1导数的概念
高中数学导数的概念及其意义
高中数学导数的概念及其意义
导数(Derivative)概念及意义
一、导数的定义
1、导数的定义
导数是一种描述曲线的变化率的度量,它表示的是做一个变量的变化
的大小和另一个变量的变化的方向以及变化的变化率之间的关系。
2、导数的计算公式
导数的计算公式为:y’=limΔx→0 (f(x+Δx)-f(x))/Δx,其中f(x)表示函数,Δx表示x在很小的量度上的变动值。
3、导数的形式表示
导数的形式有两种:一种是函数的图象,用斜率来表示;另一种是用
函数的微分式表示。
二、导数的意义
1、导数的实际意义
导数的实际意义是曲线某一点上的斜率,它表示曲线在该点处的变化率,也就是曲线在该点处的微小位移对应的函数值的变化率。
2、导数的数学意义
数学意义上,导数是一种尺度,也是一种衡量函数变化率的标准,它可以实现曲线的斜率变化规律,从而发现函数的性质,如果曲线的斜率变化率是恒定的,就可以称这种曲线为等差线。
3、导数的应用
导数的应用非常广泛,目前主要在图形科学、机器学习、控制理论和金融计算等领域。
第一节 导数的概念及运算 定积分
第一节 导数的概念及运算 定积分考试要求1.了解导数概念的实际背景.2.理解导数的几何意义.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.4.能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.5.了解定积分的实际背景;了解定积分的基本思想,定积分的概念,微积分基本定理的含义.[知识排查·微点淘金]知识点1 导数的概念一般地,函数y =f (x )在x =x 0处导数的定义,称函数y =f (x )在x =x 0处的瞬时变化率lim x →0_f (x 0+Δx )-f (x 0)Δx=lim x →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim x →0Δy Δx =lim x →0_f (x 0+Δx )-f (x 0)Δx. [微思考]f ′(x )与f ′(x 0)有什么.提示:f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0. 知识点2 导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是:在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[微思考]直线与曲线只有一个公共点,则该直线一定与曲线相切吗?为什么?提示:不一定.因为直线与曲线的公共点个数不是切线的本质特征,直线与曲线只有一个公共点,不能说明直线就是曲线的切线,反之,直线是曲线的切线,也不能说明直线与曲线有一个公共点,但切点一定是直线与曲线的公共点.[微提醒]1.“过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.知识点3 求导公式及运算法则 (1)基本初等函数的导数公式 ①c ′=0;②(x α)′=αx α-1(α∈Q 且α≠0); ③(sin x )′=cos_x ; ④(cos x )′=-sin_x ; ⑤(a x )′=a x ·ln_a ; ⑥(e x )′=e x ; ⑦(log a x )′=1x ln a; ⑧(ln x )′=1x .(2)导数的运算法则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )·g (x )-g ′(x )·f (x )g (x )(g (x )≠0). (3)复合函数的求导法则复合函数y =f (g (x ))对自变量的导数等于已知函数对中间变量的导数与中间变量对自变量的导数的乘积.设y =f (u ),u =g (x ),则y ′x =f ′(u )·g ′(x ).知识点4 定积分(1)定积分的概念、几何意义及性质 ①定积分的相关概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.②定积分的几何意义y =f (x )所围成的曲边梯形的面积f (x )<0 表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ] 上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积③定积分的三个性质a.⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);b.⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;c.⎠⎛a b f (x )d x =⎠⎛a b f (x )d x +⎠⎛ab f (x )d x (其中a <c <b ).(2)微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式 .通常记作⎠⎛ab f (x )d x =F (x )|b a =F (b )-F (a ).如果F ′(x )=f (x ),那么称F (x )是f (x )的一个原函数. 常用结论函数f (x )在闭区间[-a ,a ]上连续,则有1.若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;2.若f (x )为奇函数,则⎠⎛-aa f (x )d x =0.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.(×) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).(×) (3)曲线的切线不一定与曲线只有一个公共点.(√) (4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.(×) (6)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .(√)2.(链接教材选修2-2 P 50A 组T 5)定积分⎠⎛-11|x |d x =( )A .1B .2C .3D .4答案:A3.(链接教材选修2-2 P 3例题)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________m/s ,加速度a =________m/s 2.答案:-9.8t +6.5 -9.84.(不会用方程法解导数求值)已知f (x )=x 2+3xf ′(2),则f (2)=________.解析:因为f ′(x )=2x +3f ′(2),令x =2,得f ′(2)=-2,所以f (x )=x 2-6x ,所以f (2)=-8.答案:-85.(混淆在点P 处的切线和过P 点的切线)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则a 的值为________;b 的值为________.解析:y ′=a e x +ln x +1 ∴⎩⎪⎨⎪⎧a e +1=2,a e =2+b ,解得⎩⎪⎨⎪⎧a =1e,b =-1. 答案:1e-1一、基础探究点——导数的运算(题组练透)1.已知f (x )=cos 2x +e 2x ,则f ′(x )=( ) A .-2sin 2x +2e 2x B .sin 2x +e 2x C .2sin 2x +2e 2x D .-sin 2x +e 2x解析:选A 由题意f ′(x )=-sin 2x ·2+e 2x ·2=-2sin 2x +2e 2x ,故选A. 2.已知f (x )=x (2021+ln x ),若f ′(x 0)=2022,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B 因为f (x )=x (2021+ln x ), 所以f ′(x )=2021+ln x +1=2022+ln x . 又f ′(x 0)=2022,所以2022+ln x 0=2022,所以x 0=1.故选B.3.(2020·全国卷Ⅲ)设函数f (x )=e x x +a,若f ′(1)=e4,则a =________.解析:由f ′(x )=e x (x +a )-e x (x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.答案:14.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.解析:由已知f (x )=x -ln x +2x -1x 2,∴f ′(x )=1-1x -2x 2+2x 3.答案:1-1x -2x 2+2x31.求函数导数的总原则:先化简解析式,再求导.2.常见形式及具体求导方法连乘形式 先展开化为多项式形式,再求导三角形式 先利用三角函数公式转化为和或差的形式,再求导 分式形式 先化为整式函数或较为简单的分式函数,再求导 根式形式 先化为分数指数幂的形式,再求导 对数形式 先化为和、差形式,再求导复合函数 先确定复合关系,由外向内逐层求导,必要时可换元二、应用探究点——导数的几何意义(多向思维)[典例剖析]思维点1 求曲线的切线方程[例1] (2021·全国甲卷)[一题多解]曲线y =2x -1x +2在点(-1,-3)处的切线方程为______.解析:解法一:y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.解法二:本题可以先将函数转化为y =2(x +2)-5x +2=2-5x +2,再求导数.答案:5x -y +2=0解决这类问题的方法都是根据曲线在点(x 0,y 0)处的切线的斜率k =f ′(x 0),直接求解或结合已知所给的平行或垂直等条件得出关于斜率的等式来求解.解决这类问题的关键是抓住切线的斜率.思维点2 求切点坐标[例2] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析:设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 答案:(e ,e) [拓展变式][变条件]若本例变为:曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.思维点3 由曲线的切线(斜率)求参数值(范围)[例3] (1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2解析:依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.故选C.答案:C(2)若点P 是函数y =e x -e -x -3x ⎝⎛⎭⎫-12≤x ≤12图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是________.