数学八年级上册第二章 轴对称图形 《 美妙的对称》
人教版八年级数学上册 《轴对称》教案
义务教育基础课程初中教学资料《轴对称》优秀教学设计【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。
八年级上册数学第二单元
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。
2、判定定理:到角两个边距离相等的点在这个角的角平分线上。
3、拓展:三角形三个角的角平分线的交点到三条边的距离相等。
五、等腰三角形1、性质定理:(1)等腰三角形的两个底角相等(等边对等角)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。
2、判断定理:一个三角形的两个相等的角所对的边也相等。
(等角对等边)。
六、等边三角形1、性质定理:(1)等边三角形的三条边都相等。
(2)等边三角形的三个内角都相等,都等于60°。
2、拓展:等边三角形每条边都能运用三线合一这性质。
3、判断定理:(1)三条边都相等的三角形是等边三角形。
(2)三个角都相等的三角形是等边三角形。
(3)有两个角是60°的三角形是等边三角形。
(4)有一个角是60°的等腰三角形是等边三角形。
七、直角三角形推论1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。
2、直角三角形中,斜边上的中线等于斜边的一半。
3、拓展:直角三角形常用面积法求斜边上的高。
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.1 轴对称与轴对称图形一、自主先学1. 观察下列各种图形,判断是否为轴对称图形?如果是,并找出该轴对称图形的对称轴。
2. 下列图片有什么共同特性?二、合作助学3. 折纸印墨迹:在纸的一侧滴一滴墨水后,对折,压平.(1)你发现折痕两边的墨迹形状一样吗?为什么?(2)两边墨迹的位置与折痕有什么关系?(3)归纳:把一个图形沿着某一条直线翻折,如果它能够与另一个图形,那么称这两个图形关于这条直线,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.4. 观察下列图案,它们有什么共同特征?(1)归纳:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相,那么称这个图形是图形,这条直线叫做.(2)画出上面各图的对称轴.5. 轴对称与轴对称图形的区别与联系.如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成.三、拓展导学6. (1) 正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图中画一条对角线得到图②,图②有几条对称轴?(3 ) 如果在图②中再画一条对角线,那所得的图形有几条成轴对称?①②四、检测促学7. 下列图形中,是.轴对称图形的为()A. B. C. D.8. 如图,由4个全等的正方形组成L形图案,(1)请你在图案中改变1个正方形的位置,使它变成轴对称图案;(2)请你在图中再添加一个小正方形,使它变成轴对称图案.五、反思悟学9. (1)剪两个全等的三角形,并把它们叠合在一起;(2)把其中的一个三角形沿一边翻折,所得的图形是轴对称图形吗?如果是,指出它的对称轴;(3)再改变其中一个三角形的位置,使这两个三角形成轴对称.lA'B'C'A BCCBAAA'B'苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(1)一、自主先学1. 操作:把一张纸折叠后,用针扎一个孔,再把纸展开,两针孔分别记为点A 、点A ’,折痕记为l . (1) 在下面空白处画出你得到的图形 . (2)连接AA ’, AA ’与 l 相交于点O , 线段AA ’与 l 有什么关系?(可以从位置、数量两个角度考虑)二、合作助学2. 操作:将一张长方形的纸片对折;在纸上画△ABC ;用针尖沿△ABC 各顶点扎小孔将纸展开,连接AA ’、BB ’、CC ’ .① ② ③(1)线段AA ’、BB ’、CC ’与折痕l 有什么关系?(2)图中,线段AB 与''A B 有什么关系?BC 与''B C 呢?(3)图中ABC ∆与'''C B A ∆有什么关系?(4)归纳:垂直并且 一条线段的直线,叫做这条线段的 .