士兵军考试题:年军队院校招生文化科目统一考试——士兵高中数学模拟试题1(含答案)教学文稿

合集下载

2021年军考高中学历士兵考军校数学专项练习试卷及答案

2021年军考高中学历士兵考军校数学专项练习试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷双曲线、抛物线1.已知双曲线的焦点在y 轴上,焦距为4,且一条渐近线方程为y =,则双曲线的标准方程是()A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=2.已知双曲线的中心在原点,焦点在x 轴上,焦距为8,离心率为2,则该双曲线的方程为()A .221204x y -=B .221412x y -=C .2211648x y -=D .2216416x y -=3.已知双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为34y x =±,且其一个焦点为(5,0),则双曲线C 的方程为()A .221916x y -=B .221169x y -=C .22134x y -=D .22143x y -=4.已知双曲线C 的一个焦点为(0,5),且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为()A .2214y x -=B .2214x y -=C .221205x y -=D .221520y x -=5.已知双曲线的实轴长为2,焦点为(4,0)-,(4,0),则该双曲线的标准方程为()A .221124x y -=B .221412x y -=C .22115y x -=D .22115y x -=6.在平面直角坐标系xOy 中,双曲线22128x y -=的渐近线方程为()A .2y x =±B .12y x=±C .2y x =D .y =7.抛物线22y x =的准线方程是()A .12x =B .12y =C .12x =-D .12y =-8.抛物线2y ax =的准线方程是2y =-,则a 的值为()A .4B .8C .18D .149.抛物线的准线为4x =-,则抛物线的方程为()A .216x y=B .28x y=C .216y x =D .28y x=10.抛物线212x y =的准线方程为()A .3y =-B .3x =-C .6y =-D .6x =-11.已知抛物线的焦点坐标是(0,3)-,则抛物线的标准方程是()A .212x y=-B .212x y=C .212y x =-D .212y x=12.已知抛物线的准线方程12x =,则抛物线的标准方程为()A .22x y=B .22x y=-C .2y x =D .22y x=-13.抛物线212x y =-的焦点坐标是()A .1(0,)4-B .1(0,)8-C .1(0,)8D .1(0,414.抛物线24y x =的准线方程是()A .1y =B .1y =-C .116y =D .116y =-15.抛物线218y x =-的准线方程是()A .132x =B .132y =C .2y =D .2y =-16.抛物线24x y =的准线方程是()A .12y =B .1y =-C .116x =-D .18x =17.以(0,1)F 为焦点的抛物线的标准方程是()A .24x y=B .22x y=C .24y x=D .22y x=18.焦点是(0,1)F 的抛物线的标准方程是()A .24x y=B .24y x=C .24x y =-D .24y x=-19,且与椭圆22184x y +=有相同的焦点,则该双曲线的标准方程为.20.焦点在y 轴上,虚轴长为8,焦距为10的双曲线的标准方程是.参考答案与详解1.【解答】解:由题意可知:设双曲线的标准方程为22221(0,0)y x a b a b-=>>,由24c =,则2c =,渐近线方程为y =,即ab=由222c a b =+,解得:1b =,a =∴双曲线的标准方程为:2213y x -=.故选:B .2.【解答】解:由题意可设双曲线的标准方程为22221x y a b-=,因为双曲线的焦距为8,则28c =,所以4c =,又双曲线的离心率为2c a=,所以2a =,则22216412b c a =-=-=,所以双曲线的标准方程为221412x y -=,故选:B .3.【解答】解:由双曲线的方程及渐近线的方程可得:34b a=,即34a b =,又由题意可得5c =,且222c a b =+,所以解得216a =,29b =,所以双曲线的方程为:221169x y -=,故选:B .4.【解答】解:双曲线2214x y -=的渐近线方程为:12y x =±,由题意设双曲线C 的方程为:22221y x a b-=,由焦点坐标(0,5)可得2225a b +=,①渐近线的方程为:ay xb =±再由C 与双曲线2214x y -=的渐近线相同,所以12a b =,②,由①②可得25a =,220b =,所以双曲线C 的方程为:221520y x -=,故选:D .5.【解答】解:由题意可设双曲线方程为22221(0,0)x y a b a b-=>>,且22a =,4c =,则1a =,22216115b c a =-=-=.∴双曲线的标准方程为22115y x -=.故选:C .6.【解答】解:双曲线22128x y -=的渐近线方程:2y x =±.故选:A .7.【解答】解:由抛物线22y x =,可得准线方程24x =-,即12x =-.故选:C .8.【解答】解:由抛物线2y ax =,得21x y a=,由其准线方程为2y =-,可知抛物线开口向上,则0a >.12p a ∴=,则124p a=.∴124a -=-,得18a =.故选:C .9.【解答】解: 抛物线的准线为4x =-,∴可知抛物线是开口向右的抛物线,设方程为22(0)y px p =>.则42p=,8p =.抛物线方程为216y x =.故选:C .10.【解答】解:抛物线212x y =的焦点在y 轴正半轴上,且212p =,则6p =,32p=.∴抛物线212x y =的准线方程为3y =-.故选:A .11.【解答】解:依题意可知焦点在y 轴,设抛物线方程为22x py= 焦点坐标是(0,3)F -,∴132p =-,6p =-,故抛物线方程为212x y =-.故选:A .12.【解答】解: 抛物线的准线方程12x =,可知抛物线为焦点在x 轴上,且开口向左的抛物线,且122p =,则1p =.∴抛物线方程为22y x =-.故选:D .13.【解答】解:由题意,抛物线的焦点在y 上,开口向下,且122p =,∴128p =.∴抛物线212x y =-的焦点坐标是1(0,8-.故选:B .14.【解答】解:抛物线24y x =化成标准方程,可得214x y =,∴抛物线焦点在y 轴上且124p =,得1216p =,因此抛物线的焦点坐标为1(0,16,准线方程为116y =-.故选:D .15.【解答】解:整理抛物线方程得28x y =-,4p ∴=,抛物线方程开口向下,∴准线方程是2y =,故选:C .16.【解答】解:124p = ,18p ∴=,开口向右,∴准线方程是116x =-.故选:C .17.【解答】解:因为抛物线的焦点坐标是(0,1),所以抛物线开口向上,且2p =,则抛物线的标准方程24x y =,故选:A .18.【解答】解:焦点是(0,1)F 的抛物线的标准方程是24x y =.故选:A .19.【解答】解:椭圆22184x y +=的焦点为(2,0)-和(2,0),可设双曲线的方程为22221(,0)x y a b a b-=>,由题意可得2c =,即224a b +=,又ce a==,解得a =,b =,则双曲线的标准方程为22122x y -=.故答案是:22122x y -=.20.【解答】解:由题意,设方程为22221(0,0)y x a b a b-=>>,则虚轴长为8,焦距为104b ∴=,3a ==∴双曲线的标准方程是221916y x -=故答案为:221916y x -=。

