微波技术习题答案
微波技术与天线总复习题及其答案

微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。
并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。
2、无耗传输线上的三种工作状态分别为: 、 、 。
3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。
(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。
传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。
4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。
5、负载获得最大输出功率时,负载与源阻抗间关系: 。
6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。
导纳圆图可以通过对 旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。
圆图上的电刻度表示 ,图上0~180°是表示 。
7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。
8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。
9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。
10、模式简并现象是指,主模也称基模,其定义是。
单模波导是指;多模传输是。
11、圆波导中的主模为,轴对称模为,低损耗模为。
微波技术基础课后参考答案 (田加胜版)

微波技巧基本课后习题答案1 第一章1.7 终端反射系数0050505050125050501005025L L L Z Z j j j j Z Z j j j ------Γ=====+-+--,125L j -Γ==终端驻波比1115LL L ρ+Γ===-Γ; 000505050tantan 504()5010(2)8tan 250(5050)tan 4L in L j j Z jZ d Z Z j Z jZ d j j j πβλπβ-++====-+++-. 1.11 终端反射系数00250-50011=-=250+50033j L L L Z Z e Z Z π-Γ==+,终端反射系数模值13L Γ=,相角=L φπ.依据行驻波状况时电压的变更纪律可知:=L φπ时,若1n =,则4234L n φλπλλ+=,电压处于波腹点,是以在输入端电压处于波腹点.max (1)500L L U U V +=+Γ=,所以1500=3754L U V V +=,min (1)250L L U U V +=-Γ=;max500(1)1500L L U IA Z +=+Γ==,min250(1)0.5500L L U IA Z +=-Γ==. 因为0L R Z <,负载处为电压波节点;驻波比11+1+3==211-1-3L L ρΓ=Γ,0min 250Z R ρ==Ω,max 01000R Z ρ==Ω.1.13 (1)负载1z 处的反射系数122821()0.5pp j j z L L L z e e j j λπλβ-⋅⋅-Γ=Γ=Γ=-Γ=,是以0.5L Γ=-.随意率性不雅察点z 处的反射系数22()0.5j z j z L z e e ββ--Γ=Γ=-;等效阻抗2021()10.5()501()10.5j zj zz e Z z Z z e ββ--+Γ-==-Γ+.(2)已知0L L L Z Z Z Z -Γ=+,050Z =Ω;(1)中求得0.5L Γ=-,可解出50/3L Z =Ω.(3)由等效阻抗公式2210.5()5010.5j zj ze Z z e ββ---=+,取z=0,得10.55050/310.5L Z -==Ω+. 1.14 min122()444422LLLl φλπφφλππββππΓΓΓ=+=+=+, 所以min1sin()sin()cos()222LLl φφπβΓΓ=+=,min1cos()cos()sin()222L L l φφπβΓΓ=+=-.或:在min1l 处的输入阻抗为()00min1min100min1tan tan L L Z Z jZ l Z l Z Z jZ l βρβ+==+所以()0min10min1tan tan L L Z jZ l Z jZ l βρβ+=+ 1.15(a )终端短路:0L Z =,2200()j zj zL L Z Z z e e Z Z ββ---Γ==-+,23223()12j e πλλλ-⋅⋅Γ=-=-,033()tan()022Z jZ λβλ=⋅=或031()32()0321()2Z Z λλλ+Γ==-Γ. (b )终端开路:L Z =∞,2200()j zj zL L Z Z z e e Z Z ββ---Γ==+,2142551()5j j e e πλπλλ-⋅⋅-Γ==,0112()cot()cot 555Z jZ j λβλπ=-⋅=-. (c )虚线右半部分:负载为0Z ,长度为5λ传输线的输入阻抗000in 000000tan tan tan tan L L Z jZ d Z jZ dZ Z Z Z Z jZ d Z jZ dββββ++===++;是以,从最左端看去,负载为两个0Z 并联,等效负载阻抗为02Z .传输线输入端阻抗00in 0000tan 242tan 24Z jZ Z Z Z Z Z j λβλβ+==+, 反射系数002204000112()=-=332j j zj L L Z Z Z Z z ee e Z Z Z Z λββπ-----Γ==++. (d )终端短路的/4λ传输线输入阻抗为∞,终端匹配的/2λ传输线输入阻抗为0Z ,所以支节点处等效输入阻抗为00||Z Z ∞=;再经/2λ阻抗变换得输入端输入阻抗为0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+;(e )终端阻抗02Z 经由两个/2λ阻抗变换之后输入阻抗仍为02Z ,另一歧路在支节点处输入阻抗仍为0/2Z ,所以支节点处等效输入阻抗为0002Z ||Z /22Z /5=;再经/4λ阻抗变换得输入端输入阻抗为20005/22/5Z Z Z =,反射系数-j2-j 004002/533e =-e 2/577Z Z Z Z λβπ-Γ==+; (f )主线上第一节点处输入阻抗为0Z ,支线支节点处00in 0000tan 8tan 8Z jZ Z Z Z Z jZ λβλβ+==+,支节点等效输入阻抗000Z ||Z Z /2=,输入端等效阻抗仍为0/2Z ,反射系数-j200200/21e =/23Z Z Z Z λβ-Γ=-+;(g )支节点处输入阻抗0002Z ||2Z Z =,输入端输入阻抗0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+.1.160025-j25-5025251=0.20.425-j25+5075253L L L Z Z j jj Z Z j j-----Γ====--+--,1+2.6171-2ρΓ==≈Γ,距离负载0.375λ处阻抗in003tan252550850350(2525)tan825755050(2)2525LLLLZ jZ Z jZ j jZ Z ZZ jZ j jZ jZjjjλβλβ+---===---+-==--11125255050LY jj==+-,LY的实部等于01=50Y,依据传输线导纳公式:依据单支节在传输线上的匹配前提:()inY z的实部应为01=50Y,是以:()2211tan1zβ=-+,tan0zβ=或2当tan0zβ=时,单支线在主线0d=处(即终端负载处),此处()115050inY z j=+.