如图,直线l 交线段AB 于点O ,∠1 = 90º , AO = BO ,直线l 是线段AB 的垂直平分线. (5) 轴对称的性质:成轴对称的两个图形 , 对应点的连线被对称轴 .3. 如图,线段AB 与''A B 关于直线l 对称. 连接AA ’、BB ’,设它们分别与l 相交于点P 、Q.(1)在所画的图形中,相等的线段有: ; (2)AA ’与BB ’ 平行吗?为什么?三、拓展导学4. 你能求出这7个角的和吗?321BCDA 第5题第6题四、检测促学5.下列说法中,正确的是 ( ) A .关于某直线对称的两个三角形是全等三角形; B .两个全等的三角形是关于某直线对称的;C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN .6.如图,所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°则∠3=_ __°. 7.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积是 cm 2. 8.分别画出下列各图中成轴对称的两个图形的对称轴.① ② ③五、反思悟学9.如何画成轴对称的两个图形或轴对称图形的对称轴?lAlllBAABABl ABC苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(2)一、自主先学1. 思考:如图,点 A 、B 、C 都在方格纸的格点上. 请你再找一个格点D ,使点 A 、B 、C 、D 组成一个轴对称图形.小结:画轴对称图形,应先确定 ,再找出 .2. 如果直线l 外有一点A ,那么怎样画出点A 的对称点A ’?画法图形1. 画AO ⊥l , 垂足为O.2. 在AO 的延长线上截取OA ’,使 OA ’ =AO.点A ’ 就是点A 关于直线l 对称的点.二、合作助学3. 操作:(1)在图①中,用三角尺画线段AB 关于直线l 对称的线段A ’B ’; (2)在图②中,用三角尺画△ABC 关于直线l 对称的△A ’B ’C ’.① ②小结:画一个图形关于一条直线对称的图形,关键是确定 .4. 讨论:在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?C ABll BCAOA'B'BAl 第6题第7题DACB小结:成轴对称的两个图形的 也成轴对称. 三、拓展导学5. 如图,三角形Ⅰ的2个顶点分别在直线上1l 和2l 上 ,且1l ⊥2l .画三角形Ⅱ,使它与三角形Ⅰ关于直线2l 对称; 画三角形Ⅲ,使它与三角形Ⅱ关于直线1l 对称; 画三角形Ⅳ,使它与三角形Ⅲ关于直线2l 对称. 所画的三角形Ⅳ与三角形Ⅰ成轴对称吗? 四、检测促学6. 用三角尺画△ABC 关于直线l 对称的三角形.① ②7. 如图,线段AB 与A ’B ’关于对称,AA ’ 交直线 l 于点O.(1)把线段AB 沿直线 l 翻折,重合的线段有: .(2)因为 △OAB 与 △O ’A ’B ’关于直线 l ,所以△OAB ≌△O ’A ’B ’,直线 l 垂直平分线段 ,∠ABO = ,∠AOB ’= . 五、反思悟学8. 如图,长方形的台球桌CDEF 内有黑、白两 球分别位于A 、B 两点,试问怎样撞击白球 A 才能使A 先碰到桌边DE ,反弹后再击中 黑球B?苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.3设计轴对称图案一、自主先学观察、欣赏课本上的绿色食品标志、中国环境标志、国家免检产品标志等,说出这些标志的含义,判断它们是否是轴对称图形,它们是怎么样设计的?你还见过哪些在生活中见过的图案,成轴对称的?(可从一些商标、会徽、车标等方面去发挥)二、合作助学1.对称的美术图案,除图形对称外,有时颜色也要“对称”。
苏科版初中八年级数学上册第二章《轴对称图形》PPT课件
●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
(3)连接AE、BG, AE与BG平行吗?为什么? 解:(3)平行. 因为 A和E,B和G是关于直线 l 的对称点, 所以 l⊥AE ,l⊥BG. 所以 AE ∥BG.
●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
所以 线段OA、OA′重合,
即
O是AA′的中点.
因为 ∠1=∠2 且 ∠1+∠2=180°,
所以 ∠1=∠2=90°.
所以 l 垂直且平分AA′.
