目前在生物质能利用技术方面,主要有哪些研究方向
生物质能的开发与利用

生物质能的开发与利用随着全球环保意识的不断提高和对传统化石能源的限制,生物质能作为一种新型可再生能源已经越来越受到人们的关注。
生物质能是指由植物、动物和微生物等生物体生长和死亡过程中产生的所有有机物质。
这些有机物质可以被转化为能源,如热能、电能、生物柴油、生物甲醇等,具有广阔的应用前景。
本文将从生物质能的来源、开发利用及其未来发展方向等方面进行详细阐述。
一、生物质能的来源生物质能的来源多种多样,常见的有以下几种:1.木材和木质废弃物木材是指树干、树枝、树皮等植物部分,它们可以作为薪柴燃烧供暖或者用来生产木屑、木片等生物质燃料。
木质废弃物是指来自木制品生产或者家庭装修等产生的废弃物,如废木板、废纸、锯末等。
2.农作物和农业废弃物农作物包括粮食作物、油料作物、棉花、甘蔗等,它们可以通过农业林业废弃物资源化利用技术生产生物能源。
农业废弃物指农业生产过程中产生的废弃物,如秸秆、麦草、豆腐渣等。
3.城市垃圾和工业废弃物城市垃圾中的有些有机物质可以用来生产沼气,进而发电。
工业废弃物是指工业生产过程中产生的废弃物,如工业锅炉烟气、化工废水、冶金废渣等,它们可以用来生产生物燃料。
以上来源不仅存在于国内,也广泛存在于国际间。
例如,在欧洲和美国,木材及其产品、农作物和农业废弃物、城市垃圾和工业废弃物等都被作为生物能源的主要来源,实现了全面利用,分享了高效清洁能源带来的经济和环保效益。
二、生物质能的开发利用生物质能作为一种可再生能源,具有广泛的开发利用前景。
其开发利用主要包括生物质燃料、生物质液体燃料、生物质气体燃料和生物质电能几个方面。
1.生物质燃料生物质燃料是指利用生物质材料进行能量转化的燃料,主要包括木柴、木炭、木屑、木粉、木片等,广泛应用于家庭取暖、工业加热、热电联产等方面。
例如中国西南部的某地,传统的冬季取暖方式是采用薪柴烧火,为了改善燃烧的条件和环境卫生,当地政府推广了生物质燃料,并加大了生物质炉具的推广力度,有效地降低了对非可再生能源的依赖度,实现了可持续发展。
生物质能的开发与利用

生物质能的开发与利用摘要:随着化石燃料的短缺和其使用时产生的污染问题的加剧,生物质能以其可再生、低污染、分布广泛等特点,日益受到世界各国的重视。
本篇论文从生物质能的概念入手,综合国内外对生物质能利用现状分析其优势、利用技术及开发研究前景。
21世纪被誉为是“生物能源时代”,是生物的世纪,是科学技术飞速发展新世纪。
可持续发展是当前经济发展的趋势所在,面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。
(一)新能源之生物质能研究背景当代社会使用最广泛的能源是煤炭、石油、天然气和水力,特别是石油和天然气的消耗量增长迅速,已占全世界能源消费总量的60%左右。
但是,石油和天然气的储量是有限的,许多专家预言,石油和天然气资源将在40年、最多50—60年内被耗尽,而煤炭资源虽然远比石油和天然气资源丰富,但是直接应用煤炭严重污染环境。
因此,为避免能源危机的出现,以化石能源为基础的常规能源系统正逐步持久的、多样化的、可以再生的新能源系统过渡。
我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。
在能源领域面临的主要挑战是:(1)人均能源资源占有量不足,且分布不均;(2)人均能源消费量低,单位产值的能耗高;(3)能源构成以煤为主;(4)工业部门消耗能源占有很大的比重;(5)农村能源短缺,以生物质能为主;(6)从能源安全角度考虑,我国能源面临挑战;(7)能源品种结构不合理,优质能源供应不足;(8)能源工业技术水平有待进一步提高;(9)节能提效工作亟待加强等。
为此已出台的发展可再生能源的相关方钭政策、规章制度:1992年国务院批准的《中国环境发展十大对策》中明确提出,要“因地制宜地开发利用和推广大阳能、风能、地热能、生物质能等新能源”;连续在四个国家五年计划中将生物质能利用技术的研究与应用列为重点科技攻关项目。
国家先后制定了《可再生能源法》、《可再生能源中长期发展规划》、《可再生能源发展“十一五”规划》和《可再生能源产业发展指导目录》、《生物产业发展“十一五”规划》,提出了生物质能发展的目标任务,明确了相关扶持政策。
生物质能研究现状及未来发展策略