是以短路支节导纳为11-=50j50tanjdβ,所以tan1dβ=,支节长度/8lλ=.当tan2zβ=时,单支线在主线arctan22dλπ=处,此处()115025inY z j=-.所以短路支节导纳为11=25j50tanjdβ,所以tan0.5dβ=-,支节长度()arctan0.52lλπ=-.1.17 已知1+51-ρΓ==Γ,所以-12+13ρρΓ==;相邻电压波节点之间的距离=452cmλ,所以=90cmλ;第一电流波腹点(电压波节点)设为min1l,则min12-LlβφπΓ=,所以min1=44LlφλλπΓ+,由=90cmλ,min1=20cml得-9LπφΓ=,所以923LjjL Le eπφΓ-Γ=Γ=,进而可求出9921+13=250725.19595.271213j LL jL e Z Z j e ππ--+Γ=≈-Ω-Γ-. 1.21(1)将负载阻抗归一化得30150.60.350L j z j +==+,对应圆图上点A;在等反射系数圆上往电源偏向顺时针扭转/6λ(120度)得到点B;读取B 点的阻抗为91.5493+j13.4512Ω; (2)将输入阻抗归一化得6055111+j 6012L j z +==,对应圆图上点A;从A点做OA 射线,得角度为65.3785;从A 点做等反射系数圆与X 轴右半轴交点,读出=2.4ρ;依据-10.4167+1ρρΓ=≈; (3)在X 轴左半轴读出1==0.42.5ρ的地位,对应圆图点A;在圆图等反射系数圆上,往负载偏向逆时针扭转0.15λ(108度),读出归一化负载阻抗为0.88-j0.91L z =,0(0.88-j0.91)52.854.6L Z Z j ==-Ω.1.22 将负载阻抗归一化0.5+j0.5L z =,对应圆图点A;从点A 沿电源偏向扭转2圈,得到'BB 处输入阻抗'0.50.5BB z j =+,''05050BB BB Z Z z j =⋅=+Ω’;再将'BB z 归一化对应圆图上点B,扭转4圈得到'0.250.25AA z j =+,''0200(0.250.25)5050AA AA Z Z z j j =⋅=⋅+=+Ω.2 第二章2.6 7.214a cm =,3.404b cm =,矩形波导的截止波长c λ=;对于10TE 模,m=1,n=0,214.428c a cm λ===,83310 2.0792914.42810c c cf GHz λ-⨯==≈⨯,故c f f <,不消失10TE 模; 对于01TE 模,m=0,n=1,2 6.808c b cm λ===,83310 4.406586.80810c c cf GHz λ-⨯==≈⨯,c f f <,也不消失01TE 模; 显然11TE 和22TE 模的截止频率大于10TE 和01TE ,也不成能消失11TE 模和22TE 模.2.7 10a mm =,6b mm =,对10TE 模,220c a mm λ===;对于01TE 模,212c b mm λ===;对于11TE 模,210.29c mm λ-===≈.2.9 22.8a mm =,10.15b mm =,工作波长12mm λ=.10TE 模:245.6c a mm λλ==>,可以消失; 01TE 模:220.3c b mm λλ==>,可以消失; 02TE模:10.15c b mm λλ===<,不成以消失;11TE (11TM )模:18.5454c mm λλ===≈>,可以消失;12TE (12TM ):9.9075c mm λλ===≈<,不消失;21TE (21TM )模:15.1641c mm λλ===≈>,可以消失;20TE模:22.8c a mm λλ===>,可以消失; 30TE模:215.23c a mm λλ===>,可以消失; 40TE模:111.42c a mm λλ===<,不成以消失; 31TE (31TM ):12.167c mm λλ===≈>,可以消失.2.15 圆波导的主模为11TE 模,其截止波长3.41 3.41310.23c R cm cm λ==⨯=;截止频率892310 2.931010.2310c f Hz -⨯==⨯⨯;波导波长2247.426w cm λ--====≈;波形阻抗111787TE Z ===Ω. 2.16 11TE 模 3.41 3.413c R cm cm λ==>,01TM 模 2.61 2.613c R cm cm λ==<,所以只能传输11TE 模.2.18 β=因为波在两波导中传输时β和K 都相等,所以截止波束c K 也相等,即两个波导中截止波长相等.矩形波导中10TE 模c K aπ=,22c ca K πλ==,圆波导01TE 模 1.64c R λ=,所以圆波导半径327.11108.671.64m R mm -⨯⨯=≈.2.21 衰减20lg 100c lL edB α-=-=,求出5ln1011.513115.13/0.1c dB m l α--===;已知8.686280)c παλ=⋅--,tan 0.001δ=,8931031010m cm λ⨯==⨯,由以上解得 3.00 3.41c cm R λ≈=,所以圆波导的半径0.88R cm =. 3 第三章3.5 微带线传输的主模是准TEM 模;现实上微带传输线的准TEM 模的场部分在空气中,部分在介质中,一般用等效介电常数eff ε来暗示这种情形对传输特征的影响.eff ε的界说如下:eff CC ε=,0C 为无介质填充时微带传输线单位长度的散布电容,C 为现实上部分填充介质时微带传输线的单位长度上的散布电容.介质填充系数1/2110[1(1)]2h q w-=++.当/1w h 时,1(1)eff r q εε≈+-.3.10 w/h=0.95<1,疏忽导带厚度,00860ln()460ln(8.4210.2375)129.5125h w Z w h=+=+=Ω,1/2110[1(1)]0.64732h q w-=++=,1(1)10.6473(9.51) 6.5eff r q εε≈+-=+⨯-=;050.79Z ===Ω. 4 第四章4.1 微波谐振器和低频谐振器回路重要有3点不合:1)LC 回路为集总参数电路,微波谐振器属于散布参数电路,所以LC 回路能量只散布在LC 上,而微波谐振器的能量散布在全部腔体中;2)LC 回路在L 及C 一准时,只有一个谐振频率,而微波谐振器有无穷多个谐振频率,这称为微波谐振器的多谐性;3)微波谐振腔储能多,损耗小,是以微波谐振器品德因数很高,比LC 回路的Q 值高许多. 4.40.1mλ=,3a 10m-=,21.510b m-=⨯,特征阻抗060ln 366bZ a=≈Ω; 810r 231022/ 1.885100.1r f v πωππλ⨯⨯===≈⨯;10110-9-521l 220.110.1=2 1.88510106621.2810+p 510r r r tg p CZ tg p mλλπωπ---=++⨯⨯⨯≈⨯⨯⨯. 4.9已知r f =f 3r GHz =时,有9310⨯=;f 6r GHz =时,有9610⨯=解得a 6.3cm =≈,l 8.2cm =≈,b<a. 4.12 l 10cm =时,l/R=2<2.1,最低谐振模式为010TM 模,谐振波长2.61 2.61513.05R cm cmλ==⨯=;l15cm=时,l/R=3>2.1,最低谐振模式为111TE模,谐振波长14.8cm λ=≈.。
微波技术习题解答(部分)