2.2 轴对称的性质(1)
垂直并且平分一条线段的直线,叫做这条线段的垂 直平分线(midpoint perpendicular).
如图,直线 l 交线段AB于点O, ∠1=90°,AO=BO,
(1) (3)
(2) (4)
2.2 轴对称的性质(1)
活动一:
如图所示,把一张纸折叠后,用针扎一个孔;
再把纸展开,两针孔分别记为点A、点A′,折
痕记为l ;连接AA′,AA′与l相交于点O .
你有什么发现 (小组交流)?
l
●
l
AO
A′
●
●
2.2 轴对称的性质(1)
l
12
A●
o
● A′
因为 把纸沿折痕 l 折叠时,点A、A′重合,
3.轴对称图形中的对称线段所在直线的交点在对称 轴上或对称线段所在直线互相平行.
2.2 轴对称的性质(2)
思考:
如图,点A、B、 C都在方格纸的格点上, 请你再找一个格点D, 使点A、B、C、D组成 一个轴对称图形.
秋八年级数学上册 第二章《轴对称图形》典型题分类解析 (新版)苏科版-(新版)苏科版初中八年级上册数
第二章轴对称图形1.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为 ( )A.30° B.40°C.45° D.60°考点等腰三角形的性质.分析先根据等腰三角形的性质求出∠A DB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°-∠ADB=100°,∵AD=CD,∴∠C=1802ADC-∠=1801002-=40°.故选B.点评本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.2.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.考点等腰三角形的性质;线段垂直平分线的性质分析根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAC=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答解:∵DE垂直平分AB.∴AE=BE,∵BE ⊥AC ,∴△ABE 是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC ,∴∠ABC =12(180°-∠BAC )=12(180°-45°)=67.5°,∴∠CBE =∠ABC -∠ABE =67.5°-45°=22.5°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,∴BF=EF ,∴∠BEF =∠CBE =22.5°,∴∠EFC =∠BEF +∠CBE =22.5°+22.5°=45°.故答案为:45.点评本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.3.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若AD =6,DE =5,则CD 的长等于.考点勾股定理;直角三角形斜边上的中线分析由“直角三角形斜边上的中线等于斜边的一半”求得AC =2DE =10;然后在直角△ACD 中,利用勾股定理来求线段CD 的长度即可.解答解:如图,∵△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,DE =5,∴DE =12AC=5,∴AC =10.在直角△ACD 中,∠ADC =90°,AD =6,AC =10,则根据勾股定理,得CD=22AC AD -=22610+=8,故答案是:8.4.【问题情境】X老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C 作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得.PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C'处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值;考点四边形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理专题压轴题探究型分析【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.【变式探究】如下图③,借鉴小军、小俊的证明思路即可解决问题.【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.【迁移拓展】由条件AD·CE=DE·BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.解答【问题情境】证明:(方法1)连接AP,如图②∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP+S△ACP,∴12AB·CF=12AB·PD+12AC·PE.