解析:由导数的几何意义,知k =y ′=e x +e -x -3≥2 e x ·e -x -3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π).又-12≤x ≤12,tan α=k <0,所以α的最小值是3π4.答案:3π4解与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数;①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.思维点4 两曲线的公切线问题[例4] 设x 1为曲线y =-1x (x <0)与y =ln x 的公切线的一个切点横坐标,且x 1<0,则满足m ≥x 1的最小整数m 的值为________.解析:y =-1x (x <0)的导数为y ′=1x 2,y =ln x 的导数为y ′=1x ,设与y =ln x 相切的切点的横坐标为n , 由切线方程y =1n x +ln n -1,以及y =x x 21-2x 1,可得1n =1x 21,ln n -1=-2x 1,消去n ,可得2-x 1=2ln(-x 1)-1,设t =-x 1(t >0),可得2t=2ln t -1,设f (t )=2ln t -1-2t ,可得f (2)=2ln 2-2<0,f (3)=2ln 3-53>0,且f (t )在(2,3)递增,可得2t =2ln t -1的根介于(2,3)之间,即有x 1∈(-3,-2),m ≥x 1恒成立,可得m ≥-2,即m 的最小值为-2. 答案:-2解决两曲线的公切线问题的两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.[学会用活]1.(2020·全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:2x -y =02.(2021·贵阳模拟)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.解析:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0, ∴切点P (x 0,f (x 0))的坐标为(0,0). 答案:(0,0)3.已知直线y =kx -2与曲线y =x ln x 在x =e 处的切线平行,则实数k 的值为________. 解析:由y =x ln x ,得y ′=ln x +1,所以当x =e 时,y ′=ln e +1=2,所以曲线y =x ln x 在x =e 处的切线的斜率为2.又该切线与直线y =kx -2平行,所以k =2.答案:24.(2021·内蒙古包头一模)若曲线f (x )=a ln x (a ∈R )与曲线g (x )=x 在公共点处有共同的切线,则实数a 的值为________.解析:函数f (x )=a ln x 的定义域为(0,+∞),f ′(x )=a x ,g ′(x )=12x ,设曲线f (x )=a ln x与曲线g (x )=x 的公共点为(x 0,y 0),由于在公共点处有共同的切线,∴a x 0=12x 0,解得x 0=4a 2,a >0. 由f (x 0)=g (x 0),可得a ln x 0=x 0.联立⎩⎪⎨⎪⎧x 0=4a 2,a ln x 0=x 0,解得a =e2.答案:e 2三、应用探究点——定积分(多向思维)[典例剖析]思维点1 定积分的计算[例5] 计算:(1)⎠⎛0π(sin x -cos x )d x =________.(2)若f (x )=3+2x -x 2,则⎠⎛13f (x )d x 为______.(3)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为________.解析:(1)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =2.(2)由y =3+2x -x 2=4-(x -1)2,得(x -1)2+y 2=4(y ≥0),表示以(1,0)为圆心,2为半径的圆在x 轴及其上方的部分,所以⎠⎛133+2x -x 2d x 是圆面积的14.所以⎠⎛133+2x -x 2d x =14·π·22=π.(3)因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e],因为⎝⎛⎭⎫13x 3′=x 2, (ln x )′=1x ,所以⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13+1=43.答案:(1)2 (2)π (3)43应用微积分基本定理计算定积分的步骤1.把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. 2.把定积分用定积分性质变形为求被积函数为上述函数的定积分. 3.分别用求导公式找到一个相应的原函数. 4.利用微积分基本定理求出各个定积分的值. 5.计算原始定积分的值.思维点2 利用定积分求平面图形的面积[例6] [一题多解]由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积为________. 解析:如图所示,联立方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,解得两交点的坐标分别为(2,-2),(8,4). 解法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和,即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =23(2x )32⎪⎪⎪20+⎣⎡⎦⎤13(2x )32-12x 2+4x ⎪⎪⎪82=163+⎝⎛⎭⎫643-263=543=18. 解法二:选取纵坐标y 为积分变量,则图中阴影部分的面积为S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =⎝⎛⎭⎫12y 2+4y -16y 3⎪⎪⎪4-2=18. 答案:18 [拓展变式]1.[变条件]若本例变为:由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________.解析:由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为⎠⎛-11(2x 2+4x +2)d x =⎝⎛⎭⎫23x 3+2x 2+2x |1-1=⎝⎛⎭⎫23×13+2×12+2×1-⎣⎡⎦⎤23×(-1)3+2×(-1)2+2×(-1)=163. 答案:1632.[变条件,变结论]若本例变为:设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:封闭图形如图所示,则⎠⎛0ax d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49. 答案:49利用定积分求平面图形面积的步骤(1)根据题意画出图形.(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限. (3)把平面图形的面积表示成若干个定积分的和或差. (4)计算定积分得出答案.[学会用活]5.⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x |e 1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π·22=2π,故答案为2π+1.答案:2π+16.(2021·江西宜春重点高中月考)函数f (x )=⎩⎪⎨⎪⎧x +4,-4≤x <0,4cos x ,0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为________.解析:由题意可得围成的封闭图形的面积 S =⎠⎛-4(x +4)d x +∫π204cos x d x=⎝⎛⎭⎫12x 2+4x |0-4+4sin x |π20 =0-(8-16)+4sin π2-0=12.答案:12限时规范训练 基础夯实练1.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:选C ⎠⎛01(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,故选C.2.(2021·晋南高中联考)函数f (x )=ln 2x -1x 的图象在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线方程为( ) A .y =6x -5 B .y =8x -6 C .y =4x -4D .y =10x -7解析:选A f ⎝⎛⎭⎫12=ln 1-2=-2,因为f ′(x )=1x +1x 2,所以f ′⎝⎛⎭⎫12=6,所以切线方程为y -(-2)=6⎝⎛⎭⎫x -12,即y =6x -5,故选A. 3.已知函数f (x )=(x 2+m )e x (m ∈R )的图象在x =1处的切线的斜率等于e ,且g (x )=f (x )x,则g ′(-1)=( )A.4e B .-4eC.e 4D .-e 4解析:选A 由题意得f ′(x )=2x e x +(x 2+m )e x =(x 2+2x +m )e x ,f ′(1)=(3+m )e ,由题意得(3+m )e =e ,所以m =-2,所以f (x )=(x 2-2)e x .解法一:所以g (x )=f (x )x =⎝⎛⎭⎫x -2x e x ,g ′(x )=⎝⎛⎭⎫1+2x 2e x +⎝⎛⎭⎫x -2x e x ,所以g ′(-1)=4e . 解法二:f ′(x )=(x 2+2x -2)e x ,f (-1)=-1e ,所以f ′(-1)=-3e ,又g ′(x )=xf ′(x )-f (x )x 2,所以g ′(-1)=4e.4.(2021·贵阳市四校联考)直线l 过抛物线E :y 2=4x 的焦点且与x 轴垂直,则直线l 与E 所围成的图形的面积等于( )A .2B .43C.83D .163解析:选C 由题意,得直线l 的方程为x =1,将y 2=4x 化为y =±2x ,由定积分的几何意义,得所求图形的面积为S =2⎠⎛012x d x =4⎠⎛01x 12d x =4×⎝⎛⎭⎫23x 32|10=83×1=83,故选C. 5.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3 B .⎣⎡⎭⎫π3,π2 C.⎝⎛⎦⎤π2,2π3D .⎣⎡⎭⎫π3,π解析:选B 根据题意,得f ′(x )≥3,则曲线y =f (x )上任一点的切线的斜率k =tan α≥ 3. 