军考数学高中士兵考军校综合测试卷及答案

军考数学高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.设集合2{|}M x x x ==,{|0}N x lgx =,则(M N =)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]2.函数221(2x y -=的单调递减区间为()A .(-∞,0]B.[0,)+∞C .(-∞D .,)+∞3.设02x π<<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知1t >,2log x t =,3log y t =,5log z t =,则()A .235x y z<<B .523z x y<<C .352y z x <<D .325y x z<<5.若关于x 的不等式3410x ax +-对任意[1x ∈-,1]都成立,则实数a 的取值范围是()A .[4-,3]-B .{3}-C .{3}D .[3,4]6.已知数列{}n a 为等差数列,n S 为其前n 项和,312S =,且1a ,2a ,6a 成等比数列,则10(a =)A .33B .28C .4D .4或287.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()A .14B .12C .18D .138.2251lim 25n n n n →∞--+的值为()A .15-B .52-C .15D .529.已知圆22:(1)1M x y -+=,圆22:(1)1N x y ++=,直线1l ,2l 分别过圆心M ,N ,且1l 与圆M 相交于A ,B 两点,2l 与圆N 相交于C ,D 两点,点P 是椭圆22149x y +=上任意一点,则PA PB PC PD +的最小值为()A .7B .8C .9D .10二.填空题(共8小题)10.49log 43log 2547lg lg ++=.11.已知22sin 3α=,1cos()3αβ+=-,且α,(0,)2πβ∈,则sin β=.12.若函数3()2()f x x ax a R =--∈在(,0)-∞内有且只有一个零点,则()f x 在[1-,2]上的最小值为.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.73(1)(1)x x -+的展开式中x 的系数是.15.设数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,且11a =,则n a =.16.已知函数()f x 对任意的x R ∈,都有11()()22f x f x +=-,函数(1)f x +是奇函数,当1122x-时,()2f x x =,则方程1()2f x =-在区间[3-,5]内的所有零点之和为.17.已知点O 为坐标原点,圆22:(1)1M x y -+=,圆22:(2)4N x y ++=,A ,B 分别为圆M 和圆N 上的动点,OAB ∆面积的最大值为.参考答案与解析一.选择题(共9小题)1.【解答】解:由2{|}{0M x x x ===,1},{|0}(0N x lgx ==,1],得{0MN =,1}(0⋃,1][0=,1].故选:A .2.【解答】解:令22t x =-,则1()2t y =,即有y 在t R ∈上递减,由于t 在[0x ∈,)+∞上递增,则由复合函数的单调性,可知,函数y 的单调减区间为:[0,)+∞.故选:B .3.【解答】解:由2x x =得0x =或1x =,作出函数cos y x =和2y x =和y x =的图象如图,则由图象可知当2cos x x <时,2B x x π<<,当cos x x <时,2A x x π<<,AB x x <,∴“2cos x x <”是“cos x x <”的充分不必要条件,故选:A .4.【解答】解:1t >,0lgt ∴>.又0235lg lg lg <<<,2202lgt x lg ∴=>,3303lgt y lg =>,505lgtz lg =>,∴5321225z lg x lg =>,可得52z x >.29138x lg y lg =>.可得23x y >.综上可得:325y x z <<.故选:D .5.【解答】解:令3()41f x x ax =+-,[1x ∈-,1].不等式3410x ax +-对任意[1x ∈-,1]都成立,即()0f x 对任意[1x ∈-,1]都成立,取4a =-,则3()441f x x x =--,此时11()022f -=>,排除A .取3a =,则3()431f x x x =+-,此时1()102f =>,排除CD .故选:B .6.【解答】解:设数列{}n a 为公差为d 的等差数列,当0d =时,312S =,即1312a =,即有1014a a ==;当0d ≠时,1a ,2a ,6a 成等比数列,可得2216a a a =,即2111()(5)a d a a d +=+,化为13d a =,311331212S a d a ∴=+==,11a ∴=,3d =,1019328a ∴=+⨯=.综上可得104a =或28.故选:D .7.【解答】解:设三段长分别为x ,y ,1x y --,则总样本空间为010101x y x y <<⎧⎪<<⎨⎪<+<⎩.其面积为12,能构成三角形的事件的空间为111x y x y x x y y y x y x +>--⎧⎪+-->⎨⎪+-->⎩,其面积为18,则这三段可以组成三角形的概率是118142p ==.故选:A.8.【解答】解:222215515limlim 152522n n n n n n n n→∞→∞--==-+-+.9.【解答】解:圆22:(1)1M x y -+=的圆心(1,0)M ,半径为1M r =;圆22:(1)1N x y ++=的圆心为(1,0)N -,半径为1N r =;所以22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-,P 为椭圆22149x y +=上的点,∴222221022()89y PA PB PC PD PM PN x y +=+-=+=+;由题意可知,33y -,21088189y ∴+,即PA PB PC PD +的最小值为8.故选:B .二.填空题(共8小题)10.【解答】解:原式71243115310072244log log lg -=++=-++=.故答案为:154.11.【解答】解:22sin 3α=,(0,2πα∈,1cos 3α∴==,α∴,(0,2πβ∈,(0,)αβπ∴+∈,又1cos()3αβ+=-,sin()3αβ∴+=.则11sin sin[()]sin()cos cos()sin ()33βαβααβααβα=+-=+-+=--⨯.故答案为:429.12.【解答】解:3()2()f x x ax a R =--∈,2()3(0)f x x a x ∴'=-<,①当0a 时,2()30f x x a '=->,函数()f x 在(,0)-∞上单调递增,又(0)20f =-<,()f x ∴在(,0)-∞上没有零点;②当0a >时,由2()30f x x a '=->,解得33x <或33x >(舍).()f x ∴在(,)3-∞上单调递增,在(3,0)上单调递减,而(0)20f =-<,要使()f x 在(,0)-∞内有且只有一个零点,3(()()20333f a ∴-=--⨯--=,解得3a =,3()32f x x x =--,2()333(1)(1)f x x x x '=-=+-,[1x ∈-,2],当(1,1)x ∈-时,()0f x '<,()f x 单调递减,当(1,2)x ∈时,()0f x '>,()f x 单调递增.又(1)0f -=,f (1)4=-,f (2)0=,()min f x f ∴=(1)4=-.故答案为:4-.13.【解答】解:根据题意,可得排法共有112654180C C C =种.故答案为:180.14.【解答】解:73(1)(1)x x -+的展开式中x 的系数可这样求得:第一个括号7(1)x -中提供x 时,第二个括号3(1)x +只能提供常数,此时展开式中x 的系数是:1637(1)17C -=;同理可求,第一个括号7(1)x -中提供常数时,第二个括号3(1)x +只能提供x ,此时展开式中x 的系数是7123(1)13C -=-,所以展开式中x 的系数是16371273(1)1(1)14C C -+-=.故答案为:4.15.【解答】解:数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,可得1111n n S S +-=,所以1{}n S 是等差数列,首项为1,公差为1,所以11(1)1nn n S =+-=,1n S n =,1111(1)n a n n n n -=-=--,2n ,(*)n N ∈,所以1,11,2(1)n n a n n n =⎧⎪=-⎨⎪-⎩,故答案为:1,11,2(1)n n n n =⎧⎪-⎨⎪-⎩.16.【解答】解:根据题意,因为函数(1)f x +是奇函数,所以函数(1)f x +的图象关于点(0,0)对称,把函数(1)f x +的图象向右平移1个单位可得函数()f x 的图象,即函数()f x 的图象关于点(1,0))对称,则(2)()f x f x -=-,又因为11()()22f x f x +=-,所以(1)()f x f x -=,从而(2)(1)f x f x -=--,再用x 替换1x -可得(1)()f x f x +=-,所以(2)(1)()f x f x f x +=-+=,即函数()f x 的周期为2,且图象关于直线12x =对称,如图所示,函数()f x 在区间[3-,5]内有8个零点,所有零点之和为12442⨯⨯=.故答案为:4.17.【解答】解:如图以OM 为直径画圆,延长BO 交新圆于E ,AO 交新圆于F 点,连接FE ,NF ,MF ,则MF 与OA 垂直,又MA MO =,F 为AO 的中点,由对称性可得OF OB =,由1sin 2ABO S OA OB AOB ∆=∠,1sin()2EAO S OE OB AOB π∆=-∠1sin 2OE OB AOB =∠,可得2ABO EAO EFO S S S ∆∆∆==,当EFO S ∆最大时,ABO S ∆最大,故转化为在半径为1的圆内接三角形OEF 的面积的最大值,由圆内接三角形A B C '''的面积1sin 2S a b C '''=,2sin a A ''=,2sin b B ''=,3sin sin sin 2sin sin sin 2()3A B C S A B C '+'+''''=,由()sin f x x =,[0x ∈,]π,为凸函数,可得sin sin sin 3sinsin 3332A B C A B C π'+'+''+'+'==,当且仅当3A B C π'''===时,取得等号,可得3sin sin sin 2()23A B C '+'+'=.即三角形OEF 的面积的最大值为.进而得到ABO S ∆最大值为3333242⨯=,故答案为:332。

