人教版七年级数学下册单元测试题全套及答案
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
第6章 实数 人教版数学七年级下册单元测试(含答案)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级数学下册各单元测试题及答案汇总[1]-2
七年级数学第五章?相交线与平行线?测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题〔每题3分,共 30 分〕1、如下图,∠1和∠2是对顶角的是〔〕2、如图AB∥CD可以得到〔〕A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠43、直线AB、CD、EF相交于O,那么∠1+∠2+∠3=〔〕A、90°B、120°C、180°D、140°4、如下图,直线a、b被直线c所截,现给出以下四种条件:①∠2=∠6②∠2=∠8③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b 的条件的序号是〔〕A、①②B、①③C、①④D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来一样,这两次拐弯的角度可能是〔〕A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、以下哪个图形是由左图平移得到的〔〕7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影局部面积与正方形ABCD面积的比是〔〕A、3:4B、5:8C、9:16D、1:28、以下现象属于平移的是〔〕①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A、③B、②③C、①②④D、①②⑤9、以下说法正确的选项是〔〕A、有且只有一条直线与直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D、在平面内过一点有且只有一条直线与直线垂直。
10、直线AB∥CD,∠B=23°,∠D=42°,那么∠E=〔〕A、23°B、42°C、65°D、19°二、填空题〔本大题共6小题,每题3分,共18分〕11、直线AB、CD相交于点O,假设∠AOC=100°,那么∠AOD=___________。
人教版最全七年级数学下册全册同步练习及单元测验卷及答案
第五章相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,/1和/2是对顶角的图形有()A.1个B.2 个C.3 个D.4 个2、如图,若/ 1=60° ,那么/ 2=3、如图是一把剪刀,其中 1 40,则24、如图三条直线AB,CD,EF相交于一点O, /AOD勺对顶角是,/AOC勺邻补角是,若/ A0C=50 ,贝U/ BOD= ./ COB= J AOE+ DOB + COF=5、如图,直线AB,CD相交于0,0评分/ AOC若/ AOD/DOB=50 ,?求/EOB勺度数.6、如图,直线a,b,c两两相交,/1=2/ 3, / 2=68° ,求/4的度数5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.()2、一条直线不可能与两条相交直线都垂直.()3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().5、如图1,OAL OB,OCL OC,O为垂足,若/AOC=3 5,则/BOD=.6、如图2,A0± BO,O为垂足,直线CDi点O,且/ BOD=2AOC则/ BOD=.7、如图3,直线AB CD相交于点0,若/E0D=40 , /B0C=130,那么射线0E与直线AB的位置关系是C8、已知:如图,直线AB,射线0位于点的位置关系.9、如图,AC± BC,C为垂足,CD± AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6 ,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是 ,A 、B 两点间的距离是.10、如图,在线段AB AG AD AE AF 中AD 最短.小明说垂线段最短,因此线段AD 的 长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30的/AOB 在边OA±任取一点P,过P 作POL OB,垂足为Q, 量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角3、如图(6),直线DE 截AB, AC,构成八个角: ①、指出图中所有的同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),卜列说法不正确的是( )人./1与/2是同位角 B. / 2与/ 3是同位角C. / 1与/ 3是同位角D. / 1与/ 4不是同位角2、如图(5),直线AB CDM 直线EF 所g, / A 和一 错角,/A 班是同旁内角.