天津五年高考数学理科第17题整理题目
高考理科数学第一轮复习测试题17 A级 基础达标演练
![高考理科数学第一轮复习测试题17 A级 基础达标演练](https://img.taocdn.com/s3/m/924283d876eeaeaad1f330cf.png)
A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分) 1.下列函数中,与函数y =1x有相同定义域的是( ). A .f (x )=ln x B .f (x )=1xC .f (x )=|x |D .f (x )=e x解析 由y =1x可得定义域是{x |x >0}.f (x )=ln x 的定义域是{x |x >0};f (x )=1x 的定义域是{x |x ≠0};f (x )=|x |的定义域是x ∈R ;f (x )=e x 定义域是x ∈R .故选A. 答案 A[来源:Z+xx+]2.(★)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).解析 (筛选法)根据函数的定义,观察得出选项B. 答案 B【点评】 本题解题利用的是筛选法,即根据题设条件筛选出正确选项,这种方法在选择题中经常应用.3.(2010·陕西) 已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12B.45 C .2 D .9[来源:学*科*网] 解析 f (f (0))=f (2)=4+2a 由已知4a =4+2a ,解得a =2. 答案 C4.已知函数f (x )的图象是两条线段(如图,不含端点),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=( ).A .-13B.13 C .-23D.23解析 由图象知,f (x )=⎩⎪⎨⎪⎧x +1 (-1<x <0),x -1 (0<x <1).∴f ⎝⎛⎫13=13-1=-23, ∴f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫-23=-23+1=13. 答案 B5.(2011·天津)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-x 2),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝⎛⎭⎫-1,32 B .(-∞,-2]∪⎝⎛⎭⎫-1,-34[来源:] C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞ D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2;当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎨⎧x 2-2 ⎝⎛⎭⎫-1≤x ≤32,x -x 2⎝⎛⎭⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B[来源:学.科.网Z.X.X.K]二、填空题(每小题4分,共12分)6.设函数f (x )=|2x -1|+x +3,则f (-2)=________;若f (x )≤5,则x 的取值范围是________. 解析 f (-2)=|2×(-2)-1|+(-2)+3=6,|2x -1|+x +3≤5⇔|2x -1|≤2-x ⇔x -2≤2x -1≤2-x ⇔⎩⎪⎨⎪⎧2x -1≥x -2,2x -1≤2-x ,∴-1≤x ≤1.答案 6 -1≤x ≤17.已知函数f (x )、g (x )分别由下表给出:则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 解析 g (1)=3 f [g (1)]=1 g [f (1)]=3g (2)=2 f [g (2)]=3 g [f (2)]=1 g (3)=1 f [g (3)]=1 g [f (3)]=3 因此满足f (g (x ))>g (f (x ))的x =2. 答案 1 28.若函数f (x )= 的定义域为R ,则a 的取值范围为________. 解析 ∵y = 的定义域为R , ∴对一切x ∈R 都有2x 2+2ax -a ≥1恒成立,即x 2+2ax -a ≥0恒成立.∴Δ≤0成立,即4a 2+4a ≤0, ∴-1≤a ≤0. 答案 [-1,0] 三、解答题(共23分)9.(11分)求下列函数的定义域: (1)f (x )=lg (4-x )x -3;(2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lgx +1x -1+19-x. 解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. (3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).10.(12分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )= 1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >32,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1-2x -1≥0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x -1≥0={x |x ≥3,或x <1};(2)M ∩N ={x |x ≥3},M ∪N =⎩⎨⎧⎭⎬⎫x ⎪⎪x <1或x >32. B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·济南模拟)如下图,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是().解析 据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D 选项符合条件. 答案 D2.(★)(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( ).A .75,25B .75,16C .60,25D .60,16解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c =60,A =16代入解析式检验知正确.故选D. 答案 D【点评】 解决分段函数的关键在于“对号入座”,解出结果后代入对应解析式检验是否正确.二、填空题(每小题4分,共8分)3.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________.解析 据题意可得f [f (x )]=11x +1+1,若使函数有意义只需⎩⎪⎨⎪⎧x +1≠0,1x +1+1≠0,解得x ≠-1且x ≠-2,故函数的定义域为{x |x ≠-1且x ≠-2}. 答案 {x |x ≠-1,且x ≠-2}4.(2011·四川)函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题: ①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确. 答案 ②③三、解答题(共22分)5.(10分)已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1, x >0,2-x , x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式. 解 (1)g (2)=1,f [g (2)]=f (1)=0. f (2)=3,g [f (2)]=g (3)=2. (2)当x >0时,f [g (x )]=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f [g (x )]=f (2-x )=(2-x )2-1=x 2-4x +3.即f [g (x )]=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x <-1,或x >1,3-x 2,-1<x <1. 6.(12分)(2012·唐山一中月考)已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值为1,且f (x )+g (x )为奇函数,求函数f (x )的表达式. 解 设f (x )=ax 2+bx +c (a ≠0), 则f (x )+g (x )=(a -1)x 2+bx +c -3,又f (x )+g (x )为奇函数,∴a =1,c =3.[来源:学科网] ∴f (x )=x 2+bx +3,对称轴x =-b2.当-b2≥2,即b ≤-4时,f (x )在[-1,2]上为减函数,∴f (x )的最小值为f (2)=4+2b +3=1. ∴b =-3.∴此时无解.当-1<-b2<2,即-4<b <2时,f (x )min =f ⎝⎛⎭⎫-b 2=3-b24=1,∴b =±2 2. ∴b =-22,此时f (x )=x 2-22x +3,当-b2≤-1,即b ≥2时,f (x )在[-1,2]上为增函数,∴f (x )的最小值为f (-1)=4-b =1. ∴b =3.∴f (x )=x 2+3x +3.综上所述,f (x )=x 2-22x +3,或f (x )=x 2+3x +3.。
2018-2022五年全国高考数学立体几何真题分类汇编(试卷版)
![2018-2022五年全国高考数学立体几何真题分类汇编(试卷版)](https://img.taocdn.com/s3/m/1ef57939a31614791711cc7931b765ce05087aa7.png)
2018-2022五年全国各省份高考数学真题分类汇编专题21立体几何解答题一、解答题1.(2022高考北京卷·第17题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.2.(2022年高考全国甲卷数学(理)·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.3.(2022年浙江省高考数学试题·第19题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.6.(2022年高考全国乙卷数学(理)·第18题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.-中,底面ABCD是平行四边7.(2021年高考浙江卷·第19题)如图,在四棱锥P ABCDBC PC的中点,形,120,1,4,∠=︒===M,N分别为,ABC AB BC PA⊥⊥.PD DC PM MD,(1)证明:AB PM⊥;(2)求直线AN与平面PDM所成角的正弦值.-中,底面ABCD是正方形,若8.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD===.AD QD QA QC2,3(1)证明:平面QAD⊥平面ABCD;--的平面角的余弦值.(2)求二面角B QD A9.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.10.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.11.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?12.(2021高考北京·第17题)如图:在正方体1111ABCD A B C D -中,E 为11A D 中点,11B C 与平面CDE 交于点F.(1)求证:F 为11B C 的中点;(2)点M 是棱11A B 上一点,且二面角M FC E --的余弦值为53,求111A M A B 的值.13.(2020年高考课标Ⅰ卷理科·第18题)如图,D为圆锥的顶点,O是圆锥底面的圆心,=.ABC是底面的内接正三角形,P为DO上一点,AE为底面直径,AE ADPO=.(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E14.(2020年高考课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.15.(2020年高考课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.16.(2020年新高考全国Ⅰ卷(山东)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.17.(2020年新高考全国卷Ⅱ数学(海南)·第20题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB,求PB与平面QCD所成角的正弦值.18.(2020年浙江省高考数学试卷·第19题)如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.19.(2020天津高考·第17题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.20.(2020江苏高考·第24题)在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.21.(2020江苏高考·第15题)在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,,E F分别是1,AC B C 的中点.(1)求证:EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .22.(2020北京高考·第16题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.23.(2019年高考浙江·第19题)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.24.(2019年高考天津理·第17题)如图,AE ⊥平面ABCD ,//,//CF AE AD BC ,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.25.(2019年高考上海·第17题)如图,在长方体1111ABCD A BC D -中,M 为1BB 上一点,已知2BM =,4AD =,3CD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角;(2)求点A 到平面1AMC 的距离.26.