率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98
微波复习题参考答案(思考题)

微波复习题参考答案(思考题)⼀、思考题1.什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHz到3000GHz,波长从0.1mm到1m。
(通常,微波波段分为⽶波、厘⽶波毫⽶和亚毫⽶波四个波段。
)特点: 似光性;穿透性;宽频带特性;热效应性;散射性;抗低频⼲扰性;视距传播性;分布参数的不确定性;电磁兼容和电磁环境污染。
2. 试解释⼀下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?⼀般是采⽤哪些物理量来描述?3. 微波技术、天线与电波传播三者研究的对象分别是什么?它们有何区别和联系?4. 试解释传输线的⼯作特性参数(特性阻抗、传播常数、相速和波长)5. 传输线状态参量输⼊阻抗、反射系数、驻波⽐是如何定义的,有何特点,并分析三者之间的关系6. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?7. 史密斯圆图是求解均匀传输线有关和问题的⼀类曲线坐标图,图上有两组坐标线,即归⼀化阻抗或导纳的的等值线簇与反射系数的等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有,⽽特征参数和,并没有在圆图上表⽰出来。
导纳圆图可以通过对旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表⽰或和或。
圆图上的电刻度表⽰,图上0~180 °是表⽰。
8. TEM、TE 和TM 波是如何定义的?什么是波导的截⽌性?分别说明矩形波导、圆波导、同轴线、带状线和微带线的主模是什么?9. 描述波导传输特性的主要参数有哪些,如何定义?10.为什么空⼼的⾦属波导内不能传播TEM波?试说明为什么规则⾦属波导内不能传输TEM波?答:如果内部存在TEM波,则要求磁场应完全在波导的横截⾯内,⽽且是闭合曲线。
由麦克斯韦第⼀⽅程知,闭合曲线上磁场的积分应等于与曲线相交链的电流。
由于空⼼⾦属波导中不存在轴向(即传播⽅向)的传导电流,所以必要求有传播⽅向的位移电流。
电磁场与微波技术第一二三章课后习题及部分答案

第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。
解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。
设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。
2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。
解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。
解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。
4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。
解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。
微波技术习题解

《微波技术》习题解(一、传输线理论)(共24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。
若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需s ,求该电缆的特性阻抗Z 0 。
[解] 脉冲信号的传播速度为tlv 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为 00C L Z =00C C L =lC εμ=Cv l =8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。
[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。
根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ 。
为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =作电介质。
(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =,求线间距D 。
(2) 对Z 0 =75Ω的同轴线,内导体半径 a =,求外导体半径 b 。
[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r D rln 120ε=300= Ω 得52.42=rD, 即 m m 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c ))Z LZ 0○ ~ z补充题1图示0C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。
微波技术基础课后参考答案 (张靖第三次习题)20170418