∵AB=AC,∴CF=PD+PE.(方法2) 过点P作PG⊥CF,垂足为G,如图②.∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°.∴四边形PDFG是矩形.∴DP=FG,∠DPG=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠PGC=∠CEP.∵∠BD P=∠DPG=90°.∴PG∥AB.∴∠GPC=∠B.∵AB=AC,∠B=∠ACB.∴∠GPC=∠ECP.在△PGC和△CEP中,PGC CEPGPC ECPPC CP∠=∠∠=∠=⎧⎪⎨⎪⎩∴△PGC≌△CEP.∴CG=PE.∴CF=CG +FG=PE+PD.【变式探究】证明:(方法1)连接AP,如图③.∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴12AB·C F=12AB·PD-12AC·PE.∵AB=AC,∴CF=PD-PE.(方法2) 过点C作CG⊥DP,垂足为G,如图③.∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°.∴四边形CFDG是矩形.∴CF=GD,∠DGC=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠CGP=∠CEP.∵CG⊥DP,AB⊥PD.∴∠CGP=∠BDP=90°,∴CG∥AB.∴∠GCP=∠B.∵AB=AC.∴∠B=∠ACB.∵∠ACB=∠PCE,∴∠GCP=∠ECP.在△CGP和△CEP中,90CGP CEPGCP ECPCP CP∠=∠=∠=∠=⎧⎪⎪⎨⎪⎪⎩△CGP≌△CEP.∴PG=PE.∴CF=DG=DP-PG=DP-PE.【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°.∵AD=8,CF=3,∴BF=BC-CF=AD-CF=5.由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴=4.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是矩形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF.由问题情境中的结论可得:PG+PH=EQ.∴PG +PH=4.∴PG+PH的值为4.点评本题考查了矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、相似三角形的性质与判定、平行线的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。
初中数学苏教版八年级上册第二单元第1课《轴对称与轴对称图形》优质课公开课教案教师资格证面试试讲教案
初中数学苏教版八年级上册第二单元第1课《轴对称与轴对称图形》优质课公开课教案教师资格证面试试讲教案1教学目标(1)经历观察、操作、交流、抽象、归纳等过程建立概念,理解轴对称图形和两个图形成轴对称的意义,能够识别这些图形并能指出它们的对称轴,积累数学活动经验,体会轴对称的美。
(2)通过自主、合作、探究的学习,体会概念形成以及由直观感受到数学抽象研究问题的一般过程,感悟如何“数学地”分析、解决问题,培养学生抽象、归纳、概括、推理等能力,以及创新精神和实践能力,发展空间观念,提升思维水平。
2学情分析轴对称是生活中常见的现象,在小学就曾经学习过,所不同的是,小学重在直观感受,而到了初中,随着学生思维能力的发展,我们更着意于借助实验操作使学生经历数学抽象、归纳概括等过程形成对轴对称的理性认识。
所以在建立概念时,我设计了一系列的实验操作活动,先利用学生小学的知识基础进行动手操作、观察实验,激活并强化学生对概念关键属性的的感性认知;再引导学生进行分析、比较、抽象、归纳,然后经过交流讨论发现概念的本质属性,从而形成概念;接着又以概念为依据结合实验操作进行说理和判断。
意图在于通过启发式教学,使学生动手操作、自主探索、独立思考与讨论交流相结合,充分的参与到教学活动中来,在“做数学” 的过程中掌握数学知识、认识问题、学会思考。
3重点难点教学重点:在实验操作中累积强化对操作对象的感性认知,并通过对比是与非、抽象归纳发现概念本质特征,从而形成对概念的理性认知。
教学难点:在整个教学流程中,对概念本质属性的抽象、归纳,和建立与已有概念的联系,并区分概念之间的关系是学生思维的难点,也是本节课的核心所在。
另外,针对学生间的差异,我结合多元智能理论和分层教学的思想,在问题投放、情境设置、活动内容、小组分工、反馈形式、回顾反思等方面都尽可能考虑到学生的个体差异,运用多样化的教学方式,使课堂教学丰富多彩,课堂互动形式多样,力争使学生的主体地位更加明显,促进学生潜能的开发,使每个学生都成为更优秀的自己。