(2019年高考全国Ⅲ理·第19题)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.27.(2019年高考全国Ⅱ理·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.28.(2019年高考全国Ⅰ理·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.29.(2019年高考江苏·第16题)如图,在直三棱柱111ABC A B C -中,,D E 分别为BC ,AC 的中点,AB BC =.求证:(1)11A B ∥平面1DEC ;(2)1BE C E ⊥.30.(2019年高考北京理·第16题)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.31.(2018年高考数学江苏卷·第25题)(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.32.(2018年高考数学江苏卷·第15题)(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.33.(2018年高考数学浙江卷·第19题)(本题满分15分)如图,已知多面体111ABCA B C ,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成角的正弦值.34.(2018年高考数学上海·第17题)(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2,(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA OB 、是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.35.(2018年高考数学天津(理)·第17题)(本小题满分13分)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG ,且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.36.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.37.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.PAB M CO 38.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.39.(2018年高考数学北京(理)·第16题)(本小题14分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,,,,D E F G 分别为1111,,,AA AC A C BB 的中点,AB BC ==,12AC AA ==.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角1B CD C --的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.。
2017年高考数学天津理试题及解析
![2017年高考数学天津理试题及解析](https://img.taocdn.com/s3/m/5eb22260168884868762d6c1.png)
2017年高考数学天津理1.(2017年天津理)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x≤5},则(A ∪B)∩C= ( ) A.{2}B.{1,2,4}C.{1,2,4,6}D.{ x ∈R|-1≤x≤5}1.B 【解析】 (A ∪B)∩C={1,2,4,6}∩[1,5]={1,2,4}.故选B .2. (2017年天津理)设变量x,y 满足约束条件⎩⎨⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y 的最大值为( ) A. 23B.1C. 32D.32. D 【解析】画出不等式组表示的平面区域(图略),则可行域为四边形ABCD 及其内部,其中A (0,1),B (0,3),C (-32,3),D (-23,43),易得直线y=-x+z 过点B (0,3)时,z=x+y 取最大值为3.故选D .3. (2017年天津理)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为( )A.0B.1C.2D.33. C 【解析】初始N=19,进入循环后N 的值依次为N=18,N=6,N=2,结束循环,输出N=2.故选C .4. (2017年天津理)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4. A 【解析】|θ-π12|<π12⇔0<θ<12,但θ=0时,sin θ=0<12,不满足|θ-π12|<π12,所以“|θ-π12|<π12”是“sin θ<12”的充分不必要条件.故选A.5. (2017年天津理)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A. x 24-y 24=1B. x 28-y 28=1C. x 24-y 28=1D. x 28-y 24=15. D 【解析】由题意得a=b ,4-00-(-c )=1⇒c=4,a=b=22⇒x 28-y 28=1.故选B .6. (2017年天津理)已知奇函数f(x)在R 上是增函数.g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为( ) A.a <b <cB.c <b <aC.b <a <cD.b <c <a6. C 【解析】因为f (x )是奇函数且在R 上是增函数,所以当x >0时,f (x )>0,从而g (x )=xf (x )是R 上的偶函数,且在[0,+∞)上是增函数,a=g(-log 25.1)= g(log 25.1),20.8<2,又4<5.1<8,则2<log 25.1<3,所以0<20.8<log 25.1<3,g (20.8)<g (log 25.1)<g (3),所以b <a <c.故选C.7. (2017年天津理)设函数f(x)=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π.若f(5π8)=2,f(11π8)=0,且f(x)的最小正周期大于2π,则( ) A. ω=23,φ=π12B. ω=23,φ=-11π12 C. ω=13,φ=-11π24D. ω=13,φ=7π247. A 【解析】由题意得⎩⎨⎧5ωπ8+φ=2k 1π+π2,11ωπ8+φ=k 2π,其中k 1,k 2∈Z ,所以ω=43(k 2-2k 1)-23,又T=2πω>2π,所以0<ω<1,所以ω=23,11212k ϕ=π+π,由|φ|<π得φ=π12,故选A .8. (2017年天津理)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x+3,x≤1,x+2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-4716,2]B.[-4716,3916]C. [-23,2]D. [-23,3916]8. A 【解析】不等式f (x )≥|x 2+a|可化为-f (x )≤x2+a≤f (x ),(*)当x≤1时,(*)式即-x 2+x-3≤x 2+a≤x 2-x+3,即-x 2+x 2-3≤a≤x 2-32x+3,又-x 2+x 2-3=-(x-14)2-4716≤-4716(当x=14时取等号),x 2-32+3=(x-34)2+3916≥3916(当x=34时取等号),所以-4716≤a≤3916,当x >1时,(*)式为-x-2x ≤x 2+a≤x+2x ,-32x-2x ≤a≤x 2+2x .又-32x-2x =-(32x+2x )≤23(当x=233时取等号),x 2+2x ≥2x 2·2x =2(当x=2时取等号),所以-23≤a≤2.综上,-4716≤a≤2.故选A .9. (2017年天津理)已知a ∈R ,i 为虚数单位,若a-i2+i 为实数,则a 的值为___________.9. -2 【解析】a-i 2+i =(a-i)(2-i)(2+i)(2-i)=(2a-1)-(a+2)i 5=2a-15-a+25i 为实数,则a+25=0,a=-2.10. (2017年天津理)已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.10. 9π2 【解析】设正方体的边长为a ,则6a 2=18⇒a=3,其外接球直径为2R=3a=3,故这个球的体积V=43πR 3=43π×278=9π2.11. (2017年天津理)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为___________.11. 1 【解析】直线为23x+2y+1=0,圆为x 2+(y-1)2=1,因为d=34<1,所以有两个交点.12. (2017年天津理)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为___________.12. 4 【解析】a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab+1ab≥24ab·1ab=4,前一个等号成立的条件是a 2=2b 2,后一个等号成立的条件是ab=12,两个等号可以同时成立,当且仅当a 2=22,b 2=24时取等号.13. (2017年天津理)在△ABC 中,∠A=60°,AB=3,AC=2.若→BD =2→DC ,→AE =λ→AC -→AB (λ∈R ),且→AD ·→AE=-4,则λ的值为___________. 13. 311 【解析】由题可得→AB ·→AC =3×2×cos 60°=3,→AD =13→AB +23→AC ,则→AD ·→AE =(13→AB +23→AC )(λ→AC -→AB )=λ3×3+2λ3×4-13×9-23×3=-4 λ=311.14. (2017年天津理) 用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)14. 1 080 【解析】A 4 5+C 1 4C 3 5A 44=1 080.15. (2017年天津理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a=5,c=6,sin B=35.(1)求b 和sin A 的值; (2)求sin (2A+π4)的值.15. 解:(1)在△ABC 中,因为a >b ,故由sin B=35,可得cos B=45. 由已知及余弦定理,有b2=a2+c2-2accos B=13,所以b=13. 由正弦定理a sin A =b sin B ,得sin A=asin B b =31313. 所以,b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A=21313,所以sin 2A=2sin Acos A=1213,cos 2A=1-2sin 2A=-513. 故sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=7226.16. (2017年天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 16.解:(1)随机变量X 的所有可能取值为0,1,2,3. P (X=0)=(1-12)×(1-13)×(1-14)=14,P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124, P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14, P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0)=P (Y=0)P (Z=1)+P (Y=1)P (Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.17. (2017年天津理)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC=90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.17.解:如图,以A 为原点,分别以→AB ,→AC ,→AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)易得→DE =(0,2,0),→DB =(2,0,2-). 设n =(x,y,z)为平面BDE 的法向量,则⎩⎨⎧n ·→DE =0,n ·→DB =0,即⎩⎨⎧2y=0,2x-2z=0. 不妨设z=1,可得n =(1,0,1).又→MN =(1,2,1-),可得→MN ·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x ,y ,z )为平面EMN 的一个法向量,则⎩⎨⎧n 2·→EM =0,n 2·→MN =0,因为→EM =(0,-2,-1),→MN =(1,2,-1),所以⎩⎨⎧-2y-z=0,x+2y-z=0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-421,于是sin<n 1,n 2>=10521.所以,二面角C-EM-N 的正弦值为10521.(3)依题意,设AH =h (0≤h≤4),则H (0,0,h ),进而可得→NH =(-1,-2,h ),→BE =(-2,2,2).由已知,得|cos<→NH ,→BE >=→NH ·→BE |→NH ||→BE |=|2h-2|h 2+5×23=721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.18. (2017年天津理)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0. 又因为q >0,解得q=2.所以b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8,① 由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n , 故T n =2×4+5×42+8×43+…+(3n-1)×4n , 4T n =2×42+5×43+8×44+…+(3n-1)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n)1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8,得T n =3n-23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n-23×4n+1+83.19. (2017年天津理)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 19.