结合正切函数的图象可得α∈⎣⎡⎭⎫π3,π2.故选B.6.已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则a =________,b =________.解析:因为(x 3+ax +b )′=3x 2+a ,所以⎩⎪⎨⎪⎧3×12+a =2,13+a ·1+b =3,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:-1 37.若f (x )=13x 3-12f ′(1)·x 2+x +12,则曲线y =f (x )在点(1,f (1))处的切线方程是________.解析:因为f (x )=13x 3-12f ′(1)x 2+x +12,所以f ′(x )=x 2-f ′(1)x +1,所以f ′(1)=1-f ′(1)+1,所以f ′(1)=1,所以f (1)=13-12+1+12=43,曲线y =f (x )在点(1,f (1))处的切线方程是y -43=x-1,即3x -3y +1=0.答案:3x -3y +1=08.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解:(1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 9.(2021·淮南模拟)已知函数f (x )=x 2-ln x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎡⎦⎤12,1上?若存在,求出这两点的坐标,若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x,f ′(1)=2-1=1,则所求切线方程为y -1=1·(x -1),即y =x .(2)假设存在两点满足题意,且设切点坐标为(x 1,y 1),(x 2,y 2), 则x 1,x 2∈⎣⎡⎦⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝⎛⎭⎫2x 1-1x 1⎝⎛⎭⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎡⎦⎤12,1上单调递增,函数的值域为[-1,1], 故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎨⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝⎛⎭⎫x 1=-1,x 2=-12舍去, 故存在两点⎝⎛⎭⎫12,ln 2+14,(1,1)满足题意. 综合提升练10.已知直线y =1m 是曲线y =x e x 的一条切线,则实数m 的值为( )A .-1eB .-e C.1eD .e解析:选B 设切点坐标为⎝⎛⎭⎫n ,1m ,对y =x e x 求导,得y ′=(x e x )′=e x +x e x ,若直线y =1m 是曲线y =x e x 的一条切线,则有y ′|x =n =e n +n e n =0,解得n =-1,此时有1m =n e n =-1e ,∴m =-e.故选B.11.(2021·新高考卷Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e bD .0<b <e a解析:选D 解法一:设切点(x 0,y 0),y 0>0,则切线方程为y -b =e x 0(x -a ),由⎩⎪⎨⎪⎧y 0-b =e x 0(x 0-a )y 0=e x 0得e x 0(1-x 0+a )=b ,则由题意知关于x 0的方程e x 0(1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0, 所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,作出函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a ,故选D.解法二:过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a ,故选D.12.(2020·全国卷Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12解析:选D 易知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则|b |k 2+1=55①,设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程为y =12x +12.13.(2021·开封市模拟考试)已知函数f (x )=mx 3+6mx -2e x ,若曲线y =f (x )在点(0,f (0))处的切线与直线4x +y -2=0平行,则m =________.解析:f ′(x )=3mx 2+6m -2e x ,则f ′(0)=6m -2=-4, 解得m =-13.答案:-1314.(2021·江西五校联考)已知函数f (x )=x +a2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是________.解析:f ′(x )=1-a 2x 2,设切点坐标为⎝⎛⎭⎫x 0,x 0+a 2x 0,则切线方程为y -x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(x -x 0),又切线过点(1,0),所以-x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(1-x 0),整理得2x 20+2ax 0-a =0,又曲线y =f (x )存在两条过(1,0)点的切线,故方程有两个不等实根,即满足Δ=4a 2-8(-a )>0,解得a >0或a <-2.答案:(-∞,-2)∪(0,+∞)15.(2021·河北六校联考)已知函数f (x )=x ln x -12mx 2(m ∈R ),g (x )=-x +1e x -2e x +e -1e .(1)若函数f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,求m ; (2)证明:在(1)的条件下,对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2)成立. 解:(1)f (x )的定义域为(0,+∞), f ′(x )=ln x +1-mx ,f ′(1)=1-m ,因为f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,所以1-m =1,即m =0. (2)证明:在(1)的条件下,f (x )=x ln x ,f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减, 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )=x ln x 在x =1e 时取得最小值f ⎝⎛⎭⎫1e =-1e ,所以f (x 1)≥-1e . g (x )=-x +1e x -2e x +e -1e ,则g ′(x )=x e x -2e ,令h (x )=g ′(x )=x e x -2e,x >0,则h ′(x )=1-xe x ,所以当x ∈(0,1)时,h ′(x )>0,h (x )单调递增,当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减.所以当x >0时,g ′(x )≤g ′(1)=h (1)=-1e,因为g ′(x )≤-1e <0,所以g (x )在(0,+∞)上单调递减,所以g (x 2)<g (0)=-1e.所以对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2).创新应用练16.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)由已知得f′(x)=3ax2+6x-6a,因为f′(-1)=0,所以3a-6-6a=0,所以a=-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).因为g′(x0)=6x0+6,所以切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
导数的概念课件
03
通过求解能量和功率函数的导数,可以得到物体的能量守恒关
系。
05
导数的实际应用案例 分析
导数在经济学中的应用案例分析
边际分析和最优化问题
导数可以用来分析经济函数的边际变化,帮助决策者找到经 济活动的最优解。例如,在生产函数中,通过求导可以找到 生产要素的最佳组合。
弹性分析
复合函数的导数
复合函数的导数是内外函数导数的乘积
$(f(g(x)))' = f'(g(x)) \times g'(x)$
举例
$(sin(x^2))' = cos(x^2) \times 2x$
03
导数在几何中的应用
导数在曲线切线中的应用
切线的斜率
导数可以用来表示曲线在某一点 的切线斜率,斜率越大,曲线在
THANKS
感谢观看
该点的变化率越大。
切线的方向
导数还可以用来确定曲线在某一 点的切线方向,即函数值增加或
减少最快的方向。
极值点与拐点
导数的符号可以用来判断函数在 某一点的极值点与拐点,当一阶 导数大于0时,函数在该点单调 递增;当一阶导数小于0时,函
数在该点单调递减。
导数在曲线长度中的应用
曲线长度的计算
通过利用导数求出曲线的斜率, 可以计算出曲线的长度,即曲线 与x轴围成的面积。
导数可以用来计算需求的弹性,即需求量对价格变动的敏感 程度。这可以帮助企业了解产品价格的变动对市场需求的影 响,从而制定更合理的定价策略。
导数在物理学中的应用案例分析
速度和加速度
在物理学中,导数被用来表示物体的 速度和加速度。例如,一个物体的位 移对时间的导数就是它的速度,速度 对时间的导数就是它的加速度。
2022-2023学年高二数学 苏教版2019 选择性必修第一册 5.1导数的概念 课件 (20张)
当堂检测
5.已知函数 f (x) x2 a ln x 的图象在(1, f (1)) 处的切线经过坐标原点,则实数a 的值等于___________. 【答案】 1
【详解】因为 f x x2 aln x ,所以 f x 2x a ,所以 f 1 2 a ,又 f 1 1 ,
x
所以 y f x 在1, f 1 处的切线方程为: y 1 2 ax 1 ,
m 又切线过点(-e,-1),所以有 n+1= 1(m+e).
m 再由 n=ln m,解得 m=e,n=1. 故点 A 的坐标为(e,1).