浙教版数学八年级上册2.1《图形的轴对称》教学设计
浙教版数学八年级上册2.1《图形的轴对称》教学设计一. 教材分析《图形的轴对称》是浙教版数学八年级上册第二章第一节的内容。
本节主要让学生了解轴对称图形的概念,理解轴对称图形的性质,学会判断一个图形是否为轴对称图形,以及会画出一个图形的轴对称图形。
教材通过生活中的实例引入轴对称图形,使学生感受到数学与生活的联系,激发学生的学习兴趣。
二. 学情分析八年级的学生已经学习了平面几何的基本概念,具备了一定的逻辑思维能力和空间想象能力。
但是,对于轴对称图形的理解和运用还需要通过实例来进一步引导和培养。
因此,在教学过程中,要注重从学生的实际出发,创设有利于学生思考的情境,激发学生的学习兴趣,引导他们主动探索、发现和总结。
三. 教学目标1.理解轴对称图形的概念,掌握轴对称图形的性质。
2.学会判断一个图形是否为轴对称图形,并会画出一个图形的轴对称图形。
3.培养学生的空间想象能力,提高学生运用轴对称图形解决实际问题的能力。
四. 教学重难点1.轴对称图形的概念和性质。
2.判断一个图形是否为轴对称图形,以及画出一个图形的轴对称图形。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生主动探索、发现和总结轴对称图形的性质,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的图片和实例,用于引导学生理解轴对称图形。
2.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如剪纸、折叠等,引导学生感受轴对称图形的存在。
提问:这些图形有什么共同的特点?学生回答后,教师总结轴对称图形的概念。
2.呈现(10分钟)教师展示一些轴对称图形,如正方形、矩形等,引导学生观察并总结它们的性质。
学生回答后,教师进行点评和补充。
3.操练(10分钟)学生分组讨论,判断一些给定的图形是否为轴对称图形,并画出它们的轴对称图形。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,学生独立完成,检验自己对轴对称图形的理解和掌握。
人教版八年级数学上册《轴对称》优秀课件3
求BC的长
M
N
B
C
2.如图,在Rt△ABC中,∠C=90,DE是AB的垂 直平分线,连接AE,∠CAE:∠DAE=1:2,
求∠B的度数。
C E
B
D
A
3、 如图,AD⊥BC,BD=DC,点C在AE 的垂直平分线上,AB、AC 、CE 的长度 有什么关系?AB+BD 与DE有什么关系?
AB=AC=CE AB+BD=DE
变式:将边换成角(口答)
4、如图,在△ABC中 ,AB=AC,点D在AC上,且 BD=BC=AD,
(1)写出△ABC中相等的线段和相等的角.
(2)求△ABC中∠A的度数.
A
D
B
C
5、趣味数学:
如图:点B、C、D、E、F在∠MAN的边上, ∠A=15°,AB=BC=CD=DE=EF,求∠ MEF的 度数。
A
(提示:过D作DG∥AE交BC于G 证△DFG≌△EFC即可)
D
B
GF
C
E
12、已知:如图,在等边△ABC中,D、E分别为BC、AC上 的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD于Q, 求证:
(1)∠APE=60°
(2)BP=2PQ.
证明:(1)∵△ABC是等边三角形,
A
∴AB=AC=BC,∠C=∠ABC=60°,
(1)正面照镜子(左右对称——只改变左右) (2)水中倒影(上下对称——上下、左右都改变)
我思,我进步 1
4、下列图形中,不是轴对称图形的是( C )
A角
B 线段
C 任两边都不相等的三角形 D 等边三角形
5、下列图形中,只有一条对称轴的是( C )
八年级数学上册《轴对称》讲义
轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。
浙教版数学八年级上册《2.1图形的轴对称》说课稿5
浙教版数学八年级上册《2.1 图形的轴对称》说课稿5一. 教材分析浙教版数学八年级上册《2.1 图形的轴对称》是初中数学的重要内容,主要让学生了解轴对称图形的概念,性质以及如何判断一个图形是否为轴对称图形。
本节课的内容是在学生已经掌握了平面几何的基本知识的基础上进行学习的,为后续学习其他几何知识奠定了基础。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但是,对于轴对称图形的概念和性质,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们学习轴对称图形的知识。
三. 说教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,性质,能判断一个图形是否为轴对称图形。
2.过程与方法目标:通过观察,操作,让学生体会轴对称现象,培养学生的空间想象能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新意识。
