大学高等数学下考试题库附答案
高数下册试题及答案
高数下册试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x)。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 + 3D. 3x^2 - 3x答案:A2. 设函数f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)答案:B3. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. 3答案:B4. 若函数f(x) = e^x,则f'(x)等于:A. e^xB. e^(-x)C. x * e^xD. 1答案:A二、填空题(每题5分,共20分)1. 已知曲线y = x^2 + 2x + 1,求该曲线在x = 1处的切线斜率。
答案:42. 设函数f(x) = ln(x),则f'(x) = ________。
答案:1/x3. 求定积分∫(0,1) x^2 dx的值。
答案:1/34. 若函数f(x) = x^3 - 6x^2 + 9x + 15,求f'(x)。
答案:3x^2 - 12x + 9三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值。
答案:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1 和 x = 11/3。
计算f''(x) = 6x - 12,可以判断x = 1处为极大值点,x = 11/3处为极小值点。
极大值为f(1) = 0,极小值为f(11/3) = -2/27。
2. 计算定积分∫(0,2) (3x^2 - 2x + 1) dx。
答案:首先求原函数F(x) = x^3 - x^2 + x。
高数下册期末考试和答案
高数下册期末考试和答案一、选择题(每题4分,共40分)1. 已知函数f(x)=x^3-3x+2,求f'(x)的值。
A. 3x^2-3B. x^2-3xC. 3x^2-3xD. x^3-3x^2答案:A2. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. -1答案:B3. 已知函数f(x)=e^x,求f'(x)的值。
A. e^xB. -e^xC. 0D. 1答案:A4. 求定积分∫(0,1) x^2 dx的值。
A. 1/3B. 1/2C. 1D. 2答案:A5. 已知函数f(x)=ln(x),求f'(x)的值。
A. 1/xC. xD. -x答案:A6. 求定积分∫(0,1) e^x dx的值。
A. e-1B. eC. 1D. 0答案:A7. 已知函数f(x)=x^2,求f''(x)的值。
A. 2xB. 2C. 0答案:B8. 求极限lim(x→∞) (1/x)的值。
A. 0B. 1C. ∞D. -∞答案:A9. 已知函数f(x)=x^3,求f'(x)的值。
A. 3x^2B. 3xC. x^2D. x^3答案:A10. 求定积分∫(0,1) 1/x dx的值。
A. ln(1)-ln(0)B. ln(1)-ln(1)C. ln(2)-ln(1)D. ln(1)-ln(2)答案:C二、填空题(每题5分,共30分)11. 已知函数f(x)=x^2-4x+3,求f'(x)的值。
______答案:2x-412. 求极限lim(x→0) (1-cos(x))/x的值。
______答案:013. 已知函数f(x)=x^4-6x^2+8,求f'(x)的值。
______答案:4x^3-12x14. 求定积分∫(0,1) x^3 dx的值。
______答案:1/415. 已知函数f(x)=e^(-x),求f'(x)的值。
高数下考试题和答案
高数下考试题和答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1在x=0处的导数为()。
A. 0B. 1C. -1D. 3答案:B2. 曲线y=x^2+2x-3的拐点坐标为()。
A. (-1, -2)B. (1, -2)C. (-1, -4)D. (1, 0)答案:A3. 函数y=e^x的不定积分为()。
A. xe^x + CB. e^x + CC. e^x - x + CD. x^2e^x + C答案:B4. 计算定积分∫(0,1) x^2 dx的值为()。
A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 函数y=x^2-4x+3的极值点为()。
A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的最小值为________。
答案:-17. 计算定积分∫(-1,1) e^(-x^2) dx的值约为________。
答案:1.462658. 函数y=ln(x)的导数为________。
答案:1/x9. 函数y=x^3-3x^2+2x的二阶导数为________。
答案:6x-610. 计算定积分∫(0,π) sin(x) dx的值为________。
答案:2三、计算题(每题10分,共30分)11. 计算不定积分∫(x^2-2x+1) dx。
解:∫(x^2-2x+1) dx = (1/3)x^3 - x^2 + x + C12. 求函数y=x^3-3x+2在x=1处的切线方程。
解:首先求导数y'=3x^2-3,代入x=1得y'|_{x=1}=0,切线斜率为0。
切点为(1,0),因此切线方程为y=0。
13. 计算定积分∫(0,2) (x^2-2x+1) dx。
解:∫(0,2) (x^2-2x+1) dx = [(1/3)x^3 - x^2 + x](0,2) = (8/3 - 4 + 2) - (0) = 2/3四、应用题(每题10分,共30分)14. 一个物体从高度h=100米处自由落下,忽略空气阻力,求物体落地时的速度v。
高等数学下册试题(题库)及参考答案
高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9…解 AB ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .—4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 【解 由于平面平行于z 轴,因此可设这平面的方程为0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。
大一高数下考试题及答案
大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
高等数学下期末试题(((七套附答案)))
(C)单调增加且单调减少;(D)可能增加;可能减少。
4、已知向量 与向量 则 为.
