大学物理第8章稳恒磁场课后学习的练习习题与标准标准答案.docx

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

稳恒磁场练习题答案

稳恒磁场练习题答案

1.求圆心处磁感应强度的大小及方向。

04B R=方向垂直纸面向里2.求圆心处磁场08IB Rμ=方向垂直纸面向里3.求圆心处磁场024I IB R Rμμπ=+方向垂直纸面向里4.求圆心处磁场0082IIB RRμμπ=+方向垂直纸面向里5.求圆心处磁场(1226I B R μππ=−+,方向垂直纸面向里 6.一无限长载流直螺线管通有电流I ,单位长度上螺线管匝数为n ,则该螺线管内部磁场磁感应强度的大小为B = 0nI μ。

7.如图所示,三个互相正交的载流圆环,带有电流强度I ,半径均为R ,则它们公共中心处O 点的磁感应强度大小为B =02IR。

8.一通电的圆环,通过的电流为I,半径为R,则圆心处的磁感应强度大小为02IRμ,线圈的磁矩大小为 2I R π 。

9.一无限长载流直导线,弯成如图所示的四分之一圆,圆心为O ,半径为R ,则在O 点的磁感应强度的大小为 0082IIB RRμμπ=+。

10.一个正方形回路和一个圆形回路,正方形的边长等于圆的直径,两者通过相等的电流,则正方形和圆形回路中心产生的磁感应强度大小之比为11.如图所示流经闭合导线中的电流强度为I ,圆弧半径分别为1R 和2R ,圆心为O ,则圆心001244IIR R μμ−。

12.一载有电流强度为I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等。

设2R r =,则两螺线管内部的磁感应强度的大小比值为:RrB B =1:1 。

13. 在同一平面上有三根等距离放置的长通电导线,如图所示,导线1、2、3分别载有1A 、2A 、3A 的电流,它们所受的安培力分别为1F 、2F 、3F ,则12F F = 7/8 ;13F F = 7/15 ;23F F = 8/15 。

(0174F d μπ=,0284F d μπ=,03154F dμπ=;故1278F F =,13715F F =,23815F F =) 14. 如图所示,长直导线中通有稳恒电流1I ,在其旁边有一导线段ab ,长为L ,距长直导线距离为d ,当它通有稳恒电流2I 时,该导线ab 所受磁力大小为012ln 2I I d Ld μπ+ 。

大学物理第8章答案

大学物理第8章答案

第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。

分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。

解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。

在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。

讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。

理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。

即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;(2)若点O位于半无限长载流螺线管一端,即12πβ=,20β=或12πβ=,2βπ=时,无论哪一种情况均有nI B 021μ=------(8-19) 可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。