2021年高中学历士兵考军校军考数学专项复习测试卷及答案

2021年高中学历士兵考军校军考数学专项复习测试卷及答案

第 4页(共 7页)
故选:B.
6.【解答】解:A.f(x)=sinx 在(0,+∞)上不是单调函数,不满足条件. B.f(﹣x)=e﹣x+ex=f(x),函数 f(x)为偶函数,不满足条件. C.f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),则函数 f(x)是奇函数,当 x>0 时,f(x) =x3+x 是增函数,满足条件.
一.选择题(共 11 小题)
1.下列函数是偶函数,且在[0,+∞)上单调递增的是( )
A. 셰ٗ䬨 ٙ 赘ٕ 셰 ٗ 㘷䬨 ‵ ٗ
B.f(x)=|x|﹣2cosx
ٗ C. 셰ٗ䬨 ٙ
㘷 ٗ
,ٗ
, ٗٙ
D.f(x)=10|lgx|
‵ٗ ‵ 㘷,ٗ
2.函数 셰ٗ䬨 ٙ 㘷
,满足 f(x)>1 的 x 的取值范围( )
第 6页(共 7页)
即(x1﹣x2)•(x1+x2)>0∴f(x1)﹣f(x2)>0, 即 f(x)在(﹣∞,0]上是减函数; (2)证明:函数 f(x)的定义域为 R,对于任意的 x∈R,都有 f(﹣x)=2(﹣x)2﹣1=2x2 ﹣1=f(x), ∴f(x)是偶函数, (3)解:f(x)在[﹣1,0]上是减函数,在[0,2]上是增函数 ∴x=0 时,函数取得最小值为﹣1;x=2 时,函数取得最大值为 7.
则需内层函数 t=x2﹣4x﹣5 在(a,+∞)上单调递增且恒大于 0,
则(a,+∞)⊆(5,+∞),即 a≥5.
∴a 的取值范围是[5,+∞).
故选:D.
11.【解答】解:∵函数 셰ٗ䬨 ٙ 赘ٕ 噠 셰ٗ 知ٗ 知䬨在区间(﹣∞,﹣2)上单调递增,

2021年军考复习解放军武警(高中)士兵考军校数学综合测试卷附答案解析

2021年军考复习解放军武警(高中)士兵考军校数学综合测试卷附答案解析

则 a b 2 0 ,即 a b 2 ,即 a b 的取值范围是 [2 , ) ,故答案为: [2 , )
11.【详解】函数在 ( ,1] 上有意义,即 a4x 3x 2x 1 0 在 ( ,1] 恒成立,
即 a [(1 )x ( 2)x ( 3)x ] 在 ( ,1] 恒成立, 444
③当 x 1 时, f (x) log2 x , f (x 1) log2 (x 1) ,
不等式 f (x) f (x 1) ,即 log2 x log2 (x 1) ,它恒成立,故 x (1, ) 满足不等式.
综合①②③可得,不等式的解集为 ( 1 , ) ,故选: C . 2
9.【详解】 c 1 a b cos A ,由正弦定理可得 sin C 1 sin A sin B cos A ,
3
参考答案与试题解析
一.选择题(共 9 小题) 1.【详解】集合 A {x | x2 2x 8 0} {x | 2 x 4} , B {x | 1 x 5} ,
A B {x | 1 x 4} .故选: B .
2.【详解】 a2 2 是 a1 1 与 a3 3 的等比中项,设公比为 q(q 0) ,
8.【详解】 函数
f
(x)
lxo2g2
x, x 1, x
1 ,
1
①当 x 0 时, f (x) x2 1 , f (x 1) (x 1)2 1, 不等式 f (x) f (x 1) ,即 x2 1 (x 1)2 1 ,求得 1 x 0 .
2 ②当 x [0 ,1] 时,不等式 f (x) x2 1 , f (x 1) log2 (x 1) ,
C. (0,1)[2 , 3) D. (0,1)[2 , )