生物质能研究现状及未来发展策略一、本文概述随着全球能源需求的不断增长,传统化石能源的日益枯竭,以及环境污染问题的日益严重,生物质能作为一种清洁、可再生、可持续的能源形式,受到了广泛关注。
本文旨在全面梳理生物质能的研究现状,深入剖析其在能源转型、环境保护和经济发展等方面的重要作用,同时探讨生物质能未来发展的策略与路径。
我们将从生物质能的定义、特点出发,介绍其在能源领域的应用现状,分析存在的问题与挑战,最后提出针对性的未来发展策略,以期为我国乃至全球的生物质能发展提供参考和借鉴。
通过本文的阐述,我们期望能够增进对生物质能的认识,推动其在全球能源结构中的优化与升级,为构建清洁低碳、安全高效的能源体系贡献力量。
二、生物质能研究现状近年来,生物质能作为一种可再生、低碳的能源形式,已逐渐成为全球能源领域研究的热点。
其在能源结构中的比重逐渐上升,为应对气候变化、推动可持续发展提供了重要途径。
目前,生物质能的研究和应用主要集中在生物质发电、生物质燃料、生物质热化学转化以及生物质生物化学转化等领域。
在生物质发电方面,生物质直燃发电和生物质气化发电技术已相对成熟,广泛应用于农林废弃物、生活垃圾等的能源化利用。
生物质发电不仅可以替代化石燃料,减少碳排放,还能在一定程度上解决废弃物处理的问题,具有环境友好的特性。
生物质燃料的研究与应用也日益广泛,生物柴油、生物质成型燃料等已成为替代传统化石燃料的重要选择。
这些燃料具有可再生、低污染的特性,在交通、工业等领域有着广阔的应用前景。
生物质热化学转化技术,如生物质热解、生物质气化等,能够将生物质转化为高品质的气体或液体燃料,提高生物质能的利用效率。
目前,这些技术仍处于研究和示范阶段,但其在未来能源领域的应用潜力巨大。
生物质生物化学转化技术,如生物质发酵产乙醇、生物质酶解产糖等,是生物质能利用的另一重要方向。
这些技术能够将生物质转化为高附加值的化学品或生物燃料,对于推动生物质能的深度利用具有重要意义。
生物质能的技术创新与市场前景分析研究

生物质能的技术创新与市场前景分析研究在全球能源需求不断增长和环境保护日益紧迫的背景下,生物质能作为一种可再生能源,正逐渐受到广泛关注。
生物质能是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物,以及由这些有机体所产生的有机废弃物。
其具有来源广泛、储量丰富、绿色环保等优点,为解决能源危机和环境问题提供了新的途径。
一、生物质能的技术创新(一)生物质气化技术生物质气化是将生物质原料在缺氧条件下加热,使其转化为可燃气体的过程。
近年来,生物质气化技术取得了显著的进展。
新型气化炉的设计提高了气化效率,降低了污染物排放。
例如,流化床气化炉能够实现生物质的均匀气化,提高产气质量;下吸式气化炉则具有结构简单、操作方便等优点。
此外,催化气化技术的应用进一步优化了产气组成,提高了气体的热值和稳定性。
(二)生物质液化技术生物质液化主要包括直接液化和间接液化两种方式。
直接液化是在高温高压条件下,将生物质直接转化为液体燃料;间接液化则是先将生物质气化生成合成气,再通过催化反应合成液体燃料。
目前,研究人员正在致力于开发高效的催化剂和优化反应条件,以提高液化效率和降低成本。
例如,超临界流体技术在生物质直接液化中的应用,能够显著提高液体产物的收率和质量。
(三)生物质发电技术生物质发电包括生物质直燃发电、生物质气化发电和生物质混合燃烧发电等多种形式。
其中,生物质直燃发电技术相对成熟,但存在燃料供应不稳定、燃烧效率低等问题。
为了解决这些问题,研究人员正在开发新型的燃烧设备和优化燃烧过程,提高发电效率。
同时,生物质气化发电技术由于具有较高的能源利用效率和较低的污染物排放,也成为研究的热点之一。
(四)生物质成型燃料技术生物质成型燃料是将生物质原料经过压缩成型制成的固体燃料,具有密度高、便于储存和运输等优点。
目前,生物质成型燃料技术不断改进,成型设备的性能得到了显著提升。
例如,采用先进的挤压成型技术和模具设计,能够生产出形状规则、强度高的成型燃料。
生物质能的利用技术研究与发展前景