解:(1)设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34. 所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x . (2)设直线AP 的方程为x=my+1(m≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m ),故Q (-1,2m ). 将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0, 解得y=0或y=-6m3m 2+4.由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y-2m )=0, 令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0),所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为62,故12×6m 23m 2+2×2|m|=62, 整理得3m 2-26|m|+2=0,解得|m|=63,所以m=±63.所以,直线AP 的方程为3x+6y-3=0或3x-6y-3=0.20. (2017年天津理)设a ∈Z ,已知定义在R 上的函数f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为f(x)的导函数. (1)求g(x)的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p,q ,且p q ∈[1,x 0)∪(x 0,2]满足|pq-x 0|≥1Aq 4.20.解:(1)由f(x)=2x 4+3x 3-3x 2-6x+a ,可得g(x)=f′(x)=8x 3+9x 2-6x-6, 进而可得g′(x)=24x 2+18x-6.令g′(x)=0,解得x=-1或x=14.当x 变化时,g′(x), g(x)的变化情况如下表:`所以,g(x)的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1, 14). (2)由h(x)=g(x)(m-x 0)-f(m),得h(m)=g(m)(m-x 0)-f(m), h(x 0)=g(x 0)(m-x 0)-f(m).令函数H 1(x)=g(x)(x-x 0)-f(x),则H 1′(x)=g′(x)(x -x 0).由(1)知,当x ∈[1,2]时,g′(x)>0,故当x ∈[1,x 0]时,H 1′(x)<0,H 1(x)单调递减; 当x ∈(x 0,2]时,H 1′(x)>0,H 1(x)单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x)>H 1(x 0)=-f(x 0)=0,可得H 1(m)>0,即h(m)>0. 令函数H 2(x)=g(x 0)(x-x 0)-f(x),则H 2′(x)= g(x 0)-g(x).由(1)知,g(x)在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x)>0,H 2(x)单调递增; 当x ∈(x 0,2]时,H 2′(x)<0,H 2(x)单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x)<H 2(x 0)=0,可得H 2(m)<0,即h (x 0)<0. 所以,h (m )h (x 0)<0.(3)对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m=pq ,函数h(x)=g(x)(m-x 0)-f(m).由(2)知,当m ∈[1,x 0)时,h (x )的区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点,所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h(x 1)=g(x 1)(p q -x 0)-f(pq )=0.由(1)知g(x)在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2), 于是|pq -x 0|=|f (p q )g (x 1)|≥|f (pq )|g (2)=|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g(x)>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而p q ≠x 0,故f (pq )≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1,所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。
2017年高考真题天津卷理科数学(解析版附后)
![2017年高考真题天津卷理科数学(解析版附后)](https://img.taocdn.com/s3/m/6f9042403b3567ec102d8af2.png)
2017年高考真题天津卷理科数学第Ⅰ卷参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16- (B )4739[,]1616-(C)[- (D)39[]16-所以2a -≤≤, 综上47216a -≤≤.故选A . 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2015年高考理科数学天津卷-答案
![2015年高考理科数学天津卷-答案](https://img.taocdn.com/s3/m/0fea6066482fb4daa58d4bf3.png)
2015年普通高等学校招生全国统一考试(天津卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】{2,5,8}UB =,所以{2,5}UAB=,故选A .【提示】由全集U 及B ,求出B 的补集,找出A 与B 补集的交集即可. 【考点】集合的运算 2.【答案】C【解析】不等式组2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域如图所示,当6z x y =+所表示直线经过点(0,3)B 时,z 有最大值18.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【考点】线性规划的最值求解问题第2题图 3.【答案】B【解析】模拟法:输入20S =,1i =;21i =⨯,20218S =-=,25>不成立;224i =⨯=,18414S =-=,45>不成立;248i =⨯=,1486S =-=,85>成立;输出6,故选B .【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当8i =时满足条件5i >,退出循环,输出S 的值为6. 【考点】程序框图. 4.【答案】A【解析】|2|12113x x x -<⇔-<-<⇔<<1;AM MB CM MD =,CN NE AN NB =,又因为AM MB AN NB =,所以CN NE CM MD =,23CM MD CN ⨯=,故选A . 【提示】由相交弦定理求出AM ,再利用相交弦定理求NE418【解析】19DF DC λ=,ABC ∠,12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-== AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,22191919()1181818AE AF AB BC AB BC AB BC ABBC λλλλλλλλλ+++⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭1818λλ117218λλ+=时,AE AF 有最小值,最小值为(Ⅰ)证明:依题意,可得(0,0,1)n =为平面的一个法向量,0,MN ⎛=- 由此可得,0MN n =, 平面ABCD .(Ⅱ)1(1,AD =-,(2,0,0)AC =,设1(,n x y =11100n AD n AC ⎧=⎪⎨=⎪⎩,即,可得1(0,1,1)n =设2(,,)n x y z =为平面21200n AB n AC ⎧=⎪⎨=⎪⎩, 又1(0,1,2)AB =,可得2(0,n =-12121210,10||||n n n n n n ==-123,10n n =, 10(Ⅲ)依题意,可设111AE A B λ=,其中从而(1,NE =-,又(0,0,1)n =为平面,||||(1)NE n NE n NE n ==-72λ=-,法向量与MN 的数量积为(Ⅲ)通过设111AE A B λ=,利用平面的一个法向量与NE 的夹角的余弦值为122n n -⎧⎪,为奇数22,33⎫⎛⎪ ⎪ ⎭⎝(Ⅰ)由已知有2213c a =的斜率为(0)k k >,则直线22,33⎫⎛⎪ ⎪ ⎭⎝23c ,2b =12 / 12。
2017天津高考理科数学试卷含答案
![2017天津高考理科数学试卷含答案](https://img.taocdn.com/s3/m/cf29d6f3f5335a8102d2209e.png)
2017天津理【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致.与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点.整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低.纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查.对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分.试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性.试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度.在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力.第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高.第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养.2016年天津理科数学试卷继续稳字当头,平凡问题考查真功夫,没有出现任何偏题怪题,有利于学生考出好成绩,也对中学数学教学回归教材、扎实基础有很好的导向作用.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={1,2,6},B ={2,4},C ={x ∈R|﹣1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,5} D .{x ∈R|﹣1≤x ≤5}【解析】因A ={1,2,6},B ={2,4},故A ∪B ={1,2,4,6},又C ={x ∈R|﹣1≤x ≤5},故(A ∪B )∩C ={1,2,4}.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A .23B .1C .32D .3【解】作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y=-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3,选项D 符合3.阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .3【解析】依次为N =8,N =7,N =6,N =2,输出N =2,选C .4.设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】法一:由|θ-π12|<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“ |θ-π12|<π12”.故选A .法二:|θ-π12|<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,|-π6-π12|=π4>π12.故选A .5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一渐近线,则双曲线的方程为( )A .x 24-y 24=1B .x 28-y 28=1C .x 24-y 28=1D .x 28-y 24=1【解析】由e =2知a =b ,且c =2a .故双曲线渐近线方程为y =±x .又k PF =4-00+c =4c=1,故c =4,则a 2=b 2=c 22=8.故双曲线方程为x 28-y 28=1. 6.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a【解一】易知g (x )=xf (x )在R 上为偶函数,因奇函数f (x )在R 上是增函数,且f (0)=0.故g (x )在(0,+∞)上是增函数.又3>log 25.1>2>20.8,且a =g (-log 25.1)=g (log 25.1),故g (3)>g (log 25.1)>g (20.8),则c >a >b .法二 (特殊化)取f (x )=x ,则g (x )=x 2为偶函数且在(0,+∞)上单调递增,又3>log 25.1>20.8,从而可得c >a >b .7.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24【解析】因f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,故f (x )的最小正周期为4⎝⎛⎭⎫11π8-5π8=3π,故ω=2π3π=23,故f (x )=2sin ⎝⎛⎭⎫23x +φ.故2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z ,又|φ|<π,故取k =0,得φ=π12.8.