(A)6(B)-6
(C)1(D)-3
5、已知函数 可导,且 为极值, ,则 .
(A) (B) (C)0 (D)
三.计算题(3小题,每题6分,共18分)
1、求极限
2、求极限
3、已知 ,求
四. 计算题(每题6分,共24分)
.已知函数 ,则 。
.已知 ,则 。
.设L为 上点 到 的上半弧段,则 。
.交换积分顺序 。
.级数 是绝对收敛还是条件收敛?。
.微分方程 的通解为。
二.选择题(每空3分,共15分)
.函数 在点 的全微分存在是 在该点连续的( )条件。
A.充分非必要 B.必要非充分 C.充分必要 D.既非充分,也非必要
1、已知 ,求 。
2、求过点 且平行直线 的直线方程。
3、利用极坐标计算 ,其中D为由 、 及 所围的在第一象限的区域。
四.求解下列各题(共 分,第 题 分,第 题 分)
、利用格林公式计算曲线积分 ,其中L为圆域 : 的边界曲线,取逆时针方向。
、判别下列级数的敛散性:
五、求解下列各题(共 分,第 、 题各 分,第 题 分)
.平面 与 的夹角为( )。
A. B. C. D.
.幂级数 的收敛域为( )。
A. B. C. D.
.设 是微分方程 的两特解且 常数,则下列( )是其通解( 为任意常数)。
A. B.
C. D.
. 在直角坐标系下化为三次积分为( ),其中 为 , 所围的闭区域。
A. B. C. D.
三.计算下列各题(共 分,每题 分)
高数下试题及答案
高数下试题及答案一、选择题(每题4分,共40分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2-3x+1答案:A2. 函数f(x)=e^x的不定积分是()A. e^x+CB. e^x-CC. xe^x+CD. xe^x-C答案:A3. 函数f(x)=x^2+2x+1的极值点是()A. x=-1B. x=1C. x=0D. x=2答案:A4. 函数f(x)=x^3-3x+1的拐点是()A. x=-1B. x=1C. x=0D. x=2答案:C5. 函数f(x)=x^2+2x+1的二阶导数是()A. 2x+2B. 2x+1C. 2D. 2x答案:C6. 函数f(x)=x^3-3x+1的泰勒级数展开式是()A. x^3-3x+1+o(x^2)B. x^3-3x+1+o(x^3)C. x^3-3x+1+o(x^4)D. x^3-3x+1+o(x^5)答案:B7. 函数f(x)=e^x的泰勒级数展开式是()A. 1+x+x^2/2!+x^3/3!+o(x^3)B. 1+x+x^2/2!+x^3/3!+o(x^4)C. 1+x+x^2/2!+x^3/3!+o(x^5)D. 1+x+x^2/2!+x^3/3!+o(x^6)答案:A8. 函数f(x)=x^2+2x+1的不定积分是()A. x^3/3+x^2+CB. x^3/3+x+CC. x^3/3+x^2+CD. x^3/3+x^2+C答案:C9. 函数f(x)=x^3-3x+1的不定积分是()A. x^4/4-3x^2/2+x+CB. x^4/4-3x^2/2+x+CC. x^4/4-3x^2/2+x+CD. x^4/4-3x^2/2+x+C答案:A10. 函数f(x)=e^x的不定积分是()A. e^x+CB. e^x-CC. xe^x+CD. xe^x-C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的二阶导数是_________。
《高等数学(下)》试题及参考答案
《高等数学(下)》习题答案一、单选题1、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件C必要非充分条件D既非充分又非必要条件2、当x→0时,y=ln(1+x)与下列那个函数不是等价的(C)Ay=x By=sinx Cy=1-cosx Dy=e^x-13、如果在有界闭区域上连续,则在该域上(C)A只能取得一个最大值B只能取得一个最小值C至少存在一个最大值和最小值D至多存在一个最大值和一个最小值4、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件6、当x→0时,下列变量中(D)为无穷小量Aln∣x∣ Bsin1/x Ccotx De^(-1/x^2)7、为正项级数,设,则当时,级数(C)A发散 B收敛 C不定 D绝对收敛8、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)。
A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷9、已知向量,,,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,2510、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件11、下面哪个是二次曲面中椭圆柱面的表达式(D)A B C D12、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=113、向量、的夹角是,则向量、的数量积是(A)A BC D14、当x→0时,函数(x²-1)/(x-1)的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞15、平面上的一个方向向量,平面上的一个方向向量,若与垂直,则(C)A BC D16、设φ(x)=(1-x)/(1+x),ψ(x)=1-³√x则当x→0时(D)Aφ与ψ为等价无穷小 Bφ是比ψ为较高阶的无穷小Cφ是比ψ为较低阶的无穷小 Dφ与ψ是同价无穷小17、在面上求一个垂直于向量,且与等长的向量(D)A B C D18、当x→0时,1/(ax²+bx+c)~1/(x+1),则a,b,c一定为(B)Aa=b=c=1 Ba=0,b=1,c为任意常数 Ca=0,b,c为任意常数 Da,b,c为任意常数19、对于复合函数有,,则(B)A B