生物质能的利用技术研究与发展前景生物质能作为一种非常环保、可再生、且广泛存在的能源来源,近年来备受关注。
伴随着环保、节能意识的逐渐加强以及化石能源的日益枯竭,生物质能技术研究和发展的前景变得愈发光明。
本文将从技术角度入手,简述生物质能的来源及利用方式,并重点介绍当前生物质能的应用与发展方向。
一、生物质能及来源生物质能是指从植物、动物和生物废弃物等生物原料中提取的能量,包括木材、秸秆、沼气、生物燃料、生物质颗粒、生物柴油和酒精等多种形式。
生物质能是一种绿色能源,其来源广泛,如森林、农业、废物、污泥等。
在充分利用生物质能的同时,还可以减少大量的固体废弃物、废水和废气排放,保护环境。
二、生物质能的利用方式生物质能利用主要有以下几种方式:1. 生物质直接燃烧发电:生物质燃烧发电是目前最常见的生物质发电方式。
其通过将生物质物料直接燃烧产生的高温热能,使水转化为蒸汽带动发电机发电。
2. 生物质气化发电:生物质气化发电技术是将生物质转移到高温高压环境下进行气化反应,合成气后驱动燃气轮机发电。
3. 生物质液化发电:生物质液化发电主要是通过生物质转化成液态或气态的燃料,产生高温高压气体传递给内燃机,然后驱动发电机生成电能。
4. 生物质焚化发电:生物质焚化技术是指将生物质物料转化成热能,通过直接燃烧来驱动蒸汽涡轮机以生成电能。
三、生物质能技术研究与发展目前,生物质能技术正面临着许多难题。
由于生物质原料的多样性和特殊性,生物质能的提纯和加工技术、转化技术、储存技术、运输技术等方面亟需开发和完善。
因此,目前生物质能的技术研究和发展主要集中在以下几个方面:1. 生物质预处理技术。
预处理技术可以使生物质物料更易于转化成高品质的生物质能,如生物质颗粒化、热压和溶胶液化等技术。
2. 生物质能高效利用技术。
主要包括生物质气化、合成气发电、抗磨损涂层技术、高效低排放燃烧技术、再生技术等。
3. 生物质能储存技术。
由于生物质能来源的波动性和不稳定性,如何充分利用以及储存生物质能显得尤为重要。
2022年行业分析报告我国生物质能利用技术展望

我国生物质能利用技术展望分析生物质能在能源系统中的重要地位,以及我国农村对于高品位优质能源的需求形势,指出开发利用生物质能在我国尤其是在农村地区实现可持续进展战略的重要意义。
在分析总结国内外生物质能技术现状和我国存在的差距的基础上,提出了生物质能技术进展目标和“十五”期间的重点技术方向,以及2022年的展望。
1.我国开发利用生物质能具有重要意义生物质能始终是人类赖以生存的重要能源,它是仅次于煤炭、石油和自然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。
有关专家估量,生物质能极有可能成为将来可持续能源系统的组成部分,到下世纪中叶,采纳新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
我国是一个人口大国,又是一个经济快速进展的国家,21世纪将面临着经济增长和环境爱护的双重压力。
因此转变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济进展和环境爱护具有重大意义。
开发利用生物质能对中国农村更具特别意义。
中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。
尽管煤炭等商品能源在农村的使用快速增加,但生物质能仍占有重要地位。
1998年农村生活用能总量3.65亿吨标煤,其中秸秆和薪柴为2.07亿吨标煤,占56.7%。
因此进展生物质能技术,为农村地区供应生活和生产用能,是关心这些地区脱贫致富,实现小康目标的一项重要任务。
2.生物质能优质化利用是实现现代化和可持续进展战略的要求1991年至1998年,农村能源消费总量从5.68亿吨标准煤进展到6.72亿吨标准煤,增加了18.3%,年均增长2.4%。
而同期农村使用液化石油气和电炊的农户由1578万户进展到4937万户,增加了2倍多,年增长达17.7%,增长率是总量增长率的6倍多。
可见随着农村经济进展和农夫生活水平的提高,农村对于优质燃料的需求日益迫切。
传统能源利用方式已经难以满意农村现代化需求,生物质能优质化转换利用势在必行。
生物质能的综合利用技术研究

生物质能的综合利用技术研究近年来,随着能源需求的不断增加以及环保意识的日益提高,生物质能的综合利用技术正受到越来越多的关注。
生物质能是指来自植物、动物和微生物等生物体的生物质(包括木材、农作物和废弃物等)转化而成的能源,是一种绿色、可再生、清洁的能源。
一、生物质能的综合利用技术简介生物质能的综合利用技术包括物理、化学、生物学等多种技术,其主要目的是将生物质转化为能够直接利用或加工成燃料、化学品等形式的产品,如生物质酒精、生物液体燃料、生物燃气、生物碳等。
生物质能的综合利用技术具有以下特点:1. 绿色环保。
生物质能是一种绿色、可再生、清洁的能源,与传统的化石能源相比,其排放的污染物更少,对环境的影响也更小。
2. 能源多样化。
生物质能可以利用各种生物质资源,如木材、农作物、废弃物等,且能够较好地适应地域和季节变化。
3. 经济效益好。
生物质能的制备和利用都可以实现产业化,且能够促进农业和林业的发展,从而拉动地方经济。
二、生物质能的综合利用技术研究现状1. 生物质发酵制氢技术生物质发酵制氢是指将生物质通过发酵反应转化为氢气的技术。
该技术具有高产氢效率、低投资成本等优点,目前已经进入产业化实验阶段。
该技术的研究成果可以应用于汽车、燃气灶、发电等领域。
2. 生物质固体废弃物生产生物油技术生物质固体废弃物生产生物油技术是指通过热解或气化等技术将生物质转化为生物油。
该技术具有废弃物资源化、低碳环保等优点,可以用于燃料、化学品等领域。
目前,该技术已经实现了工业化生产。
3. 生物质气化技术生物质气化技术是指通过热分解反应将生物质转化为可燃性气体(如合成气、甲烷等)。
该技术具有高效能、低排放等优点,可以用于发电、热能等领域。
目前,该技术已经进入产业化应用阶段。
三、生物质能的综合利用技术发展趋势1. 微生物技术的应用微生物技术是指利用生物学和生化学原理,通过微生物代谢反应降解生物质,进一步转化为生物燃料和其他化学品等。
生物质能的技术瓶颈与突破