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a |在R 上恒成立,则a 的取值范围是( )A .[-4716,2] B .⎣⎡⎦⎤-4716,3916 C .[-23,2] D .⎣⎡⎦⎤-23,3916 【解析】根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥|x 2+a |恒成立,结合图象,只需x 2-x +3≥-(x 2+a ),即x 2-x2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=(-12)2-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥|x2+a |恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a .又x 2+2x ≥2,当且仅当x 2=2x ,即x =2时等号成立,故a ≤2.综上,a 的取值范围是[-4716,2].二. 填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为 .【解析】a -i 2+i =(a -i )(2-i )(2+i )(2-i )=(2a -1)-(a +2)i 5=2a -15-a +25i 为实数,则a +25=0,a=-2.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【解析】设正方形的边长为a ,则6a 2=18,即a 2=3,故外接球直径2R =3a =3,故V =43πR 3=43π╳(32)3=92π.11.在极坐标系中,直线4ρcos(θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为_________.【解析】直线为23x +2y +1=0,圆为x 2+(y -1)2=1,因d =34<1,故有两个交点.12.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________【解】因a ,b ∈R ,ab >0,故a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.13.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为_____________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=(13AB →+23AC →)·(λAC →-AB →)=λ-23AB →·AC→-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【解析】当不含偶数时,有A 45=120个,当含有一个偶数时,有C 14C 35A 44=960个,故这样的四位数共有1 080个.三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin(2A +π4)的值.【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,故b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.故,b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,故sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin(2A +π4)=sin 2A cos π4+cos 2A sin π4=7226. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【解析】(1)随机变量X 的所有可能取值为0,1,2,3, P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.故,随机变量X 的分布列为X 0 1 2 3 P14112414124随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.故,这2辆车共遇到1个红灯的概率为1148. 17.(本小题满分13分)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 解 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.依题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明 DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量,则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,故MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧n 2·EM ―→=0,n 2·MN ―→=0,因为EM →=(0,-2,-1),MN →=(1,2,-1),故⎩⎪⎨⎪⎧-2y 1-z 1=0,x 1+2y 1-z 1=0.不妨设y 1=1,可得n 2=(-4,1,-2).因此cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-421,于是sin 〈n 1,n 2〉=10521.故二面角C -EM -N 的正弦值为10521. (3)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ), BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH ,→·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85,或h =12.故,线段AH 的长为85或12.18.(本小题满分13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,故q 2+q -6=0.又q >0,解得q =2.故,b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8①.由S 11=11b 4,可得a 1+5d =16②,联立①②,解得a 1=1,d =3,由此可得a n =3n -2.故,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.故,数列{a 2n b 2n-1}的前n 项和为3n -23×4n +1+83.(19)(本小题满分14分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 【解析】(1)设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.故,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立得,点P ⎝⎛⎭⎫-1,-2m ,故Q ⎝⎛⎭⎫-1,2m .将x =my +1与x 2+4y23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0,或y =-6m 3m 2+4.由点B 异于点A ,可得点B ⎝ ⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4.由Q ⎝⎛⎭⎫-1,2m 得,直线BQ 的方程为⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝⎛⎭⎪⎫-3m 2+43m 2+4+1⎝⎛⎭⎫y -2m =0,令y =0得,x =2-3m 23m 2+2,故D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.故|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又△APD 的面积为62,故12×6m 23m 2+2×2|m |=62,整理得3m 2-26|m |+2=0,解得|m |=63,故m =±63. 故,直线AP 的方程为3x +6y -3=0,或3x -6y -3=0.(20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.⑴.求g (x )的单调区间;⑵.设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m ) h (x 0)<0;⑶.求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且pq∈[1,x 0)∪(x 0,2],满足|p q -x 0|≥1Aq4. 【解析】⑴.由f (x )=2x 4+3x 3-3x 2-6x +a ,可得g (x )=f ′(x )=8x 3+9x 2-6x -6,进而可得g ′(x )=24x 2+18x -6.令g ′(x )=0,解得x =-1或x =14.当x 变化时,g ′(x ),g (x )的变化情况如下表:故g (x )的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1,14).⑵.证明:由h (x )=g (x )(m -x 0)-f (m ),得h (m )=g (m )(m -x 0)-f (m ),h (x 0)=g (x 0)(m -x 0)-f (m ).令函数H 1(x )=g (x )(x -x 0)-f (x ),则H 1′(x )=g ′(x )(x -x 0).由(1)知,当x ∈[1,2]时,g ′(x )>0,故当x ∈[1,x 0)时,H 1′(x )<0,H 1(x )单调递减;当x ∈(x 0,2]时,H 1′(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=-f (x 0)=0,可得H 1(m )>0,即h (m )>0.令函数H 2(x )=g (x 0)(x -x 0)-f (x ),则H 2′(x )=g (x 0)-g (x ).由(1)知g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x )>0,H 2(x )单调递增;当x ∈(x 0,2]时,H 2′(x )<0,H 2(x )单调递减.因此当x ∈[1,x 0)∪(x 0,2]时,H 2(x )<H 2(x 0)=0,可得H 2(m )<0,即h (x 0)<0.故h (m )h (x 0)<0.⑶.证明:对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],令m =p q ,函数h (x )=g (x )(m -x 0)-f (m ).由(2)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.故h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(p q -x 0)-f (pq)=0.由(1)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2),于是|p q -x 0|=⎪⎪⎪⎪⎪⎪⎪⎪f⎝⎛⎭⎫p q g (x 1)≥⎪⎪⎪⎪f ⎝⎛⎭⎫p q g (2)=|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,故f (x )在区间[1,2]上除x 0外没有其他的零点,而p q ≠x 0,故f (pq )≠0.又p ,q ,a 均为整数,故|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|≥1.故|p q -x 0|≥1g (2)q 4.故只要取A =g (2),就有|p q -x 0|≥1Aq4.在极坐标系中,已知直线4ρcos ⎝⎛⎭⎫θ-π6+1=0与圆ρ=2sin θ,试判定直线与圆的位置关系. 解 由4ρcos ⎝⎛⎭⎫θ-π6+1=0得23ρcos θ+2ρsin θ+1=0,故直线的直角坐标方程为23x +2y +1=0.由ρ=2sin θ得ρ2=2ρsin θ,故圆的直角坐标方程为x 2+y 2=2y ,则x 2+(y -1)2=1.圆心为(0,1),半径为r =1.∵圆心到直线23x +2y +1=0的距离d =|2×1+1|(23)2+22=34<1,∴直线与圆相交,有两个公共点.。
2017年天津市高考数学试卷(理科)详细解析版
![2017年天津市高考数学试卷(理科)详细解析版](https://img.taocdn.com/s3/m/74b19160b7360b4c2e3f64c6.png)
