了高速公路隧道数量的快速增加。
目前,长度超过一公里的高速公路隧道有500多条,超过4公里的有6条。
目前、中国最长的铁路隧道是位于四川省境内的全长4.7公里的华银山隧道。
除了那些已经建好或正在修建的隧道,一些更长的高速公路隧道正在设计及规划之中。
例如,一条位于福建省的邢奎隧道,总长约8.6公里。
值得一提的事三条分别位于广州、邕江、上海的高速公路隧道,它们各自都由中国的公司设计和建造。
在北京、上海、广州和南京等五个城市有超过100公里的地铁隧道在修建。
在上海地铁及广州地铁的建设中,隧道及车站的施工技术得到了极大的提高和改进。
隧道隐蔽施工方法得到了成功的应用。
由于水力隧道的应用,已有长度超过400公里的隧道400多条,而且有超过40个地下发电站。
例如,用水力发电的位于二滩的支线隧道全长1100公里,宽23米,高17.5米,这是中国最长的隧道。
隧道专业英语
Part 1 General words岩土工程Geotechnical engineering基础工程Foundation engineering土soil ,earth`土力学soil mechanics周期荷载cyclic loading卸载,再加载reloading粘弹性地基viscoelastic foundation粘滞阻尼viscous damping剪切模量shear modulus土动力学soil dynamics应力路径stress path砌块block底板标高floor elevation顶板标高roof elevation绝对标高absolute elevation相对标高relative elevation钢结构steel structure抗拉强度tensile strength伸长率elongation屈服强度yield strength有色金属non-ferrous metals喷射混凝土shotcrete勘察survey;investigation工程地质engineering geology风化花岗岩 decomposed granitePart 2 Types of soil残积土residual soil地下水groundwater地下水位groundwater level /groundwater table粘土矿物clay minerals次生矿物secondary minerals滑坡landslide钻孔柱状图bore hole columnar section 工程地质勘察engineering geologic investigation漂石boulder卵石cobble砂石gravel砾砂gravelly sand粗砂coarse sand中砂medium sand细砂fine sand 粉土silty sand粘性土clayey soil粘土clay粉质粘土silty clay砂质粉土sandy silt粘质粉土clayey silt饱和土saturated soil非饱和土unsaturated soil填土filled soilPart 3 Permeability and seepage达西定律Darcy’s law管涌piping流土flowing soil砂沸sand boiling流网flow net渗流seepage渗漏leakage渗透压力seepage (force) pressure渗透性permeability水力梯度hydraulic gradient渗透系数coefficient of permeability Part 4 Deformation and stress of foundation软土soft soil打入桩(负)摩阻力(negative) skin friction of driven pile有效应力effective stress总应力total stress十字板抗剪强度field vane shear strength低活性low activity灵敏度sensitivity三轴试验triaxial test基础设计foundation design再压缩recompaction承载力bearing capacity土体soil mass接触压力contact pressure集中荷载concentrated load半无限弹性体 a semi-infinite elastic solid均质homogeneous各向同性isotropic条基strip footing方形独立基础square spread footing下卧层(土)underlying soil (stratum ,strata)恒载/静载dead load持续荷载sustained load活载live load短期瞬时荷载short –term transient load长期荷载long-term transient load折算荷载reduced load沉降settlement变形deformation套管casing堤(防)dike=dyke粘粒粒组clay fraction物理性质physical properties路基subgrade级配良好土well-graded soil级配不良土poorly-graded soil筛子sieve摩尔-库仑破坏条件Mohr-Coulomb failure condition有限元法FEM=finite element method 极限平衡法limit equilibrium method 孔隙水压力pore water pressure先期固结压力preconsolidation pressure压缩模量modulus of compressibility 压缩系数coefficent of compressibility 压缩指数compression index回弹指数swelling index自重应力geostatic stress附加应力additional stress最终沉降final settlement滑移线slip linePart 5 Excavation and dewatering of foundation开挖excavation降水dewatering基坑失稳failure of foundation基坑围护bracing of foundation pit (基坑)底隆起bottom heave=basal heave挡土墙retaining wall 孔压分布pore-pressure distribution降低地下水位法dewatering method井点系统well point system深井点deep well point真空井点vacuum well point支撑围护braced cuts支撑开挖braced excavation支撑挡板braced sheetingPart 6 Deep foundation桩基础pile foundation灌注桩cast –in-place pile沉管灌注桩diving casting cast-in-place pile钻孔桩bored pile机控异型灌注桩special-shaped cast-in-place pile嵌岩灌注桩piles set into rock夯扩桩rammed bulb pile钻孔墩基础belled pier foundation钻孔扩底墩drilled-pier foundation预制混凝土桩precast concrete pile钢桩steel pile钢管桩steel pipe pile钢板桩steel sheet pile预应力混凝土桩prestressed concrete pile预应力混凝土管桩prestressed concrete pipe pile沉井(箱) caisson foundation地下连续墙diaphragm摩擦桩friction pile端承桩end-bearing pile波动方程分析wave equation analysis 承台pile cap单桩承载力bearing capacity of single pile单桩横向载荷试验lateral pile load test 单桩横向极限承载力ultimate lateral resistance of single pile单桩竖向静荷载试验static load test of pile单桩竖向容许承载力vertical allowable load capacity低桩承台low pile cap高桩承台high-rise pile cap单桩抗拔极限承载力vertical ultimate uplift resistance of single pile静压桩silent piling抗拔桩uplift pile抗滑桩anti-slide pile群桩pile groups群桩效率系数(η)efficiency factor of pile groups群桩效应efficiency of pile groups桩基动测dynamic pile testing最后贯入度final set桩动荷载试验dynamic load test of pile 桩的完整性试验pile integrity test桩头pile head=butt桩端(头)pile tip=pile point=pile toe 桩距pile spacing桩位布置图pile plan桩的布置arrangement of piles =pile layout群桩作用group action桩端阻end bearing=tip resistance桩侧阻skin(side) friction=shaft resistance桩垫pile cushion打桩(振动)pile driving(by vibration) 拔桩试验pile pulling test桩靴pile shoe打桩噪音pile noise打桩机pile rigPart 7 Ground treatment建筑地基处理技术规范technical code for ground treatment of building垫层法cushion method预压法preloading method强夯法dynamic compaction method强夯置换法dynamic compaction replacement method振冲法vibroflotation method砂石桩sand-gravel pile /pile-stone column水泥粉煤灰碎石桩cement-flyash-gravel pile(CFG)水泥土搅拌桩cement mixing pile 水泥桩cement column石灰桩lime pile /lime column高压喷射注浆法jet grouting method 夯实水泥土桩rammed-cement-soil pile灰土挤密桩lime-soil compaction pile /lime-soil compacted column化学加固法chemical stabilization method表层压实法surface compaction method超载预压法surcharge preloading method真空预压法vacuum preloading method袋装砂井法sand wick method土工织物geofabric /geotextile复合地基composite foundation加筋法reinforcement method降低地下水固结法dewatering consolidation method冷热处理法freezing and heating method膨胀土地基处理expansive ground treatment山区地基处理ground treatment in mountain area湿陷性黄土地基处理collapsible loess treatment人工地基artificial foundation天然地基natural foundation褥垫pillow软土地基soft clay ground砂井sand drain树根桩root pile塑料排水带plastic drain碎石桩stone column/gravel pile(复合地基)置换率(composite foundation) replacement ratioPart 8固结consolidation太沙基固结理论Terzzaghi’s consolidation theory巴隆固结理论Barraon’s consolidationtheory比奥固结理论Biot’s consolidation theory超固结比over consolidation ration (OCR)超固结土overconsolidation soil超孔压力excess pore water pressure多维固结multi-dimensional consolidation一维固结one-dimensional consolidation主固结primary consolidation次固结secondary consolidation固结度degree of consolidation固结试验consolidation test固结曲线consolidation curve时间因子time factor Tv固结系数coefficient of consolidation 前期固结压力preconsolidation pressure有效应力原理principle of effective stressK0固结consolidation under K0 conditionPart 9 抗剪强度shear strength不排水抗剪强度undrained shear strength残余强度residual strength长期强度long-term strength峰值强度peak strength剪胀dilatation抗剪强度有效应力法effective stress approach of shear strength抗剪强度总应力法total stress approach of shear strength莫尔-库仑理论Mohr-Coulomb theory内摩擦角angle of internal friction粘聚力cohesion破坏准则failure criterion十字板抗剪强度vane strength无侧限抗压强度unconfined compression strength有效应力破坏包线effective stress failure envelopePart 10 Constitutive model弹性模型Elastic model非线性弹性模型Nonlinear elastic model弹塑性模型Elastoplastic model粘弹性模型Viscoelastic model边界面模型Boundary surface model 邓肯-张模型Duncan-Chang model 刚塑性模型Rigid plastic model帽模型Cap model加工软化Work softening加工硬化Work hardening剑桥模型Cambridge model理想弹塑性模型Ideal elastoplastic model莫尔-库仑屈服准则Mohr-Coulomb yield criterion屈服面Yield surface弹性半空间地基模型Elastic half-space foundation model弹性模量Elastic modulusPart 11 Bearing capacity of foundation soil冲切破坏Punching shear failure整体剪切破坏General shear failure局部剪切破坏Local shear failure极限平衡状态State of limit equilibrium地基稳定性Stability of soil/rock foundation地基极限承载力Ultimate bearing capacity of soil/rock foundation地基容许承载力Allowable bearing capacity of soil/rock foundationPart 12 earth pressure and slope stability analysis主动土压力Active earth pressure被动土压力Passive earth pressure静止土压力Earth pressure at rest休止角Angle of repose边坡稳定安全系数Safety factor of slope条分法Slices methodPart 13 retaining wall挡土墙稳定性Stability of retaining wall基础墙Foundation wall扶壁式挡土墙Counter retaining wall 悬臂式挡土墙Cantilever retaining wall悬臂式板桩墙Cantilever sheet pile wall重力式挡土墙Gravity retaining wall 锚定板挡土墙Anchored plate retaining wall锚定板板桩墙Anchored sheet pile wall Part 14 Soil test高压固结试验High pressure consolidation testK0固结试验Consolidation under K0 condition变水头渗透试验Falling head permeability test不固结不排水三轴试验Unconsolidated-undrained triaxial test 固结不排水/排水三轴试验Consolidated undrained/drained triaxial test击实试验Compaction test固结快剪试验Consolidated quick direct shear test快剪试验Quick direct shear test土工模型试验Geotechnical model test 离心模型试验Centrifugal model test 直剪仪Direct shear apparatusPart 15 In situ test标准贯入试验Standard penetration test (SPT)表面波试验Surface wave test(SWT) 动力触探试验Dynamic penetration test(DPT)静力触探试验Static cone penetration test跨孔试验Cross-hole test螺旋板载荷试验Screw plate test旁压试验Pressuremeter test 轻便触探试验Light sounding test深层沉降观测Deep settlement measurement现场渗透试验Field permeability test 原位空隙水压量测In-situ pore water pressure measurement原位(土、岩石)试验In-situ soil/rock test直剪试验Direct shear test直接单剪试验Direct simple shear test 动三轴试验Dynamic triaxial test自(共)振柱试验Free(resonance) vibration