大学物理真空中的稳恒磁场习题集教学教材

大学物理真空中的稳恒磁场习题集教学教材

大学物理真空中的稳恒磁场习题集第八章 真空中的稳恒磁场8-1 已知均匀磁场,其磁感强度B = 2.0 Wb ·m -2,方向沿x 轴正向,如图所示.试求: (1) 通过图中abOc 面的磁通量; (2) 通过图中bedO 面的磁通量; (3) 通过图中acde 面的磁通量.(答案:-0.24Wb ;0 Wb ;0.24Wb )8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)(答案:3.73×10-3 T ,方向垂直纸面向上)8-3 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.(答案:]2sin 2sin [2cos222111110R l R l R l R I+-πμ)(42222110R l R l I -π+μ 方向⊗.)8-4 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.(答案:)223(40ba I +ππμ)8-5 已知半径为R 的载流圆线圈与边长为a 的载流正方形线圈的磁矩之比为2∶1,且载流圆线圈在中心O 处产生的磁感应强度为B 0,求在正方形线圈中心O '处的磁感强度的大小.(答案:03)/2(B a R )8-6 无限长直导线折成V 形,顶角为θ ,置于xy 平面内,一个角边与x 轴重合,如图.当导线中有电流I 时,求y 轴上一点P (0,a )处的磁感强度大小.(答案:)cos sin 1(cos 40θθθμ-+a Iπ,方向垂直纸面向外)8-7 在真空中,电流由长直导线1沿垂直于底边bc 方向经a 点流入一由电阻均匀的导线构成的正三角形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁感强度B.(答案:)332(40-πlIμ,方向垂直纸面向里)8-8 将通有电流I = 5.0 A 的无限长导线折成如图形状,已知半圆环的半径为R =0.10 m .求圆心O 点的磁感强度.(μ0 =4π×10-7 H ·m -1)(答案:2.1×10-5 T ,方向垂直指向纸里)8-9 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .(答案:aIπ820μ,方向⊗)8-10 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.(答案:)4/(20a I πμ,方向⊗)8-11 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.(答案:[2μ2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ)28-12 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度.(答案:12120ln)(2R R R R NI-μ,方向⊙)8-13 图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B的表达式. (2) 求P 点在x 轴上何处时,该点的B 取得最大值.(答案:i x a Iax B)()(220+π=μ;x = 0处,B 有最大值)8-14 如图所示,两个共面的平面带电圆环,其内外半径分别为R 1、R 2和R 2、R 3,外面的圆环以每秒钟n 2转的转速顺时针转动,里面的圆环以每秒钟n 1转的转速反时针转动.若电荷面密度都是σ ,求n 1和n 2的比值多大时,圆心处的磁感强度为零.(答案:122312R R R R n n --=)8-15 如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影部分均匀带正电荷,面电荷密度为+σ ,其余部分均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?OR 1R 2IR 1R 2 R 3n 1 n 2 O σ σ(答案:r R 2=)8-16 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.(答案:0ln2a bbμδ+π,方向垂直纸面向里)8-17 一半径R = 1.0 cm 的无限长1/4圆柱形金属薄片,沿轴向通有电流I = 10.0 A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.(答案:1.8×10-4T , B与x 轴正向的夹角α =225°)8-18 已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.(答案:)8/(0R I μ,方向指向纸内)8-19 在真空中有两根相互平行的无限长直导线L 1和L 2,相距10 cm ,通有方向相反的电流,I 1 =20 A ,I 2 =10 A ,试求与两根导线在同一平面内且在导线L 2两侧并与导线L 2的距离均为 5.0 cm 的两点的磁感强度的大小.(μ0 =4π×10-7 H ·m -1)(答案:1.2⨯10-4T ;1.3⨯10-5T )8-20 无限长载流直导线弯成如图形状,图中各段共面,其中两段圆弧分别是半径为R 1与R 2的同心半圆弧.(1) 求半圆弧中心O 点的磁感强度B;(2) 在R 1<R 2的情形下,半径R 1和R 2满足什么样的关系时,O 点的磁感强度B 近似等于距O 点为R 1的半无限长直导线单独存在时在O 点产生的磁感强度.(答案:4)1(012112IR R R R R μπ+-,方向垂直纸面向外;1112-π<<-R R R 时,10π4R IB μ≈)8-21 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.(答案:π40Iμ2ln 20π+Iμ)8-22 有一长直导体圆管,内外半径分别为R 1和R 2,如图,它所载的电流I 1均匀分布在其横截面上.导体旁边有一绝缘“无限长”直导线,载有电流I 2,且在中部绕了一个半径为R 的圆圈.设导体管的轴线与长直导线平行,相距为d ,而且它们与导体圆圈共面,求圆心O 点处的磁感强度B.(答案:)()1)((2120d R R RI d R I +-π++⋅πμ,方向⊙)8-23 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.(答案:12ln2R R NIbπμ;0)8-24 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.(答案:2121//m m R R =)8-25 一电子以v = 105 m ·s -1的速率,在垂直于均匀磁场的平面内作半径R = 1.2 cm 的圆周运动,求此圆周所包围的磁通量.(答案:2.14×10-8 Wb )8-26 如图所示,电阻为R 、质量为m 、宽为l 的矩形导电回路.从所画的静止位置开始受恒力F的作用.在虚线右方空间内有磁感强度为B且垂直于图面的均匀磁场.忽略回路自感.求在回路左边未进入磁场前,作为时间函数的速度表示式.(答案:)e 1(22bt lB FR--=v ,)/(22Rm l B b =)FB8-27 如图所示,将一无限大均匀载流平面放入均匀磁场中,(设均匀磁场方向沿Ox 轴正方向)且其电流方向与磁场方向垂直指向纸内.己知放入后平面两侧的总磁感强度分别为1B与2B.求:该载流平面上单位面积所受的磁场力的大小及方向?(答案:j B B21222μ--)8-28 通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B中,求整个导线所受的安培力(R 为已知).(答案:RIB 2,方向向上)8-29 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.(答案:0.34 N ,方向垂直环面向上)8-30 在xOy 平面内有一圆心在O 点的圆线圈,通以顺时针绕向的电流I 1另有一无限长直导线与y 轴重合,通以电流I 2,方向向上,如图所示.求此时圆线圈所受的磁力.(答案:210I I μ)yBI 18-31 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.(答案:2210I I μ,方向垂直I 1向右)8-32 一平面线圈由半径为0.2 m 的1/4圆弧和相互垂直的二直线组成,通以电流2 A ,把它放在磁感强度为0.5 T 的均匀磁场中,求:(1) 线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2) 线圈平面与磁场成60°角时,线圈所受的磁力矩.(答案:0.283N ,方向与AC 直线垂直,与OC 夹角45°;1.57×10-2 N ·m ,力矩M 将驱使线圈法线转向与B平行)8-33 一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5 T 均匀外磁场B,且与线圈平面成30°角时,线圈的角加速度为β = 2 rad/s 2,求∶(1) 线圈对OO '轴的转动惯量J =?(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?(答案: 2.16×10-3 kg ·m 2;2.5×10-3 J )I 2I 1A DCB⊗O xyz I30° BO ′ a b精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 8-34 两根很长的平行直细导线,其间距离为d ,它们与电源组成回路(如图),回路中电流为I .若保持电流I 不变,使导线间的距离由d 增大至d ′,求磁场对单位长度直导线所作的功.(答案:d d I 'ln 220πμ)I。