C D20、y=1/(a^2+x^2)在区间[-a,a]上应用罗尔定理, 结论中的点ξ=(B).A0 B2 C3/2 D321、设是矩形:,则(A)A B C D22、对于函数的每一个驻点,令,,,若,,则函数(A)A有极大值 B有极小值 C没有极值 D不定23、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛24、交错级数,满足,且,则级数(B)A发散 B收敛 C不定 D绝对收敛25、若无穷级数收敛,而发散,则称称无穷级数(C)A发散B收敛 C条件收敛 D绝对收敛26、微分方程的通解是(B)A B C D27、改变常数项无穷级数中的有限项,级数的敛散性将会(B)A受到影响 B不受影响 C变为收敛 D变为发散28、设直线与平面平行,则等于(A)A2 B6 C8 D1029、曲线的方向角、与,则函数关于的方向导数(D)A BC D30、常数项级数收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛31、为正项级数,若存在正整数,当时,,而收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛32、下面哪个是二次曲面中椭圆抛物面的表达式(A)A B C D33、已知向量垂直于向量和,且满足于,求(B)A B C D34、平面上的一个方向向量,直线上的一个方向向量,若与垂直,则(B)A B C D35、下面哪个是二次曲面中双曲柱面的表达式(C)A B C D36、若为无穷级数的次部分和,且存在,则称(B)A发散 B收敛 C条件收敛 D绝对收敛37、已知向量两两相互垂直,且求(C)A1 B2 C4 D838、曲线y=e^x-e^(-x)的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)39、下面哪个是二次曲面中双曲抛物面的表达式(B)A B C D40、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D41、下面哪个是二次曲面中单叶双曲面的表达式(A)A BC D42、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D343、曲线y=lnx在点(A)处的切线平行于直线y=2x-3A(1/2,-1n2) B(1/2,-ln1/2) C(2,ln2) D(2,-ln2)44、若f(x)在x=x0处可导,则∣f(x)∣在x=x0处(C)A可导 B不可导 C连续但未必可导 D不连续45、y=√x-1 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=(C).A0 B2 C44078 D346、arcsinx+arccos=(D)A∏ B2∏ C∏/4 D∏/247、函数y=ln(1+x^2)在区间[-1,2]上的最大值为(D)A4 B0 C1 Dln548、函数y=x+√x在区间[0,4]上的最小值为(B)A4 B0 C1 D349、当x→1时,函数(x²-1)/(x-1)*e^[(1/x-1)]的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞50、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D3二、判断题1、由及所确定的立体的体积(对)2、y=∣x∣在x=0处不可导(对)3、设,,,且,则(错)4、对于函数f(x),若f′(x0)=0,则x0是极值点(错)5、二元函数的极小值点是(对)6、若函数f(x)在x0处极限存在,则f(x)在x0处连续(错)7、设是由轴、轴及直线所围城的区域,则的面积为(错)8、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)9、若积分区域是,则(对)10、下列平面中过点(1,1,1)的平面是x=1(对)11、设,其中,,则(对)12、若函数f(x)在x0的左、右极限都存在但不相等,则x0为f(x)的第一类间断点(对)13、函数的定义域是(对)14、对于函数f(x),若f′(x0)=0,则x0是极值点(错)15、二元函数的两个驻点是,(对)16、y=ln(1-x)/(1+x)是奇函数(对)17、设表示域:,则(错)18、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)19、设是曲线与所围成,则(对)20、有限个无穷小的和仍然是无穷小(对)21、设,则(错)22、函数在一点的导数就是在一点的微分(错)23、函数在间断(对)24、罗尔中值定理中的条件是充分的,但非必要条件(对)25、设不全为0的实数使,则三个向量共面(对)26、函数z=xsiny在点(1,∏/4)处的两个偏导数分别为1,1(错)27、微分方程的一个特解应具有的形式是(对)28、设圆心在原点,半径为R,面密度为a=x²+y²的薄板的质量为RA(面积A=∏R²)(错)29、函数的定义域是整个平面(对)30、1/(2+x)的麦克劳林级数是2(错)31、微分方程的通解为(错)32、等比数列的极限一定存在(错)33、设区域,则在极坐标系下(对)34、函数极限是数列极限的特殊情况(错)35、,,则(对)36、sin10^0的近似值为017365(对)37、二元函数的极大值点是(对)38、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)39、将在直角坐标下的三次积分化为在球坐标下的三次积分,则(对)40、微分是函数增量与自变量增量的比值的极限(错)41、方程x=cos在(0,∏/2)内至少有一实根(错)42、微分方程y``+3y`+2y=0的特征根为1,2(错)43、f〞(x)=0对应的点不一定是曲线的拐点(对)44、求曲线x=t,y=t2,z=t3在点(1,1,1)处的法平面方程为(x-1)+2(y-1)+3(z-1)=0(对)45、1/x的极限为0(错)46、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)47、导数和微分没有任何联系,完全是两个不同的概念(错)48、有限个无穷小的和仍然是无穷小(对)49、求导数与求微分是一样的,所以两者可以相互转化(对)50、在空间直角坐标系中,方程x²+y²=2表示圆柱面(对)。