微波技术基础课后习题答案1 第二章2.9 22.8a mm =,10.15b mm =,工作波长12mm λ=。
10TE 模:245.6c a mm λλ==>,可以存在;01TE 模:220.3c b mm λλ==>,可以存在;02TE模:10.15c b mm λλ===<,不可以存在;11TE (11TM )模:18.5454c mm λλ===≈>,可以存在;12TE (12TM ):9.9075c mm λλ===≈<, 不存在;21TE (21TM )模:15.1641c mm λλ===≈>, 可以存在;20TE模:22.8c a mm λλ===>,可以存在;30TE模:215.23c a mm λλ===>,可以存在; 40TE模:111.42c a mm λλ===<,不可以存在; 31TE (31TM ):12.167c mm λλ===≈>,可以存在。
2.11 根据空气填充矩形波导的几何尺寸,22.86a mm =,10.16b mm =。
10TE 模:245.6c a mm λ==;01TE 模:220.3c b mm λ==;20TE模:22.86c a mm λ===;11TE (11TM )模:18.5454c mm λ===≈; 因此在所有工作模式中,工作频率低于20TE 模截止频率且高于10TE 模截止频率的传输频率才能实现单模传输。
其对应的频率范围是1083310 6.5645.7210TE m s f GHz m -⨯==⨯,208331013.1222.8610TE m s f GHz m-⨯==⨯。
因此该矩形波导单模传输的频率范围是6.5613.12GHz f GHz <<。
2.15 圆波导的主模为11TE 模,其截止波长3.41 3.41310.23c R cm cm λ==⨯=; 截止频率892310 2.931010.2310c f Hz -⨯==⨯⨯;波导波长2247.426w cm λ--====≈;波形阻抗111787TE Z ===Ω. 2.20 对于传输01TE 模式的圆波导,磁场只有r H 和z H 分量,并且在波导管壁内表面只有z H 磁场分量。
微波技术习题答案5.docx

5・2若一两端口微波网络互易,则网络参量[Z ]、[S ]的特征分别是什么?解:% = ^21&2 - ^21因为,V2 '1 ;50__-2 -声 A = 4 =T 丄1 Mo = J-2.50_25 -一1 375 .「A B4 2」 所以, C D =AS =■J1 200 ~4因为,归一化电压和电流为:匕⑵=卡二=4⑵+勺•⑵ \ Zn ;厶(z)二厶⑵= q. (z) — 勺(z)a 〕+忧=A(a 2 +b 2) + B(a 2-b 2)/Z oq — b、= CZ Q {CI 2 + E) + Z)(tz 2—b°)从而解得:~b i~「1 -(A-B/Z O )TT-1 (A + B/ZjA.-1 -(CZ 0 - D)」[-1 (CZ 0 + D)_a 2_所以进而推得[S ]矩阵为:a b_AB/Z (「c dcz () D 归一化ABCD 矩阵为:所以:5-4某微波网络如右图。
写出此网络的[ABCD ]矩阵,并用[ABCD ]矩阵推导出対应的[S ]及[T ] 参数矩阵。
根据[S ]或[T ]阵的特性对此网络的对称性做出判断。
解:2(AD-BC )—A + B / Z ()— CZ ()+ D乙+Zc — K z _7 U 乙+Z 』v[Z][/] = [V]⑸一 A + B/Z ()+CZo + D_ A + B/ Z ()—CZ Q — D2 由(3)式解得[S] -1 1 ~—- + 4/ 27 . 27所以, b\ _ 1~ 2A —B / Z° — CZ ()+DA —B / Z ()+ CZ 1 A + B / Z° — CZ Q — D A — B / Z° — CZ°+ D2 A + B/Zo + CZo + D A-B/Z +CZ -D7 .—/21力• ----- 4 j 2----- 4 j 2 7 . * (9)因为[s ]阵的转置矩阵[sy 二[S ],所以,该网络是互易的。
微波试题及答案

微波试题及答案在现代社会中,微波技术已经广泛应用于通信、雷达、天文学等领域。
掌握微波知识对于从事相关行业的人士来说至关重要。
本篇文章将介绍一些微波试题及其答案,帮助读者深入了解微波技术。
试题一:什么是微波?答案:微波是电磁波的一种,具有较短的波长和高频率特点,通常波长在1毫米至1米之间。
微波具有很强的穿透力和方向性,被广泛应用于通信、雷达、医疗等领域。
试题二:什么是微波导?答案:微波导是一种用于传输微波信号的特殊波导结构。
微波导常见的形式有矩形波导、圆柱波导等,其内部壁面具有优良的导波性能,能够有效地传输微波信号。
试题三:微波的功率和频率有何关系?答案:微波的功率和频率之间呈正比关系。
功率越大,频率也相应增加。
这是因为微波的功率与电磁波的幅度相关,而频率则与波的周期有关。
试题四:什么是微波障碍物?答案:微波障碍物是指在微波传输过程中会对信号产生干扰或反射的物体。
微波障碍物可能导致信号衰减、多径效应等问题,影响信号的传输质量。
试题五:微波天线的作用是什么?答案:微波天线是用于接收和发射微波信号的装置。
它能够将电磁波能量转换成电流或电流转换成电磁波能量,并将其传输到空间中进行无线通信或能量传输。
试题六:什么是微波功率放大器?答案:微波功率放大器是一种用于增加微波信号功率的装置。
它通过引入恒定的电源电压来驱动微波管或半导体器件,实现对微波信号电压的放大。
试题七:什么是微波衰减器?答案:微波衰减器是一种用于降低微波信号功率的装置。
它通过引入衰减材料或实现信号的反向传播等方式,对微波信号进行衰减,用于调节微波信号的强度。
试题八:什么是微波干扰?答案:微波干扰是指在微波传输过程中,由于不同信号的干涉或其他外界干扰因素而导致的信号失真或中断现象。
微波干扰可能影响通信、雷达等应用的正常运行。
试题九:如何解决微波干扰问题?答案:解决微波干扰问题可以采取多种方法。
例如,可以提高微波系统的抗干扰能力,使用合适的隔离器或拐角衰减器,合理安排微波设备的布局等,从而减少微波干扰。
《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。
1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。
1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术基础习题2