column test隧道Tunnel水平隧道Horizontal gallery明挖法Cut and cover沉管法Immersed tube入口隧道或引道隧道Access tunnel竖shaft斜井Inclined shaft洞室cavern天然洞室Natural cavern人工洞室Artificial cavern地下综合建筑Underground complex 尺寸Size,dimension特小断面Mini section小断面Small section中断面Medium section特大断面Very large section短Short length中长Medium length长大Long length特长大Very long length断面形状Section shape圆形Circular shape马蹄形Horseshoe shape矩形Rectangular shape卵形Egg shape箱形Box shape内部净空断面形状Inside shape开挖断面形状Outside or excavation shape埋深Tunnel depth明挖回填Cut and cover浅埋Shallow depth中埋Medium depth深埋Deep depth特深埋Very deep depth用途Purpose or use调查investigation地质调查Ground investigation导洞Pilot tunnel调查孔或坑道Pilot bore铁路rail干线Main line地铁metro公路road人行道pedestrian车站Station上水道Water supply水利发电Hydraulic power有压与无压隧洞Pressure or non pressure tunnels分水渠River diversion洪水Storm water排水Drainage水渠Aqueduct冷气cooling air冷却水排水Cooling water outfall航道navigation下水道Sewerage地域暖气District heating电缆cable热水Hot water电力-通信Power-telecommunication 通风Ventilation煤气Gas工厂factory发电所Generating station储藏storage流体和固体储藏Fluids and solids storage停车parking办公室,商店Office, shop军事Military人防Defence,protection多目的,多功能Multi service采矿Mining 地下建筑物各部分名称Parts of cross section仰拱Invert arch底板floor拱部或拱顶部roof拱顶crown拱脚Springer拱肩shoulders刹尖key边墙wall墙脚feet腿部leg膝部knee开挖面或掌子面face形状shape衬砌lining曲隅部bend交叉部crossing正面部Face, front入口部access洞门portal接头部junction分岔部bifurcation开口部Opening window加宽部enlargement避难洞Recess筛子sieve围岩Surrounding rock地质学geology水文地质学hydrogeology岩石力学Rock mechanics土力学Soil mechanics地震活动Seismicity钻孔或钻探boring地质物理调查Geophysical investigation室内试验Laboratory test现场试验In situ test事前调查Probing ahead地质勘探Geologic exploration围岩的性质Nature of ground硬岩Hard rock完整岩石Sound rock风化岩Weathered rock破碎岩Fissured rock软弱围岩Soft ground塑性围岩Plastic ground流动围岩Running ground减压区Decompressed zone混合围岩Mixed ground卵石boulder夹层seam层理bedding节理Joint不透水围岩Impervious ground透水围岩Pervious ground蠕变creep风化,蚀变alteration透水性permeability地下水Ground water湿度moisture岩溶karst断层fault围岩的物理力学性质Ground character密度density比重Specific gravity磨损度abrasivity溶解度solubility可钻性Drillability抗压强度Compressive strength抗拉强度Tensile strength抗剪强度Shear strength内摩擦力Internal friction粘结力cohesion剪胀swelling收缩shrinkage地压Ground pressure弹性系数Modulus of elasticity冲击阻力Impact resistance孔隙率Porosity ratio硬度hardness设计Design分析Analysis计算calculation经济比较Economic study标准化Standardization计划Plan, planing program 设计数据Design data垂直荷载Vertical load水平荷载Horizontal load 浮力Uplift。
土木外文翻译原文和译文
A convection-conduction model for analysis of thefreeze-thawconditions in the surrounding rock wall of atunnel in permafrost regionsAbstractBased on the analyses of fundamental meteorological and hydrogeological conditions at the site of a tunnel in the cold regions, a combined convection-conduction model for air flow in the tunnel and temperature field in the surrounding has been constructed. Using the model, the air temperature distribution in the Xiluoqi No. 2 Tunnel has been simulated numerically. The simulated results are in agreement with the data observed. Then, based on the in situ conditions of sir temperature, atmospheric pressure, wind force, hydrogeology and engineering geology, the air-temperature relationship between the temperature on the surface of the tunnel wall and the air temperature at the entry and exit of the tunnel has been obtained, and the freeze-thaw conditions at the Dabanshan Tunnel which is now under construction is predicted.Keywords: tunnel in cold regions, convective heat exchange and conduction, freeze-thaw.A number of highway and railway tunnels have been constructed in the permafrost regions and their neighboring areas in China. Since the hydrological and thermal conditions changed after a tunnel was excavated,the surrounding wall rock materials often froze, the frost heaving caused damage to the liner layers and seeping water froze into ice diamonds,which seriously interfered with the communication and transportation. Similar problems of the freezing damage in the tunnelsalso appeared in other countries like Russia, Norway and Japan .Hence it is urgent to predict the freeze-thaw conditions in the surrounding rock materials and provide a basis for the design,construction and maintenance of new tunnels in cold regions.Many tunnels,constructed in cold regions or their neighbouring areas,pass through the part beneath the permafrost base .After a tunnel is excavated,the original thermodynamical conditions in the surroundings are and thaw destroyed and replaced mainly by the air connections without the heat radiation, the conditions determined principally by the temperature and velocity of air flow in the tunnel,the coefficients of convective heat transfer on the tunnel wall,and the geothermal heat. In order to analyze and predict the freeze and thaw conditions of the surrounding wall rock of a tunnel,presuming the axial variations of air flow temperature and the coefficients of convective heat transfer, Lunardini discussed the freeze and thaw conditions by the approximate formulae obtained by Sham-sundar in study of freezing outside a circular tube with axial variations of coolant temperature .We simulated the temperature conditions on the surface of a tunnel wall varying similarly to the periodic changes of the outside air temperature .In fact,the temperatures of the air and the surrounding wall rock material affect each other so we cannot find the temperature variations of the air flow in advance; furthermore,it is difficult to quantify the coefficient of convective heat exchange at the surface of the tunnel wall .Therefore it is not practicable to define the temperature on the surface of the tunnel wall according to the outside air temperature .In this paper, we combine the air flow convective heat ex-change and heat conduction in the surrounding rock material into one model,and simulate the freeze-thaw conditions of the surrounding rock material based on the in situ conditions of air temperature,atmospheric pressure,wind force at the entry and exit of the tunnel,and the conditions of hydrogeology and engineering geology.Mathematical modelIn order to construct an appropriate model, we need the in situ fundamental conditions as a ba-sis .Here we use the conditions at the scene of the Dabanshan Tunnel. The Dabanshan Tunnel is lo-toted on the highway from Xining to Zhangye, south of the Datong River, at an elevation of 3754.78-3 801.23 m, with a length of 1 530 m and an alignment from southwest to northeast. The tunnel runs from the southwest to the northeast.Since the monthly-average air temperature is beneath 0`}C for eight months at the tunnel site each year and the construction would last for several years,the surrounding rock materials would become cooler during the construction .We conclude that, after excavation, the pattern of air flow would depend mainly on the dominant wind speed at the entry and exit,and the effects of the temperature difference between the inside and outside of the tunnel would be very small .Since the dominant wind direction is northeast at the tunnel site in winter, the air flow in the tunnel would go from the exit to the entry. Even though the dominant wind trend is southeastly in summer, considering the pressure difference, the temperature difference and the topography of the entry and exit,the air flow in the tunnel would also be from the exit to entry .Additionally,since the wind speed at the tunnel site is low,we could consider that the air flow would be principally laminar.Based on the reasons mentioned,we simplify the tunnel to a round tube,and consider that theair flow and temperature are symmetrical about the axis of the tunnel,Ignoring the influence of the air temperature on the speed of air flow, we obtain the following equation:where t ,x ,r are the time ,axial and radial coordinates; U ,V are axial and radial wind speeds; T is temperature; p is the effective pressure(that is ,air pressure divided by air density); v is the kinematic viscosity of air; a is the thermal conductivity of air; L is the length of the tunnel; R is the equivalent radius of the tunnel section; D is the length of time after the tunnel construction;,f S (t), u S (t) are frozen and thawed parts in the surrounding rock materials respectively; f λ,u λand f C ,u C are thermal conductivities and volumetric thermal capacities in frozen and thawed parts respectively; X= (x , r),ξ(t) is phase change front; Lh is heat latent of freezing water; and To is critical freezing temperature of rock ( here we assume To= -0.1℃).2 used for solving the modelEquation(1)shows flow. We first solve those concerning temperature at that the temperature of the surrounding rock does not affect the speed of air equations concerning the speed of air flow, and then solve those equations every time elapse.2. 