四. 说教学重难点1.教学重点:轴对称图形的概念,性质。
2.教学难点:如何判断一个图形是否为轴对称图形,以及如何寻找对称轴。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导发现法,合作交流法。
2.教学手段:利用多媒体课件,几何画板等软件辅助教学。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称现象,如剪纸,衣服等,引导学生发现轴对称现象,激发学生的学习兴趣。
2.探究新知:让学生观察,操作,发现轴对称图形的性质,教师引导学生总结轴对称图形的定义,性质。
3.例题讲解:通过讲解一些轴对称图形的例子,让学生进一步理解轴对称图形的概念,性质。
4.练习巩固:让学生做一些有关轴对称图形的练习题,巩固所学知识。
5.课堂小结:教师引导学生总结本节课所学内容,加深对轴对称图形的理解。
6.布置作业:布置一些有关轴对称图形的作业,让学生课后巩固。
七. 说板书设计板书设计如下:1.轴对称图形–定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
【八上数学】《轴对称》最全知识点汇总
5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。
人教版八年级数学上《画轴对称图形》知识全解
《画轴对称图形》知识全解课标要求理解轴对称变换的概念,会做一个图形关于某条直线的对称轴。
会利用轴对称变换设计图案。
知识结构(1)轴对称变换教材首先由一系列折叠画图归纳了几个结论:①对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化;②由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;③新图形的每一个点,都是原图形上的某一个点关于直线l的对称点;④连接任意一对对应点的线段被对称轴垂直平分。
由此得到了轴对称变换的概念:由一个平面图形得到它的轴对称图形叫做轴对称变换。
(2)作一个图形关于已知直线的轴对称图形分别作出构成几何图形的点关于已知直线的对称点,连接这些对称点即可。
由直线、线段、射线构成的几何图形,只要作出它们的一些特殊点(如线段的中点)的对称点,连接这些对称点即可。
(3)利用轴对称变换设计图案。
一般采用重复一个轴对称变换或者改变对称轴的方向或位置得到。
(4)轴对称在生活中的应用利用轴对称设计最好方案,是学习轴对称一项很重要的作用。
内容解析利用轴对称的性质可以帮助我们画出任一图形关于某条直线的对称图形。
另外应注意到,对称点的连线被对称轴平分,而不是互相平分。
如何画一个图形关于某条直线的轴对称图形,是本节的重点. 一般可先画出图形中的特殊点(如线段的端点、角的顶点、多边形的顶点等)的对称点,然后按原图的连结方式连结对称点,就可以画出关于这条直线的对称图形。
重点难点本节内容的重点是:1、画一个图形关于一条直线的轴对称图形。
2、轴对称的实际应用。
难点是:1、画一个图形关于一条直线的轴对称图形。
2、用轴对称变换设计图案。
3、轴对称的实际应用。
教法引导(1)搜集生活中的反映轴对称变换的图片,投影给学生,让学生从直观角度了解轴对称变换,鼓励学生动手画图,动脑设计;(2)给学生充分的时间动手画图。
要让学生通过自己画轴对称图形,深刻认识作轴对称变换的方法思路。
学法建议通过观察图片,从直观上感受什么是轴对称变换。
苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》
苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》一. 教材分析《2-1轴对称与轴对称图形》这一节内容是苏科版数学八年级上册的重要内容之一。
主要介绍了轴对称的概念,轴对称图形的性质以及如何寻找生活中的轴对称图形。
通过这一节的学习,学生能够了解并掌握轴对称的基本概念和性质,能够识别和画出常见的轴对称图形,提高他们的观察能力和审美能力。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对图形的认识和观察能力有一定的提高。
但是,对于轴对称的概念和性质,他们可能还比较陌生,需要通过具体的实例和活动来理解和掌握。
此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养和提高。
三. 教学目标1.了解轴对称的概念,掌握轴对称的性质。
2.能够识别和画出常见的轴对称图形。
3.培养学生的观察能力,提高他们的空间想象能力和逻辑思维能力。
四. 教学重难点1.轴对称的概念和性质的理解和掌握。
2.轴对称图形的识别和画法。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索。