生物质能的技术瓶颈与突破在全球能源需求不断增长和环境保护日益紧迫的背景下,生物质能作为一种可再生能源,受到了广泛的关注和研究。
生物质能是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物,以及由这些有机体所产生的有机废弃物。
它具有来源广泛、储量丰富、低碳环保等优点,被认为是未来能源体系的重要组成部分。
然而,尽管生物质能具有巨大的潜力,但其发展仍面临着一些技术瓶颈,限制了其大规模的商业化应用。
本文将深入探讨生物质能的技术瓶颈,并分析当前的突破方向和未来的发展前景。
一、生物质能的技术瓶颈(一)生物质原料的收集与运输生物质原料通常分布较为分散,收集难度大,成本高。
例如,农作物秸秆在农村地区广泛分布,但由于其体积大、密度低,收集和运输需要耗费大量的人力、物力和财力。
此外,生物质原料的季节性和地域性也增加了收集和运输的复杂性。
在收获季节,大量的生物质原料集中产生,需要及时收集和储存,否则容易腐烂变质;而在非收获季节,生物质原料供应不足,影响了能源生产的连续性。
(二)生物质转化技术的效率和成本目前,生物质能的转化技术主要包括直接燃烧、气化、液化和发酵等。
然而,这些技术在效率和成本方面仍存在诸多问题。
直接燃烧是最简单的生物质能利用方式,但燃烧效率低,容易产生污染物;气化和液化技术虽然能够提高能源转化效率,但设备投资大,运行成本高;发酵技术则存在发酵周期长、产率低等问题。
(三)生物质能的存储和稳定性生物质能的存储是一个重要的问题。
生物质原料容易受到湿度、温度和微生物等因素的影响,发生腐烂、变质和自燃等现象,降低了其能源品质和利用价值。
此外,生物质能的转化产物,如生物柴油和生物乙醇等,也存在着稳定性差、易氧化等问题,限制了其在储存和运输过程中的应用。
(四)生物质能利用过程中的环境污染生物质能的利用过程中可能会产生一些环境污染问题。
例如,生物质燃烧过程中会排放颗粒物、二氧化硫、氮氧化物等污染物;生物质气化和液化过程中产生的废水和废渣也需要进行妥善处理,否则会对环境造成危害。
农业生产中生物质能的开发与利用研究

农业生产中生物质能的开发与利用研究农业作为人类社会的基础产业,一直在不断寻求创新和可持续发展的途径。
在当今能源需求不断增长和环境保护日益受到重视的背景下,生物质能的开发与利用逐渐成为农业领域的一个重要研究方向。
生物质能是指由植物、动物和微生物等有机物质转化而来的能源,具有来源广泛、可再生、低碳环保等优点。
本文将深入探讨农业生产中生物质能的开发与利用,包括其主要形式、技术手段、优势以及面临的挑战,并展望未来的发展前景。
一、农业生物质能的主要来源1、农作物废弃物农作物在种植和收获过程中会产生大量的废弃物,如秸秆、稻壳、玉米芯等。
这些废弃物通常富含纤维素、半纤维素和木质素等有机成分,通过适当的处理和转化技术,可以将其转化为能源。
2、畜禽粪便畜牧业的发展产生了大量的畜禽粪便,其中含有丰富的有机物和氮、磷、钾等营养成分。
畜禽粪便可以通过厌氧发酵等方式产生沼气,同时还可以制成有机肥料。
3、林业剩余物林业活动中产生的树枝、树叶、木屑等剩余物也是生物质能的重要来源。
这些剩余物可以用于直接燃烧发电,或者通过热解等技术转化为生物油和生物炭。
4、能源作物专门种植的能源作物,如甜高粱、柳枝稷、芒草等,具有生长迅速、产量高、富含能量等特点,可以为生物质能的生产提供稳定的原料供应。
二、农业生物质能的开发利用技术1、直接燃烧直接燃烧是最传统也是最简单的生物质能利用方式。
将农作物废弃物、林业剩余物等直接燃烧,用于供暖、发电等。
然而,这种方式的能源利用效率较低,且容易造成环境污染。
2、厌氧发酵厌氧发酵是利用微生物在无氧条件下分解有机物产生沼气的过程。
畜禽粪便、农作物废弃物等可以作为厌氧发酵的原料,产生的沼气可以用于发电、供热或作为燃料使用。
3、热化学转化热化学转化包括热解、气化和液化等技术。
热解是在无氧或缺氧条件下将生物质加热分解为生物油、生物炭和可燃性气体;气化是将生物质在高温下与气化剂反应生成合成气;液化则是将生物质在高温高压下转化为液体燃料。
生物质能源的利用方法及发展趋势