2017 年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合 A={ 1,2, 6} ,B={ 2,4} ,C={ x∈R| ﹣ 1≤ x≤5} ,则( A∪ B)∩C=()A.{ 2} B.{ 1, 2,4} C.{ 1, 2, 4, 5}D. { x∈R| ﹣1≤x≤ 5}2.(5 分)设变量 x,y 满足约束条件,则目标函数z=x+y 的最大值为()A.B.1 C.D.33.(5 分)阅读右面的程序框图,运行相应的程序,若输入N 的值为 24,则输出 N的值为()A.0 B.1C.2 D.34.(5 分)设θ∈R,则“|θ﹣| <”是“ sin<θ”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.( 5 分)已知双曲线﹣=1(a>0,b> 0)的左焦点为 F,离心率为.若经过 F 和 P( 0, 4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=16.( 5 分)已知奇函数 f(x)在 R 上是增函数, g(x)=xf(x).若 a=g(﹣ log25.1),b=g( 20.8),c=g(3),则 a, b, c 的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a7.(5 分)设函数 f(x)=2sin(ωx+φ),x∈R,其中ω>0,| φ| < x.若 f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5 分)已知函数 f( x)=,设a∈R,若关于x的不等式f(x)≥ | +a| 在 R 上恒成立,则 a 的取值范围是()A.[ ﹣,2]B.[ ﹣,]C.[ ﹣2,2] D.[﹣2,]二 .填空题:本大题共 6 小题,每小题 5 分,共 30 分.9.(5 分)已知 a∈R,i 为虚数单位,若为实数,则a的值为.10.( 5 分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为.11.( 5 分)在极坐标系中,直线4ρ cos(θ﹣)+1=0与圆ρ =2sin的θ公共点的个数为.12.( 5 分)若 a,b∈ R,ab>0,则的最小值为.13.( 5 分)在△ ABC 中,∠ A=60°, AB=3, AC=2.若=2,=λ ﹣(λ14.( 5 分)用数字1, 2, 3, 4, 5, 6, 7, 8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)三.解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤.15.( 13 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a>b,a=5, c=6, sinB= .(Ⅰ)求 b 和 sinA 的值;(Ⅱ)求 sin( 2A+)的值.16.(13 分)从甲地到乙地要经过3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇到 1 个红灯的概率.17.( 13 分)如图,在三棱锥 P﹣ABC中, PA⊥底面 ABC,∠ BAC=90°.点 D,E, N 分别为棱 PA,PC,BC的中点, M 是线段 AD 的中点, PA=AC=4,AB=2.(Ⅰ)求证: MN ∥平面 BDE;(Ⅱ)求二面角C﹣ EM﹣N 的正弦值;(Ⅲ)已知点 H 在棱 PA上,且直线 NH 与直线 BE所成角的余弦值为,求线段 AH 的长.18.( 13 分)已知 { a n} 为等差数列,前 n 项和为 S n(n∈N+),{ b n} 是首项为 2 的等比数列,且公比大于 0, b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求 { a n} 和{ b n} 的通项公式;+(Ⅱ)求数列 { a2n b2n﹣1} 的前 n 项和( n∈ N ).19.(14 分)设椭圆+ =1(a>b>0)的左焦点为 F,右顶点为 A,离心率为.已知 A 是抛物线 y2(>)的焦点,F 到抛物线的准线l的距离为.=2px p0(I)求椭圆的方程和抛物线的方程;(II)设 l 上两点 P,Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B(B 异于 A),直线 BQ 与 x 轴相交于点 D.若△ APD的面积为,求直线AP的方程.20.(14 分)设 a∈Z,已知定义在 R 上的函数 f(x)=2x4+3x3﹣3x2﹣6x+a 在区间(1, 2)内有一个零点 x0,g(x)为 f(x)的导函数.(Ⅰ)求 g( x)的单调区间;(Ⅱ)设 m∈[ 1,x0)∪(x0,2] ,函数 h(x)=g(x)(m﹣x0)﹣ f(m ),求证:h(m) h( x0)< 0;(Ⅲ)求证:存在大于0 的常数 A,使得对于任意的正整数p,q,且∈ [ 1,x0)∪( x0,2] ,满足 |﹣x0|≥.2017 年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5 分)设集合 A={ 1,2, 6}, B={ 2, 4}, C={ x∈ R|﹣1≤x≤ 5},则( A∪B)∩C=()A.{ 2} B.{ 1, 2, 4}C.{ 1, 2, 4, 5}D.{ x∈R|﹣1≤x≤5}【分析】由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵ A={ 1, 2,6} ,B={ 2,4} ,∴ A∪B={ 1,2,4,6} ,又 C={ x∈ R| ﹣1≤x≤5} ,∴( A∪ B)∩ C={ 1,2,4} .故选:B.【点评】本题考查交、并、补集的混合运算,是基础题.2.(5 分)设变量 x, y 满足约束条件,则目标函数z=x+y 的最大值为()A.B.1 C.D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:变量 x,y 满足约束条件的可行域如图:目标函数 z=x+y 结果可行域的 A 点时,目标函数取得最大值,由可得 A( 0, 3),目标函数 z=x+y 的最大值为: 3.故选:D.【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用.3.(5 分)阅读上面的程序框图,运行相应的程序,若输入N 的值为 24,则输出 N 的值为()A.0 B.1 C.2D. 3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次 N=24,能被 3 整除, N=≤3 不成立,第二次 N=8,8 不能被 3 整除, N=8﹣ 1=7,N=7≤3 不成立,第三次 N=7,不能被 3 整除, N=7﹣ 1=6,N==2≤3 成立,输出 N=2,故选 C【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.4.(5 分)设θ∈R,则“|θ﹣| <”是“ sin<θ”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解: | θ﹣| < ?﹣<θ﹣<? 0<θ<,sin θ<? ﹣+2kπ<θ<+2kπ,k∈Z,则( 0,)? [﹣+2kπ, +2kπ] ,k∈ Z,可得“|θ﹣| <”是“sin<θ”的充分不必要条件.故选: A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.5.( 5 分)已知双曲线﹣=1(a>0,b> 0)的左焦点为 F,离心率为.若经过 F 和 P( 0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1【解答】解:设双曲线的左焦点F(﹣ c,0),离心率 e= =,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过 F 和 P(0,4)两点的直线的斜率k==,则=1,c=4,则 a=b=2,∴双曲线的标准方程:;故选B.【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,属于中档题.6.(5 分)已知奇函数(f x)在 R 上是增函数, g( x)=xf( x).若 a=g(﹣ log25.1),b=g( 20.8),c=g(3),则 a, b, c 的大小关系为()A. a<b<c B.c<b< a C.b<a<c D.b<c<a【分析】由奇函数 f( x)在 R 上是增函数,则 g( x)=xf(x)偶函数,且在( 0,+∞)单调递增,则 a=g(﹣ log25.1) =g(log25.1),则 2<﹣ log25.1<3,1<20.8< 2,即可求得 b<a<c【解答】解:奇函数 f (x)在 R 上是增函数,当 x>0,f(x)> f( 0) =0,且 f ′( x)> 0,∴ g(x) =xf(x),则 g′(x)=f(x)+xf (′x)> 0,∴g( x)在( 0,+∞)单调递增,且 g(x) =xf(x)偶函数,∴a=g(﹣ log25.1)=g( log25.1),则 2<﹣ log25.1<3,1<20.8<2,由 g(x)在( 0,+∞)单调递增,则g( 20.8)< g(log25.1)< g(3),∴ b< a< c,故选C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.7.(5 分)设函数 f(x)=2sin(ωx+φ),x∈ R,其中ω> 0,|φ|<x.若 f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由 f(x)的最小正周期大于2π,得,又 f()=2,f()=0,得,∴ T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin( x+φ),由 f()=,得 sin(φ+)=1.∴ φ+=,k∈ Z.取 k=0,得φ=<π.∴,φ= .故选:A.【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.8.( 5 分)已知函数 f( x)=,设a∈R,若关于x的不等式f(x)≥ | +a| 在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2]D.[﹣2,]【分析】讨论当 x≤1 时,运用绝对值不等式的解法和分离参数,可得﹣x2+ x ﹣ 3≤ a≤x2﹣x+3,再由二次函数的最值求法,可得 a 的范围;讨论当 x> 1 时,同样可得﹣( x+ )≤ a≤ + ,再由基本不等式可得最值,可得 a 的范围,求交集即可得到所求范围.【解答】解:当 x≤ 1 时,关于 x 的不等式 f(x)≥ |+a| 在 R 上恒成立,即为﹣ x2+x﹣ 3≤+a≤x2﹣ x+3,即有﹣ x2+ x﹣3≤a≤x2﹣x+3,由 y=﹣x2+x﹣3 的对称轴为 x= < 1,可得 x= 处取得最大值﹣;由 y=x2﹣x+3 的对称轴为 x=<1,可得 x= 处取得最小值,则﹣≤a≤①当 x>1 时,关于 x 的不等式 f( x)≥ | +a| 在 R 上恒成立,即为﹣( x+ )≤ +a≤x+,即有﹣(x+)≤ a≤ +,由 y=﹣( x+)≤﹣ 2=﹣ 2 (当且仅当 x= >1)取得最大值﹣ 2;由 y=x+≥2=2(当且仅当 x=2>1)取得最小值 2.则﹣ 2 ≤ a≤2②由①②可得,﹣≤a≤2.故选: A.【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.二 .填空题:本大题共 6 小题,每小题 5 分,共 30 分.9.(5 分)已知 a∈R, i 为虚数单位,若为实数,则 a 的值为﹣2 .【解答】解:===﹣i由为实数,可得﹣=0,解得 a=﹣ 2.故答案为:﹣ 2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.( 5 分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴ 6a2=18,则a2=3,即 a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即 R= ,则球的体积 V=π?()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.11.( 5 分)在极坐标系中,直线 4ρ cos(θ﹣)+1=0与圆ρ =2sin的θ公共点的个数为2.【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离 d,与半径比较即可得出位置关系.【解答】解:直线 4ρcos(θ﹣)+1=0 展开为: 4ρ+1=0,化为: 2 x+2y+1=0.2,θ化为直角坐标方程:22,配方为:2+( y﹣12圆ρ=2sin 即θρ ρx +yx).=2sin=2y=1∴圆心 C( 0, 1)到直线的距离 d==<1=R.∴直线 4ρcos(θ﹣)+1=0与圆ρ=2sin的θ公共点的个数为2.故答案为:2.直线的距离公式,考查了推理能力与计算能力,属于中档题.12.( 5 分)若 a,b∈R,ab> 0,则的最小值为4.【解答】解: a,b∈R,ab> 0,∴≥==4ab+≥2=4,当且仅当,即,即 a=,b=或a=﹣,b=﹣时取“=;”∴上式的最小值为4.故答案为: 4.【点评】本题考查了基本不等式的应用问题,是中档题.13.( 5 分)在△ ABC 中,∠ A=60°, AB=3, AC=2.若=2,=λ ﹣(λ∈ R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠ A=60°, AB=3, AC=2, =2 ,∴= + = += +(﹣)=+,又=λ ﹣(λ∈R),∴=(+)?(λ﹣) =(λ﹣) ?﹣+ λ(λ﹣)× × ×cos60°﹣×32+ λ× 22﹣,∴λ ,解得λ= .= 3 2= 4=1故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.14.( 5 分)用数字 1, 2, 3, 4, 5, 6, 7, 8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分 2 种情况讨论:、四位数中没有一个偶数数字,即在1、3、5、7、9 种任选 4 个,组成一共四位数即可,有 A54=120 种情况,即有 120 个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9 种选出 3 个,在2、4、6、8 中选出 1 个,有 C53?C41=40 种取法,将取出的 4 个数字全排列,有 A44=24 种顺序,则有 40×24=960 个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080 个;故答案为: 1080.【点评】本题考查排列、组合的综合应用,注意要分类讨论.三 .解答题:本大题共 6 小题,共 80 分.15.( 13 分)在△ ABC中,内角 A, B,C 所对的边分别为 a,b,c.已知 a>b,a=5, c=6, sinB= .(Ⅰ)求 b 和 sinA的值;(Ⅱ)求 sin( 2A+)的值.【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得 cosB,再由余弦定理求得b,利用正弦定理求得 sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A, cos2A,展开两角和的正弦得答案.【解答】解:(Ⅰ)在△ ABC中,∵ a>b,故由 sinB= ,可得 cosB= .由已知及余弦定理,有∴ b=.由正弦定理得sinA=∴ b=,=13,,.sinA=;(Ⅱ)由(Ⅰ)及a<c,得 cosA=,∴sin2A=2sinAcosA= ,cos2A=1﹣2sin2A=﹣.故 sin( 2A+)==.【点评】本题考查正弦定理和余弦定理在解三角形中的应用,考查倍角公式的应用,是中档题.16.( 13 分)从甲地到乙地要经过3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇到 1 个红灯的概率.【分析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.