稳恒磁场及答案

稳恒磁场及答案

第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos .2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 LlB d 等于(A) I 0 . (B) I 031. (C) 4/0I . (D) 3/20I .4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量 =______________.n B SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x电流 圆筒II ab c d120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、2ln 20Ia6、a l I 4/d 20 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d(2) 这载流长条在P 点产生的磁感应强度x i B 2d d 0 xx2d 0 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.9、解:由安培环路定理: i I l Hd 0< r <R 1区域: 212/2R Ir rH 212R Ir H, 2102R Ir BR 1< r <R 2区域: I rH 2r I H 2, rIB 2R 2< r <R 3区域: )()(22223222R R R r I I rH )1(22223222R R R r r IH )1(2222322200R R R r r IH B r >R 3区域: H = 0,B = 0x d x PO x。

大学物理第八章课后习题答案

大学物理第八章课后习题答案

第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A).8 -3有两个线圈,线圈1 对线圈2 的互感系数为M21,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势 ()()t tΦN ξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为 ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ= 线圈与两长直导线间的互感为43ln π20d μI ΦM ==当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS ,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2、匝数N =160匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿 过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为 ()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d mF mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式. 解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是 ()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令m Rl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d v v Kv v 积分后将gh 210=v 代入,可得 ()()[]1212t t K e gh K g g K ----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为 td d π4B d ρm I = 式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为tt t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=t B ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <tB 时,电场线绕向与B 方向满足右螺旋关系;当0d d >tB 时,电场线绕向与前者相反. 解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小t B r E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍. 8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μl N I ψL L L +==+=8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解.8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2)当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===R S μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()22202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +== 则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rqc I n μμB r 相对磁导率 1991102==I n μS N Rqc μr 8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2)从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感lS N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管 中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R e R E I 1,当电流稳定后,其最大值R E I m = 按题意1⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L R e R E I 1中,得。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