2021年军考解放军武警(高中)士兵考军校数学综合测试卷及答案

2021年军考解放军武警(高中)士兵考军校数学综合测试卷及答案

高中学历士兵考军校-数学-综合测试卷关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

1.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c,已知sin()2sin b A C a C +=,且a b =.(1)求sin B ;(2)若ABC ∆的面积为,求ABC ∆的周长.2.已知函数()log (1)(0x a f x a a =->,1)a ≠(1)求函数()f x 的定义域;(2)求满足不等式log (1)x a a f ->(1)的实数x 的取值范围.3.在公差不为零的等差数列{}n a 中,138a a +=,且1a ,3a ,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)设211n n b a =-,数列{}n b 的前n 项和为n S ,求证:12n S <.4.甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.(1)求甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少;(2)求甲、乙两人中至少有一人抽到选择题的概率是多少.5.已知函数21()22f x lnx ax ax =+-,0a >.(1)讨论函数()f x 的单调性;(2)若1a =,实数1x ,2(0,)x ∈+∞,且12()()3f x f x +=-,证明:22122x x +.6.已知圆2:(M x +2241)9p y +=经过抛物线2:2C x py =的焦点.(1)求p 的值;(2)当0p >时,直线l 与抛物线C 、圆M 均只有一个公共点,求直线l 的方程.7.如图,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =,CE 与平面ABE 所成的角为45︒.(1)证明:AD CE ⊥;(2)求二面角A CE B--的正切值.参考答案与详解1.【详解】(1)因为sin()2sin b A C a C +=,可得sin 2sin b B a C =,所以22b ac =,⋯(2分)因为a b =,可得12c b =,所以22222214cos 12422b b b ac b B ac b b +-+-===⨯⨯,⋯(4分)因为0B π<<,所以sin B ==.⋯(6分)(2)因为ABC ∆的面积为211sin 24ac B ==所以4b =,⋯(8分)所以4a =,2c =,⋯(9分)故ABC ∆的周长为44210a b c ++=++=⋯(12分)2.【详解】(1)当01a <<时,10x a ->,则0x >即定义域为(0,)+∞;当1a >时,10x a ->,则0x <,则定义域为(,0)-∞(2)log (1)x a a f ->(1)log (1)a a =-当01a <<时,11x a a-<-(0,1)x ∴∈;当1a >时,11(,0)x a a x ->-∴∈-∞3.【详解】(1)设等差数列{}n a 的公差为d ,0d ≠,依题意,12111228(8)(2)a d a a d a d +=⎧⎨+=+⎩,解得122a d =⎧⎨=⎩.从而{}n a 的通项公式为2n a n =;证明:(2) 22111111(1(2)1(21)(21)22121n nb a n n n n n ====----+-+,1111111111[(()((1)2133521212212n S n n n ∴=-+-+⋯+-=-<-++.4.【详解】5个不同题目,甲、乙两人各抽一题,共有20种情况,把3个选择题记为1x 、2x 、3x ,2个判断题记为1p 、2p .“甲抽到选择题,乙抽到判断题”的情况有:1(x ,1)p ,1(x ,2)p ,2(x ,1)p ,2(x ,2)p ,3(x ,1)p ,2(x ,2)p ,共6种;“甲抽到判断题,乙抽到选择题”的情况有:1(p ,1)x ,1(p ,2)x ,1(p ,3)x ,2(p ,1)x ,2(p ,2)x ,2(p ,3)x ,共6种;“甲、乙都抽到选择题”的情况有:1(x ,2)x ,1(x ,3)x ,2(x ,1)x ,2(x ,3)x ,3(x ,1)x ,3(x ,2)x ,共6种;“甲、乙都抽到判断题”的情况有:1(p ,2)p ,2(p ,1)p ,共2种,(1)“甲抽到选择题,乙轴到判断题”的概率为632010=,“甲抽到判断题,乙抽到选择题”的概率为632010=,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为33310105+=.(2)“甲、乙两人都抽到判断题”的概率为212010=,故“甲、乙两人至少有一人抽到选择题”的概率为1911010-=.5.【详解】(1)()f x 的导函数2121()2ax ax f x ax a x x-+'=+-=,因为0a >,所以221y ax ax =-+为开口向上的二次函数,①△2444(1)0a a a a =-=-,即01a <时,()0f x '恒成立,所以函数()f x 在(0,)+∞单调递增;②△4(1)0a a =->,即1a >时,()0f x '=有两个根1x 和2x ,由韦达定理知121212,0x x x x a +==>,10x ∴>,20x >,且12x x ==,所以()f x 在和)∞上单调递增,在上单调递减.(2)证明:1a =时,()f x 在(0,)+∞单调递增,且21()22f x lnx x x =+-,∴13(1)222f =-=-,121x x ∴==时,12()()3f x f x +=-,若12x x ≠,则不妨设12x x <,则1(0,1)x ∈,2(1,)x ∈+∞,于是221111111111()(2)32(2)(2)2(2)322f x f x lnx x x ln x x x +-+=+-+-+---+21111(2)21lnx ln x x x =+-+-+,令2()(2)21g x lnx ln x x x =+-+-+,则211222(1)(1)()222202(2)(2)x x x g x x x x x x x x x ---'=++-=+-=>---恒成立,那么()g x 在(0,1)单调递增,又因为g (1)0=,则1()0g x <,11()(2)30f x f x ∴+-+<即11()(2)3f x f x +-<-,12(2)()f x f x ∴-<,122x x ∴-<,122x x ∴+>,10x > ,20x >,2221212()2()x x x x ++,∴22122x x +.6.【详解】(1)抛物线2:2C x py =的焦点为(0,)2p ,可得2240(1)29p p ++==,解得6p =或67-;(2)当0p >时,6p =,可得圆22:(1)16M x y ++=,抛物线2:12C x y =,①当直线l 的斜率不存在时,设方程为x n =,由l 与M 中只有一个公共点,即相切,可得4n =或4n =-,:4l x =与抛物线C 交于4(4,)3;:4l x =-与C 交于4(4,)3-;②当直线l 的斜率存在时,设方程为y kx m =+,由l 与圆M 相切,可得4=,即2221516m m k +-=,由212y kx m x y =+⎧⎨=⎩只有一个实数解,即方程212120x kx m --=有两个相等的实数解,则△2144480k m =+=,化为23m k =-,代入2221516m m k +-=,可得42922150k k --=,即为22(3)(95)0k k -+=,解得k =9m =-;或k =,9m =-.综合①②可得,直线l 的方程为40x +=,40x -=90y --=90y ++=.7.【详解】证明:(1)如图,取BC 的中点H ,连接HD 交CE 于点P ,连接AH 、AP .AB AC = ,AH BC∴⊥又 平面ABC ⊥平面BCDE ,AH ∴⊥平面BCDE ,AH CE ∴⊥,又HC CD CD DE ==,Rt HCD Rt CDE∴∆∆∽CDH CED ∴∠=∠,HD CE∴⊥CE ∴⊥平面AHDAD CE ∴⊥.(2)由(1)CE ⊥平面AHD ,AP CE ∴⊥,又HD CE⊥APH ∴∠就是二面角A CE B --的平面角,过点C 作CG AB ⊥,垂足为G ,连接CG 、EG .BE BC ⊥ ,且BE AH ⊥,BE ∴⊥平面ABC ,BE CG ∴⊥,CG ∴⊥平面ABE ,CEG ∴∠就是CE 与平面ABE 所成的角,即45CEG ∠=︒,又CE =CG EG ∴==又2BC =,60ABC ∴∠=︒,2AB BC AC ∴===,AH ∴=又HD ,23CH HP HD ∴==,tan 3AH APH HP∴∠==.。

部队士兵考军校数学综合练习测试卷及答案

部队士兵考军校数学综合练习测试卷及答案

每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1

2022年军考高中学历层次士兵考学数学专项练习测试卷及答案

2022年军考高中学历层次士兵考学数学专项练习测试卷及答案

(1,
1)

又由点 (1, 1) 在圆 x2 y2 4 的内部,
故对于任意的实数 a ,直线与圆相交, 即当 a 0 时,直线 (a 1)x (a 1) y 2a 0(a R) 与圆 x2 y2 4 相交,反之不一定成立,
故“ a 0 ”是直线 (a 1)x (a 1) y 2a 0(a R) 与圆 x2 y2 4 相交的充分而不必要条件, 故选: A . 3.【解答】解:圆心 (0, 0) 到直线的距离为 d | k | ,
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
11.以 M (4,3) 为圆心 r 为半径的圆与直线 2x y 5 0 相离的充要条件是 ( )
A. 0 r 2
B. 0 r 5
C. 0 r 2 5
D. 0 r 10
第 2页(共 6页)
参考答案与详解
1.【解答】解:根据题意,圆 C : x2 y2 5 的圆心为 (0, 0) ,半径 r 5 ,
3(x1 x2 ) 2( y1 y2 ) 0 ,
直线 AB 的斜率为 k y1 y2 3 ,
x1 x2
2
直线 AB 的方程为 y 1 3 (x 1) , 22
即 3x 2y 4 0 .
由于 P 在椭圆内,故成立. 故选: B .
9.【解答】解: F1(c, 0) , F2 (c, 0) ,直线 l : y x c ,
2 故a 1 .
4 故选: B .
7.【解答】解:设 A(x1 , y1) , B(x2 , y2 ) , M (x, y) ,
M 是线段 AB 的中点, x1 x2 2x , y1 y2 2 y ,

军队院校招生文化科目统考士官高中《数学》模拟试题及详解【圣才出品】

军队院校招生文化科目统考士官高中《数学》模拟试题及详解【圣才出品】

图1
9.一个盒子里有 3 个分别标有号码为 1,2,3 的小球,每次取出一个,记下它的标号
后再放回盒子中,共取 3 次,则取到小球标号最大值为 3 的取法共有( )种.
A.19
B.16
C.13
D.11
【答案】A
【解析】第一种情况:三次都取到 3 号球,共有 1 种取法;第二种情况:有两次取到 3
号球,共有 C32 ? 2 6 种取法;第三种情况:有一次取到 3 号球,共有 C31创2 2 = 12 种取
圣才电子书 十万种考研考证电子书、题库视频学习平台