1 Procedure used for solving the continuity and momentum equationsSince the first three equations in(1) are not independent we derive the second equation by xand the third equation by r. After preliminary calculation we obtain the following elliptic equation concerning the effective pressure p:Then we solve equations in(1) using the following procedures:(i ) Assume the values for U0,V0;( ii ) substituting U0,V0 into eq. (2),and solving (2),we obtain p0;(iii) solving the first and second equations of(1),we obtain U0,V1;(iv) solving the first and third equations of(1),we obtain U2,V2; (v) calculating the momentum-average of U1,v1 and U2,v2,we obtain the new U0,V0;then return to (ii);(vi) iterating as above until the disparity of those solutions in two consecutive iterations is sufficiently small or is satisfied,we then take those values of p0,U0 and V0 as the initial values for the next elapse and solve those equations concerning the temperature..2 .2 Entire method used for solving the energy equationsAs mentioned previously,the temperature field of the surrounding rock and the air flow affect each other. Thus the surface of the tunnel wall is both the boundary of the temperature field in the surrounding rock and the boundary of the temperature field in air flow .Therefore, it is difficult to separately identify the temperature on the tunnel wall surface,and we cannot independently solve those equations concerning the temperature of air flow and those equations concerning the temperature of the surrounding rock .In order to cope with this problem,we simultaneously solve the two groups of equations based on the fact that at the tunnel wall surface both temperatures are equal .We should bearin mind the phase change while solving those equations concerning the temperature of the surrounding rock ,and the convection while solving those equations concerning the temperature of the air flow, and we only need to smooth those relative parameters at the tunnel wall surface .The solving methods for the equations with the phase change are the same as in reference [3].2.3 Determination of thermal parameters and initial and boundaryconditions2.3.1 Determination of the thermal parameters. Using p= 1013.25-0.1088 H ,we calculateair pressure p at elevation H and calculate the air density ρ using formula GTP =ρ, where T is the yearly-average absolute air temperature ,and G is the humidity constant of air. Letting P C be the thermal capacity with fixed pressure, λ the thermal conductivity ,and μ the dynamic viscosity of air flow, we calculate the thermal conductivity and kinematic viscosity using the formulas ρλP C =a and ρμν=. The thermal parameters of the surrounding rock are determined from the tunnel site.2 .3.2 Determination of the initial and boundary conditions .Choose the observed monthly average wind speed at the entry and exit as boundary conditions of wind speed ,and choose the relative effective pressure p=0 at the exit ( that is ,the entry of the dominant wind trend) and ]5[22/)/1(v d kL p ⨯+= on the section of entry ( that is ,the exit of the dominant wind trend ),where k is the coefficient of resistance along the tunnel wall, d = 2R ,and v is the axial average speed. We approximate T varying by the sine law according to the data observed at the scene and provide a suitable boundary value based on the position of the permafrost base and the geothermal gradient of the thaw rock materials beneath thepermafrost base.3 A simulated exampleUsing the model and the solving method mentioned above,we simulate the varying law of the air temperature in the tunnel along with the temperature at the entry and exit of the Xiluoqi No.2 Tunnel .We observe that the simulated results are close to the data observed[6].The Xiluoqi No .2 Tunnel is located on the Nongling railway in northeastern China and passes through the part beneath the permafrost base .It has a length of 1 160 m running from the northwest to the southeast, with the entry of the tunnel in the northwest,and the elevation is about 700 m. The dominant wind direction in the tunnel is from northwest to southeast, with a maximum monthly-average speed of 3 m/s and a minimum monthly-average speed of 1 .7 m/s . Based on the data observed,we approximate the varying sine law of air temperature at the entry and exit with yearly averages of -5℃,-6.4℃ and amplitudes of 18.9℃ and 17.6℃respectively. The equivalent diameter is 5 .8m,and the resistant coefficient along the tunnel wall is 0.025.Since the effect of the thermal parameter of the surrounding rock on the air flow is much smaller than that of wind speed,pressure and temperature at the entry and exit,we refer to the data observed in the Dabanshan Tunnel for the thermal parameters.Figure 1 shows the simulated yearly-average air temperature inside and at the entry and exit of the tunnel compared with the data observed .We observe that the difference is less than 0 .2 `C from the entry to exit.Figure 2 shows a comparison of the simulated and observed monthly-average air temperature in-side (distance greater than 100 m from the entry and exit) the tunnel. We observe that the principal law is almost the same,and the main reason for the difference is the errors that came from approximating the varying sine law at the entry and exit; especially , the maximum monthly-average air temperature of 1979 was not for July but for August.Fig.1. Comparison of simulated and observed air temperature in Xiluoqi No.2 Tunnel in 1979.1,simulated values;2,observed valuesFig.2.The comparison of simulated and observed air temperature inside The Xiluoqi No.2 Tunnel in 1979.1,simulated values;2,observed values4 Prediction of the freeze-thaw conditions for the Dabanshan Tunnel 4 .1 Thermal parameter and initial and boundary conditionsUsing the elevation of 3 800 m and the yearly-average air temperature of -3℃, we calculate the air density p=0 .774 kg/m 3.Since steam exists In the air, we choose the thermal capacity with a fixed pressure of air ),./(8744.10C kg kJ C p = heat conductivity )./(100.202C m W -⨯=λ andand the dynamic viscosity )../(10218.96s m kg -⨯=μ After calculation we obtain the thermal diffusivity a= 1 .3788s m /1025-⨯ and the kinematic viscosity ,s m /1019.125-⨯=ν .Considering that the section of automobiles is much smaller than that of the tunnel and the auto-mobiles pass through the tunnel at a low speed ,we ignore the piston effects ,coming from the movement of automobiles ,in the diffusion of the air.We consider the rock as a whole component and choose the dry volumetric cavity 3/2400m kg d =λ,content of water and unfrozen water W=3% and W=1%, and the thermal conductivity c m W o u ./9.1=λ,c m W o f ./0.2=λ,heatcapacityc kg kJ C o V ./8.0= and d u f W w C γ⨯++=1)128.48.0(,d u u Ww C γ⨯++=1)128.48.0( According to the data observed at the tunnel site ,the maximum monthly-average wind speed is about 3 .5 m/s ,and the minimum monthly-average wind speed is about 2 .5 m/s .We approximate the wind speed at the entry and exit as )/](5.2)7(028.0[)(2s m t t v +-⨯=, where t is in month. The initial wind speed in the tunnel is set to be.0),,0(),)(1(),,0(2=-=r x V Rr U r x U a The initial and boundary values of temperature T are set to bewhere f(x) is the distance from the vault to the permafrost base ,and R0=25 m is the radius of do-main of solution T. We assume that the geothermal gradient is 3%,the yearly-average air temperature outside tunnel the is A=-3C 0,and the amplitude is B=12C 0.As for the boundary of R=Ro ,we first solve the equations considering R=Ro as the first type of boundary; that is we assume that T=f(x)⨯3%C 0on R=Ro. We find that, after one year, the heat flow trend will have changed in the range of radius between 5 and 25m in the surrounding rock.. Considering that the rock will be cooler hereafter and it will be affected yet by geothermal heat, we appoximately assume that the boundary R=Ro is the second type of boundary; that is ,we assume that the gradient value ,obtained from the calculation up to the end of the first year after excavation under the first type of boundary value, is the gradient on R=Ro of T.Considering the surrounding rock to be cooler during the period of construction ,we calculatefrom January and iterate some elapses of time under the same boundary. Then we let the boundaryvalues vary and solve the equations step by step(it can be proved that the solution will not depend on the choice of initial values after many time elapses ).1)The yearly-average temperature on the surface wall of the tunnel is approximately equal to the ai4 .2 Calculated resultsFigures 3 and 4 show the variations of the monthly-average temperatures on the surface of the tunnel wall along with the variations at the entry and exit .Figs .5 and 6 show the year when permafrost begins to form and the maximum thawed depth after permafrost formed in different surrounding sections.Fig.3.The monthly-average temperature parison of the monthly- On the surface of Dabanshan Tunnel.I, average temperature on the surface The month,I=1,2,3,,,12 tunnel with that outside the tunnel. 