高数下册期末考试题及答案
高数下册期末考试题及答案一、选择题(每题2分,共10分)1. 函数 \( f(x) = \ln(x^2 + 1) \) 的导数是:A. \( 2x/(x^2 + 1) \)B. \( 2x/x^2 + 1 \)C. \( 2x/(x^2 - 1) \)D. \( 2x/(x^2 + 1)^2 \)答案:A2. 已知 \( e^x \) 的泰勒展开式为 \( 1 + x + x^2/2! + x^3/3! + \cdots \),那么 \( e^{-x} \) 的泰勒展开式是:A. \( 1 - x + x^2/2! - x^3/3! + \cdots \)B. \( 1 + x - x^2/2! + x^3/3! - \cdots \)C. \( 1 - x - x^2/2! + x^3/3! - \cdots \)D. \( 1 + x + x^2/2! - x^3/3! + \cdots \)答案:A3. 若 \( \int_0^1 x^2 dx = \frac{1}{3} \),则 \( \int_0^1 x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{5} \)C. \( \frac{1}{6} \)D. \( \frac{1}{7} \)答案:A4. 曲线 \( y = x^3 - 3x^2 + 2x \) 在 \( x = 2 \) 处的切线斜率是:A. 0B. 1C. 2D. -1答案:B5. 若 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 等于:A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共15分)6. 若 \( f(x) = x^3 - 2x^2 + x \),则 \( f'(x) = \) ________。
高数下期末考试题及答案
高数下期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x) = 3x^2 + 2x - 5在x=1处的导数是:A. 8B. 6C. 4D. 2答案:B2. 若曲线y = x^3 - 2x^2 + x - 6在点(1, -6)处的切线斜率为-1,则该曲线在该点的切线方程是:A. y = -x - 5B. y = x - 5C. y = -x + 5D. y = x + 5答案:A3. 定积分∫[0,1] x^2 dx的值是:A. 1/6B. 1/3C. 1/2D. 2/3答案:B4. 函数f(x) = sin(x) + cos(x)的原函数F(x)是:A. -cos(x) + sin(x) + CB. -sin(x) + cos(x) + CC. sin(x) - cos(x) + CD. cos(x) + sin(x) + C答案:D5. 微分方程dy/dx + y = x^2的解是:A. y = (1/2)x^3 + CB. y = x^3 + CC. y = (1/3)x^3 + CD. y = x^2 + C答案:C6. 函数f(x) = e^x - x^2的极小值点是:A. x = 0B. x = 1C. x = -1D. x = 2答案:A7. 曲线y = ln(x)在x=1处的切线斜率是:A. 0B. 1C. -1D. 2答案:B8. 定积分∫[1,e] e^x dx的值是:A. e^e - eB. e - 1C. e^e - 1D. e^e答案:C9. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调增区间是:A. (-∞, 1)B. (1, 2)C. (2, +∞)D. (-∞, 2)答案:C10. 函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1的拐点是:A. x = 0B. x = 1C. x = 2D. x = 3答案:B二、填空题(每题2分,共20分)1. 若f(x) = x^3 - 5x^2 + 4x + 6,则f'(2) = ______。
高数下册考试卷和答案
高数下册考试卷和答案一、选择题(每题3分,共30分)1. 以下哪个函数是偶函数?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B2. 极限lim(x→0) [sin(x)/x]的值是多少?A. 0B. 1C. -1D. 2答案:B3. 以下哪个积分是发散的?A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) x dx答案:A4. 以下哪个是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个是多元函数的偏导数?A. ∂f/∂xB. f'(x)C. ∫f(x) dxD. ∇f答案:A6. 以下哪个是定积分的性质?A. ∫(a,b) f(x) dx = ∫(b,a) f(x) dxB. ∫(a,b) f(x) dx = ∫(a,c) f(x) dx + ∫(c,b) f(x) dxC. ∫(a,b) f(x) dx = ∫(a,b) f(-x) dxD. ∫(a,b) f(x) dx = ∫(a,b) f(a+b-x) dx答案:B7. 以下哪个是泰勒级数展开?A. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/3! + ...C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/4! + ...D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/5! + ...答案:A8. 以下哪个是柯西-施瓦茨不等式?A. (∑i=1^n a_i b_i)^2 ≤ (∑i=1^n a_i^2)(∑i=1^n b_i^2)B. (∑i=1^n a_i^2)(∑i=1^n b_i^2) ≤ (∑i=1^n a_i b_i)^2C. (∑i=1^n a_i b_i)^2 ≥ (∑i=1^n a_i^2)(∑i=1^n b_i^2)D. (∑i=1^n a_i^2)(∑i=1^n b_i^2) ≥ (∑i=1^n a_i b_i)^2答案:A9. 以下哪个是格林定理?A. ∮C (P dx + Q dy) = ∬D (∂Q/∂x - ∂P/∂y) dAB. ∮C (P dx + Q dy) = ∬D (∂P/∂x + ∂Q/∂y) dAC. ∮C (P dx + Q dy) = ∬D (∂Q/∂x + ∂P/∂y) dAD. ∮C (P dx + Q dy) = ∬D (∂P/∂x - ∂Q/∂y) dA答案:A10. 以下哪个是斯托克斯定理?A. ∮C (P dx + Q dy + R dz) = ∬S (∂R/∂y - ∂Q/∂z) dy dz + (∂P/∂z - ∂R/∂x) dz dx + (∂Q/∂x - ∂P/∂y) dx dyB. ∮C (P dx + Q dy + R dz) = ∬S (∂Q/∂x - ∂P/∂y) dy dz + (∂R/∂y - ∂Q/∂z) dz dx + (∂P/∂z - ∂R/∂x) dx dyC. ∮C (P dx + Q dy + R dz) = ∬S (∂R/∂x - ∂Q/∂z) dy dz + (∂P/∂z - ∂R/∂x) dz dx + (∂Q/∂x - ∂P/∂y) dx dyD. ∮C (P dx + Q dy + R dz) = ∬S (∂Q/∂x - ∂P/∂y) dy dz + (∂R/∂y - ∂Q/∂z) dz dx + (∂P/∂z - ∂R/∂x) dx dy答案:A二、填空题(每题3分,共30分)11. 函数f(x) = x^2 + 3x + 2的导数是_________。
高数下册考试题和答案
高数下册考试题和答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x的极值点为()。
A. x=0B. x=1C. x=-1D. x=2答案:C2. 曲线y=x^2+2x+1在点(-1,0)处的切线斜率为()。
A. 2B. -2C. 0D. 1答案:C3. 已知函数f(x)=2x^3-3x^2+1,求f'(x)=0的解为()。
A. x=0B. x=1C. x=-1D. x=2答案:B4. 计算不定积分∫(x^2+1)dx的结果是()。
A. x^3/3 + x + CB. x^3/3 + CC. x^2/2 + x + CD. x^2/2 + C答案:B5. 计算定积分∫[0,1] x^2dx的结果是()。
A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^4-4x^3+6x^2-4x+1的驻点为________。
答案:x=17. 曲线y=ln(x)在点(1,0)处的切线方程为________。
答案:y=x-18. 计算二重积分∬[0,1]x^2y^2dxdy的结果是________。
答案:1/309. 函数f(x)=e^x的反函数为________。
答案:ln(x)10. 计算定积分∫[-1,1] |x|dx的结果是________。
答案:2三、解答题(每题15分,共30分)11. 求函数f(x)=x^2-4x+3的极值点,并判断极值类型。
解:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2。
然后计算二阶导数f''(x)=2,因为f''(2)>0,所以x=2为极小值点,极小值为f(2)=-1。
12. 计算曲线y=x^3从x=0到x=1的弧长。
解:首先求导数y'=3x^2,然后计算弧长公式∫[0,1]√(1+(3x^2)^2)dx。
计算得到弧长为(4/3)(1/3)^(3/2)。
大学高等数学下考试题库(附答案)
一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2.则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =.则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n pn收敛.则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB .其中点()1,1,2-B .则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z .则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =.而y x v xy u +==,.求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定.求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin .其中22224:ππ≤+≤y x D . 4.如图.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xey y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱.问长、宽、高各取怎样的尺寸时.才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍.且曲线过点⎪⎭⎫ ⎝⎛31,1.求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin .()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时.用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M .()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x .则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=.则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的.则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行.则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=.求.b a ⨯2.设22uv v u z -=.而y x v y x u sin ,cos ==.求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定.求.,yz x z ∂∂∂∂ 4.如图.求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题.每题3分.共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k.则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1.4π)处的两个偏导数分别为( )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx.则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点.半径为R.面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2.-1 B 、2.1 C 、-2.1 D 、1.-2 二、填空题(本题共5小题.每题4分.共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学下考试题库及答案
高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。
A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。
A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。
答案:1和37. 函数f(x)=e^x-x-1的零点是_________。
答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。
答案:19. 函数f(x)=x^2-4x+3的极大值是_________。
答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。
答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。
解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。
12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。
解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。
13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。
解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。
高等数学下册试卷及答案
高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。
2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。
y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。
7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。
8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。
3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。
4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。
注:原文章中第一题的符号“>”应该是“≥”,已进行更正。
大学高数下试题及答案
大学高数下试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^3-3x^2+2x,求f'(x)的值。
A. 3x^2-6x+2B. x^3-3x^2+2C. 3x^2-6xD. 3x^2-6x+2答案:A2. 计算定积分∫(0到1) x dx。
A. 1/2B. 0C. 1D. 2答案:A3. 已知级数∑(从n=1到∞) 1/n^2 收敛,那么级数∑(从n=1到∞) 1/n 收敛吗?A. 收敛B. 发散C. 不确定D. 收敛于0答案:B4. 以下哪个选项是函数y=e^x的反函数?A. y=ln(x)B. y=e^(-x)C. y=x^eD. y=e^x答案:A5. 设函数f(x)=x^2+2x+1,求f(x)的极值点。