in1
Z in1 50 53.88 23.76 j 50 3.88 23.76 j 0.085 0.21 j, in1 0.226 Z in1 50 53.88 23.76 j 50 103.88 23.76 j 1 0.226 1.58 1 0.226
0.483e j 0.496 e
j
6 5
0.483e j 3.27
1 L 1 L
1 0.483 2.868 1 0.483
EG Z 0 e j l j d j d V ( d ) ( e e ) L ② 2 j l Z G Z 0 1 G L e
L
V
min
V
1 L
max
1 L
V
max
/ 300 V
负载处电流(最大):
1 L I max I L
I min I 1 L
L
I max V
1 L
min
1 L
I min 1A
输入阻抗(最大) Z0*ρ=600*2=1200Ω 输入阻抗(最小) Z0/ρ=600/2=300Ω
EG Z 0 e j l 10 75 2 j l Z G Z 0 1 G L e 75
e
j
2 15 50 j 4 15 50
1 (0.425 j 0.23)e
10(0.31 j 0.95) 10(0.222 j 0.474) 10(0.81 1.73 j ) 0.52 j 0.064 0.274
Z BB' jZ 0 ' tg ' t Z0 ' Z0 Z 0 ' jZ BB'tg ' t
廖承恩《微波技术基础》习题解答(最全的版本)

所以可以得到 Z L = Z 0
又因为当电压最小点时,电流为最大点,即
kh da
课 后
Z L + Z 0 thγd Z 0 + Z L thγd Z L + jZ 0 tgβ d Z 0 + jZ L tgβ d Z in (d ) − jZ 0 tgβ d Z 0 − jZ in (d )tgβ d
Z =Z0 证明:对于无耗线而言 L
kh da
课 后
Z0 =
60
答 案
εr
ln
60
b 60 0.75 = ln = 65.9Ω a 1 0.25
=2.1
1
L1C1
=
1
µε r ε 0
1
2.1
sc Zin (d) −Zin (d) ZL = Z (d) oc Zin (d) −Zin (d) oc in
(d=l-z,如图,d 为一新坐标系, l=λ/4)
当 z=0,即 d=l 时 Vin=450V 所以 | V (l ) |=| V L+ e j β λ / 4 [1 + ΓL e −2 j β λ / 4 ] |= 450V
由于行波状态下沿线电压和电流振幅不变,因而 V0+=Vin=450V 而 I0+=V0+/Z0=1A 所以 AB 段的电压、电流、阻抗表达式为
kh da
课 后
V0+ − j β z e Z0
(图) 解:首先在 BC 段,由于 Z0=Z01=600Ω,ZL=400Ω 且因为 d=λ/4 所以在 BB’处向右看去,Zin=Z012/ZL=6002/400=900Ω 又由于 BB’处有一处负载 R=900Ω,所以对 AB 段的传输线来说 终端负载为 ZL’=Zin//R=450Ω 所以对 AB 段的等效电路为
微波技术课后习题答案-第二章习题参考答案11

第二章习题参考答案同轴线、双导线和平行板传输线的分布参数注:媒质的复介电常数εεε''-'=i ,导体的表面电阻ss R σδσωμ1221=⎪⎭⎫⎝⎛=。
本章有关常用公式:)](1[)()]()([122)()](1)[()()(22)(00000000d Z d V d V d V Z e Z Z I V e Z Z I V d I d d V d V d V e Z I V e Z I V d V d j L L d j L L dj L L d j L L Γ-=-=--+=Γ+=+=-++=+-+-+-+-ββββ )2(2200200)(d j L d j L dj L L d j L L L L L e e e Z Z Z Z e Z I V Z I V VV d βφβββ----+-Γ=Γ=+-=+-==ΓL Lj L j L L L L L e e Z Z Z Z Z Z Z Z φφΓ=+-=+-=Γ0000dtg jZ Z dtg jZ Z Z d Z L L in ββ++=000)()(1)(1)()()(0d d Z d I d V d Z in Γ-Γ+==LL VV VSWR Γ-Γ+==11minmax2.1无耗或者低耗线的特性阻抗为110C L Z = 平行双导线的特性阻抗:aDa a D D a a D D Z r r rln 11202)2(ln 11202)2(ln 112222000εεεμεπ≈-+=-+=已知平行双导线的直径mm a 22=,间距cm D 10=,周围介质为空气(1=r ε),所以特性阻抗)(6.5521100ln 120ln11200Ω==≈a D Z rε 同轴线的特性阻抗:ab a b Z r rln 60ln 121000εεμεπ==已知同轴线外导体的内直径2mm b 23=,内导体的外直径2mm a 10=,中间填充空气(1=r ε):特性阻抗)(50210223ln 60ln 600Ω===abZ r ε中间填充介质(25.2=r ε):特性阻抗)(3.33210223ln 25.260ln 600Ω===a b Z r ε2.2对于无耗传输线线有相位常数μεωωβ===k C L 11,所以可求出相速度v k C L v p =====μεωβω1111,等于电磁波的传播速度。
微波技术习题答案1