浙江工业大学大学物理稳恒磁场习题答案

浙江工业大学大学物理稳恒磁场习题答案

稳恒磁场习题答案7-1解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度.则 ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕奥-萨伐尔定律,有 )60sin 90(sin 402︒-︒π=dIB μ式中 6/330tan 21l l Oe d =︒⋅==)231(34602-⋅π=lI B μ)332(40-π=l I μ 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 a c ba cb ab ab R I R I ⋅=⋅ 又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴ acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反. ∴ )332(402-π==lIB B μ,B的方向垂直纸面向里.7—2. 解:两折线在P 点产生的磁感应强度分别为:⎪⎪⎭⎫ ⎝⎛+=22141a I B o πμ 方向为⊗, ⎪⎪⎭⎫⎝⎛-=22142a I B o πμ 方向为⊙ 所以:aIB B B o πμ4221=-= 方向为⊗7-3. 解:O 点处的磁场由三部分构成,即:cd bc ab B B B B++=, 方向垂直纸面向里。

其中:()R Ia I B o o ab πμπμ4/90cos 0cos 4=-=(半无限长载流导线), RIB o bc 4μ=(半圆环), 0=cd B (其延长线过O 点)。

()T RIR I B B B B o o cd bc ab 5101.244-⨯=+=++=μπμ7-4解:设L 1中电流在O 点产生的磁感强度为B 1,由于L 1与O 点在一条直线上,由毕奥-萨伐定律可求出 01=B 设L 2中电流在O 点产生的磁感强度为B 2,L 2为半无限长直电流,它在O 处产生的场是无限长直电流的一半,由安培环路定律和叠加原理有RIR I B π=⋅π=4212002μμ 方向垂直图面向外.以下求圆环中电流在O 点产生的磁感强度.电流由L 1经a 点分两路流入圆环,一路由a 点经1/4圆弧流至b ,称此回路为L 3.另一路由a 点经3/4圆弧流至b ,称此段回路为L 4.由于圆环为均匀导体,若L 2的电路电阻为R ,则L 4的电阻必为3R .因此电流在L 3、L 4上的分配情况为L 3中电流为3 I /4,L 4中电流为I / 4.L 3、L 4中电流在O 点产生的磁感强度的大小相等,方向相反,总值为0.即043=+B B故O 点的磁感强度: =+++=43210B B B B B RIπ40μ方向垂直图面向外.7-57-6. 解:取一个窄长条dx ,它在P 点产生磁场()x b a a dx a I dB p -+=πμ20 所以,P 点磁场bba a I xb a dx o a a I B p +=-+=⎰ln2200πμπμ 方向向外。

稳恒磁场习题答案

稳恒磁场习题答案

稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。

稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。

下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。

1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。

这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。

3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。

即磁场强度随着电流的增加而增加。

4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。

即磁场强度随着线圈的面积的增加而增加。

5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。

这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。

7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。

这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。

8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。

大连理工大学大学物理作业8(稳恒磁场二)及答案详解

大连理工大学大学物理作业8(稳恒磁场二)及答案详解

⼤连理⼯⼤学⼤学物理作业8(稳恒磁场⼆)及答案详解S 当⾯S 向长直导线靠近的过程中,穿过⾯S 的磁通量Φ及⾯上任⼀点P 的磁感应强度B ⼤⼩的变化为[ ]。

A. Φ增⼤,B 不变B. Φ不变, B 增⼤C. Φ增⼤,B 增⼤D. Φ不变, B 不变答案:【B 】解:由磁场的⾼斯定理0=S S d B ,即穿过闭合曲⾯的磁通量为零,或者说,磁感应线为闭合曲线,所以Φ不变;由于长直载流导线的磁场aI B πµ20=,与距离成反⽐,所以,当闭合曲⾯靠近载流直导线时,闭合曲⾯上各点的磁感应强度增⼤。