军队院校招生文化科目统考士官高中《数学》模拟试题及详解
一、(36 分)选择题,本题共有 9 个小题,每个小题都给出代号为 A、B、C、D 的四个
结论,其中只有一个结论是正确的,将正确的结论代号写在答题纸指定位置上,选对得 4
法;因此,取到小球标号最大值为 3 的取法种数=12+6+1=19.
二、(32 分)填空题,本题共有 8 个小题,每个小题 4 分,只要求给出结果,并将结果 写在答题纸指定位置上.
1.函数 f (x) = ln 1 的定义域为______. 4 - x2
{ 【答案】 x - 2 < x < 2}
【解析】观察函数知,函数 f (x) 的定义域需满足: 1 > 0 ,得 4 - x2 > 0 ,解得 4 - x2
又因为 a5=9,所以
,即

7.直线 A.1 B.2 C.4 D. 【答案】C
被圆
截得的弦长为( ).
【解析】圆心(1,2),圆心到直线的距离
,半径
,所以
最后弦长为

8.已知 S,A,B,C 是球 O 表面上的点,SA⊥平面 ABC,AB⊥BC,SA=AB=1,BC= , 则球 O 表面积等于( ).

武警部队院校招生统考士兵本科及士官高等职业技术教育《数学》模拟试题及详解(一)

武警部队院校招生统考士兵本科及士官高等职业技术教育《数学》模拟试题及详解(一)

D.63 种
【答案】B
【解析】解法 1:2 人中有 1 名女生的选法有
种;2 人都是女生的选法

种,上述两类选法均符合题意,故所有选法种数共有
种;
解法 2:从 10 名学生中选 2 名有
种选法,选出的 2 人都是男生的选法有
种,故所求选法有
种.
7.已知 a.b、c 为三条丌重合的直线,下面有三个结论:①若 a⊥b,a⊥c,则 b∥c; ②若 a⊥b,a⊥c,则 b⊥c;③若 a∥b,b⊥c,则 a⊥c.其中正确的个数为( ).
3



0

a

1

,则( ).
【答案】C
【解析】由对数运算法则
函数
是减函数,
,而 0<a<1, .
4.关亍 x 的丌等式 A.{x∣5a<x<-a}
的解集是( ).
B.{x∣-a<x<5a}
C.{x∣x>-a 或 x<5a}
D.{x∣x>5a 或 x<-a}
【答案】C 【解析】原丌等式化简为(x+a)(x-5a)>0,又 a<0,则 5a<-a,所以丌等式 的解为:x>-a 或 x<5a.
圣才电子书 十万种考研考证电子书、题库视频学习平台

即第一象限中双曲线的渐近线不椭圆 C 的交点坐标为
.所以四边形的面
积为
所以 b2=5.所以椭圆方程为

二、填空题(本大题包括 5 小题,每小题 5 分,共 】[3,+∞)
9.经过点 P(1,4)且不两条坐标轴围成的三角形面积等亍1的直线方程是( ). A.2x-y+2=0 B.8x-y-4=0 C.3x-y+1=0或2x-y+2=0 D.2x-y+2=0或8x-y-4=0 【答案】D

二〇一三年军队院校招生文化科目统一考试士兵高中数学模拟试题

二〇一三年军队院校招生文化科目统一考试士兵高中数学模拟试题

-----好资料学习二〇一三年军队院校招生文化科目统一考试士兵高中数学模拟试题 150分注意:本试卷共三大题,满分分。

在每小题给出的四个选项中,只有一分,共408小题,每小题5一选择题(本大题共项是符合题目要求的,把该选项的代号写在题后的括号内。

)??????2N M R?1R,N?,x,yxy?x?Myy?x??1,x? 1)设集合(,则??????1,010?B C A D????22a0a?2?x?4x??1aR?x)恒成立,则对的取值范围是 2已知不等式(66?aaa??a2??2?222??≤A ≤ D C B ≤55?则,.8,c?loga?log0,b?log6 3若)(273a??ca?bb?cb?a?cc?a?b A. D.B. C.??4???2?y?sin()x?0?的则,设函数的图像向右平移个单位后与原图像重合,433)最小值是(324 D 3 B C A233??x x??1fb??2xf(x)?2)(xfb则5设为常数)时,,为定义在R上的奇偶数,当(≥0 )(A 3B 2C -1D -3??3??42xx1?1?x)的展开式(的系数是 6A -6B -3C 0D 3a?3,b?4,aaa bbba?b,满足:·,7 设向量,= 0 ,以的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为()A 3B 4C 5D 6????l,l nm,的一个是平面是平面∥设8 内的两条不同直线,内的两条相交直线,则21充分而不必要条件是()??lmmnll∥且 B ∥A ∥∥且211mmnnl???且∥且 D ∥∥C∥2二填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。

)更多精品文档.-----好资料学习2?sinxxy?16?的定义域 9 。

函数??n S?3,S?24,Saa= 。

10 设的前为等差数列项和,若则63n9nlim111(1????)? 11。

军队院校招生文化科目统考士兵高中《数学》考前点题卷一

军队院校招生文化科目统考士兵高中《数学》考前点题卷一

军队院校招生文化科目统考士兵高中《数学》考前点题卷一[单选题]1.设集合U={1,2,3,4),M={1,2,3},N={2,3(江南博哥),4},则C U(M∩N)=()。

A.{1,2}B.{2,3}C.{2,4}D.{1,4}参考答案:D参考解析:M∩N={2,3},C U(M∩N)={1,4}.[单选题]2.已知下列命题:(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。

(2)如果直线“和平面a满足a∥α,那么a与α内的任何直线平行。

(3)如果直线a,b和平面a满足a∥a,b∥a,那么a∥b.(4)如果直线a,b和平面α满足a//b,a//α,b?α,那么b//α。

其中正确的命题的个数为()。

A.0B.1C.2D.3参考答案:B参考解析:对于(1),有可能a在经过b的某个平面内.对于(2)a与α内的某些直线异面.对于(3),直线a,b平行,相交,异面都有可能;(4)是正确的.[单选题]3.已知a=1og30.8,b=1og25,c=0.32,则()。

A.a<b<cB.b<a<cC.a<c<bD.c<b<a参考答案:C参考解析:a=1og30.8<0,b=1og25>1og22=1,c=0.32∈(0,1).[单选题]4.已知平面向量a=(3,-1),b=(x,3),a⊥b,则x的值为()。

A.-3B.-1C.1D.3参考答案:C参考解析:.[单选题]5.已知双曲线的渐近线相互垂直,则双曲线的离心率为()。

A.B.C.D.参考答案:A参考解析:(-)=-1,所以a2=b2,所以a:b:c=1:1:,所以e==.[单选题]6.已知正项数列{a n}的各项均不相等,且,则下列各不等式中一定成立的是()。

A.B.C.D.参考答案:B参考解析:由条件知{a n}为等差数列,[单选题]7.若直线x-2y+1=0过圆x2+y2-ax+6y-1=0的圆心,则实数a 的值为()。

A.10B.14C.-10D.-14参考答案:D参考解析:由于圆心坐标为(,-3),所以a=-14.[单选题]8.椭圆上的一点P到左焦点的距离为1,则它到相对应准线的距离为()。