生物质能源的利用方法及发展趋势2013级博士研究生王波指导老师;陈新德生物质能源是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。
生物质能源具有燃烧容易、污染少、灰分较低等优点,是可再生的清洁能源。
目前所使用的化石能源导致环境污染日益严重,是造成臭氧层破坏、全球气候变暖、酸雨等灾难性后果的直接因素,而且地球上现存的化石燃料按消费量推算,在今后50~80年将最终消耗殆尽。
根据生物学家估算,地球上每年生长的生物能总量约1400~1800 亿吨(干重),相当于目前世界总能耗的10倍。
我国的生物质能源也极为丰富,现在每年农村中的秸秆量约6.5亿吨,到2010年将达7.26亿吨,相当于5亿吨标准煤。
因此,利用生物质能源取代化石能源是解决能源问题的良好途径,发展林业生物质能源,凸显国家战略,是我国生物质能源发展的战略重点和优势。
生物质能源的开发利用早已引起世界各国政府和科学家的关注。
有许多国家都制定了相应的开发研究计划,包括日本的阳光计划、巴西的酒精能源计划、印度的绿色能源工程、美国的生物质产业发展路线图等发展计划。
生物质能源可以通过热化学转换技术、物理化学转换技术和生物转换技术制取沼气、燃料乙醇、生物柴油、发电等。
我国政府高度重视生物质能源的开发与利用。
早在1992年国务院批准的《中国环境发展十大对策》中就明确提出,要“因地制宜地开发利用和推广太阳能、风能、地热能、生物质能等新能源”。
目前有的生物质能源产业化技术主要包括以下几个方面。
一、沼气利用技术、沼气利用技术指将畜禽粪便、高浓度有机废水、生活垃圾等通过厌氧发酵生成以甲烷为主的沼气的技术,同时生成沼液、沼渣可作为有机肥施用于农田。
沼气是热值较高的洁净可燃气,可用作生活和工业燃料或发电,是很好的无公害能源,沼气工程建设可带来环境效益。
目前沼气技术在利用中存在有异味、二次污染等难题,另外,我国多数对沼液、沼渣工业化生产有机肥的研究停留在田间施用方法、施用效果上,缺少工程处理及转化为附加值更高的有机肥的方法;在温度较低的北方地区,沼气系统陷入启动难、维护难、微生物选育难的境地,所以该技术虽然已是产业化技术,但在使用率和技术推广工作上仍存在一定的障碍。
生物质能的可持续转化与利用技术研究

生物质能的可持续转化与利用技术研究下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!生物质能作为一种可再生的能源资源,具有巨大的潜力在可持续发展和环保方面发挥重要作用。
生物质能的化学转化与利用研究

生物质能的化学转化与利用研究摘要:生物质能作为可再生能源之一,在当前全球能源危机和环境污染问题日益严峻的情况下,受到越来越多人的关注。
本文以生物质能的化学转化与利用为研究对象,通过综合分析生物质的来源、特点及转化途径,探讨了生物质能利用的可行性和发展前景。
本文提出了一些关于生物质能化学转化与利用的研究方向和建议,旨在为未来生物质能的发展提供一些参考。
关键词:生物质能;化学转化;利用研究一、引言随着人类社会的不断发展和经济的快速增长,能源资源消耗问题日益突出。
传统石油、煤炭等化石能源的大量使用导致了全球温室气体排放量的增加,加剧了气候变暖和环境污染问题。
在这种情况下,生物质能作为一种可再生、清洁的能源备受瞩目,成为人们关注的焦点。
生物质能是指以植物、菌类、藻类等有机物为原料,经过生物过程或化学过程转化为能源的一种形式。
生物质资源广泛,分布广泛,具有可再生性、低碳排放等优点,是一种绿色、可持续的能源形式。
生物质能的化学转化与利用是将生物质资源转化为液体燃料、生物乙醇、生物柴油等能源产品的过程,是生物质能开发利用的重要途径。
二、生物质能的来源和特点生物质能的来源主要包括植物、微生物和藻类等。
植物是生物质能的主要来源,主要包括木材、秸秆、米糠、纤维素等。
植物生长过程中,通过光合作用将阳光能转化为化学能,同时释放氧气,具有净化空气、保护环境等作用。
植物具有丰富的碳水化合物、蛋白质、脂肪等有机物,是生物质能的重要原料。
微生物和藻类是生物质能的另一种来源,主要包括细菌、真菌、藻类等。
微生物和藻类通过吸收光能、氧化还原反应等将生物质转化为生物能源,具有高效、环保等特点。
微生物和藻类的种类繁多,适应性强,对环境的侵害较小,是未来生物质能发展的一个重要方向。
生物质能具有可再生性、低碳排放等优点。
生物质资源广泛,是永续发展的重要能源形式。
与传统煤炭、石油等化石能源相比,生物质能的使用可减少温室气体排放、改善空气质量,对环境的保护和可持续发展具有重要意义。
生物质能利用技术创新与应用研究