2.⼀电⼦以速度ν→垂直地进⼊磁感应强度为B →的均匀磁场中,此电⼦在磁场中运动的轨迹所围的⾯积内的磁通量将是[ ]。

A.反⽐于B ,正⽐于2νB. 反⽐于B ,正⽐于νC. 正⽐于B ,反⽐于2νD. 正⽐于B ,反⽐于ν答案:【A 】解:电⼦垂直于磁场进⼊磁场,将在洛伦兹⼒的作⽤下,在垂直于磁场的平⾯内作圆周运动。

电⼦在磁场中运动的轨迹半径qBmv R = 由于磁场与⾯积S 垂直,所围的⾯积内的磁通量Bq v m B R S B 2222ππ==?=Φ3. 如图9-2所⽰,⼀⽆限长密绕真实螺线管,通电流强度为I 。

对套在螺线管轴线外的环路L (螺线管穿过环路)作积分=??L l B d 。

答案:I l B 0d µ=?? 解:①根据安培环路定理;②真实螺线管。

4.两平⾏长直导线相距0.4m ,每条导线载有电流10A (如图9-3所⽰),则通过图中矩形⾯积abcd 的磁通量m Φ= 。

答案:Wb 101.16-?解:电流1I 和2I ⼤⼩相等,⽅向相反,由毕萨定律可以判知,它们在矩形⾯积内产⽣的电磁感应强度⽅向均垂直于纸⾯向外。

由对称性可知,电流1I 和2I 产⽣的电磁感应强度穿过矩形⾯积的磁通量⼤⼩相等,因此只须计算⼀个电流产⽣磁场的磁通量。

x I B πµ2101=3ln 203.01.0111πµI ab dx B ab S d B d a ==?=Φ?? 76012ln 31010ln 3 1.110(W b)ab I µπ--Φ=Φ==?≈? 5.有⼀很长的载流导体直圆管,内半径为a ,外半径为b ,电流强度为I ,电流沿轴线⽅向流动,并且均匀地分布在管壁的横截⾯上,如图9-4所⽰。

大学物理3第08章习题分析与解答

大学物理3第08章习题分析与解答

习题8-6图IOR 第八章 恒定磁场8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。

(A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。

正确答案为(B )。

8-2 下列说法正确的是[ ]。

(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。

正确答案为(B )。

8-3 磁场中的安培环路定理∑⎰=μ=⋅nLI1i i0d l B 说明稳恒电流的磁场是[ ]。

(A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。

正确答案为(B )。

8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。

(A) B R I 2π (B)B R I 221π (C) B R I 241π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ⨯=n IS ,而且对任意形状的平面线圈都是适用的。

稳恒磁场习题(包含答案)

稳恒磁场习题(包含答案)

练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。

稳恒磁场习题答案

稳恒磁场习题答案
定义:p m N IS n
方向:与电流满足右手螺旋定则。
单位:安培· 2 米 4.平面载流线圈在均匀磁场中受到的力矩M
定义: M p m B
单位:牛顿· 米
5.洛仑兹力
F m qv B
6.电荷垂直于磁场作圆周运动
R mv qB
T
2 m qB
0 dI
2r
dI ndq

2
O
dq
r
a dI
dq dr
dB B
0
a b
2r 2 4


dr b
dr
ω

0 dr
r
0
4
ln
ab a
a

B dS 0
B dl 0 I
H dl
I
5
c
B H
0r
(常数) 顺磁质: r 1 (常数) 抗磁质: r 1 铁磁质: r 1
(10 ~ 10 )
2
通常不是常数
四.几个典型载流导体的磁场 1.载流直导线
0I
2 x
b
I 1 dx
0 II 1
2
ln
a b b
9-13 一根很长的铜导线,均匀载有强度为I的电流。在导线内 部,通过中心线作一平面S。试计算通过导线单位长度的S平面 内的磁感通量。 解:
B 2 r 0 j r
B
2
0 Ir
2 R
2
R
d m B d S B ld r
I 2 R a
a
Ia 2 R

大学物理稳恒磁场作业题参考答案

大学物理稳恒磁场作业题参考答案

8.3.7 设题8.3.7图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点 的磁感应强度 B 的大小是否相等?
(2)在闭合曲线 c 上各点的 B 是否为 零?为什么?
解:
B a
dl
8
0
b
B
dl
80
cB dl 0