2021年军考解放军武警(高中学历)士兵考军校数学仿真试卷及答案

2021年军考解放军武警(高中学历)士兵考军校数学仿真试卷及答案

故答案为:2+2 .
16.【详解】令 t=f(a), 则 f(t)≤0, 当 t≤1 时,有 2t2﹣2≤0, 解得﹣1≤t≤1; 当 t>1 时,lgt≤0, 解得 0<t≤1,不成立. 即有﹣1≤f(a)≤1, 当 a≤1 时,﹣1≤2a2﹣2≤1,
解得 a 或
a

则有 a≤1 或
a

当 a>1 时,有﹣1≤lga≤1,
∵NC1=2NB1,∴CP⊥BN,
又 DC⊥平面 BCC1B1,∴DC⊥BN,则 BN⊥平面 DCP, 则 M 点的轨迹为平面 DCP 与球 O 的截面圆周. 建立如图所示的坐标系,则 D(0,0,0),C(0,6,0),P(6,6,2),O(3,3, 3), 设平面 DOP 的法向量为 (x,y,z),
7.已知 6 个高尔夫球中有 2 个不合格,每次任取 1 个,不放回地取两次,在第一次取
第 1页(共 11页)
到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为( )
A.
B.
C.
D. t
8.在△AnBn∁n 中,记角 An、Bn、∁n 所对的边分别为 an、bn、cn,且这三角形的三边长
是公差为 1 的等差数列,若最小边 an=n+1,则
()
A.
B.
C.
D.
9.点 M 是棱长为 6 的正方体 ABCD﹣A1B1C1D1 的内切球 O 球面上的动点,点 N 为 B1C1
上一点,2NB1=NC1,DM⊥BN,则动点 M 运动路线的长度为( )
A.
B.
t
C.
D.
二.填空题(共 8 小题)
10.lg 2lg2﹣( )﹣1=

11.已知 sin(α ) ,α∈(0,π),则 cos(2α )=

2020年军队院校生长军官招生文化科目统一考试数学模拟试卷一 (PDF版)

2020年军队院校生长军官招生文化科目统一考试数学模拟试卷一 (PDF版)

2020年军队院校生长军官招生文化科目统一考试数学模拟试卷一一、单选题(每小题4分,共36分) 1.已知集合2{|20}A x x x =+->,{1,0,1,2}B =-,则( )A .{2}AB = B .A B R =C .(){1,2}R B C A =-D .(){|12}R BC A x x =-<<2.“6πθ=”是“1sin 2θ=”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.在等比数列{}n a 中,141,8,a a 则5a =( )A .16B .16或-16C .32D .32或-324.函数()2log f x x =与()21xg x -=-同一平面直角坐标系下的图象大致是( )A .B .C .D .5.椭圆221168x y +=的离心率为()A .13B .12C D 6.从区间[0,4]上任取两个实数m ,n ,则满足221m n +≥条件的概率为() A .12B .14π-C .132π-D .164π-7.已知复数32(1)iz i =-,则z 在复平面内对应点所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限8.工作需要,现从4名女教师,5名男教师中选3名教师组成一个援川团队,要求男、女教师都有,则不同的组队方案种数为 A .140B .100C .80D .709.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则() A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<二、填空题(每小题4分,共32分)10.实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,则cos 24x y +的值为________.11C 中,弦ABAB AC ⋅=________.12.计算:22233312lim()n n n n nn n n→∞+++++⋅⋅⋅+=________.13.已知cos α=35,且α∈3,22ππ⎛⎫⎪⎝⎭,则cos(3πα-)=______.14.我国古代数学算经十书之一《九章算术》有一衰分问题(即分层抽样问题):今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人.凡三乡,发役五百人,则北乡遣___________人. 15.若函数32()(1)33f x f x x '=-+,则()2f '的值为__________.16.在732x ⎛⎝的展开式中常数项是__________.17.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,()12x f x -=,有下列命题:①2是函数()f x 的周期;②函数()f x 在()2,3上是增函数;③函数()f x 的最大值是1,最小值是0;④直线2x =是函数()f x 图象的一条对称轴.其中所有正确命题的序号是__________.三、解答题(共7个小题,满分82分,解答应写出文字说明,演算步骤或证明过程)18.(10分)在ABC ∆中,角A B C 、、的对边分别为a b c 、、,且2sin 02AA +=. (1)求角A 的大小;(2)已知ABC ∆外接圆半径R AC ==求ABC ∆的周长.19.(12分)设()|2||2|f x x x =-++ (1)解不等式()6f x ≥;(2)对任意的非零实数x ,有2()2f x m m ≥-+恒成立,求实数m 的取值范围.20.(12分)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.21.(12分)设甲、乙两人每次射击命中目标的概率分别为23和34,且各次射击互相独立. (1)若甲、乙两人各射击1次,求至少有一人命中目标的概率;(2)若甲连续射击3次,设命中目标次数为ξ,求命中目标次数ξ的分布列及数学期望.22.(12分)已知函数()ln f x x ax =-,其中0a >. (1)当1a =时,求()f x 在[]1,e 上的最大值;(2)若1x e ≤≤时,函数()f x 的最大值为4-,求函数()f x 的表达式;23.(12分)已知椭圆22221x y a b+=(0)a b >>过点(2,点A 为椭圆的右顶点,点B 为椭圆的下顶点,且||2||OA OB =. (1)求椭圆的方程;(2)过点A 的直线1l 与椭圆交于另一点M ,过点B 的直线2l 与椭圆交于另一点N ,直线1l 与2l 的斜率的乘积为14-,M N ,关于y 轴对称,求直线1l 的斜率.24.(12分)如图,直三棱柱111-ABC A B C 的所有棱长都是2,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ;(2)求直线AB 与平面1A BD 所成角的正弦值; (3)求二面角11B A D B --的余弦值.2020年军队院校生长军官招生文化科目统一考试数学模拟试卷一参考答案AAABC DBDC1.因为2{|20}{|2A x x x x x =+->=<-或1}x >,{1,0,1,2}B =-, 所以{2}AB =,AB R ≠,(){1,0,1}RC A B =-,()[2,1]{2}R C A B =-故选:A2.由6πθ=可得1sin 2θ=, 由1sin 2θ=,得到26k πθπ=+或526k πθπ=+,k ∈Z ,不能得到6πθ=, 所以“6πθ=”是“1sin 2θ=”的充分不必要条件,故选:A . 3.在等比数列{}n a 中,341,8a q a ==,所以2q =.451a a q ==16,故选A . 4.函数()2log f x x =的图象是由()2log f x x =图象x 轴下方部分翻到x 轴上方, 对函数()21xg x -=-的图象,当1x =时,1(1)02g =-<,结合四个选项的图象特点,只有B 符合.故选:B .5.因为椭圆方程221168x y +=,可得2216,8a b ==,故椭圆的离心率e ===故选:C .6.设点(),m n ,由题意0404m n ≤≤⎧⎨≤≤⎩,表示的区域为边长为4的正方形(包含边界),如图所示: 该正方形的面积116S =,221m n +≥表示以()0,0为圆心,半径为1的圆的外部(包含边界),如图阴影部分所示, 阴影部分的面积21164S π=-,故所求概率21116164164S P S ππ=-==-.故选:D .7.()322(1)21i i z i i i ==---()()111i i i +=-+-1122i =--,则1122z i =-+, z 在复平面内对应点为11,22⎛⎫- ⎪⎝⎭,在第二象限。

军考真题数学【完整版】

军考真题数学【完整版】

2017年军考真题士兵高中数学试题 关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m= .11.设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