1,inner temperature on the surface ;2,outside air temperatureFig.5.The year when permafrost Fig.6.The maximum thawed depth after Begins to from in different permafrost formed in different years Sections of the surroundingrock4 .3 Preliminary conclusionBased on the initial-boundary conditions and thermal parameters mentioned above, we obtain the following preliminary conclusions: r temperature at the entry and exit. It is warmer during the cold season and cooler during the warm season in the internal part (more than 100 m from the entry and exit) of the tunnel than at the entry and exit . Fig .1 shows that the internal monthly-average temperature on the surface of the tunnel wall is 1.2℃ higher in January, February and December, 1℃higher in March and October, and 1 .6℃ lower in June and August, and 2qC lower in July than the air temperature at the entry and exit. In other months the infernal temperature on the surface of the tunnel wall approximately equals the air temperature at the entry and exit.2) Since it is affected by the geothermal heat in the internal surrounding section,especially in the central part, the internal amplitude of the yearly-average temperature on the surface of the tunnel wall decreases and is 1 .6℃ lower than that at the entry and exit.3 ) Under the conditions that the surrounding rock is compact , without a great amount of under-ground water, and using a thermal insulating layer(as designed PU with depth of 0.05 m and heat conductivity λ=0.0216 W/m℃,FBT with depth of 0.085 m and heat conductivity λ=0.0517W/m℃),in the third year after tunnel construction,the surrounding rock will begin to form permafrost in the range of 200 m from the entry and exit .In the first and the second year after construction, the surrounding rock will begin to form permafrost in the range of 40 and 100m from the entry and exit respectively .In the central part,more than 200m from the entry and exit, permafrost will begin to form in the eighth year. Near the center of the tunnel,permafrost will appear in the 14-15th years. During the first and second years after permafrost formed,the maximum of annual thawed depth is large (especially in the central part of the surrounding rock section) and thereafter it decreases every year. The maximum of annual thawed depth will be stable until the 19-20th yearsand will remain in s range of 2-3 m.4) If permafrost forms entirely in the surrounding rock,the permafrost will provide a water-isolating layer and be favourable for communication and transportation .However, in the process of construction,we found a lot of underground water in some sections of the surrounding rock .It will permanently exist in those sections,seeping out water and resulting in freezing damage to the liner layer. Further work will be reported elsewhere.严寒地区隧道围岩冻融状况分析的导热与对流换热模型摘要通过对严寒地区隧道现场基本气象条件的分析,建立了隧道内空气与围岩对流换热及固体导热的综合模型;用此模型对大兴安岭西罗奇2号隧道的洞内气温分布进行了模拟计算,结果与实测值基本一致;分析预报了正在开凿的祁连山区大坂山隧道开通运营后洞内温度及围岩冻结、融化状况.关键词严寒地区隧道导热与对流换热冻结与融化在我国多年冻土分布及邻近地区,修筑了公路和铁路隧道几十座.由于隧道开通后洞内水热条件的变化;,普遍引起洞内围岩冻结,造成对衬砌层的冻胀破坏以及洞内渗水冻结成冰凌等,严重影响了正常交通.类似隧道冻害问题同样出现在其他国家(苏联、挪威、日本等)的寒冷地区.如何预测分析隧道开挖后围岩的冻结状况,为严寒地区隧道建设的设计、施工及维护提供依据,这是一个亟待解决的重要课题.在多年冻土及其临近地区修筑的隧道,多数除进出口部分外从多年冻土下限以下岩层穿过.隧道贯通后,围岩内原有的稳定热力学条件遭到破坏,代之以阻断热辐射、开放通风对流为特征的新的热力系统.隧道开通运营后,围岩的冻融特性将主要由流经洞内的气流的温度、速度、气—固交界面的换热以及地热梯度所确定.为分析预测隧道开通后围岩的冻融特性,Lu-nardini借用Shamsundar研究圆形制冷管周围土体冻融特性时所得的近似公式,讨论过围岩的冻融特性.我们也曾就壁面温度随气温周期性变化的情况,分析计算了隧道围岩的温度场[3].但实际情况下,围岩与气体的温度场相互作用,隧道内气体温度的变化规律无法预先知道,加之洞壁表面的换热系数在技术上很难测定,从而由气温的变化确定壁面温度的变化难以实现.本文通过气一固祸合的办法,把气体、固体的换热和导热作为整体来处理,从洞口气温、风速和空气湿度、压力及围岩的水热物理参数等基本数据出发,计算出围岩的温度场.1数学模型为确定合适的数学模型,须以现场的基本情况为依据.这里我们以青海祁连山区大坂山公路隧道的基本情况为背景来加以说明.大坂山隧道位于西宁一张业公路大河以南,海拔3754.78~3801.23 m ,全长1530 m ,隧道近西南—东北走向. 由于大坂山地区隧道施工现场平均气温为负温的时间每年约长8个月,加之施工时间持续数年,围岩在施土过程中己经预冷,所以隧道开通运营后,洞内气体流动的形态主要由进出口的主导风速所确定,而受洞内围岩地温与洞外气温的温度压差的影响较小;冬季祁连山区盛行西北风,气流将从隧道出曰流向进口端,夏季虽然祁连山区盛行东偏南风,但考虑到洞口两端气压差、温度压差以及进出口地形等因素,洞内气流仍将由出口北端流向进口端.另外,由于现场年平均风速不大,可以认为洞内气体将以层流为主基于以上基本情况,我们将隧道简化成圆筒,并认为气流、温度等关十隧道中心线轴对称,忽略气体温度的变化对其流速的影响,可有如下的方程:其中t 为时间,x 为轴向坐标,r 为径向坐标;U, V 分别为轴向和径向速度,T 为温度,P 为有效压力(即空气压力与空气密度之比少,V 为空气运动粘性系数,a 为空气的导温系数,L 为隧道长度,R 为隧道的当量半径,D 为时间长度)(t S f , )(t S u 分别为围岩的冻、融区域. f λ,u λ分别为冻、融状态下的热传导系数,f C ,u C 分别为冻、融状态下的体积热容量,X=(x,r) , )(t ξ为冻、融相变界面,To 为岩石冻结临界温度(这里具体计算时取To=-0.10C 0),h L 为水的相变潜热.2 求解过程由方程(1)知,围岩的温度的高低不影响气体的流动速度,所以我们可先解出速度,再解温度.2.1 连续性方程和动量方程的求解由于方程((1)的前3个方程不是相互独立的,通过将动量方程分别对x 和r 求导,经整理化简,我们得到关于压力P 的如下椭圆型方程:于是,对方程(1)中的连续性方程和动量方程的求解,我们按如下步骤进行:(1)设定速度0U ,0V ;( 2)将0U ,0V 代入方程并求解,得0P(3)联立方程(1)的第一个和第二个方程,解得一组解1U ,1V ;(4)联立方程((1)的第一个和第三个方程,解得一组解2U ,2V ;(5)对((3) ,(4)得到的速度进行动量平均,得新的0U ,0V 返回(2) ;(6)按上述方法进行迭代,直到前后两次的速度值之差足够小.以0P ,0U ,0V 作为本时段的解,下一时段求解时以此作为迭代初值.2. 2 能量方程的整体解法如前所述,围岩与空气的温度场相互作用,壁面既是气体温度场的边界,又是固体温度场的边界,壁面的温度值难以确定,我们无法分别独立地求解隧道内的气体温度场和围岩温度场.为克服这一困难,我们利用在洞壁表面上,固体温度等于气体温度这一事实,把隧道内气体的温度和围岩内固体的温度放在一起求解,这样壁面温度将作为末知量被解出来.只是需要注意两点:解流体温度场时不考虑相变和解固体温度时没有对流项;在洞壁表面上方程系数的光滑化.另外,带相变的温度场的算法与文献[3]相同.2. 3热参数及初边值的确定热参数的确定方法: 用p=1013.25-0.1088H 计算出海拔高度为H 的隧道现场的大气 压强,再由GT P =ρ计算出现场空气密度ρ,其中T 为现场大气的年平均绝对温度,G 为空气的气体常数.记定压比热为P C ,导热系数为λ,空气的动力粘性系数为μ.按ρλP C =a 和ρμν= 计算空气的导温系数和运动粘性系数.围岩的热物理参数则由现场采样测定.初边值的确定方法:洞曰风速取为现场观测的各月平均风速.取卞导风进曰的相对有效气压为0,主导风出口的气压则取为]5[22/)/1(v d kL p ⨯+=,这里k 为隧道内的沿程阻力系数,L 为隧道长度,d 为隧道端面的当量直径,ν为进口端面轴向平均速度.进出口气温年变化规律由现场观测资料,用正弦曲线拟合,围岩内计算区域的边界按现场多年冻土下限和地热梯度确定出适当的温度值或温度梯度. 3 计算实例按以上所述的模型及计算方法,我们对大兴安岭西罗奇2号隧道内气温随洞曰外气温变化的规律进行了模拟计算验证,所得结果与实测值[6]相比较,基本规律一致.西罗奇2号隧道是位十东北嫩林线的一座非多年冻土单线铁路隧道,全长1160 m ,隧道近西北一东南向,高洞口位于西北向,冬季隧道主导风向为西北风.洞口海拔高度约为700 m ,月平均最高风速约为3m/s,最低风速约为1.7m/s.根据现场观测资料,我们将进出口气温拟合为年平均分别为-5C 0和-6.4C 0,年变化振幅分别为18.9C 0和17.6C 0的正弦曲线.隧道的当量直径为5.8 m,沿程阻力系数取为0.025.由于围岩的热物理参数对计算洞内气温的影响远比洞口的风速、压力及气温的影响小得多,我们这里参考使用了大坂山隧道的资料.图1给出了洞口及洞内年平均气温的计算值与观测值比较的情况,从进口到出口,两值之差都小于0.2C 0.图2给出了洞内 (距进出口l00m 以上)月平均气温的计算值与观测值比较的情况,可以看出温度变化的基本规律完全一致,造成两值之差的主要原因是洞口气温年变化规律之正弦曲线的拟合误差,特别是1979年隧道现场月平均最高气温不是在7月份,而是在8月份.图1. 比较1979年在西罗奇周家山2号隧道仿真试验与观察的空气温度.1、模拟值;2、观测值图2。
土木工程外文翻译--隧道与地下空间技术(适用于毕业论文外文翻译+中英文对照)
釜山——巨济的交通系统:沉管隧道开创新局面Wim Janssen1, Peter de Haas 1, Young-Hoon Yoon²¹荷兰隧道工程顾问:大宇工程建设公司釜山—巨济交通线隧道工程技术顾问²韩国大宇工程建设公司摘要釜山—巨济交通系统将会为釜山和巨济两岛上的大城市提供一条道路连接。
该沉管隧道有许多特点:长度达到3.2千米,处于水下35米处,海况条件严峻、地基土较为软弱和线型要求较高。
基于以上诸多特点,隧道的设计和建造面临着巨大的挑战。
可以预见的是这项工程将会开创沉管隧道施工技术的新局面。
本文突出论述了这些特点以及阐述在土木和结构方面的问题。
1.工程简介釜山是韩国的第二大城市和一座重要的海港。
它位于韩国的东南部,其南面和东面朝向朝鲜海峡同时在釜山北部山势较为陡峭。
该市发展迅速,近年来的人口增长超过370万(总计460万人)。
人口密度达到4850人/km2,约为香港的3/4。
釜山市的进一步发展由于其所处的地理位置而受到限制。
釜山—巨济交通系统在釜山和巨济岛之间创造了一条直接的联系线,以从客观上满足釜山的城市扩展,在巨济岛上发展工业区,以及为釜山市民在较短的行车距离内增加休闲娱乐的去处。
巨济岛西侧目前已经与朝鲜半岛相连,在本项连接工程完工之后,从釜山市到巨济岛的驾车时间将由原来的2小时缩短为现在的45分钟。
釜山—巨济交通系统将在巨济岛与Gaduk岛之间提供一条连接,使其成为连接釜山新港地区至巨济岛的双重高速公路体系的一部分。
这一系统总计8.204公里长,穿越海峡并将Daejuk, Jungjuk和Jeo三个无人小岛连接在一起。
原则上该系统由一条长度为3240m的双向四车道沉管隧道和两座主跨475,两边跨230m的斜拉桥组成。
2.规划2.1 组织该项目是作为一个公私合作,共同建设的工程,GK交通系统公司可获得设计、施工和运营的特许权,经营期限为40年。
特许权基于该系统设计理念的一个环节。
隧道施工外文文献及翻译