Fab
b
Idl
B
I
(
b
dl
)
2 B
I ab B
a
a
方向⊥ ab 向上,大小 Fab BI ab
题 8.3.11 图
8.3.11 如题8.3.11图所示,在长直导线 AB 内通以电流 I1 =20A,在矩形线圈 CDEF 中通有电流 I 2 =10 A, AB 与线圈共面,且 CD , EF 都与 AB 平行.已知 a =9.0cm, b =20.0cm, d =1.0 cm,求:
(C)内外部磁感应强度 B 都与 r 成反比;
(D)内部磁感应强度 B 与 r 成反比,外部磁感应强度 B 与 r 成正比。
[答案:B]
(5)在匀强磁场中,有两个平面线圈,其面积 A1 = 2 A2,通有电流 I1 = 2 I2,它
们所受的最大磁力矩之比 M1 / M2 等于 [

(A) 1;
(B) 2;
(1)导线 AB 的磁场对矩形线圈每边所作用的力;
(2)矩形线圈所受合力和合力矩. 解:(1) FCD 方向垂直 CD 向左,大小
FCD
I2b
0 I1 2d
8.0 104
N
同理 FFE 方向垂直 FE 向右,大小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 8 章 稳恒磁场习题及答案6. 如图所示,AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半径为R 。

若通以电流 I ,求 O 点的磁感应强度。

解: O 点磁场由 AB 、 BC 、 CD 三部分电流产生,应用磁场叠加原理。

AB 在 O 点产生的磁感应强度为B 1 0BC 在 O 点产生的磁感应强度大小为B 20 I0 I3 0 I,方向垂直纸面向里4 R4 R12RCD 在 O 点产生的磁感应强度大小为B 3I(cos1cos 2 )4 r 00 I4R cos60 0(cos150cos180 )0 I3(1) ,方向垂直纸面向里2 R2故 B 0B 1 B 2B 30 I(13 ) ,方向垂直纸面向里22 R6A ,B 两点,并在很远处与电源相连。

已知7. 如图所示,两根导线沿半径方向引向铁环上的圆环的粗细均匀,求环中心 O 的磁感应强度。

解:圆心 O 点磁场由直电流A和 B及两段圆弧上电流 I 1 与 I 2 所产生,但 A 和 B 在 O 点产生的磁场为零。

且I 1 电阻R 2I 2电阻R 12I 1 产生的磁感应强度大小为B 10 I12)(4 R,方向垂直纸面向外I 2 产生的磁感应强度大小为B 2 0 I2,方向垂直纸面向里4 R所以,B 1 I 1 (2)1B 2I 2环中心 O 的磁感应强度为B 0B 1 B 28. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为 b 的任意点 P 的磁感应强度。

解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。

以 P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。

在载流平板上取 dIIdx , dI 在 P 点产生的磁感应a强度大小为dB0dIIdx ,方向垂直纸面向里2 x 2 axP 点的磁感应强度大小为BdB0 Ib adx 0 Iln ba2 abx2 ab方向垂直纸面向里。

9. 如图所示,真空中有两个点电荷A ,B , 分别带有电量q 和 q ,相距为 d 。

它们都以角速度 绕轴 OO ' 转动,轴 OO ' 与 AB 连线相互垂直,其交点为 C ,距 A 点为d。

求 C 点的磁感应强度。

3解:q 电荷运动形成电流大小为q qI 12TI 1 在 C 点产生的磁感应强度大小为0 I10 I13 0qB 12 d / 34 d2R方向沿 O O 方向同理, q 电荷运动形成电流的电流I 2 在 C 点产生的磁感应强度大小为0 I23 0 qB 28d2 2d / 3方向沿 OO 的反方向所以, C 点的磁感应强度大小为B B 13qB 28 d方向沿 OO 方向B 2.0 Wb · m -2 的均匀磁场,方向沿 x 轴正方向,如图所示。