讲授新课
【方法技巧】 求切点坐标的思路
已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出 切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.
D.2
【答案】A
【详解】因为 lim
f 3 x f 3 x
2 lim
f 3 x f 3 x 2 f (3) 2 ,
△x0
x
△x0
2x
所以 f (3) 1,故选:A.
当堂检测
4.若 f x x2 ,则 f x 在 x 1 处的切线的斜率为______.
【答案】2 【详解】由题意知, f (x) 2x ,得 f (1) 2 , 所以曲线在 x 1 处的切线斜率为 2.故答案为:2.
讲授新课 知识点四 两曲线的公切线问题
【例 4】已知曲线 f(x)=x3+ax+1在 x=0 处的切线与曲线 g(x)=-ln x 相切,则 a 的值为________. 4
[解析] 由 f(x)=x3+ax+1,得 f′(x)=3x2+a. 4
∵f′(0)=a,f(0)=1, 4
∴曲线 y=f(x)在 x=0 处的切线方程为 y-1=ax. 4
复变函数第二章1导数
f
(z)
A.
几何意义:
y
z
z0
v f(z)
A
O
xO
u
A lim f (z) 意味着: z z0
当z从平面上任一方向、沿任何路径、以任意
方式趋近于z0时,f (z)均以A为极限。
1
例1:证明函数f (z) e z 在z 0时极限不存在。
证明 当z沿实轴从0的右方趋于0时,即z x 0, x 0
解: u(x, y) x3 3xy2 v(x, y) 3x2 y y3
u 3x2 3 y2 x v 6xy
x
u
6xy
v
y 3x2
3y2
y
都是初等函数,在复平面内处处连续;
u
针对柯西
黎曼方程
x u
v y 在复平面内处处成立 v
u
[2]
在区域D内处处满足柯西
黎曼方程
x u
v y v
y x
(4)实际应用:直接利用定理结论有一定难度。
若u(x, y), v(x, y)在区域D内具有一阶连续偏导数,
则在区域D内可微。
计算:判定f (z)在哪些点处可导? a. 确定u(x, y), v(x, y);
让 z 沿直线 y = k x 趋于零, 我们有
lim u(x, y) lim x
x0 ( ykx)
x0 ( ykx)
x2 y2
lim
x
1 .
x0 (1 k 2 )x2
1 k2
故极限不存在.
2.2 复变函数的连续性
定义: 若若f (zlzim)z在0 f区(z域) D内f 处(z0处)则连称续函,数 则f称(z函)在数fz(0处 z)在连续。
2024届高考一轮复习数学课件(新教材人教A版 提优版):导数的概念及其意义、导数的运算
fx+Δx-fx Δx .
知识梳理
2.导数的几何意义 函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0)) 处的切线的 斜率 ,相应的切线方程为 y-f(x0)=f′(x0)(x-x0) .
知识梳理
3.基本初等函数的导数公式 基本初等函数 f(x)=c(c为常数)
知识梳理
f(x)=logax(a>0,且a≠1) f(x)=ln x
1 f′(x)=_x_ln__a_
1 f′(x)=__x _
知识梳理
4.导数的运算法则 若f′(x),g′(x)存在,则有 [f(x)±g(x)]′= f′(x)±g′(x) ; [f(x)g(x)]′= f′(x)g(x)+f(x)g′(x) ; gfxx′=f′xg[xg-xf]2xg′x(g(x)≠0); [cf(x)]′= cf′(x) .
教材改编题
1.若函数f(x)=3x+sin 2x,则
√A.f′(x)=3xln 3+2cos 2x
C.f′(x)=ln3x3+cos 2x
B.f′(x)=3x+2cos 2x D.f′(x)=ln3x3-2cos 2x
因为函数f(x)=3x+sin 2x, 所以f′(x)=3xln 3+2cos 2x.
对于
C,2sxin2
x′=2sin
x′x2-2sin x4
xx2′=2xcos
x-4sin x3
x,故
C
错误;
对于D,(2x+cos x)′=(2x)′+(cos x)′=2xln 2-sin x,故D正确.
(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则
f′(2)等于
专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习
1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处
高等数学(同济大学)课件上第2_1导数的概念
说明:
对一般幂函数 y x ( 为常数)
(x ) x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
机动 目录 上页 下页 返回 结束
例3. 求函数
的导数.
解:
则
lim f (x h) f (x) lim sin(x h) sin x
第二章
导数思想最早由法国
导数与微分 数学家 Ferma 在研究 极值问题中提出.
微积分学的创始人: 英国数学家 Newton 德国数学家 Leibniz
导数 微分学 微分
描述函数变化快慢 描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
第一节
第二章
导数的概念
一、引例 二、导数的定义 三、导数的几何意义 四、函数的可导性与连续性的关系 五、单侧导数
曲线 C : y f (x) 在 M 点处的切线斜率
y y f (x) N
f (x0 )
CM
T
说明: 在经济学中, 边际成本率, o x0 x x
边际劳动生产率和边际税率等从数学角度看就是导数.
机动 目录 上页 下页 返回 结束
y f (x) f (x0) x x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
若 lim y , 也称 x0 x
在 的导数为无穷大 .
若函数在开区间 I 内每点都可导, 就称函数在 I 内可导.
高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选
提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.
公共基础课一导数的四则运算
y f x x f x x x
y
'
=
f x x f x lim x 0 x
机动
目录
上页
下页
返回
结束
二 求导步骤
例1 求函数 f x x 的导数. 解 求增量 算比值
y f x x f x x
2
公共基础课
1 f ' 3 , f ' . 2
解 求增量
2
y f x x f x
2
x x 1 x 1 x 2 xx
2
算比值 取极限 即
y 2 x x x
y f ' x lim lim x 2 x 2 x x 0 x x 0
y f x x f x x 1 x x x
公共基础课
f x x f x y lim lim 1 1 取极限 x 0 x 0 x 即 x 1
机动
目录
上页
下页
返回
结束
二 求导步骤
例2 求函数 f x x 1 的导数及
2
f ' x x 2 x
1 所以,f ' 3 6,f ' 1 2
机动
目录
上页
下页
返回
结束
三 解决问题
固定成本1000万元 ,生产x 辆轿车可 0.005 x 5 x 万元 变成本为
2
公共基础课
售价16万元/辆,能否决策 将月产量从1000辆增加到1001 辆?
第一节_导数的概念
= lim
Q(t + ∆t ) − Q(t ) ∆t →0 ∆t
∆y lim = ∆x →0 ∆x f ( x + ∆x) − f ( x) lim ∆x →0 ∆x
15
瞬时变化率
微积分
小结
解决与速度变化或变化率相关问题的步骤: (1) 建立一个函数关系 y = f (x) x∈I .