1-1什么是行波,它的特点是什么,在什么情况下会得到行波;什么是纯驻波,它有什么特点,在什么情况下会产生纯驻波?解:当传输线是无限长,或其终端接有等于线的特性阻抗的负载时,信号源传向负载的能量将被负载完全吸收,而无反射,此时称传输线工作于行波状态,或者说,传输线与负载处于匹配状态。
在行波状态下,均匀无耗线上各点电压复振幅的值是相同的,各点电流复振幅的值也是相同的,即它们都不随距离z 而变化;而且,电压和电流的瞬时值是相同的。
当负载l c Z Z =时,反射波为零,由此得到行波。
从信号传向负载的入射波在终端产生全反射,线上的入射波和反射波相叠加,从而形成了纯驻波状态。
对于任意的电抗性负载都可以用一个有限长的短路线或开路线的输入阻抗来代替。
当传输线终端是短路、开路,或接有纯电抗性(电感性和电容性)负载时。
1-2传输线的总长为5/8λ,终端开路,信号源内阻等于特性阻抗。
终端的电压为15045∠ ,试写出始端、以及与始端相距分别为/8λ和/2λ等处电压瞬时值的表达式。
解:(1) 求终端电压L U终端开路,将产生全反射,线上为纯驻波状态。
终端电压L U 应等于入射电压加反射电压,即+L U U (0)U (0)-=,开路处+U (0)U (0)-=,即L U 2U (0)+=。
而开路线上任一处z 的电压,由下式求出L U z U cos z β()=题中,始端z 5/8λ=处有 0U (z )U (5/8)150/45λ== 故有 0j 45L5150e U c o s ()8βλ=⋅ 即00j45j45j(45)L 150e U 5cos()8πλβ±==-=⋅因此,线上任一处的电压复振幅为0+j (45)LU (z )U c o s z =2U (0)c o 1502c o sz eπβββ±== (2)开路状态下,沿线各处的瞬时电压为j w tu (z ,t )R e [U (z )e1502c o s z c o s (w t 45)βπ==+± 故始端瞬时电压j(45)jwt055u(,cos()e]=100cos zcos(wt+45)88πλλββ±⋅据终端8λ处,则距终端为z2λ=j(45)jwt0u(,)e e)22πλλβ±⋅据终端2λ处,则距终端为z8λ=j(45)jwt0u(,)e e]=150cos(wt+45)88πλλβπ±⋅±1-3传输线的特性阻抗为cZ,行波系数为K,终端负载为LZ,第一个电压最小点距终端的距离为l mi m,试求LZ的表达式。
微波元件习题答案

微波元件习题答案微波元件习题答案微波技术作为一门重要的电子学科,广泛应用于通信、雷达、卫星导航等领域。
而学习微波技术的过程中,习题是不可或缺的一部分。
在解决微波元件习题的过程中,我们需要了解相关的概念和原理,并掌握相应的计算方法。
本文将为大家提供一些常见微波元件习题的答案,希望能对大家的学习有所帮助。
1. 问题:一根长度为10cm的导线,工作频率为10GHz,求其一阶模式的波长是多少?答案:波长(λ)和频率(f)之间的关系可以用公式λ = c / f表示,其中c是光速。
根据题目给出的频率为10GHz,我们可以计算出波长为λ = 3 × 10^8m/s / 10 × 10^9 Hz = 0.03 m = 3 cm。
由于一阶模式的波长等于导线长度的两倍,所以一阶模式的波长为6 cm。
2. 问题:一根长度为20cm的导线,工作频率为12GHz,求其一阶模式的相速度是多少?答案:相速度(vp)和波长(λ)之间的关系可以用公式vp = f × λ表示,其中f是频率。
根据题目给出的频率为12GHz和一阶模式的波长为20 cm,我们可以计算出相速度为vp = 12 × 10^9 Hz × 0.2 m = 2.4 × 10^9 m/s。
3. 问题:一根长度为15cm的导线,工作频率为8GHz,求其一阶模式的群速度是多少?答案:群速度(vg)和相速度(vp)之间的关系可以用公式vg = dω / dk表示,其中ω是角频率,k是波矢量。
对于导线中的电磁波,群速度等于相速度。
所以一阶模式的群速度为2.4 × 10^9 m/s。
4. 问题:一根长度为25cm的导线,工作频率为6GHz,求其一阶模式的传播常数是多少?答案:传播常数(γ)和相速度(vp)之间的关系可以用公式γ = jω / vp表示,其中j是虚数单位,ω是角频率。
根据题目给出的频率为6GHz和一阶模式的相速度为2.4 × 10^9 m/s,我们可以计算出传播常数为γ = j × 2π × 6 × 10^9 Hz/ 2.4 × 10^9 m/s = j × 15π rad/m。
微波技术(陈章友)部分习题答案