试求:10. 已知磁感应强度大小(1) 通过图中 abcd 面的磁通量; (2) 通过图中 befc 面的磁通量; (3) 通过图中 aefd 面的磁通量。

解:(1) 通过 abcd 面积 S 1 的磁通量为1B S 1 2.0 0.3 0.4cos 0.24 Wb(2) 通过 befc 面积 S 2 的磁通量为2B S 2 0(3) 通过 aefd 面积 S 3 的磁通量为3B S 32 0.3 0.5 cos2 0.34 0.24 Wb0.55 r 的金属小圆环,在初始时刻与一半径为 R ( Rr )的金11.如图所示,真空中一半径为属大圆环共面且同心,在大圆环中通以恒定的电流 I ,如果小圆环以匀角速度绕其直径转动,求任一时刻 t 通过小圆环的磁通量 m 。

解:载流大圆环在圆心处产生的磁感应强度大小为B0 I,方向垂直纸面向外2R任一时刻 t 通过小圆环的磁通量为mB SB r 2 cos t12. 如图所示,电流 I 1 I 2I ,求沿回路 L 1 、 L 2 以及 L 3 的磁感应强度的环流。

解:由安培环路定理得B dl0 I10 IL 1B dl0 I20 IL 2B dl( I 1I 2 ) 0L 313. 一根很长的同轴电缆,由一导体圆柱( 半径为 a ) 和一同轴的导体圆管 ( 内、外半径分别为 b , c ) 构成,横截面如图所示。

使用时,电流I 从一导体流去,从另一导体流回,设电流都是均匀地分布在导体的横截面上。

求: (1) 导体圆柱内 ( r < a ) ; (2) 两导体之间 ( a < r < b ) ;( 3)导体 圆筒内 ( b < r < c ) 以及 (4) 电缆外 ( r > c ) 各点处磁感应强度的大小。

解:磁场分布具有轴对称性,在横截面内取同心圆为回路,应用安培环路定理,有B dlB 2 r0Ii(1) 当 ra 时, I iIr 2 ,所以a 2I r B2 a 2(2) 当 a rb 时, I iI ,所以B0 I2 rI(3) 当 brc 时, I iI( r 2 b 2 ) ,所以(c2b 2 )B0 I (c 2r 2 )2 r (c 2b 2)(4) 当 r c 时, I i0 ,所以B14. 有一长直导体圆管,内外半径分别为 R 1 和 R 2 ,如图所示,它所载的电流I 1 均匀分布在其横截面上。

导体旁边有一绝缘 “无限长” 直导线, 载有电流 I 2 ,且在中部绕了一个半径为 R 的圆圈。

设导体管的轴线与长直导线平行,相距为 d ,而且它们与导体圆圈共面,求圆心O 点处的磁感应强 度。

解:应用磁场叠加原理求解。

长直载流导体圆管产生的磁场分布具有轴对称性,在横截面内取圆心在轴线上、过 O 点的圆周为回路,应用安培环路定理,有B dlB 1 2 (R d )0I0 I1i所以,长直载流导体圆管在O 点产生的磁感强度大小为I 1I 2B 1,方向垂直纸面向里O 2 R dR电流 I 2 的长直导线在 O 点产生的磁感强度大小为I 1B 2I 2,方向垂直纸面向外I 2d2 R电流 I 2 的圆线圈在 O 点产生的磁感强度大小为B 30 I2,方向垂直纸面向外2R所以, O 点的磁感强度大小为B B 2B 3 B 10 [(1) I 2I 1 ]2RR d方向垂直纸面向外。

15. 在半径为 R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为 a , 且 a > r ,横截面如图所示。

现在电流 I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行。

求:(1) 圆柱轴线上的磁感应强度的大小;(2) 空心部分轴线上的磁感应强度的大小。

解:在空腔处补上沿导体管流动、在横截面均匀分布的电流I 2 和 I 2 ,应用补偿法求解。

电流 I 2 和I 2 在空间产生的磁场相互抵消,因此空间各点磁场可看作半径为R 、电流I 1 I I 2 均匀分布在横截面上的圆柱导体和半径为r 、电流I 2 均匀分布在横截面上的圆柱导体产生的磁场的叠加。