(2) 求函数由 x0 到 x0+ ∆x 的平均变化率:
y
y = f (x)
A
A′
∆y
T
α
O
β
∆x
B
x
14
微积分
实际问题抽象
非恒定电流的电流强度 已知电量Q=Q(t), 求电流强度i(t)
∆Q = Q(t + ∆t ) − Q(t )
变速直线运动的速度 已知路程s=s(t), 求速度v(t)
抽象的数量关系 已知函数y=f(x),求在 x处的变化率
∆s = s (t + ∆t ) − s (t )
x + ∆x ) − x 2 ( ∆y lim = lim = lim ( 2 x + ∆x ) = 2 x ∆x →0 ∆x ∆x →0 ∆x → 0 ∆x
2
其结果表示是x的函数,称之为导函数。 其结果表示是 的函数,称之为导函数。 的函数 导函数
20
微积分
3. 导函数
定义 若 f (x)在区间(a,b)内每一点 皆可导, 则f (x) 在
f ( x ) − f ( x0 ) f ′ ( x 0 ) = lim x → x0 x − x0
用 h 代替 ∆x
差商 导数是函数变 化率的精确描 述,从数量方 面刻画了变化 率的本质
导数1
导数复习(1)1.导数的概念(1)函数y =f(x)在x =x 0处的导数称函数y =f(x)在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f(x)在x =x 0处的导数,记作f′(x 0)或y′|x =x0,即f′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f(x)在点x 0处的导数f′(x 0)的几何意义是在曲线y =f(x)上点P(x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y -y 0=f′(x 0)(x -x 0).(3)函数f(x)的导函数:称函数f′(x)=lim Δx →0f (x +Δx )-f (x )Δx为f(x)的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 5.导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数;(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导一、变化率与导数(3.24发,3.26晚收) 1、若'0()3f x =-,则000()()limh f x h f x h h→+--=( )A .-3B .-6C .-9D .-122、已知函数21y x =+的图象上一点(1,2)及邻近一点(1,2)x y +∆+∆,则yx∆∆等于( ) A .22()x +∆ B .2x +∆ C .2x D .23、设)(x f 在0x x =处可导,且1)()3(lim000=∆-∆+→∆xx f x x f x ,则)(0x f '= ( )A .1B .0C .3D .314、函数)(x f y =在点(x 0,y 0)处的切线方程为12+=x y ,则xx x f x f x ∆∆--→∆)2()(lim 000等于( )A .-4B .-2C .2D .4 5、已知函数()1f x =,则0(1)(1)limx f x f x∆→-∆-∆的值为( )A .13-B. 13C. 23D. 0 6、一物体的运动方程为225s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在4秒末的瞬时速度是( )A .8米/秒 B .7米/秒 C .6米/秒 D .5米/秒 7、设函数)(x f 在0x x =处可导,则hx f h x f h )()(lim000-+→ ( )A .仅与x 0有关而与h 无关B .仅与h 有关而与x 0无关C .与x 0,h 都有关D .与x 0、h 均无关8、已知f(x)=aln(x+1)-x 2在区间(0,1)内任取两个实数p 、q ,且p ≠q ,不等式qp q f p f -+-+)1()1(>1恒成立,则实数a 的取值范围为( )A .(-∞,15]B .[15,+∞)C .(-12,15]D .(12,30] 9、设()f x 为可导函数,且满足()()1212limx f x f x∆→+∆-=-∆,则函数()y f x =在1x =处的导数为( )A .1 B .1- C .1或1- D .以上答案都不对 10、若()0'3,f x =-则()()0003limh f x h f x h h→+--=( )A .3-B .12-C .9-D .6-二、求下列各函数的导数(其中a,b 为常数)235y x x =-+(1)1y x =+(2)2222x y x =+(3)3y =(4) 11-x +11+x (6) (y x =+(7) ()()y x a x b =-- (8)ln y x x = (10)ln ny x x=11.log a y =(12)11x y x +=- (13)251xy x=+(14)232x y x x =-- (15)sin cos y x x x =+ (16)1cos xy x=-(17)5sin 1cos x y x=+ (18)25(1)y x =+ (22) 2log (1)a y x =+(23) sin y nx = (24) sin n y x = (25) sin ny x =(26)y =x nlg x ; (27)y =1x +2x 2+1x 3; (28)y =ln 2x -12x +1.三、导数的几何意义1、已知曲线y =ln x 的切线过原点,则此切线的斜率为( )A .eB .-e C.1e D .-1e2、曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=03、设曲线y =ax -ln x 在点(1,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .34、设a ∈R ,函数f (x )=e x +a ·e -x的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )(最后一步换元法)A .ln 2B .-ln 2 C.ln 22 D .-ln 225、线y =32x 2+x -12的某一切线与直线y =4x +3平行,则切线方程为________.6、若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 7.已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1D.128. 设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1B.12C .-2D .2 9知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.10.已知曲线y =1x.(1)求该曲线过点A (1,0)的切线方程;(2)求满足斜率为-13的该曲线的切线方程.四、导数的单调性(3.26晚发,3.28早收)(1)f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在(a ,b )上为减函数.(2)注意:由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少. (3)导数法求函数单调区间的一般步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.1.若函数y =cos x +ax 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,则实数a 的取值范围是( ) A .(-∞,-1] B .(-∞,1] C .[-1,+∞) D .[1,+∞) 2.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1 3若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 4.下列函数中,为增函数的是( )A .y =-1x 2B .y =x 3+x 2+x C .y =lg|x | D .y =x +1x5.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数, 则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34D .0<a <126.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.7.若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.8.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.9.函数f (x )=e x-x 的单调递增区间是________.10.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是________.11.设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的单调区间.12.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值; (2)求函数f (x )的单调区间.13设函数f (x )=x (e x-1)-12x 2,求f (x )的单调区间.14.已知函数f (x )=ln x -ax (a ∈R ),求函数f (x )的单调区间.15、设函数()21ln 2f x x x =-.讨论函数()f x 的单调性;16(已知函数f (x )=2x 2-ax +ln x 在其定义域上不单调,求实数a 的取值范围.17已知函数f (x )=x 2+2a ln x (a ≠0).①若函数f (x )的图象在点(2,f (2))处的切线斜率为2,求实数a 的值;②若函数g (x )=2x+f (x )在[1,2]上是减函数,求实数a 的取值范围.五、极值与最值 1.函数的极值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 1. 已知a 是函数()312f x x x =-的极小值点,则a =( )A .-4B .-2C .4D .22、函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( )A .1个B .2个 C. 3个 D .4个3设函数()313f x x x m =-+的极大值为1,则函数()f x 的极小值为( )A.13- B.1- C.13D.14已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或185.函数3211()32f x x x cx d =-++有极值,则c 的取值范围为( )A .14c < B .14c ≤ C.14c ≥ D .14c >6已知函数()()221xf x ae x a x =--+,若函数()f x 在区间()0,ln 2上有最值,则实数a 的取值范围是( )A .(),1-∞- B .()1,0- C. ()2,1-- D .()(),00,1-∞ 7函数33y x x =-在[]1,2-上的最小值为( )A .2B .-2C .0D .-48函数xy xe -=,[0,4]x ∈的最小值为( )A .0B .1e C.44e D .22e9若函数()ln a f x x x =+在区间[]1e ,上最小值为32,则实数a 的值为( ) A.322eD.非上述答案 10知函数b kx kx x f +-=233)(在区间]2,2[-上的最大值为3,最小值为-17,求b k ,的值11函数()34f x ax bx =-+,当2x =时,函数()f x 有极值为43-. (1)求函数()f x 的解析式;(2)若()f x k=有3个解,求实数k 的取值范围.12已知函数f (x )=xlnx .(1)求函数f (x )的极值点; (2)设函数g (x )=f (x )-a (x -1),其中a∈R,求函数g (x )在区间[1,e]上的最小值.(其中e 为自然对数的底数).13已知函数(),0xf x e ax a =->.(1)记()f x 的极小值为()g a ,求()g a 的最大值; (2)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围.。
旧教材适用2023高考数学一轮总复习第三章导数及其应用第1讲导数的概念及运算课件
1.(2021·江苏沭阳高级中学模拟)2020 年 12 月 1 日 22 时 57 分,嫦娥 五号探测器从距离月球表面 1500 m 处开始实施动力下降,7500 牛变推力发 动机开机,逐步将探测器相对月球纵向速度从约 1500 m/s 降为零.12 分钟后, 探测器成功在月球预选地着陆,记与月球表面距离的平均变化率为 v,相对 月球纵向速度的平均变化率为 a,则( )
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系
为
□18 y′x=y′u·u′x
,即 y 对 x 的导数等于 y 对 u 的导数与 u 对
x 的导数的乘积.