【解答】解:(Ⅰ)随机变量 X 的所有可能取值为0, 1, 2, 3;则 P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X 的分布列为X0123P随机变量 X 的数学期望为 E(X)=0×+1×+2×+3×=;(Ⅱ)设 Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1) =P(Y=0, Z=1)+P( Y=1,Z=0)=P(Y=0)?P(Z=1)+P( Y=1)?P( Z=0)=×+×=;所以,这 2 辆车共遇到 1 个红灯的概率为.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.( 13 分)如图,在三棱锥 P﹣ABC中, PA⊥底面 ABC,∠ BAC=90°.点 D,E, N 分别为棱 PA, PC,BC的中点, M 是线段 AD 的中点, PA=AC=4,AB=2.(Ⅰ)求证: MN∥平面 BDE;(Ⅱ)求二面角C﹣EM﹣ N 的正弦值;(Ⅲ)已知点 H 在棱 PA上,且直线 NH 与直线 BE所成角的余弦值为,求线段AH 的长.【分析】(Ⅰ)取 AB 中点 F,连接 MF、NF,由已知可证 MF∥平面 BDE,NF∥平面BDE.得到平面 MFN∥平面 BDE,则 MN∥平面 BDE;(Ⅱ)由 PA⊥底面 ABC,∠ BAC=90°.可以 A 为原点,分别以 AB、AC、AP 所在直线为 x、y、z 轴建立空间直角坐标系.求出平面 MEN 与平面 CME的一个法向量,由两法向量所成角的余弦值得二面角 C﹣EM﹣N 的余弦值,进一步求得正弦值;(Ⅲ)设 AH=t,则 H( 0, 0, t),求出的坐标,结合直线NH 与直线 BE所成角的余弦值为列式求得线段AH 的长.【解答】(Ⅰ)证明:取AB 中点 F,连接 MF、NF,∵M 为 AD 中点,∴ MF∥BD,∵BD? 平面 BDE,MF?平面 BDE,∴ MF∥平面 BDE.∵N 为 BC中点,∴ NF∥AC,又D、E 分别为 AP、PC的中点,∴ DE∥AC,则 NF∥DE.∵ DE? 平面 BDE,NF?平面 BDE,∴ NF∥平面 BDE.又MF∩NF=F.∴平面 MFN∥平面 BDE,则 MN∥平面 BDE;(Ⅱ)解:∵ PA⊥底面 ABC,∠ BAC=90°.∴以 A 为原点,分别以 AB、AC、AP 所在直线为 x、y、z 轴建立空间直角坐标系.∵PA=AC=4, AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E ( 0, 2, 2),则,,设平面 MEN 的一个法向量为,由,得,取 z=2,得.由图可得平面 CME的一个法向量为.∴ cos<>=.∴二面角 C﹣EM﹣N 的余弦值为,则正弦值为;(Ⅲ)解:设 AH=t,则 H(0,0,t ),,.∵直线 NH 与直线 BE所成角的余弦值为,∴ | cos<>| =|| =|| =.解得: t=4.∴当 H 与 P 重合时直线 NH 与直线 BE 所成角的余弦值为,此时线段 AH 的长为 4.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.18.( 13 分)已知{ a n}为等差数列,前 n 项和为 S n(n∈N+),{ b n}是首项为 2 的等比数列,且公比大于 0, b2+b3=12,b3=a4﹣ 2a1,S11=11b4.(Ⅰ)求 { a n} 和{ b n} 的通项公式;(Ⅱ)求数列 { a2n b2n﹣1} 的前n项和(n∈N+).【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{ a n}和{ b n} 的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:( I)设等差数列 { a n} 的公差为 d,等比数列 { b n} 的公比为 q.由已知 b2 +b3=12,得 b1(q+q2) =12,而 b1 =2,所以 q+q2﹣6=0.又因为 q> 0,解得 q=2.所以, b n=2n.由b3=a4﹣2a1,可得 3d﹣ a1=8①.由S11=11b4,可得 a1 +5d=16②,联立①②,解得a1 =1, d=3,由此可得 a n=3n﹣ 2.所以,数列 { a n} 的通项公式为 a n =3n﹣ 2,数列 { b n} 的通项公式为 b n=2n.由a2n=6n﹣2, b2n﹣1=4n,有 a2n b2n﹣1=(3n﹣ 1) 4n,故T n=2×4+5×42+8×43+⋯+(3n﹣1)4n,4T n=2× 42+5×43+8×44+⋯+( 3n﹣1)4n+1,上述两式相减,得﹣ 3T n =2×4+3× 42+3×43+⋯+3× 4n﹣( 3n﹣1)4n+1==﹣( 3n﹣2)4n+1﹣8得 T n=.所以,数列 { a2n b2n﹣1 } 的前 n 项和为.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查计算能力.19.( 14 分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为 A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l 的距离为.(I)求椭圆的方程和抛物线的方程;(II)设 l 上两点 P,Q 关于 x 轴对称,直线 AP与椭圆相交于点 B(B 异于 A),直线 BQ 与 x 轴相交于点 D.若△ APD的面积为,求直线AP的方程.【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p 即可得出方程;( II)设 AP 方程为 x=my+1,联立方程组得出B, P, Q 三点坐标,从而得出直线 BQ 的方程,解出 D 点坐标,根据三角形的面积列方程解出m 即可得出【解答】(Ⅰ)解:设 F 的坐标为(﹣ c, 0).依题意可得,解得 a=1,c= , p=2,于是 b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l 的方程为 x=﹣ 1,设直线 AP 的方程为 x=my+1( m≠0),,解得点 P(﹣ 1,﹣),故Q(﹣1,).,消去x,整理得(3m2+4)y2+6my=0,解得 y=0,或 y=﹣.∴ B(,).∴直线 BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令 y=0,解得 x=,故D(,0).∴ | AD| =1﹣=.又∵△ APD 的面积为,∴×=,2整理得 3m ﹣2 | m|+ 2=0,解得 | m| =,∴ m=±.第 17 页(共 20 页)20.( 14 分)设 a∈ Z,已知定义在 R 上的函数 f(x)=2x4+3x3﹣ 3x2﹣6x+a 在区间( 1,2)内有一个零点 x0, g(x)为 f( x)的导函数.(Ⅰ)求 g(x)的单调区间;(Ⅱ)设 m∈[ 1,x0)∪( x0, 2],函数 h(x)=g(x)( m﹣x0)﹣ f(m),求证: h(m)h(x0)< 0;(Ⅲ)求证:存在大于 0 的常数 A,使得对于任意的正整数p,q,且∈ [1,x0)∪( x0,2],满足|﹣x0|≥.【分析】(Ⅰ)求出函数的导函数g( x)=f ′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由 h(x) =g(x)(m﹣x0)﹣ f( m),推出 h(m)=g( m)(m﹣x0)﹣ f(m ),令函数 H (x)=g( x)(x﹣x )﹣ f(x),求出导函数 H′( x)101利用(Ⅰ)知,推出h(m)h(x0)< 0.(Ⅲ)对于任意的正整数p,q,且,令 m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[ 1, x0)时,当 m∈( x0,2] 时,通过 h(x)的零点.转化推出 |﹣x0| =≥=.推出| 2p4+3p3q﹣3p2q2﹣6pq3 +aq4| ≥1.然后推出结果.【解】(Ⅰ)由 f(x) =2x4+3x3﹣ 3x2﹣ 6x+a,得 g(x)=f ′( x)=8x3+9x2﹣6x﹣6,进而可得 g′(x)=24x2+18x﹣ 6.令 g′( x)=0,解得 x=﹣ 1,或 x= .当 x 变化时, g′(x), g( x)的变化情况如下表:x(﹣∞,﹣ 1)(﹣,)(,∞)1+ g′(x)+﹣+g(x)↗↘↗所以, g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣ 1,).(Ⅱ)证明:由h( x) =g(x)( m﹣x0)﹣ f(m ),得 h(m)=g(m)(m﹣x0)﹣ f( m),所以 h( x0)=g(x0)(m﹣ x0)﹣ f (m).令函数 H (x)=g( x)(x﹣x )﹣ f(x),则 H′(x)=g′(x)( x﹣ x ).1010由(Ⅰ)知,当x∈ [ 1,2] 时, g′(x)> 0,故当 x∈[ 1, x0)时, H′1( x)< 0, H1(x)单调递减;当 x∈( x0,2] 时, H′1(x)> 0,H1(x)单调递增.因此,当 x∈ [ 1,x0)∪( x0, 2] 时, H1(x)> H1(x0)=﹣f(x0)=0,可得 H1( m)> 0 即 h(m)> 0,令函数 H (x)=g(x )(x﹣x )﹣ f( x),则 H′( x)=g′(x )﹣ g( x).由(Ⅰ)20020知, g( x)在 [ 1,2] 上单调递增,故当x∈[ 1,x0)时, H′2(x)> 0,H2(x)单调递增;当 x∈( x , 2] 时, H′(x)< 0, H (x)单调递减.因此,当x∈[ 1,022x0)∪( x0, 2] 时, H2(x)> H2(x0)=0,可得得 H2( m)< 0 即 h(x0)< 0,.所以, h(m) h( x0)< 0.(Ⅲ)对于任意的正整数p,q,且,令 m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[ 1, x0)时, h( x)在区间( m,x0)内有零点;当m∈( x0,2] 时, h(x)在区间( x0,m)内有零点.所以 h(x)在( 1, 2)内至少有一个零点,不妨设为 x1,则 h(x1)=g( x1)(﹣x0)﹣ f()=0.由(Ⅰ)知 g(x)在 [ 1,2] 上单调递增,故 0< g( 1)< g(x1)< g(2),于是 |﹣x0| =≥=.因为当 x∈[ 1,2] 时, g(x)> 0,故 f(x)在 [ 1,2] 上单调递增,所以 f(x)在区间 [ 1,2] 上除 x0外没有其他的零点,而≠x0,故f()≠ 0.又因为 p, q, a 均为整数,所以 | 2p4+3p3q﹣ 3p2q2﹣6pq3+aq4| 是正整数,从而 | 2p4+3p3q﹣ 3p2q2﹣6pq3+aq4| ≥1.所以 |﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【点评】本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.第 20 页(共 20 页)。
2023年全国数学理科(甲卷)第17题
![2023年全国数学理科(甲卷)第17题](https://img.taocdn.com/s3/m/4fe388b3760bf78a6529647d27284b73f3423641.png)
2023年全国数学理科(甲卷)第17题全文共四篇示例,供您参考第一篇示例:2023年全国数学理科(甲卷)第17题考查了概率统计的知识,属于高考数学的难点题目。
通过对这道题目的分析和解答,可以帮助考生更好地掌握概率统计的相关知识,提高解题能力。
题目内容如下:某商品有三种不同的包装,甲包装占总数的40%,乙包装占总数的30%。
甲包装的商品中质量合格率为95%,乙包装的商品中质量合格率为90%,丙包装的商品中质量合格率未知。
如果从这批商品中任取一个,结果为合格品,请问此商品为甲包装的概率是多少?这道题考查了概率统计的知识,并要求考生结合概率的基本原理和条件概率进行求解。
我们可以根据题目中的信息,列出所需要的概率和条件概率。
记甲包装为A,乙包装为B,丙包装为C,任取一个商品为合格品为E,则题目所求为P(A|E)。
求得合格商品为甲包装的概率P(E|A),这是一个已知条件,根据题目给出的信息可知P(E|A) = 0.95。
我们需要求得甲包装商品的概率P(A)和乙包装商品的概率P(B),进而求得合格商品的概率P(E)。
根据条件概率的公式P(A|E) = P(E|A) * P(A) / P(E),即可求得所需的概率。
在解答这道题目时,通过计算可得甲包装商品的概率P(A) = 0.4,乙包装商品的概率P(B) = 0.3,于是可得合格商品的概率P(E) = P(E|A) * P(A) + P(E|B) * P(B) = 0.95 * 0.4 + 0.90 * 0.3 = 0.87。
最终,根据条件概率的公式可求得所需的概率P(A|E) = P(E|A) * P(A) / P(E) =0.95 * 0.4 / 0.87 ≈ 0.4368。
通过以上分析,我们可以得出此商品为甲包装的概率约为43.68%。
这道题目考察了考生在概率统计方面的计算能力和对条件概率的理解,要求考生能够灵活运用概率的基本原理和条件概率的知识进行求解。
(天津专版)高考数学 母题题源系列 专题17 立体几何的基本问题 文-人教版高三全册数学试题
![(天津专版)高考数学 母题题源系列 专题17 立体几何的基本问题 文-人教版高三全册数学试题](https://img.taocdn.com/s3/m/2939cd4a326c1eb91a37f111f18583d049640f03.png)
【答案】(I)见试题解析;(II)见试题解析;(III) 30 .
【解析】试题分析:(I)要证明 EF 平面 A1B1BA , 只需证明 EF BA1 且 EF 平面 A1B1BA ;(II)要
试题解析:
(1)连接 PQ , AQ . ∵ PDC 是正三角形,∴ PQ CD . ∵底面 ABCD是 ADC 60 的菱形,∴ AQ CD .
∴ PA 平面 CDM . 连接 QN,QA ,则 AQN 为 AQ 与平面 CDM 所成的角.
在 RtPQA 中, AQ PQ 3 ,
∴ AP 6 ,∴ AN 6 , sinAQN AN 2 .∴ AQN 45 .
第一步:根据线面垂直的判断定理和性质定理证明 因为 PA 与平面内的两条相交直线垂直,所以线与平面
垂直,再根据线面垂直的性质定理,线与平面垂直,线与平面内的任何一条直线垂直;
第二步:面面垂直的判断定理 根据条件可证明 BD 平面 PAC ,即证明平面 BDE 平面 PAC ;
6 / 32
word
从而 BB1 AE ,又 BC BB1 B ,所以 AE 平面 BCB1 ,又因为 AE 平面 AEA1 ,所以平面 AEA1 平
面 BCB1 .