生物质能利用技术创新与应用研究生物质能是指以植物、动物、微生物等天然有机物质为原料,通过物理、化学或生物方法转化为燃料或化工产品的能源形式。
生物质能是一种可再生能源,具有独特的环境友好性和广泛的资源来源,被广泛认为是替代传统石油、煤炭等化石能源的重要途径。
在当前全球能源结构调整和气候变化背景下,生物质能利用技术的创新与应用成为了当今能源领域的研究热点。
一、生物质能利用技术的现状与挑战生物质能利用技术包括生物质能的制备、转化、储存和利用等过程。
在生物质能的制备方面,目前主要通过生物质颗粒、生物质油、生物气体等方式进行生物质能的生产。
在转化过程中,催化裂解、气化、液化等技术被广泛应用。
此外,生物质能的储存和利用也是生物质能利用技术研究的重要部分,如生物质热电联产、生物质燃气轮机等技术逐渐成熟。
然而,生物质能利用技术仍然面临着一些挑战。
首先,生物质能的采集和加工环节仍然存在高成本和低效率的问题,需要进一步解决。
其次,生物质能的生产过程对环境影响较大,如生物质燃烧释放的二氧化碳等温室气体对气候变化产生负面影响。
此外,生物质能利用技术在实际应用中还存在技术标准不统一、法规不完善等问题,亟待解决。
二、生物质能利用技术的创新方向为了解决生物质能利用技术面临的挑战,当前研究主要集中在以下几个方向展开创新研究。
1. 生物质能制备技术的创新:新型生物质颗粒生产技术、高效生物质油生产技术、生物气化一体化技术等被广泛提出并研究,旨在降低生产成本、提高生产效率。
2. 生物质能转化技术的创新:生物质能气化技术、生物质能液化技术、生物热电联产技术等的研究正在不断推进,以实现生物质能的高效利用和能源转化。
3. 生物质能储存技术的创新:生物质能贮运技术、生物质能发电技术、生物质能热利用技术等技术的创新研究正在积极进行,为生物质能的可持续利用提供技术支撑。
4. 生物质能综合利用技术的创新:生物质能与其它可再生能源、储能技术的结合,如生物质能与太阳能、风能等的综合利用,为能源的多元化和可再生提供新的思路。
生物质能源的利用及其前景分析

生物质能源的利用及其前景分析生物质能源指的是通过生物质的直接或间接转化而得到的能源。
生物质包括各种植物、树木、农作物秸秆、畜禽粪便等可生物降解物质,其能源利用方式包括热能、电能和生物燃料等,可以广泛应用于工农业生产、生活热水、电力供应等方面。
本文将从生物质能源的利用形式和发展前景两个方向展开分析。
一、生物质能源的利用形式1. 燃烧发电。
生物质经过焚烧,释放的热能可以用于发电,其原理类似于传统的火电厂,但燃料来源更为广泛。
生物质燃烧发电是目前较为成熟的生物质能利用方式之一,不仅可以减少排放污染物,而且可以节省非再生能源的使用。
2. 生物燃料。
生物质能源转化为生物燃料后,可以广泛应用于交通运输、工业生产等领域。
生物燃料可以通过生物质发酵、生物质升级等方式得到,其中生物质发酵可以得到生物发酵能源(如沼气、生物酒精等),生物质升级后可以得到生物柴油、生物液态燃料等。
3. 生物质气化。
生物质气化是一种将生物质转化为气态燃料的能源利用方式。
具体来说,将生物质设备放入具备高温高压的气化炉中,通过控制氧气进口,使得生物质在高温情况下转化为可燃气体。
生物质气化技术可以利用废弃的农林废物和城市固体废弃物等生物质资源。
生物质气化不仅可以提高生物质的利用效率,同时还可以减少环境污染。
二、生物质能源的发展前景生物质能源可以替代传统能源,实现能源的多元化,有利于保护环境和节约能源。
以下是生物质能源的发展前景:1. 生物质能源作为清洁能源的代表,在环境保护和碳排放方面具有独特的价值。
生物质能源的利用不仅可以降低温室气体的排放,同时还可以减少化石燃料的使用对环境造成的污染。
2. 生物质能源的资源丰富,具有较高的开发潜力。
中国广阔的农田、森林、畜牧业和城市生活废弃物等生物质资源丰富,最新的能源白皮书预计2017年我国可利用生物质能源总量约为4.5亿吨标准煤。
3. 生物质能源具有可再生、可持续等特点,可以实现合理的循环利用。
生物质能源的再生性和可持续性是其在能源领域中的最大优势之一,同时生物质能源可以促进循环经济的发展。
目前在生物质能利用技术方面主要有哪些研究方向

目前在生物质能利用技术方面主要有哪些研究方向1.生物质能应用技术国外研究开发在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。
生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。
产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。
气化技术应用在二战期间达到高峰。
随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。
目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。
奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10某109MJ能量。
加拿大有12个实验室和大学开展了生物质的气化技术研究。
1998年8月发布了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。
瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。
1999年,瑞典地区供热和热电联产所消耗的能源中,26%是生物质。
美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。
装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2022年,生物质发电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。
流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。
反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。
包括循环流化床、加压流化床和常规流化床。
印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。
生物质气化是目前生物质能利用技术研究的热门方向