A. x=-1B. x=1C. x=0D. 无极值点答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。
答案:x=1, 22. 求极限lim(x→0) (sin(x)/x)的值为______。
答案:13. 计算二重积分∬(从0到1, 从0到x) xy dA的值为______。
答案:1/64. 已知函数f(x)在点x=a处可导,且f'(a)=3,那么曲线y=f(x)在点(a, f(a))处的切线斜率为______。
答案:35. 计算定积分∫(从0到π) sin(x) dx的值为______。
答案:2三、解答题(共60分)1. (10分)求函数y=x^2-4x+3在区间[1,3]上的最大值和最小值。
答案:函数y=x^2-4x+3的导数为y'=2x-4。
令y'=0,解得x=2,即在x=2处可能存在极值。
计算f(1)=0,f(2)=-1,f(3)=0,因此最小值为-1,最大值为0。
2. (15分)计算级数∑(从n=1到∞) (1/n - 1/(n+1))的和。
答案:级数∑(从n=1到∞) (1/n - 1/(n+1))是一个望远镜级数,其和为1。
高数下期末考试题及答案
高数下期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3在区间[0, 6]上的值域是:A. [2, 9]B. [3, 9]C. [1, 9]D. [2, 12]答案:C2. 若f(x)=3x^2+2x-5,求f(-1)的值:A. -12B. -8C. -4D. -2答案:A3. 曲线y=x^3-6x^2+9x在点(1, 4)处的切线斜率是:A. 0B. 1C. 2D. 3答案:D4. 根据定积分的性质,∫[0, 1] x dx等于:A. 0B. 1/2C. 1D. 2答案:B5. 若函数f(x)在区间[a, b]上连续,且∫[a, b] f(x) dx = 5,那么∫[a, b] 2f(x) dx等于:A. 10B. 5C. 2D. 1答案:A6. 函数y=sin(x)在区间[0, π]上的原函数是:A. -cos(x) + CB. cos(x) + CC. sin(x) + CD. 2sin(x) + C答案:A7. 若∫[0, 1] f(x) dx = 3,且f(x) = 6x - 2,求∫[0, 1] x(6x -2) dx的值:A. 7B. 8C. 9D. 10答案:C8. 曲线y=x^2与直线y=4x在点(2, 4)处的切线相同,求该点处的切线方程:A. y = 4x - 4B. y = 8x - 12C. y = 4xD. y = x^2答案:A9. 若f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-9xD. x^3-3x答案:A10. 若f(x)=e^x,求f'(x)的值:A. e^xB. x*e^xC. e^-xD. 1答案:A二、填空题(每题2分,共20分)11. 若f(x)=x^2-4x+3,则f'(x)=________。
答案:2x-412. 曲线y=x^3-2x^2+x在x=1处的导数为________。
大学高数下册试题及答案
大学高数下册试题及答案《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线及平面,则直线(A)A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交.2.二元函数在点处(C)A.连续、偏导数存在;B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在.3.设为连续函数,则=(B)A.;B.;C.D..4.设是平面由,所确定的三角形区域,则曲面积分=(D)A.7;B.;C.;D..5.微分方程的一个特解应具有形式(B)A.;B.;C.;D..二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数;5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有.三、(本题7分)设由方程组确定了,是,的函数,求及与.解:方程两边取全微分,则解出从而四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.解:,从而五、(本题8分)计算累次积分).解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、(本题8分)计算,其中是由柱面及平面围成的区域.解:先二后一比较方便,七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.解:由对称性从而八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、(本题8分)计算,其中为半球面上侧.解:补取下侧,则构成封闭曲面的外侧十、(本题8分)设二阶连续可导函数,适合,求.解:由已知即十一、(本题4分)求方程的通解.解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点的坐标为,则问题即在求最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学高等数学下考试题库附答案This manuscript was revised by the office on December 10, 2020.《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ()..4 C 向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥b 3,π=b a .4,π=b a3.函数1122222-++--=y x y x y 的定义域是().(){}21,22≤+≤y xy x .