5 / 32
word
【命题意图】高考对这类题的考查主要有两个方面:考查空间点、线、面的位置关系,高考对立体几何平行与垂 直的考查是高考的热点和重点,可以考查线面垂直的判定与性质、面面垂直的判定与性质,也可以考查线面平行 的判定与性质、面面平行的判定与性质,以 及空间几何体的体积. 【命题规律】高考对立体几何平行与垂直的考查是高考的热点和重点,可以考查线面垂直的判定与性质、面面垂 直的判定与性质,也可以考查线面平行的判定与性质、面面平行的判定与性质,解题思路为对判断定理和性质定 理的使用,或以 三 视 图 为 载 体 , 考 查 还 原 后 几 何 体 的 外 接 球 或 内 切 球 问 题 . 【答题模板】以 2017 年高考题为例,解 答本类题目,一般考虑如下三步:
2017年高考天津卷理数试题解析(正式版)(解析版)
![2017年高考天津卷理数试题解析(正式版)(解析版)](https://img.taocdn.com/s3/m/7f5e71f4fe4733687e21aaf8.png)
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}AB C =-=,故选B .(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1 (C )32(D )3【答案】D(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1 (C )2 (D )3【答案】C【解析】初始:24N =,进入循环后N 的值依次为8,7,6,2N N N N ====,输出2N =,故选C . (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin2θ⇒<,但θ=时1sin02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin2θ<”的充分而不必要条件,故选A.(5)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,离心率为2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)22144x y-=(B)22188x y-=(C)22148x y-=(D)22184x y-=【答案】B【解析】由题意得2240,14,2210()88x ya b c a bc-==⇒===⇒-=--,故选B.(6)已知奇函数()f x在R上是增函数,()()g x xf x=.若2(log5.1)a g=-,0.8(2)b g=,(3)c g=,则a,b,c的大小关系为(A)a b c<<(B)c b a<<(C)b a c<<(D)b c a<<【答案】C(7)设函数()2sin()f x xωϕ=+,x∈R,其中0ω>,||ϕ<π.若5()28fπ=,()08f11π=,且()f x的最小正周期大于2π,则(A)23ω=,12ϕπ=(B)23ω=,12ϕ11π=-(C)13ω=,24ϕ11π=-(D)13ω=,24ϕ7π=【答案】A【解析】由题意得125282118kkωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k∈Z,所以2142(2)33k kω=--,又22Tωπ=>π,所以01ω<<,所以23ω=,11212kϕ=π+π,由ϕ<π得12ϕπ=,故选A.(8)已知函数23,1, ()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设a∈R,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取值范围是(A)47[,2]16-(B)4739[,]1616-(C)[23,2]-(D)39[23,]16-【答案】A当1x>时,(*)式为222xx a xx x--≤+≤+,32222xx ax x--≤≤+.又3232()2322x xx x--=-+≤-23x=,22222x xx x+≥⨯=(当2x=时取等号),所以232a-≤≤.综上,47216a-≤≤.故选A.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年普通高等学校招生全国统一考试数学试题理(天津卷,含解析)
![2017年普通高等学校招生全国统一考试数学试题理(天津卷,含解析)](https://img.taocdn.com/s3/m/e1965c55b14e852458fb57c0.png)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试数学试题 理天津卷【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致。
与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点。
整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低。
纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查。
对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分。
试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性。
试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度。
在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力。
第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高。
第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养。
2017年高考天津卷理数试题解析(正式版)(原卷版)
![2017年高考天津卷理数试题解析(正式版)(原卷版)](https://img.taocdn.com/s3/m/72f29f8bf12d2af90242e694.png)
第 1 页 共 5 页绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为第 2 页 共 5 页(A )23(B )1 (C )32(D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0(B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F 2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<第 3 页 共 5 页(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考数学天津理试题及解析
![2017年高考数学天津理试题及解析](https://img.taocdn.com/s3/m/c2e7997fa32d7375a517800a.png)
2017年高考数学天津理1.(2017年天津理)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x≤5},则(A ∪B)∩C= ( ) A.{2}B.{1,2,4}C.{1,2,4,6}D.{ x ∈R|-1≤x≤5}1.B 【解析】 (A ∪B)∩C={1,2,4,6}∩[1,5]={1,2,4}.故选B .2. (2017年天津理)设变量x,y 满足约束条件⎩⎨⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y 的最大值为( ) A. 23B.1C. 32D.32. D 【解析】画出不等式组表示的平面区域(图略),则可行域为四边形ABCD 及其内部,其中A (0,1),B (0,3),C (-32,3),D (-23,43),易得直线y=-x+z 过点B (0,3)时,z=x+y 取最大值为3.故选D .3. (2017年天津理)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为( )A.0B.1C.2D.33. C 【解析】初始N=19,进入循环后N 的值依次为N=18,N=6,N=2,结束循环,输出N=2.故选C .4. (2017年天津理)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4. A 【解析】|θ-π12|<π12⇔0<θ<12,但θ=0时,sin θ=0<12,不满足|θ-π12|<π12,所以“|θ-π12|<π12”是“sin θ<12”的充分不必要条件.故选A.5. (2017年天津理)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A. x 24-y 24=1B. x 28-y 28=1C. x 24-y 28=1D. x 28-y 24=15. D 【解析】由题意得a=b ,4-00-(-c )=1⇒c=4,a=b=22⇒x 28-y 28=1.故选B .6. (2017年天津理)已知奇函数f(x)在R 上是增函数.g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为( ) A.a <b <cB.c <b <aC.b <a <cD.b <c <a6. C 【解析】因为f (x )是奇函数且在R 上是增函数,所以当x >0时,f (x )>0,从而g (x )=xf (x )是R 上的偶函数,且在[0,+∞)上是增函数,a=g(-log 25.1)= g(log 25.1),20.8<2,又4<5.1<8,则2<log 25.1<3,所以0<20.8<log 25.1<3,g (20.8)<g (log 25.1)<g (3),所以b <a <c.故选C.7. (2017年天津理)设函数f(x)=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π.若f(5π8)=2,f(11π8)=0,且f(x)的最小正周期大于2π,则( ) A. ω=23,φ=π12B. ω=23,φ=-11π12 C. ω=13,φ=-11π24D. ω=13,φ=7π247. A 【解析】由题意得⎩⎨⎧5ωπ8+φ=2k 1π+π2,11ωπ8+φ=k 2π,其中k 1,k 2∈Z ,所以ω=43(k 2-2k 1)-23,又T=2πω>2π,所以0<ω<1,所以ω=23,11212k ϕ=π+π,由|φ|<π得φ=π12,故选A .8. (2017年天津理)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x+3,x≤1,x+2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-4716,2]B.[-4716,3916]C. [-23,2]D. [-23,3916]8. A 【解析】不等式f (x )≥|x 2+a|可化为-f (x )≤x2+a≤f (x ),(*)当x≤1时,(*)式即-x 2+x-3≤x 2+a≤x 2-x+3,即-x 2+x 2-3≤a≤x 2-32x+3,又-x 2+x 2-3=-(x-14)2-4716≤-4716(当x=14时取等号),x 2-32+3=(x-34)2+3916≥3916(当x=34时取等号),所以-4716≤a≤3916,当x >1时,(*)式为-x-2x ≤x 2+a≤x+2x ,-32x-2x ≤a≤x 2+2x .又-32x-2x =-(32x+2x )≤23(当x=233时取等号),x 2+2x ≥2x 2·2x =2(当x=2时取等号),所以-23≤a≤2.综上,-4716≤a≤2.故选A .9. (2017年天津理)已知a ∈R ,i 为虚数单位,若a-i2+i 为实数,则a 的值为___________.9. -2 【解析】a-i 2+i =(a-i)(2-i)(2+i)(2-i)=(2a-1)-(a+2)i 5=2a-15-a+25i 为实数,则a+25=0,a=-2.10. (2017年天津理)已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.10. 9π2 【解析】设正方体的边长为a ,则6a 2=18⇒a=3,其外接球直径为2R=3a=3,故这个球的体积V=43πR 3=43π×278=9π2.11. (2017年天津理)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为___________.11. 1 【解析】直线为23x+2y+1=0,圆为x 2+(y-1)2=1,因为d=34<1,所以有两个交点.12. (2017年天津理)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为___________.12. 4 【解析】a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab+1ab≥24ab·1ab=4,前一个等号成立的条件是a 2=2b 2,后一个等号成立的条件是ab=12,两个等号可以同时成立,当且仅当a 2=22,b 2=24时取等号.13. (2017年天津理)在△ABC 中,∠A=60°,AB=3,AC=2.若→BD =2→DC ,→AE =λ→AC -→AB (λ∈R ),且→AD ·→AE =-4,则λ的值为___________.13. 311 【解析】由题可得→AB ·→AC =3×2×cos 60°=3,→AD =13→AB +23→AC ,则→AD ·→AE =(13→AB +23→AC )(λ→AC -→AB )=λ3×3+2λ3×4-13×9-23×3=-4 λ=311.14. (2017年天津理) 用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 14. 1 080 【解析】A4 5+C1 4C3 5A4 4=1 080.15. (2017年天津理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a=5,c=6,sin B=35.(1)求b 和sin A 的值; (2)求sin (2A+π4)的值.15. 解:(1)在△ABC 中,因为a >b ,故由sin B=35,可得cos B=45. 由已知及余弦定理,有b2=a2+c2-2accos B=13,所以b=13. 由正弦定理a sin A =b sin B ,得sin A=asin B b =31313. 所以,b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A=21313,所以sin 2A=2sin Acos A=1213,cos 2A=1-2sin 2A=-513. 故sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=7226.16. (2017年天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 16.解:(1)随机变量X 的所有可能取值为0,1,2,3. P (X=0)=(1-12)×(1-13)×(1-14)=14,P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124, P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14, P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0)=P (Y=0)P (Z=1)+P (Y=1)P (Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.17. (2017年天津理)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC=90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.17.解:如图,以A 为原点,分别以→AB ,→AC ,→AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)易得→DE =(0,2,0),→DB =(2,0,2-).设n =(x,y,z)为平面BDE 的法向量,则⎩⎨⎧n ·→DE =0,n ·→DB =0,即⎩⎨⎧2y=0,2x-2z=0. 不妨设z=1,可得n =(1,0,1).又→MN =(1,2,1-),可得→MN ·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)易知n 1=(1,0,0)为平面CEM 的一个法向量. 设n 2=(x ,y ,z )为平面EMN 的一个法向量,则⎩⎨⎧n 2·→EM =0,n 2·→MN =0,因为→EM =(0,-2,-1),→MN =(1,2,-1),所以⎩⎨⎧-2y-z=0,x+2y-z=0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-421,于是sin<n 1,n 2>=10521.所以,二面角C-EM-N 的正弦值为10521.(3)依题意,设AH =h (0≤h≤4),则H (0,0,h ),进而可得→NH =(-1,-2,h ),→BE =(-2,2,2).由已知,得|cos<→NH ,→BE >=→NH ·→BE |→NH ||→BE |=|2h-2|h 2+5×23=721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.18. (2017年天津理)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q. 由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0. 又因为q >0,解得q=2.所以b n =2n . 由b 3=a 4-2a 1,可得3d-a 1=8,① 由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n , 故T n =2×4+5×42+8×43+…+(3n-1)×4n , 4T n =2×42+5×43+8×44+…+(3n-1)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8,得T n =3n-23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n-23×4n+1+83.19. (2017年天津理)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 19.