I 2 和 I 1 的大小为I 2I r 2 ) r 2Ir2( R 2R 2r 2I 1 I I 2 IR 2R2r 2I 1 和 I 2 产生的磁场分布具有轴对称性,应用安培环路定理求磁感应强度。

( 1)电流 I 1 在 O 点产生的 B 10 ,电流 I 2 在 O 点产生的磁感应强度满足B dlB 2 2 aI0 I2iB 20 I 2Ir 22 a2 a R 2 r 2圆柱轴线上的 O 点 B 的大小为Ir 2B 0B 1B 22 a( R2r 2)(2) 电流I 2 在 O 点产生的 B 20 ,电流 I 1 在 O 点产生的磁感应强度满足 B dlB 1 2 aII1 2a 2I 1a 2 iRB 10 Ia2 a R22 ( R 2r 2)空心部分轴线上O 点磁感应强度的大小为B 0B 1 B 20 Ia2 (R 2r 2)16. 通以电流 I 的导线 abcd 形状如图所示, abcd l ,bc 弧是半径为 R 的半圆周,置于磁感应强度为 B 的均匀磁场中, dFdlyB 的方向垂直纸面向里。

求此导线受到安培力的大小和方向。

解:应用安培定律求解。

ab 边受力大小为 x F ab BIl ,方向:向左cd 边受力大小为F cd BIl ,方向:向右对于 bc 边,建立图示坐标系。

在 bc 边上取电流元 Id l , dF BIdl BIRd根据对称性有 F xdF y dF sin BIR sin dF ydF y BIR sin d2BIR此导线受到安培力的大小为F 2BIR ,方向沿 y 轴正向。

17. 在长直导线 AB 内通以电流 I 1 ,在矩形线圈 CDEF 中通有电流 I 2 , AB 与线圈共面,且CD , EF 都与 AB 平行,线圈的尺寸及位置均如图所示。

求:导线 AB 的磁场对矩形线圈每边所作用的力及矩形线圈所受合力。

解: F CD 方向垂直 CD 向左,大小F CDI 2 b0 I12 d同理, F FE 方向垂直 FE 向右,大小 FFEI 2 b0 I12 (d a)F CF 方向垂直 CF 向上,大小为F CFd a 0 I 1 I2dr0 I 1 I2lndad2 r 2 dF ED 方向垂直 ED 向下,大小为FEDFCF线圈所受合力 FF CD F FE F CFF ED 方向向左,大小为FF CD F FE0bI 1 I 2 a2 d( da)18. 有圆线圈直径 8cm ,共 12 匝,通电流 5A ,将此线圈置于磁感应强度为 0.6T 的匀强磁场中。

试求:( 1)作用在线圈上的最大磁力矩;( 2)线圈法线方向与磁场方向夹角多大时,力矩是线圈上最大力矩的一半?(取最小角度)解: (1) P mNISR 2 NIM P m B sin 900R 2 NIB0.18N m(2)MP m B sin1P m B ,所以26R 的 1/4圆弧和相互垂直的二直线组成,通以电流I ,把它放在磁感应强度19. 一线圈由半径为大小为 B 的均匀磁场中 (磁感应强度 B 的方向如图所示 )。

求:(1)线圈平面与磁场垂直时,圆弧 ⌒所受的磁力;AB (2)线圈平面与磁场成 60°角时,线圈所受的磁力矩大小。

解:( 1)建立图示坐标系。

在圆弧上取电流元Id lydFBIdlBIRddF根据对称性有 F x 0dlxdF y dF cos BIR cos dF ydF yBIR4cos d2IRB4圆弧 ⌒F2BIR ,方向与直线 AB 垂直,且与 OB 的夹角为 45 0AB 所受的磁力的大小为;( 2)线圈的磁矩大小为P m IS1 R2 I4线圈所受的磁力矩大小为MP m B sin 3001 R2 IB820. 电子在 B7.0 10 3 T 的匀强磁场中作圆周运动,圆周半径r 3.0cm 。

相关文档
最新文档