生物质气化影响因素分析摘要:通过流化床生物质气化炉(气化强度为225kg/m2·h)的运行实践,阐述了生物质气化原理,综述了生物质在流化床气化中,物料性质、气化剂、原料粒径、温度、压力、原料前处理等操作条件对生物质气化产品组成的影响。
关键词:生物质气化;物料性质;气化过程;操作条件;流化床1引言由温室气体引起的全球变暖,是当前也是未来能源和环境问题中最引人关注的热点和难点。
含碳化石燃料排放的C02是主要的温室气体源,生物质来源于太阳能,在其生长过程中,由光合作用而吸收CO2,在其作为能源利用过程中,CO2的净排放又有效的被新的光合作用而吸收,使整个能源利用系统CO2净排放为零,从而有效的防止了CO2的释放对环境的危害。
将生物质转化为气体燃料是一种很好的生物质利用途径,其中以流化床生物质气化最为引入注目。
本文就生物质在流化床气化过程中,各种操作条件对其气化产品组成分布的影响等方面作了介绍。
2 生物质气化生物质热化学气化是指将预处理过的生物质在气化介质中如空气、纯氧、水蒸气或这三者混合物加热至700○C以上,当空气当量系数降低时,气化反应开始,供应燃烧的氧含量降低,燃气中CO含量增加;当供氧量进一步降低时,大量的H2、CH4、甚至重烃化合物将会生成,同时生物质燃气温度降低,显热损失下降,化学能提高,从而将生物质分解为合成气。
生物质气化与煤气化原理相似,大体上,气化过程可以分成两个主要的反应阶段;热解和焦炭气化。
焦炭气化是指固体焦炭,热解焦油和热解气的部分氧化,通常热解的速度大大快于气化速度,所以后者是速率控制步骤。
热解阶段是指固体燃料在初始加热阶段的脱挥发分或热分解,它在几秒内完成,高温下甚至更短。
可以用下列方程式表示:Coal or pine chips→Oil/tar+CO+C02+H20+Semichar+CH4+CmHn+Pyroligneous acids(wood—derivedproducts)Oil/tar(cracking) → Char+ H2+ CH4Semichar → Char+ H2 + CH4气化技术根据炉型的不同又可分为固定床气化炉和流化床气化炉。
生物质能发电技术现状与展望

生物质能发电技术现状与展望一、本文概述本文旨在探讨生物质能发电技术的现状与发展前景。
生物质能作为一种可再生能源,近年来在全球能源结构转型中扮演着日益重要的角色。
本文首先将对生物质能发电的基本原理和技术分类进行简要介绍,随后重点分析当前生物质能发电技术的实施现状,包括国内外的发展状况、技术瓶颈以及政策支持等方面。
在此基础上,文章将进一步探讨生物质能发电技术的发展趋势,包括技术创新、成本降低、政策优化等方面的展望。
文章还将对生物质能发电技术在未来能源领域的应用前景进行预测,以期为我国生物质能发电技术的可持续发展提供有益的参考。
二、生物质能发电技术现状生物质能发电技术,作为可再生能源领域的重要组成部分,近年来在全球范围内得到了广泛的关注和应用。
目前,生物质能发电技术主要包括直接燃烧发电、生物质气化发电和生物质发酵产电等几种形式。
直接燃烧发电:这是目前生物质能发电的主流技术。
通过将生物质燃料,如农林废弃物、城市生活垃圾等,进行预处理后直接燃烧,驱动汽轮机发电。
这种技术具有设备相对简单、运行成本低等优点,但也存在燃烧效率低、污染物排放高等问题。
生物质气化发电:生物质气化是将生物质在气化炉中通过部分氧化反应转化为可燃气体,然后经过净化处理,进入燃气发电机进行发电。
这种技术具有效率高、污染物排放低等优点,尤其适合处理分散的、低热值的生物质资源。
生物质发酵产电:生物质发酵是指利用微生物将生物质转化为生物燃气,然后通过内燃机或燃气发电机进行发电。
这种技术环保性能较好,但转化效率相对较低,且需要专门的发酵设备,运行成本较高。
当前生物质能发电技术在全球范围内已具备一定的规模和基础,但仍面临一些挑战,如生物质资源的收集与运输、预处理技术的优化、燃烧和气化过程中的污染物控制等。
随着科技的进步和政策的推动,未来生物质能发电技术有望得到进一步的优化和提升,为可再生能源的发展做出更大的贡献。
三、生物质能发电技术的优势与挑战可再生性与可持续性:生物质能作为一种可再生能源,其来源广泛,包括农业废弃物、林业废弃物、城市生活垃圾等。
生物质能利用技术

生物质能利用技术(总9页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--生物质能利用技术摘要生物质是可再生能源之一,分布广泛且资源丰富,对其的利用将会是未来能源发展的重要方向。
为了了解生物质能利用技术,本文从沼气发酵工艺、燃料乙醇技术、直接燃烧技术、生物质热裂解、生物质气化、生物柴油这几个方向去介绍。
总结得出近阶段中国适合发展小型规模的生物质能转化工艺,等到废弃农作物较为集中时才适合发展大型化的生物质能转化工艺。
关键词:生物质,木质纤维素,燃料乙醇,生物柴油AbstractBiomass is one kind of the renewable energy, which is widely distributed and resourceful. Therefore, its utilization will be an important direction of future energy. In order to understand the biomass utilization technology, this paper will introduce from the biogas fermentation, fuel ethanol, direct combustion, biomass pyrolysis, biomass gasification, biodiesel. It is concluded that the development of small-scale biomass conversion technology is suitable now and the development of large-scale biomass conversion technology will not be suitable for China until the waste crops are concentrated. Key words: Biomass, Lignocellulose, Fuel ethanol, Biodiesel前言中国是一个“富煤少油缺气”的国家,事实上中国人均的煤炭资源也不多,仅为88吨/人,按照目前的开采速度,中国的煤炭在大约100年后即将枯竭殆尽。
世界生物质能源发展现状及方向