1.f′(x0)与 x0 的值有关,不同的 x0,其导数值一般也不同. 2.f′(x0)不一定为 0,但[f(x0)]′一定为 0. 3.可导奇函数的导数是偶函数,可导偶函数的导数是奇函数,可导周 期函数的导数还是周期函数. 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反 映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这 点处的切线越“陡”.
(c 为常数).
(3)gf((xx))′= □16 f′(x)g([xg)(-x)f(]2x)g′(x)
(g(x)≠0).
5.复合函数的导数
一般地,对于两个函数 y=f(u)和 u=g(x),如果通过变量 u,y 可以表示
成 x 的函数,那么称这个函数为函数 y=f(u)和 u=g(x)的复合函数,记 作 □17 y=f(g(x)) .
A.v=2152 m/s,a=2152 m/s2 B.v=-2152 m/s,a=-2152 m/s2 C.v=-2152 m/s,a=2152 m/s2 D.v=2152 m/s,a=-2152 m/s2
2025年高考数学总复习课件19第三章第一节导数的概念及运算
(2)求f ′(x0)时,可先求f (x0),再求f ′(x0).( × )
(3)曲线y=f (x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同.( × )
第一节
导数的概念及运算
必备知识
落实“四基”
2.已知函数f (x)在x=x0处的导数为12,则 lim
变化的方向,其大小|f ′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线
越“陡峭”.
第一节
导数的概念及运算
必备知识
落实“四基”
核心考点
提升“四能”
自查自测
知识点二 导数的运算
1.(多选题)(教材改编题)下列导数的运算中正确的是( ABD )
A.(3x)′=3x ln 3
x sin x- cos x
导数的概念及运算
考向3
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
求参数的值或取值范围
【例3】(1)(2024·江门模拟)若曲线y=e2ax在点(0,1)处的切线与直线x+2y+1=0
-sin x
f ′(x)=_________
f (x)=cos x
f (x)=ex
f (x)=ax(a>0,且a≠1)
f (x)=ln x
f (x)=log x(a>0,且a≠1)
ex
f ′(x)=____
ax ln a
f ′(x)=_________
1
f ′(x)=____
x
1
x ln a
f ′(x)=____
在点(0,f (0))处的切线方程为y-1=x,即y=x+1.
高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)
5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。
2020年高考数学一轮复习考点与题型总结:第三章 导数及其应用含答案
第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式原函数 导函数 f (x )=x n (n ∈Q *) f ′(x )=n ·x n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba(n ≠-1);(3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则lnx 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞)C.⎣⎡⎦⎤-23,13D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y=2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14. 2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________. 解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛πsin x d x -⎠⎛0πcos x d x =-cos x⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝⎛⎭⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136. 法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x =3-⎝⎛⎭⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e=(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A .0 B .1 C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a2=-1,解得a =2.答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e, ∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12. 答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6. 9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1. (1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1,∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节 导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a❷,f(a)叫做函数y=f(x)的极小值.附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.f′(x 0)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值一定是函数的最值.(3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.第一课时导数与函数的单调性考点一求函数的单调区间1.已知函数f(x)=x ln x,则f(x)()A.在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________. 解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a ,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0, 故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716[题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x . 令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin 2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4. 4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0;当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得 x 1=1-1-4a 2a >0,x 2=1+1-4a 2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减.7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围. 解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增.。
高考数学导数专题1:导数的概念及运算
导数的概念及运算1.导数的概念及几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数的定义求函数y=C(C为常数),y=x,y=x(1),y=x2,y=x3,y=的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.(3)能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.一导数的概念(1)函数y=f(x)在x=x0处的导数:称函数y=f(x)在x=x0处的瞬时变化率limΔx→0Δx(f(x0+Δx)-f(x0))=limΔx→0Δx(Δy)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0Δx(Δy)=limΔx→0Δx(f(x0+Δx)-f(x0)).(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0Δx(f(x+Δx)-f(x))为f(x)的导函数.易错点1.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.二导数的运算1.基本初等函数的导数公式2.导数的运算法则2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).3.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=yu ′·ux ′,即y 对x的导数等于y 对u 的导数与 u 对x 的导数的乘积. 易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(xn)′=nxn -1中n ≠0且n ∈Q ,(cos x)′=-sin x.2.注意公式不要用混,如(ax)′=axln a ,而不是(ax)′=xax -1. 3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q ,(cosx )′=-sin x .2.注意公式不要用混,如(a x)′=a xln a ,而不是(a x)′=xax -1.3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 题型一 导数的概念1.已知函数f(x)=2ln 3x +8x , 求f(1-2Δx)-f(1)Δx的值.解析f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f ′(1)=-20.【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx →0时, 平均变化率ΔyΔx2.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t =10 min 的降雨强度为( ) A.15 mm/min B.14 mm/min C.12mm/minD.1 mm/min【解析】选A.3.(2015·陕西一检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2,故选B.4.(2015·洛阳期末)函数f (x )=e xsin x 的图象在点(0,f (0))处的切线的倾斜角为( )A.3π4 B.π3 C.π4D.π6解析:因为f ′(x )=e xsin x +e xcos x ,所以f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线的斜率为1, 题型二 导数运算 1. 求下列函数的导数. (1)y =ln(x +1+x2); (2)y =(x2-2x +3)e2x ;(3)y =3x 1-x. 【解析】运用求导数公式及复合函数求导数法则.(1)y ′=1x +1+x2(x +1+x2)′=1x +1+x2(1+x 1+x2)=11+x2. (2)y ′=(2x -2)e2x +2(x2-2x +3)e2x =2(x2-x +2)e2x.Δlim →x 0Δlim →x 0Δlim →x(3)y ′=13(x 1-x 1-x +x(1-x)2=13(x 1-x1(1-x)2=13x (1-x) 2. 如下图,函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=( );f(1+Δx)-f(1)Δx=( ) (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2, 由导数定义f(1+Δx)-f(1)Δx=f ′(1).当0≤x ≤2时,f(x)=4-2x ,f ′(x)=-2,f ′(1)=-2.3.(2015·济宁模拟)已知f (x )=x (2 014+ln x ),f ′(x 0)=2 015,则x 0=( )A .e 2B .1C .ln 2D .e解析:由题意可知f ′(x )=2 014+ln x +x ·1x=2 015+ln x .由f ′(x 0)=2 015,得ln x 0=0,解得x 0=1.答案:B4.若函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x-2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3,解得f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:85.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x解析:选B ⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2;(log 2x )′=1x ln 2;(3x )′=3x ln 3;(x 2cos x )′=2x cos x -x 2sin x ,故选B.32)-32)-32-34-0Δlim →x 0Δlim →x6.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).6.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103解析:选D 因为f ′(x )=3ax 2+6x , 所以f ′(-1)=3a -6=4, 所以a =103.4.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案:3题型三 导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前几问,难度较低.归纳起来常见的命题探究角度有: 1.求切线方程问题. 2.确定切点坐标问题. 3.已知切线问题求参数. 4.切线的综合应用.求切线方程问题1.(2015·云南一检)函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为( )已知切线求参数范围3.