附录二外文参考文献及翻译NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load is within a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory, and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their ownself-stability : unstable rock loss of stability is a process, and if this process in providing the necessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sector through research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Method almost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows : (1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. Tothis end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K, P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments may cavern in a stable condition (without support). But most of the geological conditions of thepoor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+KuDiscussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u ↓, PE ↑. That is, rock deformation occurred, t he release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic methodNATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences, Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of the economy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a newhighway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure control methods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload, it requires the construction units should have a strong excavation, transport and slag out and support capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining, the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲrock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege soft rock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method. Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲrock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction :(1)excavation slope around :Lofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussion should focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supporting :Yang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter construction :Yang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction :(1)A long pipe roof :Sets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction method :Lofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roof construction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machinery :N drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and then grouting. After grouting, erecting steel Arch, Supporting the early completion of every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parameters :N water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulusN grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting construction :Embedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop plate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ±2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles, and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long; Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keep leveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problems :Construction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately 10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) withoutseepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act to expand the scope of application of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system。
隧道专业英文版论文
Effects of pipe roof supports and the excavation method onthe displacements above a tunnel faceM.Hisatake *,S.OhnoDepartment of Civil and Environmental Engineering,Faculty of Science and Engineering,Kinki University,Kowakae 3-4-1,Higashi-Osaka,Osaka 577-8502,JapanReceived 28July 2006;received in revised form 8February 2007;accepted 10February 2007Available online 3April 2007AbstractCentrifugal model tests are conducted in order to clarify the effects of pipe roof supports and the excavation method on the displace-ments above a tunnel face.The excavation process must be taken into account when estimating the displacements.Therefore,an exca-vation robot is newly developed which is three-dimensionally controlled by computer programs and is able to excavate the tunnel face in arbitrary shapes.The robot can accurately simulate such excavation methods as the full-face excavation method and the ring-cut exca-vation method.The difference in displacements between the two excavation methods is discussed in terms of the existence or the non-existence of pipe roof supports.The results of the model tests show the quantitative effects of the ring-cut excavation method and clarify that the method decreases the ground displacements remarkably.The model tests also indicate that the maximum settlement of a ground excavated by the full-face excavation method with pipe roof supports is one fourth of that without them.Ó2007Elsevier Ltd.All rights reserved.Keywords:Excavation robot;Pipe roof supports;Excavation methods;Centrifugal model tests1.IntroductionThe mountain tunneling method is presently used for soft grounds with shallow depths in urban areas.This method is less expensive to apply,in comparison to the shield tunneling method,and it can easily change the shape of a tunnel’s cross section.The method often employs aux-iliary methods,such as the pipe roof support system,in order to avoid serious consequences to the surrounding environment (Sasaki et al.,2001).The effects of decreasing the ground settlements by employing the pipe roof support system have not been clarified quantitatively.This is because the effects are three-dimensional phenomena and are subjected not only to the influence of the construction sequence,but also to the nonlinear mechanical characteris-tics of the ground.In many cases,the estimations of theground settlements are merely empirical or depend on non-validated numerical calculations (Volkmann,2004).In many research works that clarify the effects of the pipe roof support system,centrifugal model tests have been very effective in estimating the quantitative settlements.This is because the model tests can take into account the above-mentioned factors.It is very important to keep in mind the tunnel face excavation process in the model tests.Consideration given to this process,however,has been inadequate for the centrifugal model tests up to now.This has led to an insufficient amount of information on the set-tlements caused by the difference in excavation processes between the full-face excavation method and the ring-cut excavation method.In short,special regard should be paid to the excavation process in the centrifugal model tests in order to estimate the settlements quantitatively.The objective of this research is to develop an excava-tion robot for the centrifugal model tests and to clarify the displacement characteristics of the ground in terms of the excavation process and the existence or the nonexistence0886-7798/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.tust.2007.02.002*Corresponding author.Tel.:+81667212332;fax:+81729955192.E-mail address:hisatake@civileng.kindai.ac.jp (M.Hisatake)./locate/tustTunnelling and Underground Space Technology 23(2008)120–127Tunnelling andUnderground Space Technologyincorporating Trenchless Technology Researchof pipe roof supports.The robot imitates the movement of the roadheader that is applied to actual tunnel sites,and computer programs control its movement three-dimensionally.2.System for the experiments2.1.Drum type of centrifugal model test equipment Photo 1and Table 1show the drum type of centrifugal model test equipment and its specific characteristics,puter programs control the data assem-blages as well as the movement of the machines through a wireless operation.2.2.Excavation robotPhoto 2shows the excavation robot developed in this study.It consists of movable axes in the x ,y ,and z direc-tions,a rotation shaft,a bit (Photo 3),and a discharge sys-tem (Fig.1)for the excavated ground material.Thus,the robot can excavate the ground three-dimensionally at any arbitrary point.The external diameter of the excavation bit is 18mm,and the excavated ground material is dis-charged through an excavation shaft.2.3.Measuring system of the ground displacements The ground displacements,caused by the tunnel excava-tion performed by the robot,are recorded on video tape and are measured by a picture analysis system with high accuracy.The movements of the ground particles above the face in the vertical section through the tunnel axisarePhoto 1.Drum type of centrifugal model equipment.Table 1Specific characteristics of the centrifugal model equipment Rotating drumInside diameter 1200mm;height 400mm Maximum number of rotations850rpmMaximum acceleration 480GMaximum loading capacity 5000N (at 100G)Slip ring AC100V Rotary joint Two