所以,T2 :
v , t 10 cost 2 10 sin t
4
4
i , t 0.1sin t
4
iz,t
A1 Zc
cost
1
0.1cost
z
v , t 10 cost 2 10 cos t
T3 :
2
i , t 0.1cos t
2
2
1.3、解:
Z in
1 j tan z2 1 tan 2 z 2 j tan z
1 tan 2 z
1 tan 2 z
cos 2z j sin 2z e j2z
L
ZL Zc ZL Zc
Zbb' Zc Zbb' Zc
1
(III)段:短路 z Le j2z e j2z
Z inaa'
jZc tan z
2
Zbb' II 2Zc 300
总阻抗 Zbb' Zbb' II 300
L
ZL ZL
Zc Zc
300 150 300 150
1 3
z
Le j 2z
1 e j2z 3
(III)段:
Z inaa'
Zbb' j tan z 1 jZbb' tan z
2 j tan 2
1 j2 tan
8
即 2
,输入阻抗落在圆图实轴上,即
X
0 ,为纯电阻。
1.15、解: (1)
Z L 1.5 2 j
L
ZL ZL
1 1
0.5 2.5
2 2
j j
0.51
0.39
j
微波技术北邮版栾秀珍主编课本五六章习题答案

第五章5-1解:(a) 有例题5.3-1可知:[]⎥⎥⎦⎤⎢⎢⎣⎡=1020010Z a根据ij a 与ij A d 的关系式,可得:11111==a A ,12222==a A ,2002000002011212=⋅==Z Z Z Z a A ,002012121==Z Z a A ∴ []⎥⎦⎤⎢⎣⎡=102001A (b) 1021112===I V V A ,()S V I V I A I I 02.00110212122=====∵ 结构对称 ∴ 11122==A A∵ 结构可逆 ∴ 112211122=A A A A - ∴ 012=A∴ []⎥⎦⎤⎢⎣⎡=102.001A(c) 由公式(1.2-12):)sin()cos()()sin()cos()(00z Z V jz I z I z Z jI z V z V LL L L ββββ+=+= 将()z V 、()z I 分别视为1V 、1I ,L V 、L I 分别视为2V 、2I -,则θβ=z ,它们满足下式:()()()()⎪⎩⎪⎨⎧--⨯=+=-+=-⨯+-=+=-+= 0c o s s i n c o s s i n 0s i n c o s s i n c o s 222022021220220221I V I Z V j I Z V j I I V Z jI V Z I j V V ππθθππθθ∴ 1021112-===I V V A ,0021122=-==V I V A ,0021212===I V I A ,1021222-=-==V I I A[]⎥⎦⎤⎢⎣⎡--=1001A (d) 根据A 参量的定义和变压器理论可得nV V A I ===021112,nI I A V 1021221=-==,00222021212==-===V V nI V I A I ,00222021122=-=-=-==I I nV I V A V ∴ []⎥⎦⎤⎢⎣⎡=n n A 100 5-2解:设变压器的散射参量矩阵为[]s ,而参考面1T 与2T 之间网络的散射参量矩阵为[]s '。
【技术】微波复习题答案1

【关键字】技术微波技术与天线复习提纲(2010级)一、思考题1.什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从到;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
2.试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数、和驻波系数。
3.微波技术、天线与电波传播三者研究的对象分别是什么?它们有何区别和联系?答:微波技术、天线与电磁波传播史无线电技术的一个重要组成部分,它们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。
微波技术主要研究阴道电磁波在微波传输系统中如何进行有效的传输,它希望电磁波按一定要求沿传输系统无辐射地传输;天线是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变成微波设备中的导行波;电波传播研究电波在空间的传播方式和特点。
4.试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长)答:传输线的工作特性参数主要有特征阻抗Z0,传输常数,相速及波长。
1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为,它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数是描述传输线上导行波的衰减和相移的参数,其中,和分别称为衰减常数和相移常数,其一般的表达式为;3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即;4)传输线上电磁波的波长与自由空间波长的关系。
5.传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Zin定义为该点的电压和电流之比,与导波系统的状态特性无关,反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。
《微波技术》习题解(一、传输线理论)

机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。
若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。
[解] 脉冲信号的传播速度为t l v 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为0C L Z =00C C L =l C εμ=Cv l=8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。
[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。
根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ。
为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。
(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。
(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。
[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r Drln 120ε=300= Ω 得52.42=rD, 即 mm 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c )) Z L补充题1图示Z g e (t ) 题1-4图示 00C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。
微波技术练习题及答案