(2015·河北五校联考)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫e 28,+∞ B.⎝ ⎛⎦⎥⎤0,e 28C.⎣⎢⎡⎭⎪⎫e 24,+∞ D.⎝ ⎛⎦⎥⎤0,e 24 解析:结合函数y =ax 2(a >0)和y =e x的图象可知,要使曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,只要ax 2=e x在(0,+∞)上有解,从而a =ex x 2.令h (x )=e x x 2(x >0),则h ′(x )=e x ·x 2-e x·2xx4=x -2e x x 3,令h ′(x )=0,得x =2,易知h (x )min =h (2)=e 24,所以a ≥e 24.答案:C 切线的综合应用4.(2015·重庆一诊)若点P 是函数f (x )=x 2-ln x 图象上的任意一点,则点P 到直线x -y -2=0的最小距离为( )A.22B. 2C.12D .3解析:由f ′(x )=2x -1x=1得x =1(负值舍去),所以曲线y =f (x )=x 2-ln x 上的切线斜率为1的点是(1,1),所以点P 到直线x -y -2=0的最小距离为|1-1-2|2=2,故选B.答案:B导数的几何意义是切点处切线的斜率,应用时主要体现在以下三个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.易错题:混淆“在某点处的切线”与“过某点的切线”致误1. 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解析] 因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.[答案] A2.(2015·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:3[易误点评] 没有对点(1,0)的位置进行分析,误认为是切点而失误. [防范措施]对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.(2)对于已知的点,应首先确定其是否为曲线的切点,进而选择相应的方法求解. 随堂测试1、已知函数y =f (x )的图象在点(1,f (1))处的切线方程x -2y +1=0,则f (1)+2f ′(1)的值是( ) A.12 B .1 C .32D .2【答案】D【解析】∵函数y =f (x )的图象在点(1, f (1))处的切线方程是x -2y +1=0,∴f (1)=1, f ′(1)=12.∴f (1)+2f ′(1)=2.故选D.2、曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0 D .3x -y +1=0 【答案】C【解析】y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0.3、.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则曲线y=f (x )在横坐标为1的点处的切线方程是( ) A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0【答案】B【解析】由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0). 因为f'(x )=-2x+1, 所以f'(1)=-1,故切线方程为y=-(x -1), 即x+y -1=0.4、已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( )A .-23B .-43C .43D .34【答案】D【解析】因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x1-tan 2x =-61-9=34.故选D.5、过函数f (x )=13x 3-x 2图像上一个动点作函数的切线,则切线倾斜角的范围为( )A.⎣⎡⎦⎤0,3π4 B .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D .⎝⎛⎦⎤π2,3π4 【答案】B【解析】设切线的倾斜角为α.由题意得k =f ′(x )=x 2-2x =(x -1)2-1≥-1,即k =tan α≥-1,解得0≤α<π2或3π4≤α<π,即切线倾斜角的范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故选B. 6.(2015·长春二模)若函数f (x )=ln xx ,则f ′(2)=________.解析:由f ′(x )=1-ln x x 2,得f ′(2)=1-ln 24.答案:1-ln 247.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任意一点的切线的倾斜角α的取值范围是________.解析:根据已知可得f ′(x )≥ 3,即曲线y =f (x )上任意一点的切线的斜率k =tan α≥ 3,结合正切函数的图象,可知α∈⎣⎡⎭⎫π3,π2.答案:⎣⎡⎭⎫π3,π28.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0, ∴a ≠-12.∴a 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 94.(2016·临沂一模)已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
1导数讲义1
1.导数与导函数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=limx1→x0f(x1)-f(x0)x1-x0=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=limΔx→0 f(x+Δx)-f(x)Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数. 2.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).(1)f(x)=x(2 016+ln x),若f′(x0)=2 017,则x0等于()A.e2B.1C.ln 2D.e(2)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于()A.-1B.-2C.2D.0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2.题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx 的图像在点(1,-2)处的切线方程为( )A.2x -y -4=0B.2x +y =0C.x -y -3=0D.x +y +1=0(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)C (2)13解析 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0. (2)∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( )A.2x -y +3=0B.2x -y -3=0C.2x -y +1=0D.2x -y -1=0(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0B.x -y -1=0C.x +y +1=0D.x -y +1=0答案 (1)D (2)B解析 (1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0.由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B.命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( ) A.-1B.-3C.-4D.-2答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.(1)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A.3x -y -2=0 B.4x -3y +1=0C.3x -y -2=0或3x -4y +1=0D.3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e解析 (1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,∴切点P 的坐标为(1,1).故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1.∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0,∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝⎛⎭⎫-12,-18, ∴此时的切线方程为y +18=34⎝⎛⎭⎫x +12,即3x -4y +1=0.综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0,故选C. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. [方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e答案 B解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1, 则f ′(1)=-1.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A.eB.-eC.1eD.-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则0|x x y'==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N +,则f 2 016(x )等于()A.-sin x -cos xB.sin x -cos xC.-sin x +cos xD.sin x +cos x答案 B解析 ∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ), ∴f n (x )是以4为周期的函数, ∴f 2 016(x )=f 4(x )=sin x -cos x ,故选B.4.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A.0 B.1 C.2 D.3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A.-1B.0C.2D.4答案 B解析 由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A.x +4y -2=0B.x -4y +2=0C.4x +2y -1=0D.4x -2y -1=0答案 A解析 y ′=-e x (e x +1)2=-1e x +1e x +2,因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1ex +2≥4,故y ′=-1e x +1e x +2≥-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值, 此时切点的坐标为(0,12),切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.7.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知函数f (x )=x 2-1和函数g (x )=2ln x ,那么函数f (x )和函数g (x )的隔离直线方程为____________. 答案 y =2x -2解析 由题意得函数f (x )和函数g (x )的隔离直线为它们在交点(1,0)处的公切线.因为f ′(1)=2=g ′(1)=k ,所以切线方程为y =2(x -1).8.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________. 答案 9解析 先设切点为M (x 0,y 0), 则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=203(1)x +(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升 (时间:15分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图像的切线平行,则实数a 的值为( ) A.14B.12C.1D.4答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得1211()1244a -⨯=,可得a =14,经检验,a =14满足题意.12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为( ) A.⎝⎛⎭⎫32,2 B.⎝⎛⎭⎫32,134 C.⎝⎛⎭⎫52,134 D.⎝⎛⎭⎫52,2答案 B解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1=-⎝⎛⎭⎫x 0-322+134, ∴P 点坐标为⎝⎛⎭⎫32,134时,S 普通梯形最大.13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.14.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2015=log 2 016(x 1x 2…x 2 015)=-1.15.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由. 解 (1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2. (2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12) =(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
1导数的定义(精)
x
4
2 . 2
同理可得 : (cos x) sin x
( 3) y lnx
y ln( x x ) ln( x ) lim 解: (ln x ) lim x o x x 0 x x x ln(1 ) 1 x x lim lim x0 x 0 x x x
例7 设f(x)在[a, b]上连续, f(a) f(b) 0, (a) 0, f (b ) 0, 证 : f ( x)在(a, b )内必有一根 f
六、小结
1. 导数的实质: 增量比的极限;
2. f ( x 0 ) a f ( x 0 ) f ( x 0 ) a;
( xn ) nxn1 .