2.利用具体的实例和活动,让学生通过观察和实践来理解和掌握轴对称的概念和性质。
3.采用小组合作的学习方式,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的实例和图片,用于讲解和展示轴对称的概念和性质。
2.准备一些实际的图形,让学生进行观察和操作。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过提问的方式引导学生思考和探索轴对称的概念。
例如,问学生:“你们在生活中有没有见过一些物体或图形,它们的一侧和另一侧是完全相同的?”让学生结合自己的生活经验来理解和认识轴对称。
2.呈现(10分钟)利用具体的实例和图片,向学生讲解和展示轴对称的概念和性质。
可以举例说明一些常见的轴对称图形,如蝴蝶、飞机、枫叶等,让学生观察和分析它们的特点,引导他们发现和总结轴对称的性质。
3.操练(15分钟)让学生分组进行观察和操作,每组提供一些实际的图形,让学生尝试识别和画出它们的轴对称图形。
人教版八年级《轴对称图形》说课稿
人教版八年级《轴对称图形》说课稿一、教材分析1、教材的地位及作用本节内容是《人教版》八年级上册第十二章第一节“轴对称”第一课时。
对称是数学中一个非常重要的概念,教科书中人生洛的图形入手,学习轴对称及其性质,通过图片及空间想象,归纳他们的共同特征。
通过本节课的教学,主要是训练学生初步的审美能力和初步的图案设计操作技能,拓展学生的空间想象能力。
因此,这一节课无论在知识上,还是对学生观察能力的培养上,都起着十分重要的作用。
2、教学目标知识技能:1、理解轴对称图形,两个图形关于某直线对称的概念。
2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。
3、了解轴对称图形与两个图形关于某直线对称的区别和联系。
数学思考:1、通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征。
2、通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生抽象概括的能力。
解决问题:通过轴对称图形和两个图形成轴对称的学习,让学生关注生活、学会观察、增强交流。
情感态度:通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动。
3、教学重点与难点重点:轴对称图形和两个图形关于某直线对称的概念。
难点:轴对称图形和两个图形关于某直线对称的区别和联系。
二、教学方法与教材处理鉴于教材特点及初二学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识。
关于教材处理:①在轴对称图形的定义之前让学生动手操作,观察、发现、突出显现知识的产生和发展变化过程,加深学生对知识的理解。
②对于新课知识讲解做了适当的改造:添加了常见的图形,让学生动手折一折,再动笔画一画。
冀教版八年级数学上册《轴对称》
80%
标志设计
许多标志和商标也采用了轴对称 的设计元素,以体现平衡和和谐 的美感。
02
轴对称图形绘制与识别
常见轴对称图形分类
01
02
03
04
轴对称的基本图形:如线段、 角、三角形等。
常见的轴对称多边形:如矩形 、菱形、正方形等。
轴对称的圆和圆弧。
复杂图形的轴对称组合。
绘制轴对称图形方法
确定对称轴
非欧几里得几何的分类
主要分为两类,一类是双曲几何,另一类是椭圆几何。在双曲几何中,过直线外一点可以有多条直线与已知直线平行 ;而在椭圆几何中,不存在与已知直线平行的直线。
非欧几里得几何的应用
在广义相对论中,爱因斯坦利用非欧几里得几何来描述引力作用下的空间弯曲现象。此外,在地图制作、 计算机图形学等领域也有广泛应用。
函数图像平移、旋转与翻折变换
函数图像的平移变换
将函数图像沿x轴或y轴方向平移一定的距离,可以得到新 的函数图像。平移后的函数表达式可以通过在原函数中增 加或减少常数项得到。
函数图像的旋转变换
将函数图像绕原点或某一定点旋转一定的角度,可以得到 新的函数图像。旋转后的函数表达式可以通过三角函数变 换得到。
轴对称特点
对称轴是一条直线,对称轴两侧的图形是全等的,即形状和大小 完全相同。
对称轴与对称中心
对称轴
对于轴对称图形,存在一条直线 使得图形关于该直线对称,这条 直线被称为对称轴。
对称中心
对于中心对称图形,存在一个点 使得图形关于该点对称,这个点 被称为对称中心。
图形关于直线对称性质
对应点连线被对称轴垂直平分
THANK YOU
感谢聆听
已知函数图像关于x轴对称,求函数表达式
第二章+轴对称图形(小结与思考)(单元复习)2023-2024学年八年级数学上册同步精品课堂
A
∴AB=AC.∵AB+BD=DE,
B
D
C
E
∴AB+BD=DC+CE,∴AC=
CE,
巩固练习
3.如图,已知直线a和直线a同侧的两点A、B,
(1)在直线a上求作一点,使得PA=PB;
B
A
a
●
P
巩固练习
(2)在直线a上求作一点,使得PA+PB最小.