(){}21,22<+<y x y x (){}21,22≤+<y xy x (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().0=⋅b a 0 =⨯b a 0 =-b a 0=+b a 函数xy y x z 333-+=的极小值是().2-1-设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=().2222-22-若p 级数∑∞=11n pn收敛,则(). p 1<1≤p 1>p 1≥p 幂级数∑∞=1n nnx 的收敛域为().[]1,1-()1,1-[)1,1-(]1,1-幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是().x -11x -22x -12x-21微分方程0ln =-'y y y x 的通解为().x ce y =x e y =x cxe y =cx e y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程.试卷1参考答案一.选择题CBCADACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()x e x C C y 221-+=.三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ().12131415设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为(). 6π4π3π2π函数()22arcsin y x z +=的定义域为().(){}10,22≤+≤y xy x .(){}10,22<+<y x y x()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x .()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为(). .4 C 函数22232y x xy z --=的极大值为(). .1 C 1-21设223y xy x z ++=,则()=∂∂2,1xz ()..7 C 若几何级数∑∞=0n n ar 是收敛的,则().1≤r 1≥r 1<r 1≤r 幂级数()n n x n ∑∞=+01的收敛域为().[]1,1-[)1,1-(]1,1-()1,1-级数∑∞=14sin n nna 是().A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为().cx e y =x ce y =x e y =x cxe y =二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y条件下的特解为______________________________. 三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a⨯ 2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dt dx =)试卷2参考答案一.选择题CBABACCDBA.二.填空题1.211212+=-=-z y x . 2.()xdy ydx e xy +. 3.488=--z y x . 4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-. 2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂. 3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2.00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式2-3的值为()45A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22,22B 、,2222-C 、22-22-D 、22-,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为() A 、z y z R x --,B 、z y z R x ---,C 、zyz R x ,--D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是() A 、一阶B 、二阶C 、三阶D 、四阶10、微分方程y``+3y`+2y=0的特征根为() A 、-2,-1B 、2,1C 、-2,1D 、1,-2二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________。
2、()的近似值为________,sin100的近似值为___________。
3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________。
4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________。
5、微分方程y`=xy 的一般解为___________,微分方程xy`+y=y 2的解为___________。
三、计算题(本题共6小题,每小题5分,共30分) 1、用行列式解方程组-3x+2y-8z=172x-5y+3z=3 x+7y-5z=22、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线及法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n 收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分) 1、求表面积为a 2而体积最大的长方体体积。