解:(1)设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34. 所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x . (2)设直线AP 的方程为x=my+1(m≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m ),故Q (-1,2m ). 将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0, 解得y=0或y=-6m3m 2+4.由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y-2m )=0, 令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0),所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为62,故12×6m 23m 2+2×2|m|=62, 整理得3m 2-26|m|+2=0,解得|m|=63,所以m=±63.所以,直线AP 的方程为3x+6y-3=0或3x-6y-3=0.20. (2017年天津理)设a ∈Z ,已知定义在R 上的函数f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为f(x)的导函数. (1)求g(x)的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p,q ,且p q ∈[1,x 0)∪(x 0,2]满足|pq-x 0|≥1Aq 4.20.解:(1)由f(x)=2x 4+3x 3-3x 2-6x+a ,可得g(x)=f′(x)=8x 3+9x 2-6x-6, 进而可得g′(x)=24x 2+18x-6.令g′(x)=0,解得x=-1或x=14.当x 变化时,g′(x), g(x)的变化情况如下表:`所以,g(x)的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1, 14). (2)由h(x)=g(x)(m-x 0)-f(m),得h(m)=g(m)(m-x 0)-f(m), h(x 0)=g(x 0)(m-x 0)-f(m).令函数H 1(x)=g(x)(x-x 0)-f(x),则H 1′(x)=g′(x)(x -x 0).由(1)知,当x ∈[1,2]时,g′(x)>0,故当x ∈[1,x 0]时,H 1′(x)<0,H 1(x)单调递减; 当x ∈(x 0,2]时,H 1′(x)>0,H 1(x)单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x)>H 1(x 0)=-f(x 0)=0,可得H 1(m)>0,即h(m)>0. 令函数H 2(x)=g(x 0)(x-x 0)-f(x),则H 2′(x)= g(x 0)-g(x).由(1)知,g(x)在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x)>0,H 2(x)单调递增; 当x ∈(x 0,2]时,H 2′(x)<0,H 2(x)单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x)<H 2(x 0)=0,可得H 2(m)<0,即h (x 0)<0. 所以,h (m )h (x 0)<0.(3)对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m=pq ,函数h(x)=g(x)(m-x 0)-f(m).由(2)知,当m ∈[1,x 0)时,h (x )的区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点,所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h(x 1)=g(x 1)(p q -x 0)-f(pq )=0.由(1)知g(x)在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2), 于是|pq -x 0|=|f (p q )g (x 1)|≥|f (pq )|g (2)=|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g(x)>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而p q ≠x 0,故f (pq )≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1,所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。
21年高考一卷数学第17题
![21年高考一卷数学第17题](https://img.taocdn.com/s3/m/0ed386cd8662caaedd3383c4bb4cf7ec4afeb6f7.png)
21年高考一卷数学第17题高考数学一卷第17题是一道涉及函数概念和解析几何的题目。
题目如下:已知椭圆C的焦点F₁、F₂的坐标分别为(-1,0)、(1,0),离心率为√3。
过点P(3,2√3)的直线l与椭圆C交于A、B两点,且满足角PAB为直角。
设直线l的方程为y=kx+n,其中k≠0,则n的取值范围是____。
要求求解直线l的方程并确定n的取值范围。
首先,我们根据题目中的条件,可以得知直线l与椭圆C有两个交点A、B。
又因为角PAB为直角,所以直线l与椭圆C的交点A、B的切线斜率之积为-1。
我们可以利用这一条件求解直线l的方程。
设直线l的方程为y=kx+n。
由题目中的条件,我们可以得到以下两个方程:1. 直线l过点P(3,2√3),所以2√3=3k+n。
2. 直线l与椭圆C的交点A的切线斜率为k₁,交点B的切线斜率为k₂。
由椭圆的性质可知,椭圆C上任意一点的切线斜率k满足关系式k²=(b²-a²)/(a²-x²),其中a、b分别为椭圆的长短半轴,x、y为椭圆上一点的坐标。
将点P代入该关系式,可以得到关于k的方程:k²=(4-1)/(1-3²)。
根据以上两个方程,我们可以求解出k的值,进而得到n的取值范围。
首先,代入第一个方程,得到n=2√3-3k。
然后,将n的表达式代入第二个方程中,得到k²=(4-1)/(1-3²)。
化简得到k²=-3/8,由于k≠0,所以k²≠0。
进一步求解,可以得到k=±√(-3/8) = ±(i√3)/2√2,其中i为虚数单位。
代入n的表达式,可以得到n=2√3-3k=2√3-3×[(i√3)/2√2] = 2√3-3i/2。
因此,n的取值范围是n∈(2√3-3i/2, 2√3+3i/2)。
综上所述,直线l的方程为y=kx+n,其中n的取值范围是n∈(2√3-3i/2, 2√3+3i/2)。
2015年天津市高考数学(理科)真题及答案解析
![2015年天津市高考数学(理科)真题及答案解析](https://img.taocdn.com/s3/m/8d62a0e0011ca300a6c390dc.png)
2015年天津市高考数学真题(理科)一、选择题1.已知全集{1,2,3,4,5,6,7,8}U =,集合A={2,3,5,6},集合B={1,3,4,6,7},则集合U A C B=I ( )A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,82.设变量,x y 满足约束条件20.30.230.x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩则目标函数6z x y =+的最大值为( )A .3B .4C .18D .403.阅读下边的程序框图,运行相应的程序,则输出S 的值为( )A .10-B .6C .14D .184.设x R ∈,则“|2|1x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.如图,在圆O 中,N M ,是弦AB 的三等分点,弦CD ,CE 分别经过点N M ,,若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .526.已知双曲线22221x y a b-=(0b 0a >,>)的一条渐近线过点(23,),且双曲线的一个焦点在抛物线247y x =的准线上,则双曲线的方程为( )A .2212128x y -= B .2212821x y -= C .22134x y -= D .22143x y -= 7.已知定义在R 上的函数()21x m f x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则b c a ,,的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知函数22||()22x x f x x x -≤⎧=⎨-⎩,2,(),>,函数()(2)g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7()4+∞,B .7()4-∞,C .7(0)4, D .7(2)4,二、填空题9.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 . 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .11.曲线2y x =与直线y x =所围成的封闭图形的面积为 .12.在61()4x x-的展开式中,2x 的系数为 . 13.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知ABC ∆的面积为315,12,cos 4b c A -==-,则a 的值为 . 14.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=︒。
2024年高考真题——数学(天津卷)含答案
![2024年高考真题——数学(天津卷)含答案](https://img.taocdn.com/s3/m/43ea86444531b90d6c85ec3a87c24028905f8517.png)
2024年普通高等学校招生全国统一考试(天津卷)数学(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是()A. B.C.D.4.下列函数是偶函数的是()A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x xy x -=+ D.||sin 4e x x x y +=5.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c>> B.b a c>> C.c a b>> D.b c a >>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n⊥ D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.32B.32-C.0D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A.22182y x -= B.22184x y -= C.22128x y -= D.22148x y -=9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B.33142+ C.32D.142-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i +⋅=______.11.在63333x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥-在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh =,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B 【2题答案】【答案】C 【3题答案】【答案】A 【4题答案】【答案】B 【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】C第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.【10题答案】【答案】7【11题答案】【答案】20【12题答案】【答案】45##0.8【13题答案】【答案】①.35②.12【14题答案】【答案】①.43②.518-【15题答案】【答案】()(1-⋃三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤【16题答案】【答案】(1)4(2)4(3)5764【17题答案】【答案】(1)证明见解析(2)11(3)21111【18题答案】【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【19题答案】【答案】(1)21n n S =-(2)①证明见详解;②()131419nn S ii n b=-+=∑【20题答案】【答案】(1)1y x =-(2){}2(3)证明过程见解析。
近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)
![近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)](https://img.taocdn.com/s3/m/9c5e9982a45177232e60a264.png)
2
2
故 sin cos sin cos sin cos 3 , 2
故 sin cos ,sin cos ,sin cos 不可能均大于 1 .
2
取 , , ,
6
3
4
则 sin cos 1 1 ,sin cos 6 1 ,sin cos 6 1 ,
42
42
,
上下平移直线 y 3x z ,数形结合可得当直线过点 A 时, z 取最小值,
此时 zmin 31 3 6 .
故选:C.
3.B
x 1 0
【解析】画出满足约束条件
x
y
0
的可行域,如下图所示:
2x 3y 1 0
目标函数 z x 1 y 化为 y 2x 2z , 2
x 1
x 1
_________.
20.(2020·江苏)已知 5x2 y2 y4 1(x, y R) ,则 x2 y2 的最小值是_______.
x y 0, 21.(2020·全国(文))若 x,y 满足约束条件 2x y 0,,则 z=3x+2y 的最大值为
x 1,
_________.
2x y 2 0, 22.(2020·全国(理))若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
__________.
34.(2017·山东(文))若直线 x y 1(a>0,b>0) 过点(1,2),则 2a+b 的最小值为 ab
______.
四、双空题
x 2,
35.(2019·北京(文))若
x,y
满足
y
1,
则 y x 的最小值为__________,
高考数学第17题
![高考数学第17题](https://img.taocdn.com/s3/m/7b840f3cf68a6529647d27284b73f242336c31e7.png)
高考数学第17题第一段(引入)高考数学题目一直是考生们最关注的一个部分,因为数学是高中生学习的重点科目之一。
其中第17题是一道典型的应用题,要求考生运用所学的数学知识解决实际问题。
第二段(题目描述)题目描述如下:某地研究一种新的化肥对农作物的增产情况进行了实验。
实验表明,使用该化肥后,农作物的产量与化肥用量成正比。
假设化肥用量为x千克时,农作物的产量为y吨。
已知化肥用量为10千克时,农作物的产量为20吨,当化肥用量为40千克时,农作物的产量为30吨。
问当化肥用量为80千克时,农作物的产量是多少吨?第三段(解题思路)针对这道题目,其实就是要求根据已知条件构建出一个线性关系,并用此关系来求解未知量。
根据题目中给出的两组数据点,我们可以建立一个线性函数,然后带入所求的未知量。
由于已知化肥用量和农作物产量成正比,所以我们可以将这个关系建模成一个线性函数:y = kx + b。
第四段(求解过程)在给定的两组数据中,我们可以求得斜率k和截距b的值。
首先,通过给定的化肥用量和农作物产量的数据点,我们可以得出下列等式:20 = k * 10 + b30 = k * 40 + b联立以上两个等式,我们可以解得:k = (30 - 20) / (40 - 10) = 0.5b = 20 - k * 10 = 15所以,所建立的线性函数为:y = 0.5x + 15。
第五段(计算未知量)根据建立的线性函数,我们可以带入未知量x = 80进行计算,得到:y = 0.5 * 80 + 15 = 55所以,当化肥用量为80千克时,农作物的产量为55吨。
第六段(总结)通过以上的分析和计算过程,我们可以得到高考数学第17题的答案,即当化肥用量为80千克时,农作物的产量为55吨。
这个题目要求考生使用所学的线性关系知识,将实际问题转化为数学问题,并运用数学方法去求解。
这个题目的解答过程涉及到线性函数的构建、联立方程、计算斜率和截距等数学知识,对考生来说是一个较为综合性的应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.(13分)(2015•天津)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD
(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;
(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E 的长.
17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(Ⅰ)证明:BE⊥DC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
17.(13分)(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
17.(13分)(2011•天津)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.
(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A﹣A1C1﹣B1的正弦值;
(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM 的长.。