systemsOperationWireless remote control by 2.4GHz regionPicture analysis system 307,840pixels by CMOS/CCD cameras LightingOptical fiber systemExcavation shaftTank for excavated sands Vacuum pumpReserve tank of vacuum1243Photo 2.Experimental ground and excavation robot.Photo 3.Shaft and bit.M.Hisatake,S.Ohno /Tunnelling and Underground Space Technology 23(2008)120–127121measured by video cameras through hard glass.Photo 4shows the positioning of the displacement-measuring cam-eras attached to the hard glass.The video pictures have 640·481=307,840pixels of CMOS image censors and can be enlarged up to 150times (Photo 5),thereby follow-ing the movements of the ground particles from micro-scopic displacements to failure-causing displacements.2.4.Installation conditions of the experimental devices Photo 6illustrates the placement of the experimental devices inside the drum.Seven video cameras record the observation reflexes of the displacements and the state of the excavations through reflection recorders and channel switchers.The wireless video recorder is set inside the drum in order to eliminate the effects of noise.3.Experimental conditions 3.1.Geometrical conditionsIt is assumed in this research that a tunnel is excavated in the ground with the horizontal surface of the earth and has geometrical symmetry at the vertical section through the tunnel axis.Therefore,half the region of the ground and the tunnel is used in the experiments.Fig.2shows the geometrical dimensions of a supporting rib.The lower edge of the rib is widened to enable the smooth transmis-sion of the vertical force,which is subjected to the ground and the pipe roof supports,to the ground.Photo 7shows the supporting rib and seven pipe roof supports which are installed within 60°of the vertical line.The vertical rib attached at the symmetrical plane shown in this photo is an assistant rib set accurately as a supporting rib in a transverse section,and the length of the rib is short enough so that the bottom edge does not make contact with the ground surface during the experiments.The pipe roof supports are 6.25mm in diameter,125mm in length,and the clearance between the pipe roof supportsisPhoto 4.Placement of thecameras.Photo 5.Example of the enlargement of a displacementmeasurement.Photo 6.Placement of the main devices in thedrum.Photo 7.Supporting rib and pipe roof supports.5.01mm56.22mm30.90mm5.01mm13.1mm13.8mm2.Geometry of the supporting 122M.Hisatake,S.Ohno /Tunnelling and Underground Space Technology 23(2008)120–1271.3mm.The experimental ground is 240mm in height,260mm in width for the tunnel’s cross section,150mm in depth in the tunnel’s axial direction,and 125mm for the tunnel overburden.Table 2shows geometrical and mechanical properties of the model ground and the corresponding prototype tunnel.3.2.Ground conditionsThe model ground consists of Toyoura sand (TK-159),and physical properties of Toyoura sand are shown in Table 3.Figs.3and 4show the results for the triaxial com-pression tests.3.3.Sequence of the experimentsThe model ground is made by the compaction method after the supporting rib for the pipe roof supports has been set in the ground box shown in Photo 4.The robot that is controlled by the computer programs excavates the ground under 35G (G:gravity acceleration)of centrifugal acceler-ation.This corresponds to the tunnel height of about 3.0m on an actual scale.During tunnel excavations,the settle-ments and the horizontal displacements in the tunnel’s axial direction are measured at points ‘‘a’’,‘‘b’’,and ‘‘c’’which are located 7mm above the upper surface of the pipe roof supports,as shown in Fig.5.3.4.Kinds of experimentsFour kinds of experiments are conducted,including cases with and without the pipe roof supports and cases using the full-face excavation method and the ring-cut excavation method.The experimental sequence of each of the four cases is defined as follows:Case 1(FFE without PRS ).A full-face excavation (FFE)without the pipe roof supports (PRS)is conducted in this case.The excavation sequence is indicated in Fig.6.Firstly,Table 2Geometrical and mechanical properties of the model ground and the corresponding prototype tunnel PropertyModel Centrifugemodeling at 35g Tunnel radius (mm)50.01750Tunnel center height (mm)80.82828Excavation depth (mm)40.01400Pipe roof supports Diameter (mm) 6.25219Length (mm)125.04375Young’s modulus (N/mm 2) 2.05·105 2.05·105Cross section area (mm 2)30.6637560Bending rigidity 15.4Nm 223.0M Nm 2Density (kN/m 3)78.578.5Tunnel overburden depth (mm)1254380Overburden pressure at the top of the tunnel (kN/m 2) 1.9869.1Table 3Physical properties of Toyoura sand PropertyValue Density at centrifuge modelling q t 15.8kN/m 3Water content w 3.0%Relative density D r 80%Maximum density q dmax 16.73kN/m 3Minimum densityq dmin 13.30kN/m 3Density of soil particle q s 16.40kN/m 3Mean grain size D 500.162mm Cohesionc 20kN/m 2Peak friction angle/38.7°Critical state friction angle/cv30.5°M.Hisatake,S.Ohno /Tunnelling and Underground Space Technology 23(2008)120–127123the robot excavates the ground at point A to a depth of 5mm in the tunnel’s axial direction;it then moves to point B along circular arc r by maintaining an excavation depth of5mm.After this excavation,the robot moves toward the tunnel entrance.It then continues to point A,while maintaining distance from the ground so as not to excavate it.Secondly,the robot excavates the ground along line s by keeping an excavation depth of5mm.Thirdly,the robot excavates the ground from point A to point C and from point C to point B along the two t lines by maintaining an excavation depth of5mm.By repeating this excavation process(r,s,and t)eight times,the face excavation is completed at a depth of40mm(5mm/ pattern·8patterns)in the tunnel’s axial direction.This excavation process is referred to as a full-face excavation (FFE).Case2(FFE with PRS).The same excavation process as in Case1(full-face excavation)is conducted,only this time it is conducted with the pipe roof supports.Case3(RCE with PRS).A ring-cut excavation(RCE)is conducted with the pipe roof supports.The robot excavates the ground along r with a depth of5mm,and this pattern is repeated8times.Thus,the ground is excavated to a depth of40mm(5mm/pattern·8patterns)in the shape of a ring-cut.This excavation process is called a ring-cut excavation(RCE).Case4.(FFE after RCE with PRS).Firstly,a ring-cut excavation,installing the pipe roof supports,is applied to a depth of40mm.This process is the same so far as that in Case3.Secondly,the robot excavates the ground to a depth of40mm(5mm/pattern·8patterns) along line s.Thirdly,the robot excavates the ground to a depth of40mm(5mm/pattern·8patterns)along the two t lines.Therefore,thefinal shape of the tunnel is the same as that with the full-face excavation in Case 2,except that the excavation processes are different from each other.In this case,the excavation process is referred to as a full-face excavation after the ring-cut excavation(FFE after RCE).4.Experimental results and considerations4.1.Effects of the pipe roof supports and the excavation process on the settlementsFig.7a shows the effects of the pipe roof supports and the excavation method on the settlements at measuring point‘‘a’’.The difference in settlements between Cases1 and2,which have both been excavated by the full-face excavation process,is caused only by the existence of the pipe roof supports.It can be understood that the maximum value for the settlements of the ground with the pipe roof supports is about one fourth of that without the pipe roof supports.Thus,the decrease in settlements brought about by the existence of pipe roof supports is recognized quanti-tatively.The settlements in both cases increase nonlinearly in accordance with the progress of the excavation distance.AB C124M.Hisatake,S.Ohno/Tunnelling and Underground Space Technology23(2008)120–127The settlements for Cases2and4are also compared in Fig.7a.For both cases,the excavations are conducted with the pipe roof supports and have the same geometrical con-ditions in tunnel shape in thefinal stage.The difference in settlements between Cases2and4is only due to the differ-ence in the excavation processes.The excavation distance in Case4means the distance of thefinal excavation pro-cess,t,after excavation processes