例2 讨论函数 f ( x ) x 在x 0处的可导性.
解
x f ( x) x x x0 , x0
y
y x
f ( x ) f ( 0) x lim lim x 0 x 0 x x lim
1,
o
x
x 0
C
o
A
y y0 D
B
x0
x x0
x
x
y y0 f ( x ) f ( x0 ) 割线AB的斜率为 tan , x x0 x x0 C B 沿曲线 A, x x0 , f ( x ) f ( x0 ) . 切线AD的斜率为 k tan lim x x0 x x0
定义3.1
设函数 y f ( x )在点 x0的某个邻域内有定义,
给 x0一个改变量 x , 相应地函数 y的改变量为 y y f ( x0 x ) f ( x0 ); 如果 lim 存在, 则称函数 x 0 x y f ( x )在点 x0处可导, 并称这个极限为函数 y f ( x ) df ( x ) 在点 x0处的导数, 记为y x x0 , f ( x0 ), |x x0 dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称此极限值为函数f (x)在点x0的导数,记为 f x0 , 即
f x0
f ( x0 x) f ( x0 ) y lim lim x 0 x x 0 x
0
也可记作 y x x , dy
dx x x
,
0
df x . dx x x
0
10
可导与不可导 说明一:
y lim 如果 x 0 x
存在,则称 y f x 在 x0 处可导 不存在,则称 y f x 在 x0 处不可导
如果 lim
y x 0 x
11
导函数 说明二: 如果函数 f ( x ) 在区间 a, b 内每一点都有导数,
x
5
引例三 [割线的斜率和切线斜率] 平均变化率刻画了曲线在某个区间上的平均变化趋势。 那么如何精确地刻画曲线上某一点处的变化趋势呢 y y f ( x) 在[x0,x]内函数的平均变化率为 N(x,f(x)) y f ( x) f ( x0 ) y k割线 x x x0 T (x0,f(x0) C M P x 在x=x1处瞬时变化率为 x0 x o x △x越小,平均变化率越接近瞬时变化率 f ( x) f ( x0 ) y lim lim k切线 x 0 x x x x x0
导数的概念
Derivative
知识目标
1、理解导数的基本概念 2、掌握导数的概念在生活和专业中的应用
能力目标
1、会将相应的实际专业问题和导数的数学概念式互译; 2、会用导数概念表达式表示生活和专业中需要用导数 概念解决的问题
2
引例1 在经营某商品中,甲用5年时间挣到10万元,乙用 5个月时间挣到2万元,如何比较和评价甲,乙两人的 经营成果?
y
y f x
M0
函数
f x 在点 x0 处的导数
M
y
T
f x0 就是函数所表示的
曲线在点 的斜率.
x0 , y0
x
处切线
k f ' ( x0 )
o
x0 x0 x
x
14
y
y f x
y
y f x
y
y x3
o
x lim 瞬时变化率 x0 x
一般地, (1) x0 , x0 x
y (2) x
(3) lim
y f x0 x f x0
y f x0 x f x0 lim x0 x 0 x x
9
a, b
x1 x2 f x1 f x2 f x
函数 f ( x ) 在区间 a, b 内有一
导函数,即
f x x f x f ' x lim x 0 x
x
也可记作 y
dy dx
df ( x ) dx
12
导数与导函数的区别与联系
x
x 0
x
vt0 为路程关于时间的变化率,即
观察:3月18日到4月18日与4月18日到4月20日的温 度变化,用曲线图表示为,请问这两个时间段平均每天 分别上升了多少度,哪段时间上升的幅度比较大?
T (℃ ) 30 20 10A (1, 3.5) 2 0 2 10 B (32, 18.6) C (34, 33.4) 18.6 3.5
32 1 33.4 18.6 7.5 34 32
10 1 甲: 0.167 (万元 / 月) 5 12 6 2 乙: 0.4(万元 / 月) 5
乙的经营成果比甲的好
y 注:这里不是比较△y,而是比较 x
3
引例2现有宁波市某年3月和4月某天日最高气温记载. 时间 日最高气温 3月18日 3.5℃ 4月18日 18.6℃ 4月20日 33.4℃
R R( x) R( x0 ) 总收入在[x0,x]内的平均变化率 x x x0 当x=x0时的总收入的变化率 R( x) R( x0 ) R lim lim x 0 x x x0 x x0 上述极限又称为边际收入
8
此二例中,均匀变化与非均匀变化,局部以均匀代 替非均匀
区别: f ( x0 ) 是一常数.
f x
是一函数.
函数 f ( x)在点 x0 处的导数 f ( x0 ) 就是导函数 联系: f x 在x x0 处的值, 即
f ( x0 ) f x
x x0
注:通常,导函数也简称为导数.
13
说明三:导数的几何意义
o x
x0
切线 x轴
x
平行于x轴的切线
垂直于x轴的切线
k f x0 0
2 k tg
f x0
15
说明四: 速度、加速度的表示法
f x0 lim y lim f ( x0 x) f ( x0 )
x 0
若物体的运动方程为 s s(t )
1
6
求切线的斜率,先算出割线的斜率,然后通 过取极限, 从割线过渡到切线,求得切线的斜率.
7
引例四【销售变化率】
若销售收入 R 与销售量x的关系是 R R( x) ,则当销
率和当x x0 时的变化率。 解 先求从x0 到x的平均收入 R 售量由 x0变化到 x 时,求总收入在 [ x0 , x] 内的平均变化
二、 概念和公式的引出 导数 设函数y=f(x)在点x0的某一邻域有定义,当自变量x 在点x0处有增量△x(△x ≠0, x0+ △x在定义域内) 时,相应地函数有增量,
y 如果 lim 存在, 称f (x)在点x0可导, x 0 x
y f x0 x f x0
0.423
20
30
T T2 T1 (平均变化率) t t t 2 1 4 34 t(d)
切线的斜率
y lim x 0 x f ( x0 x) f ( x0 ) lim x 0 x
y
导数
y f x
M0
M
y
T
x
o
x0 x0 x