B
A
●
a
●
A'
P
考点分析
巩固练习
3. 如图,在△ABC中,D点在BC边上,将D点分别以AB,AC边所在直
线为对称轴,画出对称点E,F,并连接AE,AF.根据图中标示的角度,
则∠EAF的度数为___________.
140°
A
E
●
●
60°
B
●
D
F
50°
C
当堂检测
4. 如图,已知O是∠APB内的一点,M,N分别是点O关于PA,PB的对
PN⊥CD,垂足分别是M、N.
证明:∵BD是∠ABC的平分线,
求证:PM=PN.
∴∠ABD=∠CBD.
A M
D
P
B
N
C
在△ABD和△CBD中,
= ,
∠ = ∠,
= ,
∴△ABD≌△CBD,
∴∠ADB=∠CDB.
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.
考点分析
巩固练习
1.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,CD
=3,DB=5,点E在边AB上运动,连接DE,则线段DE长度的最小值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级上册第二章轴对称图形《美妙的对称》
闹钟、飞机、电扇、屋架等的功能、属性
完全不同,但是它们的形状却有一个共同特性
——对称.
在闹钟、屋架、飞机等的外形图中,可以
找到一条线,线两边的图形是完全一样的.也
就是说,当这条线的一边绕这条线旋转180°
后,能与另一边完全重合.在数学上把具有这
种性质的图形叫作轴对称图形,这条线叫作对
称轴.电扇的扇叶不是轴对称图形,不管怎么
画线,都无法找到这条直线.但电扇的一个扇
叶,如果绕这电扇中心旋转180°后,会与另
一个扇叶原来所在位置完全重合.这种图形数
学上称为中心对称图形,这个中心点称为对称中心.显然闹钟也是一个中心对称图形.所有轴对称和中心对称图形,统称为对称图形.人们把闹钟、飞机、电扇制造成对称形状,不仅为了美观,而且还有一定的科学道理:闹钟的对称保证了走时的均匀性,飞机的对称使飞机能在空中保持平衡.
对称也是艺术家们创造艺术作品的重要准则.像中国古代的近体诗中的对仗,民间常用的对联等,都有一种内在的对称关系.如果说建筑也是一种艺术的话,那么建筑艺术中对称的应用就更广泛了.中国北京整个城市的布局也是以故宫、天安门、人民英雄纪念碑、前门为中轴线(对称轴)两边对称的.
对称还是自然界的一种生物现象,不少植物、动物都有自己的对称形式.比如人体就是以鼻尖、肚脐眼的连线为对称轴的对称形体,眼、耳、鼻、手、脚、乳房都是对称生长的.眼睛的对称使人观看物体能够更加准确;双耳的对称能使所听到的声音具有较强的立体感,确定声源的位置;双手、双脚的对称能保持人体的平衡.
对称是数学研究的重要内容,但数学中的对称概念不仅限于图形的对称,也把数对(3,4)与(-3,4)称为平面上关于y轴对称;把数对(3,4)与
(-3,-4)称为平面上关于坐标原点对称;又如把多项式x2+y2、x3+3x2y+3xy2+y3称为关于x、y对称的多项式.另外还有对称方程、对称行列式、对称矩阵等概念.。