高中士兵学历军考数学模拟试卷及答案

高中士兵学历军考数学模拟试卷及答案

高中士兵学历军考数学模拟试卷及答案关键词:冠明军考 军考模拟试卷 军考教材 士兵考军校教材 士兵考军校试卷一、选择题(每小题4分,共36分)1.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是( ) A .0 B .1 C .2 D .33.i 是虚数单位,复数7i34i ( )A.1iB.1+i -C.1731+i 2525 D.1725+i 77-4.设U 为全集.A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =φ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A.6+2 3 B.7+2 3 C.6+4 3 D.7+4 36.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.22+45361x y = B.22+36271x y = C.22+27181xy=D.22+1891xy=8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π9.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A.1 B.2 C.3 D.4二、填空题(每小题4分,共32分)10.数列}{n a 满足11=a ,且11+=-+n a a n n (n *∈N ),则数列}1{na 的前10项和为 .11.i 是虚数单位,复数.12.在极坐标系中,直线4cos()106ρθπ-+=与圆=2sin ρθ的公共点的个数为 .13.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 .14.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数为 .15.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为 .16.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为 . 17.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b = . 三、解答题(18、19题,每题11分;20-24题,每题12分;共82分) 18.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图像上(*n ∈N ). (1)若12a =-,点87(,4)a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点22()a b ,处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.在平面直角坐标系xOy 中,已知向量222m ⎛= ⎝⎭,()=sin ,cos n x x ,π0,2x ⎛⎫∈ ⎪⎝⎭. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.21.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列及均值E (X ).22.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.23.已知点A (0, 2),椭圆E :2222+x y a b +=1(a>b>0)2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.24.如下图所示,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE= CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D 'EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ ABCFE 的体积.。

高中毕业生士兵考军校数学科目专项测试卷及答案

高中毕业生士兵考军校数学科目专项测试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷高中数学集合与函数1.设集合2{|20}A x R x x =∈-,{|1327}x B x N =∈< ,则()(R A B = ð)A .(0,1)B .[1,2]C .(2,3]D .{3}2.已知集合2{|(23)}A x y ln x x ==--,{|230}B x x =->,全集为U R =,则()(U A B = ð)A .(-∞,31)(2-⋃,)+∞B .3(2,3]C .[1-,3]D .3(2,)+∞3.已知全集U R =,集合2{|}A x x x =,集合{|21x B x = ,则()(U A B = ð)A .(0,)+∞B .[1,)+∞C .(,1)-∞D .(0,1)4.若a 为实数,则“1a <”是“11a>”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5.“|1|2x -<成立”是“(3)0x x -<成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是()A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-7.函数3()1f x x =+()A .(,1)-∞-B .(1-,3]C .(-∞,1)(1--⋃,3]D .(-∞,1)(1--⋃,3)8.函数|34|,2()2,21x x f x x x -⎧⎪=-⎨>⎪-⎩则不等式()1f x 的解集是()A .5(,1)[,)3-∞+∞ B .5(,1][,3]3-∞ C .5[1,3D .5[,3]39.函数21()2f x x x=-的单调递增区间是()A .(-∞,1]B .(,0)-∞,(0,1)C .(-∞,0)(0⋃,1)D .(1,)+∞10.下列函数中,既是(0,)+∞上的增函数,又是偶函数的是()A .1y x=B .2x y =C .1||y x =-D .||y lg x =11.已知函数212()log (45)f x x x =--,则函数()f x 的减区间是()A .(,2)-∞B .(2,)+∞C .(5,)+∞D .(,1)-∞-12.函数y =的单调增区间是()A .(-∞,2]B .[1,2]C .[1,3]D .[2,3]13.下列函数中,在(0,)+∞内单调递增,并且是偶函数的是()A .2(1)y x =--B .cos 1y x =+C .||2y lg x =+D .2xy =14.下列函数在R 上是增函数的是()A .1y x =-+B .2y x =C .3x y =D .1y x=-参考答案1.【解答】解:[0A = ,2],{|03}{1B x N x =∈<= ,2,3},(R A ∴=-∞ð,0)(2⋃,)+∞,(){3}R A B ∴= ð.故选:D .2.【解答】解:2{|230}{|1A x x x x x =-->=<- 或3}x >,3{|}2B x x =>,U R =,{|13}U A x x ∴=- ð,3()(,3]2U A B = ð.故选:B .3.【解答】解: 全集U R =,集合2{|}{|0A x x x x x == 或1}x ,集合{|21}{|0}x B x x x ==,{|0}A B x x ∴= ,则(){|0}(0U A B x x =>= ð,)+∞.故选:A .4.【解答】解:由11a>得01a <<,则“1a <”是“11a>”的必要不充分条件,故选:B .5.【解答】解:由|1|2x -<解得:2121x -+<<+,即13x -<<.由(3)0x x -<,解得03x <<.“|1|2x -<成立”是“(3)0x x -<成立”必要不充分条件.故选:B .6.【解答】解:302x << ,023x ∴<<,0133x ∴<-<,解得:2133x -<<,故选:A .7.【解答】解:要使原函数有意义,则1030x x +≠⎧⎨-⎩ ,解得3x 且1x ≠-.∴函数3()1f x x =+(-∞,1)(1--⋃,3].故选:C .8.【解答】解:当2x 时()1f x ,即为|34|1x - 解得1x或53x 1x ∴ 或523x 当2x >时()1f x ,即为211x-- 解得13x < 23x ∴< 综上,5(,1][,3]3x ∈-∞ 故不等式()1f x 的解集是5(,1][,3]3-∞ 故选:B .9.【解答】解:由220t x x =-≠,可知函数开口向上,对称轴1x =,0x ≠且2x ≠.∴可得(,0)-∞,(0,1)单调递减,原函数()f x 的单调递增区间(,0)-∞,(0,1).故选:B .10.【解答】解:函数1y x=在(0,)+∞上是减函数,且是奇函数,即A 不符合题意;函数2x y =是非奇非偶函数,即B 不符合题意;函数1||y x =-在(0,)+∞上是减函数,即C 不符合题意;对于函数||y lg x =,当0x >时,有y lgx =,单调递增;而()||||()f x lg x lg x f x -=-==,所以()f x 是偶函数,即D 正确.故选:D .11.【解答】解:设245t x x =--,由0t >可得5x >或1x <-,则12log y t =在(0,)+∞递减,由245t x x =--在(5,)+∞递增,可得函数()f x 的减区间为(5,)+∞.故选:C .12.【解答】解:由2430x x -+- 得2430x x -+ ,得13x,设243t x x =-+-,则对称轴为2x =,则y =为增函数,要求函数y =的单调增区间,根据复合函数单调性之间的关系知,只需要求243t x x =-+-的递增区间,243t x x =-+- 的递增区间为[1,2],∴函数y =的单调增区间是[1,2],故选:B .13.【解答】解:A .2(1)y x =--的对称轴为1x =,为非奇非偶函数,不满足条件.B .cos 1y x =+是偶函数,但在(0,)+∞内不是单调函数,不满足条件.C .||2y lg x =+为偶函数,在(0,)+∞内单调递增,满足条件,D .2x y =,(0,)+∞内单调递增,为非奇非偶函数,不满足条件.故选:C .14.【解答】解:对于A :函数在R 递减,对于B :函数在(,0)-∞递减,在(0,)+∞递增,对于C :函数在R 递增,对于D :函数在(,0)-∞递增,在(0,)+∞递增,故选:C .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