r and s have already been completed rger settlements are observed in Case4than in Case2until the excavation distance reaches40mm,because the pre-excavation volume in Case 4is greater than that in Case2.In thefinal stage,at the excavation distance of40mm,there is no difference at all in settlements between the two cases.This means that the excavation process does not affect the settlements in the final stage.Figs.7b and c show the same results for the settlements at measuring points‘‘b’’and‘‘c’’,respectively.The abso-lute quantity of the settlements decreases in accordance with the increase in the distance between the measuring point and the tunnel face.In general,almost the same rela-tionships can be recognized as those in Fig.7a.Fig.8shows the effects of the pipe roof supports and the excavation method on the horizontal displacements in the tunnel’s axial direction at point‘‘a’’,where the proceeding direction of the tunnel is taken as positive for the horizon-tal displacements.In accordance with the increase in exca-vation distance,the measuring point is drawn toward the tunnel side.The maximum values for every horizontal dis-placement at an excavation distance of40mm are less com-pared to those of the maximum settlements shown in Fig.7a.The ratio of the horizontal displacement in Case1 to that in Case2is not much different from the ratio of the settlements shown in Fig.7a.In other words,the pipe roof supports not only restrain the settlements,but also the horizontal displacements in a similar manner.The rela-tionships between the horizontal displacements and the excavation distances in Cases2and4,which are only dif-ferent in the excavation process,show the same tendency as those between the settlements and the excavation dis-tances shown in Fig.7a.The excavation process does not affect the values of the horizontal displacements in thefinal stage.parison of the displacements in the full-face excavation and in the ring-cut excavationFig.9shows the effects of the excavation method on the settlements of the ground with the pipe roof supports.The settlements at point‘‘a’’produced by both the full-face excavation method(Case2)and the ring-cut excavation method(Case3)are compared in Fig.9a,which indicates that very small settlements are observed in Case3.In other words,the ratio S R/S F of the settlements in Case3(S R) and Case2(S F)is0.02,even though the ratio f R/f F of the excavation areas in the tunnel’s cross section in Case 3(f R)and Case2(f F)is0.55.The reasons for observing very small settlements in Case3may be as follows:M.Hisatake,S.Ohno/Tunnelling and Underground Space Technology23(2008)120–127125(1)Strains levels produced by the tunnel excavation inCase3are small,and the nonlinear behavior of the ground is not excessive.(2)The arching action,which is exhibited in sandygrounds with internal friction(Hisatake,1995, 2001),forms much more around the tunnel face in Case3.The arching action,which formed three-dimensionally around the tunnel face in the ring-cut excavation,must decrease the deformation of the ground in comparison with that in the full-face excavation,but the quantitative effects of the arching action are not clear.This is a subject to be clarified in the future.Thefinal settlement after the excavation of the core,which is left in the ring-cut excava-tion,is almost equal to that in the full-face excavation,as shown in Fig.7a.It may be recognized that the removal of the core reduces the effects of the above-mentioned arch-ing action.Figs.9b and c show the settlements observed at measur-ing points‘‘b’’and‘‘c’’,respectively.Although the same tendency can be recognized,the values for the settlements in Case2come proportionally lose to those in Case3as the distance between the measuring point and the tunnel face separates.4.3.Increases in displacements in accordance with the progress of the excavationsFig.10shows the increase in displacements at measur-ing point‘‘a’’in accordance with the progress of excava-tions r,s,and t in Case4,in which the pipe roof supports are installed(FFE after RCE with PRS).The relationships between the settlements and the excavation distances are indicated in Fig.10a.Very small settlements are observed at ring-cut excavation r,and an increase in the settlements is also considerably restrained during excavation s.Excavation t,in which the core is elimi-nated,produces excessive settlements.In other words, in thefinal stage of excavation t,which means the full-face excavation,the maximum value for the settle-ment is about6times that produced in thefinal stage of excavation s.This means that the existence of the core,even if the area of the core in the tunnel’s cross sec-tion is18%of the excavation area in the full-face excava-tion,exhibits considerable restraint in terms of the settlement produced.Fig.10b shows the relationship between the excavation distance and the horizontal dis-placements in the tunnel’s axial direction,and almost the same tendency is recognized.The ring-cut excavation method is ordinarily applied to tunnels in weak grounds in order to maintain the face sta-bility.As mentioned above,this method has a sufficient effect on the restraint of the displacements produced ahead of the tunnel face when the pipe roof supports are installed. The steel ribs and the shotcrete installed under the exis-tence of the core in the ring-cut excavation method can sus-tain the ground displacements that would otherwise be produced as the tunnel face progressed.5.ConclusionsThe results obtained in this study are as follows: (1)In order to clarify the effects of both the tunnel exca-vation process and the pipe roof supports on ground displacements,an excavation robot has been developed for the centrifugal model puter programs control the movements of the robot three-dimensionally.(2)The maximum settlement of a ground excavated bythe full-face excavation method with the pipe roof supports is about one fourth of that without the pipe roof supports under the same experimental conditions.(3)The excavation process does not affect the magnitudeof thefinal displacements in the experiments without linings if the geometrical conditions of the tunnel shape are the same at thefinal stage.(4)The existence of the core remaining in the ring-cutexcavation method exhibits the effect of a consider-able restraint of the ground displacements when the pipe roof supports are installed,even if the volume of the core is small.126M.Hisatake,S.Ohno/Tunnelling and Underground Space Technology23(2008)120–127ReferencesHisatake,M.,1995.Tunnel face behavior at sandy shallow ground.Journal of Geotechnical Engineering,Japan Society of Civil Engineers 517,105–115.Hisatake,M.,2001.Static and dynamic failure movement of tunnel face and its stability assessment.Journal of Geotech-nical Engineering,Japan Society of Civil Engineers694,297–304.Sasaki,R.et al.,2001.Excavation monitoring of a large cross section tunnel underpassing an existing railway.In:Proceedings of Modern Tunneling Science and Technology.pp.253–258.Volkmann,G.,2004.A contribution to the effect and behavior of pipe roof supports.In:Proceedings of EUROCK2004.pp.161–166.M.Hisatake,S.Ohno/Tunnelling and Underground Space Technology23(2008)120–127127。
隧道外文文献与翻译