世界生物质能源发展现状及方向一、本文概述本文旨在全面探讨世界生物质能源的发展现状及未来发展方向。
生物质能源,作为一种可再生的、环保的能源形式,近年来在全球范围内得到了广泛的关注和研究。
本文首先将对生物质能源的基本概念、特点及其在全球能源结构中的地位进行概述,为后续分析提供基础。
接着,文章将深入探讨当前世界生物质能源的发展现状。
这包括生物质能源的主要类型、技术应用、产业规模以及在全球范围内的分布情况等。
通过对这些方面的分析,我们可以清晰地看到生物质能源在全球能源转型中的重要作用,以及其在应对气候变化、推动可持续发展等方面的巨大潜力。
在分析了生物质能源的发展现状之后,文章将进一步探讨其未来发展方向。
这包括技术研发创新、政策支持与市场机制、产业融合与协同发展等方面。
通过对这些方面的探讨,我们可以更好地了解生物质能源未来的发展趋势,以及如何通过政策引导和市场机制推动其健康发展。
文章将总结生物质能源在全球能源转型中的战略意义,并提出针对性的政策建议和发展策略。
希望通过本文的分析和探讨,能够为全球生物质能源的发展提供有益的参考和借鉴。
二、生物质能源的分类与特点生物质能源,作为一种可再生的能源,源于生命的有机物质,包括所有的植物、动物和微生物,以及由这些生命物质派生、排泄和代谢出的许多有机质。
根据其来源和转换方式的不同,生物质能源可以大致分为以下几类:林业生物质能源:主要包括薪柴、林业废弃物和森林能源植物等。
这类生物质能源具有分布广泛、数量巨大、可再生性强等特点。
然而,其采集和运输成本较高,且过度采集可能会对生态环境造成一定影响。
农业生物质能源:主要来源于农业废弃物、水生植物和油料植物等。
这类生物质能源具有产量大、可再生性强、环境友好等优点。
通过合理的利用和处理,可以将废弃物转化为有价值的能源,实现资源的循环利用。
工业生物质能源:主要来源于工业废弃物和有机废水等。
这类生物质能源具有潜在能量大、利用价值高等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前在生物质能利用技术方面,主要有哪些研究方向?
1. 生物质能应用技术国外研究开发
在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。
生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。
产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。
气化技术应用在二战期间达到高峰。
随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。
目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。
奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109MJ能量。
加拿大有12个实验室和大学开展了生物质的气化技术研究。
1998年8月发布了由Freel, Barry A. 申请的生物质循环流化床快速热解技术和设备。
瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。
1999年,瑞典地区供热和热电联产所消耗的能源中,26%是生物质。
美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。
装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。
流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。
反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。
包括循环流化床、加压流化床和常规流化床。
印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。
1995年美国Hawaii大学和Vermont大学在国家能源部的资助下开展了流化床气化发电的工作。
Hawaii大学建立了处理生物质量为100T/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。
Vermont大学建立了气化工业装置,其生产能力达200T/d,发电能力为50MW。
目前已进入正常运行阶段。
生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。
目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。
由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。
因此,从四十年代开始了生物质的成型技术研究开发。
现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。
美国颗粒成型燃料年产量达80万吨。
成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧
用燃料。
日本、美国、加拿大等国家,开发了专用炉灶。
在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。
将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。
利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。
加拿大用木质原料生产的乙醇上产量为17万吨。
比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。
生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。
美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104KJ/kg 左右,用木质原料液化的得率为绝干原料的50%以上。
欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。
该技术制得的液化油得率达70%,液化油低热值为1.7×104KJ/kg。
生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。
欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。
2. 国内研究开发
我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。
主要在气化、固化、热解和液化开展研究开发工作。
生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。
中国林科院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/hr。
建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。
最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000KJ/NM3。
气化热效率达70/%以上。
山东省能源研究所研究开发了下吸式气化炉。
主要用于秸杆等农业废弃物的气化。
在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。
广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。
另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。
我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。
目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。
螺旋挤压成型机有单头和双头二种,单头机生产能力为120Kg/hr,双头机生产能力达200Kg/hr。
1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。
南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。
生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。
在上海亦已建成沼气集中供气系统。
沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。
另外,中国林科院林化所进行了生物质催化气化技术研究。
华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。
3、我国生物质能应用技术的展望
生物质能是一个重要的能源,预计到下世纪,世界能源消费的40%来自生物质能,我国农村能源的70%是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。
随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。
因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。
目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。