士兵军考试题:2017年军队院校招生文化科目统一考试——士兵高中数学模拟试题1(含答案)阶段性检测试题一、选择题(共9小题,每题4分)1、已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( D )A .∅B .(0,13]C .[13,1] D .(-∞,1](1)由题意知,A =(0,1],B =(-∞,13],∴A ∪B =(-∞,1].故选D. 2.已知等比数列{an}的公比为正数,且a 3a 9=2a 52,a 2=2,则a 1=( C ) A.12 B.22 C. 2D .2解析:选C.由等比数列的性质得 , ∵q>0,∴a6=2a5,q =a6a5=2,a1=a2q =2,故选C.3.已知f(x)=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)<0,则( D )A .p 是假命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x)≥0B .p 是假命题,⌝p :∃x0∈⎝ ⎛⎭⎪⎫0,π2,f(x0)≥0C .p 是真命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)>0D .p 是真命题,⌝p :∃x0∈⎝⎛⎭⎪⎫0,π2,f(x0)≥0解析:选D.因为f′(x)=3cos x -π,所以当x ∈⎝⎛⎭⎪⎫0,π2时,f ′(x)<0,函数f(x)单调递减,所以∀x ∈⎝⎛⎭⎪⎫0,π2,f(x)<f(0)=0,所以p 是真命题,又全称命题的否定是特称命题,所以答案选D.4.已知向量a ,b 满足|a|=3,|b|=23,且a ⊥(a +b),则a 与b 的夹角为(D ) A.π2 B.2π3 C.3π4D.5π6解析:选D.a ⊥(a +b)⇒a·(a +b)=a2+a·b =|a|2+|a||b|cos 〈a ,b 〉=0,故cos 〈a ,b 〉=-32,故所求夹角为5π6.5.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( A ) A .f(x)=21xB .f(x)=x 2+1C .f(x)=x 3D .f(x)=2-x解析:选A.A 中f(x)=1x2是偶函数,且在(-∞,0)上是增函数,故A 满足题意.B 中f(x)=x2+1是偶函数,但在(-∞,0)上是减函数.C 中f(x)=x3是奇函数.D 中f(x)=2-x 是非奇非偶函数.故B ,C ,D 都不满足题意.6.已知lg a +lg b =0,则函数f(x)=a x 与函数g(x)=-log b x 的图象可能是( B)解析:选B.∵lg a +lg b =0,∴ab =1,∵g(x)=-logbx 的定义域是(0,+∞),故排除A. 若a >1,则0<b <1, 此时f(x)=ax 是增函数,g(x)=-logbx 是增函数, 结合图象知选B.7、已知数列{an}的前n 项和为Sn ,a 1=1,S n =2a n +1,则S n =( B ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1 D.12n -1[解析] (1)由已知Sn =2an +1,得Sn =2(Sn +1-Sn),即2Sn +1=3Sn ,Sn +1Sn =32,而S1=a1=1,所以Sn =⎝ ⎛⎭⎪⎫32n -1.[答案] B8.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z 的最大值为( B )A .0B .1 C.94 D .3 解析:选B.z =x 2-3xy +4y 2(x >0,y >0,z >0), ∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤14-3=1.当且仅当x y =4yx ,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x +1y -2z =22y +1y -22y 2=-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1,∴当y =1时,2x +1y -2z 的最大值为1.9.已知{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( C )A .40B .200C .400D .20解析:选C.S 20-2S 10=20(a 1+a 20)2-2×10(a 1+a 10)2=10(a 20-a 10)=100d . 又a 10=a 2+8d , ∴33=1+8d , ∴d =4.∴S 20-2S 10=400.二、填空题(共8小题,每题4分)1、函数f (x )=10+9x -x 2lg (x -1)的定义域为( )解析:要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10]. 2、函数y =)24cos(x -π的单调减区间为________.(3)由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z), 故k π+π8≤x ≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).3、函数f(x)=43323--+x x x 在[0,2]上的最小值是( ) A .-173 B .-103 C .-4D .-643解析:选A.f ′(x)=x2+2x -3, 令f′(x)=0,得x =1(x =-3舍去), 又f(0)=-4,f(1)=-173,f(2)=-103, 故f(x)在[0,2]上的最小值是f(1)=-173.4、某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析:根据三视图还原几何体,得如图所示的三棱锥P-ABC.由三视图的形状特征及数据,可推知PA ⊥平面ABC ,且PA =2.底面为等腰三角形,AB =BC ,设D 为AC 中点,AC =2,则AD =DC =1,且BD =1,易得AB =BC =2,所以最长的棱为PC ,PC =PA2+AC2=2 2. 答案:2 25、若数列{a n }满足a 1=15,且3a n +1=3a n -4,则a n =________.解析:由3a n +1=3a n -4,得a n +1-a n =-43, 所以{a n }是等差数列,首项a 1=15,公差d =-43, 所以a n =15-43(n -1)=49-4n 3.答案:49-4n 36、若命题“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.因为“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.7、若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则 f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.∵f (x )是以4为周期的奇函数,∴f ⎝ ⎛⎭⎪⎫294=f ⎝ ⎛⎭⎪⎫8-34=f ⎝ ⎛⎭⎪⎫-34,f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫8-76=f ⎝ ⎛⎭⎪⎫-76. ∵当0≤x ≤1时,f (x )=x (1-x ),∴f ⎝ ⎛⎭⎪⎫34=34×⎝ ⎛⎭⎪⎫1-34=316.∵当1<x ≤2时,f (x )=sinπx ,∴f ⎝ ⎛⎭⎪⎫76=sin 7π6=-12.又∵f (x )是奇函数, ∴f ⎝⎛⎭⎪⎫-34=-f ⎝ ⎛⎭⎪⎫34=-316,f ⎝⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫76=12. ∴f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=12-316=516.8.设函数f(x)=ax 3-3x +1(x ∈R),若对于任意x ∈[-1,1],都有f(x)≥0成立,则实数a 的值为________.解析:(构造法)若x =0,则不论a 取何值,f (x)≥0显然成立; 当x>0时,即x ∈(0,1]时,f(x)=ax3-3x +1≥0可化为a≥3x2-1x3. 设g(x)=3x2-1x3,则g′(x)=3(1-2x )x4, 所以g(x)在区间⎝⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减, 因此g(x)max =g ⎝ ⎛⎭⎪⎫12=4,从而a≥4.当x<0时,即x ∈[-1,0)时,同理a≤3x2-1x3. g(x)在区间[-1,0)上单调递增, ∴g(x)min =g(-1)=4, 从而a≤4,综上可知a =4. 答案:4三.计算下列各题:(18分)(1)12lg 3249-43lg 8+lg 245; 解:(1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12.(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.求角A 的大小; [解] (1)由题意知,根据正弦定理得2a2=(2b +c)b +(2c +b)c ,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bccos A , 故cos A =-12,A =120°. 四、(12分)已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若q p ⌝⌝是的必要不充分条件,求实数m 的取值范围。

五、证明:(1)连接AD 1,由ABCD -A 1B 1C 1D 1是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,则AC ⊥BD .由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD . 又AC ∩CC 1=C , 所以BD ⊥平面ACC 1.而AC 1⊂平面ACC 1,所以BD ⊥AC 1. 因为M ,N 分别是A 1B 1,A 1D 1的中点, 所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .(12分)六、已知函数)0(cos cos )sin()(2>+-=ωωωωπx x x x f 的最小正周期为π,将函数)(x f y =的图像上各点的横坐标缩短到原来的21,纵坐标不变,得到函数)(x g y =的图像,求函数)(x g y =在区间⎥⎦⎤⎢⎣⎡16,0π上的最小值。

相关文档
最新文档