附录二外文参考文献及翻译NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load is within a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory,and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their own self-stability : unstable rock loss of stability is a process, and if this process in providing the necessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sectorthrough research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Method almost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows :(1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. To this end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K, P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments may cavern in a stable condition (without support). But most of the geological conditions of the poor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+Ku Discussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u ↓, PE ↑. That is, rock deformation occurred, the release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic method NATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences, Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of the economy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a new highway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure controlmethods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload, it requires the construction units should have a strong excavation, transport and slag out and support capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining,the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲ rock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege soft rock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method.Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲ rock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction :(1) excavation slope around :Lofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussionshould focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supporting :Yang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter construction :Yang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction :(1)A long pipe roof :Sets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢ 108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction method :Lofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roofconstruction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machinery :N drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢ 6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and then grouting. After grouting, erecting steel Arch, Supporting the early completionof every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parameters :N water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulus N grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting construction :Embedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop pl ate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ± 2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles,and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long; Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keep leveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problems :Construction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately 10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) without seepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act toexpand the scope of application of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system and the cost and time period perspective, Shallow Mining Act of open or with the shield are compared with a competitive edge.Chinese engineers from Europe to the introduction of the new Austrian law, and in light of China's situation of the new Austrian law, and related technology expanding means of support, such as, measurement and control technology was further developed. As a new Austrian law an important background shotcrete technology in China has been widely used. With the international situation, in order to resolve the long-troubled people of dust pollution of the environment. Rebound serious and concrete uneven quality of such issues, and is vigorously implementing the wet spray. Recently by the China Academy of Railway Sciences Southwest Branch of the development of a "Rotor-Piston," a new type of jet aircraft. This type wet spraying process, which is to include the machines Mix Concrete Preparation good product mixture, However, material handling is different from the general-pumping wet spraying machine, using thin stream conveyor. Therefore machines compact and easy to use. Has been popularized in this country.It is no exaggeration to say that the new Austrian law implementation has indeed caused a mining method in the construction of the excavation, Construction of the tunnel design, and even the thinking of the major changes. Nevertheless,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国隧道盾构掘进机技术的发展现状1. 我国盾构隧道掘进技术的发展历史盾构掘进机是一种隧道掘进的专用工程机械,现代盾构掘进机集机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能。
盾构掘进机已广泛用于地铁、铁路、公路、市政、水电隧道工程。
我国的盾构掘进机制造和应用始于1963年,上海隧道工程公司结合上海软土地层对盾构掘进机、预制钢混凝土衬砌、隧道掘进施工参数、隧道接缝防水进行了系统的试验研究。
研制了1台直径4.2m的手掘式盾构进行浅埋和深埋隧道掘进试验,隧道掘进长度68m。
1965年,由上海隧道工程设计院设计、江南造船厂制造的2台直径5.8m的网格挤压型盾构掘进机,掘进了2条地铁区间隧道,掘进总长度1200m。
1966年,上海打浦路越江公路隧道工程主隧道采用由上海隧道工程设计院设计、江南造船厂制造的我国第一台直径10.2m超大型网格挤压盾构掘进机施工,辅以气压稳定开挖面,在黄浦江底顺利掘进隧道,掘进总长度1322m。
70年代,采用1台直径3.6m和2台直径4.3m的网格挤压型盾构,在上海金山石化总厂建设1条污水排放隧道和2条引水隧道,掘进了3926m海底隧道,并首创了垂直顶升法建筑取排水口的新技术。
1980年,上海市进行了地铁1号线试验段施工,研制了一台直径6.41m的刀盘式盾构掘进机,后改为网格挤压型盾构掘进机,在淤泥质粘土地层中掘进隧道1230m。
1985年,上海延安东路越江隧道工程1476m圆形主隧道采用上海隧道股份设计、江南造船厂制造的直径11.3m网格型水力机械出土盾构掘进机。
1987年上海隧道股份研制成功了我国第一台φ4.35m加泥式土压平衡盾构掘进机,用于市南站过江电缆隧道工程,穿越黄浦江底粉砂层,掘进长度583m,技术成果达到80年代国际先进水平,并获得1990年国家科技进步一等奖。
1990年,上海地铁1号线工程全线开工,18km区间隧道采用7台由法国FCB 公司、上海隧道股份、上海隧道工程设计院、沪东造船厂联合制造的φ6.34m土压平衡盾构掘进机。
每台盾构月掘进200m以上,地表沉降控制达+1~-3cm。
1996年,上海地铁2号线再次使用原7台土压盾构,并又从法国FMT公司引进2台土压平衡盾构,掘进24km区间隧道。
上海地铁2号线的10号盾构为上海隧道公司自行设计制造。
90年代,上海隧道工程股份有限公司自行设计制造了6台φ3.8~6.34m土压平衡盾构,用于地铁隧道、取排水隧道、电缆隧道等,掘进总长度约10km。
在90年代中,直径1.5~3.0m的顶管工程也采用了小刀盘和大刀盘的土压平衡顶管机,在上海地区使用了10余台,掘进管道约20km。
1998年,上海黄浦江观光隧道工程购买国外二手φ7.65m铰接式土压平衡盾构,经修复后掘进机性能良好,顺利掘进隧道644m。
1996年,上海延安东路隧道南线工程1300m圆形主隧道采用从日本引进的φ11.22m泥水加压平衡盾构掘进机施工。
1998年,上海隧道股份成功研制国内第1台φ2.2m泥水加压平衡顶管机,用于上海污水治理二期过江倒虹管工程,顶进1220m。
1999年5月,上海隧道股份研制成功国内第1台3.8m×3.8m矩形组合刀盘式土压平衡顶管机,在浦东陆家嘴地铁车站掘进120m,建成2条过街人行地道。
2000年2月,广州地铁2号线海珠广场至江南新村区间隧道采用上海隧道股份改制的2台φ6.14m复合型土压平衡盾构,在珠江底风化岩地层中掘进。
2.网格挤压式盾构掘进机的应用1965年6月,上海地铁60工程区间隧道采用由隧道工程设计院设计、江南造船厂制造的2台φ5.8m网格挤压型盾构施工,总推力为3.724×104kN。
隧道覆土约12m,掘进长度2×600m。
盾构推进穿越的建筑物和地下管线均未受影响。
1967年7月,地铁试验工程完成,这是我国首次采用盾构掘进机施工地铁隧道。
1967年3月,上海打浦路越江公路隧道采用φ10.2m网格挤压型盾构,掘进总长1324m。
盾构总推力达7.84×104kN。
盾构穿越地面以下深度为17~30m的淤泥质粘土层和粉砂层,在岸边段采用降水全出土、气压全出土和局部挤压方法施工,在江中段采用全气压局部挤压出土法施工。
1970年以来,上海又用网格挤压盾构在长江边和海边建成了6条φ3.6~4.3m 的排水及引水隧道。
北京、江苏、浙江、福建等省市也用盾构法建造了各种不同用途的小直径隧道。
1983年,上海建设第2条黄浦江越江公路隧道一延安东路隧道。
1476m圆形主隧道采用盾构掘进施工,其中500m穿越黄浦江底,500m穿越市中心区建筑密集群。
为提高掘进速度和确保隧道沿线的构筑物安全,上海隧道公司自行设计研制了φ11.3m网格型水力出土盾构,这是在网格挤压型盾构基础上发展起来的新颖掘进机。
网格上布有30扇可开启和关闭的液压闸门,具有调控开挖面进土部位、面积和进土量的作用,可辅助盾构纠偏和控制地面沉降。
网格上还布设了20只钢弦式土压计,可随时监测开挖面部位土压值的变化,首次在盾构掘进过程中实现信息化施工。
开挖面高压水冲切土体,并采用大型泥浆泵接力输送泥浆,自动计量装置控制出土量,实现掘进、出土运输自动化。
衬砌拼装机的回旋装置首次采用了带制动器的大扭矩液压马达,起重量达5t,运转平衡。
盾尾密封装置吸收国外新技术,采用三道钢丝刷,并注入自行研制的盾尾油脂,确保了盾尾密封。
盾构推力由尾部周围48只油压千斤顶提供1.08×105kN推力,采用φ11.3m 网格型水力出土盾构,顺利穿越江中段浅覆土层和浦西500m建筑密集区,保护了沿线的主要建筑物和地下管线。
该盾构技术成果被评为国家科技进步二等奖和上海市科技进步一等奖。
3.土压平衡盾构掘进机的开发和应用70年代以来,英国和日本分别开发了具有刀盘切削的密闭式的可平衡开挖面水土压力的两种新颖掘进机一泥水加压平衡盾构和土压平衡盾构,使盾构掘进技术发生了一次新的飞跃。
1975年,日本隧道业兴起了泥水加压盾构热,1978年起,土压盾构也得到广泛的应用。
1987年,上海隧道工程公司成立土压盾构攻关小组,在消化吸收国外土压平衡盾构机理和设计制造技术的基础上,研制了国内首台φ4.3m加泥式土压平衡盾构掘进机。
φ4.35m土压平衡盾构全部采用国产部件,由上海船厂制造,用于市南站过江电缆隧道。
隧道总长度534m,在黄浦江底掘进,隧道埋深21~30m,穿越土层主要为砂质粉土。
隧道掘进顺利解决了高水压情况下的密封和砂性土的加泥塑流技术难题,施工性能技术指标达到80年代国际先进水平,技术成果获90年国家科技进步一等奖。
在掌握了国际先进的土压盾构技术以后的10余年间,隧道公司又陆续设计制造了10余台φ3.8~6.34m土压平衡盾构,用于取排水隧道和地铁隧道。
1993年,制造了1台φ6.34m土压盾构,用于南京市夹江排水隧道工程,穿越粉砂地层,掘进长度1294m。
1990年,国务院批准上海地铁1号线开工建设,圆形隧道选用7台φ6.34m土压平衡盾构推进。
第1台φ6.34m土压盾构于1991年6月始发推进,7台盾构掘进总长度17.374km,1993年2月全线贯通,掘进施工期仅20个月,每台盾构的月掘进长度达200~250m。
掘进施工穿越市区建筑群、道路、地下管线等,地面沉降控制在+1cm~-3cm。
φ6.34m土压平衡盾构见图。
1995年上海地铁2号线24km区间隧道开始掘进施工,地铁1号线工程所用的7台φ6.34m土压盾构经维修以后,继续用于2号线区间隧道掘进,同时又从法国FMT公司和上海的联合体购置2台土压盾构,加上上海隧道股份制造的1台土压盾构,共计10台土压盾构用于隧道施工,并从日本三菱重工引进4台φ6.14m土压平衡盾构。
2000年开工兴建的地铁明珠线二期区间隧道仍使用这10台φ6.34m土压平衡盾构施工。
2000年,广州地铁2号线工程海珠广场至江南新村3423m区间隧道选用2台φ6.14m复合型土压盾构掘进施工。
地铁隧道要从珠江底穿越,埋深16~28m,掘进地层主要为全风化岩。
2000年,北京地铁5号线工程进行区间隧道盾构掘进试验工程,引进1台土压平衡盾构掘进机。
南京地铁1号线区间隧道也选用3台土压平衡盾构掘进机。
4.泥水加压平衡盾构的引进和开发应用泥水加压平衡盾构是70年代英国最早开发和应用的,1975年起在日本得到广泛的应用。
1994年,日本东京湾道路隧道工程采用了8台世界最大直径14.14m 泥水加压平衡盾构掘进18.8km海底隧道,这是世界最先进、自动化程度最高的盾构掘进机。
1994年,上海延安东路隧道南线1300m圆形主隧道施工引进日本三菱重工制造的φ11.22m泥水加压平衡盾构。
泥水盾构设有掘进管理、泥水输送、泥水分离和同步注浆系统。
掘进管理和姿态自动计测系统能及时反映盾构开挖面水压、送泥流量、排泥流量、送泥密度、排泥密度、千斤顶顶力和行程、刀盘扭矩、盾构姿态、注浆量和压力等参数,便于准确设定和调整各类参数。
泥水输送系统和泥水处理系统。
延安东路南线隧道工程施工的φ11.22m泥水加压盾构具有自动化程度高、盾构掘进对周围地层影响小的优点。
盾构穿越厂房、防汛墙、地下人行道、高层建筑十分安全,沉降量小于2cm。
掘进速度一般为6m/d,最高达12m/d。
广州地铁1号线工程于1996年引进2台φ6.14m泥水加压平衡盾构,掘进5852m。
掘进地层为粉细砂、中砂、粗砂、粉质粘土和风化岩。
上海隧道股份在消化吸收φ11.22m泥水平衡盾构基础上,基本掌握了泥水加压盾构的设计计算方法,并于1997年自行设计制造了1台φ2.2m泥水加压平衡顶管机,用于上海合流二期过江倒虹管隧道工程,在高水压的砂性地层中顺利掘进1220m,其技术成果达到国际先进,被评为1999年上海市科技进步二等奖。
5. 异形盾构掘进机的研究和应用常用的盾构隧道掘进机为圆形,主要是圆形结构受力合理,圆形掘进机施工摩阻力小,即使机头旋转也影响小。
但是圆形隧道往往断面空间利用率低,尤其在人行地道和车行隧道工程中,矩形、椭圆形、马蹄形、双圆形和多圆形断面更为合理。
日本在80年代开发应用了矩形隧道,在90年代开发应用了任意截面盾构和多圆盾构,并完成了多条人行隧道、公路隧道、铁路隧道、地铁隧道、排水隧道、市政共同沟隧道等,使异形盾构技术日益成熟,异形断面隧道工程日益增多。
上海隧道股份于1995年开始研究矩形隧道技术,1996年研制1台2.5m×2.5m 可变网格矩形顶管掘进机,顶进矩形隧道60m,解决了推进轴线控制、纠偏技术、沉降控制、隧道结构等技术难题。
1999年5月,上海地铁2号线陆家嘴车站过街人行地道采用1台3.8m×3.8m组合刀盘矩形顶管掘进机施工,掘进距离124m。