ZC1
Z
ZC2
Z0
T
l
T0
题 2-8 图
2-9 在如图所示的传输系统中,各阻抗为 Zc=300 Ω ,Z01=0,Z02=0。又知图中的有关
长度为 l= λ /8,l1+l2= λ /2,求 T2 面的输入阻抗。
T2
l
T1
Z 02
ZC
ZC
Z01
T02
l2
l1
T01
题 2-9 图 2-10 在图示的传输系统中,各段的传输线的特性阻抗均为 Zc=50 Ω 。又知图中的 l1=l2=
T 2
l T1
l T0
ZC
ZC 2
ZC1
Z0
题 2-14 图
2-15 如图所示的传输系统中,l= λ /4,Z0=600 Ω ,Zc2=300 Ω ,Zc1=100 Ω 。又知系统 中的工作波长 λ =120cm,求 T 面的驻波参量。
T
l
T0
ZC1
ZC2
Z0
题 2-15 图
2-16 在下图所示的传输系统中,各段传输线的特性阻抗均为 Zc=300 Ω ,又知图中的
s
ZC
l
ZC
ZC
Z0
T
题 2-24 图
ห้องสมุดไป่ตู้
PDF created with pdfFactory trial version
习题
3-1 在均匀导波装置中可能存在的电磁波模式有哪些? 3-2 在波导中为什么不能存在 TEM 波? 3-3 在矩形波导中,Emn 波和 Hmn 波中的 m,n 的意义是什么? 3-4 如何用截止频率或截止波长来判断波导中能否传播电磁波? 3-5 H10 波有哪几个场分量?其数学表示式的含义是什么? 3-6 怎样保证矩形波导中只传输 H10 波? 3-7 如何理解工作波长,截止波长和波导波长? 3-8 为什么一般矩形波导测量线探针开槽开在波导宽边中心线上? 3-9 已知填充空气的矩形波导的横向尺寸为 a=40mm,b=12mm,又知道电磁场的工作 频率为 f=12GHz,请判断此波导内可能存在的电磁波模式有哪些?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术习题答案
1-1何谓微波微波有何特点
答:微波是频率从300MHz至3000GHz的电磁波,相应波长1m至
微波不同于其它波段的重要特点:1、似光性和似声性 2 穿透性3、非电离性4、信息性
1-2何谓导行波其类型和特点如何
答:能量的全部或绝大部分受导行系统的导体或介质的边界约束,在有限横截面内沿确定方向(一般为轴向)传输的电磁波,简单说就是沿导行系统定向传输的电磁波,简称为导波
其类型可分为:
TEM波或准TEM波,限制在导体之间的空间沿轴向传播
横电(TE)波和横磁(TM)波,限制在金属管内沿轴向传播
表面波,电磁波能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播
1-3何谓截止波长和截止频率导模的传输条件是什么
答:导行系统中某导模无衰减所能传播的最大波长为该导模的截止波长,用λc 表示;导行系统中某导模无衰减所能传播的最小频率为该导模的截止频率,用f c表示;
导模无衰减传输条件是其截止波长大于工作波长( λc>λ)或截止频率小于工作频率(f c<f)
2-1某双导线的直径为2mm,间距为10cm,周围介质为空气,求其特性阻抗。
某同轴线的外导体内直径为23mm,内导体外径为10mm,求其特性阻抗;若在内外导体之间填充的介质,求其特性阻抗。
2-6在长度为d的无耗线上测得Z in sc=j50Ω, Z in oc=-j50Ω,接实际负载时,VSWR=2,d min=0,λ/2,λ,···求Z L。
2-10长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300 Ω;其输入电压为600V、试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。
2-12设某传输系统如图,画出AB段及BC段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值(R=900Ω)
2-15在特性阻抗为200Ω的无耗双导线上,测得负载处为电压驻波最小点,|V|min=8V,距λ/4处为电压驻波最大点,|V|max=10V,试求负载阻抗及负载吸收的功率。
2-20 Z0为50Ω的无耗线端接未知负载Z L,测得相邻两电压驻波最小点之间的距离d为8cm,VSWR为2,d min1为,求此Z L。
Λ
,2,1),12(4,20'''1'1'''1'1''
000=-==⇒
=⇒++=--++=--n n d n t t tg t
jtg t
tg j t tg j t jtg t
jtg t
tg j Z t tg j t jtg Z r
r r r r r r r r
r r λελββεβεεβεβεβεβεεβεβε
)
/(23.3)
/(372.048.189664.88822007.064.8882)
07214.0/14.3()103/25.210314.32(2007
.0)103/25.210314.32()/()/2(2)/2()/()(2)(22
2892892
222222
10m dB m Np a c f tg c f a tg tg k r
r TE d
==-⨯⨯=
-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=
--==πεπδεππμεωδμεωβδα
4-12 厚度为1mm,εr为的陶瓷基片上的50Ω微带线,工作频率为3GHz,导体材料为铜(t/h=,试求①导体衰减常数和介质衰减常数;②线上一个波长的导体损耗和介质损耗.
⎩⎨⎧==⎩⎨⎧+=+===----2
2
113443322221331221121
221,,l j l j l j l j e a b e a b b S b S a b S b S a a e b a e b ββββ4)(12121131211131221112111211)()(a e S a e S e a e S a e S e b S b S b l l j l j l j l j l j l j +------+=+=+=ββββββ42221)(214
2212132222142212212)()(a e S a e S e a e S a e S e b S b S b l j l l j l j l j l j l j ββββββ-+-----+=+=+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+-+--41222)(21)(122114122
1211a a e S e S e S e S b b l j l l j l l j l j ββββ。