^ /\ \ /--- ---------- 4 届 -------------------- R图⑷ 图⑸—是同位角,/ A 和 ________ 是内A40(3) c'②、/人与/5, /A 与/6, /A 与/8,分别是哪一条直线截哪两条直线而成的什么 角?4、如图(7),在直角 ABCt\ / C= 90 , DU AC 于 E,交 A.一 L①、指出当BG DE 被AB 所截时,/ 3的同位角、内错角和礴内他(门②、若/ 3+/ 4=180试说明/ 1 = /2=/3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有2、两条直线L 1与L 2相交点A,如果L 1//L ,那么12与L ()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必.D ./3=/4 D. /BACW ACD4、两条直线相交,交点的个数是 ,两条直线平行,交点的个数是 _____________ 个.判断题5、6、7、85、不相交的两条直线叫做平行线.()6、如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()7、过一点有且只有一条直线平行于已知直线.()8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB// CD 的是()DAFCA./BADh BCDB. /1 = /2;C.AD C B如图5,直线a,b 被直线c 所截,现给出下列四个条件: ?①/ 1 = /5;②/ 1=/7;③/ 2+/ 3=180 ;@Z4=Z 7.其中能说明 a // b 的条件序号为() A.①② B.①③ C.①④ D. ③④如果/ 9=,那么AD// BC;如果/ 9=,那么AB// CD.7、在同一平面内,若直线a,b,c 满足a±b,a ±c,则b 与c 的位置户系是8、如图所示,BE 是AB 的延长线,量得/ CBEh A=/ C. //.... AB E(1) 由/ CBEh A 可以判断//,根据是.⑵ 由/ CBEh C 可以判断//,根据是2、 如图2所示,如果/ D=/ EFC 那么()A.AD // BCB.EF // BC 3、 F 列说法错误的是()A.同位角不一定相等B. 内错角都相等C. 同旁内角可能相等D.同旁内角互补,两直线平行4、 5、如图5,如果/ 3=/7,那么,理由是 如果/ 5=/ 3,那么 ,理由是 如果/ 2+ /5=那么a // b,理由是6、如图4,若/ 2=/6,则,如果/3+/4+/ 5+/ 6=180 ,那么(4)C.AB // DCD.AD9、已知直线a、b被直线c所截,且/1+/ 2= 试判断直线a、b的位置关系,并说明理由.10、如图,已知AEM DG , 1 2 ,试问EF是否平行GH并说明理由.11、如图所示,已知/ 1=/ 2,AC平分/ DAB试说明DCI AB.12、如图所示,已知直线EF和AB,CM别相交于K,H,且EGL AB,/CHF=60 / E=30°试说明AB// CD.13、提高训练:如图所示,已知直线a,b,c,d,e,且/ 1=/ 2, / 3+/4=180° ,则a与c平行吗?劝什么?5.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB//CD则与/ 1相等的角(/1除外)共有()A.5 个B.4 个C.3 个D.2 个 B AA B —(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西(3)2、如图 2 所示,CD// AB,O 评分/ AOD,OFOE,/D=50,则/BOF 为(A.35B.30C.253、如图 3 所示,AB II CD,Z D=80CAD=, /ACD=?.4、如图 4,若 AD// BC,则/=/ D.20/ABC 廿=180 ;若 DC/ZAB,则/=/A,/ CAD:/ BAC=3:2则/56° ,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是,因为.6、河南)如图6所示,已知AB// CD直线EF分别交AB,CD于E,F,EG?平分/ B-EF,若/ 1=72 ,贝U/2=.7、如图,AB/ZCQ / 1 = 102° ,求/ 2、/3、/4、/ 5的度数,并说明根据?8、如图,ERiz\ABC勺一个顶点A,且EF// BC 如果/ B= 40° , / 2= 75° ,那么/1、/3、/G / BAO /B+ 是多少度,并说明依据?9、如图,已知:DE/ZCB,/1 = /2,求证:CD平分/ ECB.10、如图所示,把一张长方形纸片ABCD& EF折叠,若/ EFG=50 ,求/ DEG勺度数.1111、如图所示,已知:AE平分/BAC CE平分/ACD且AB//CD求证:/1+/ 2=90° . 证明:・•. AB//CD (已知)・♦/BAC/ACD180 , ()又.. AE平分/ BAC C评分/ ACD (). 1 1•• 1 - BAC , 2 万ACD,( ___________________ ) __________1 1 0 0. .1 2 -( BAC ACD) —1800 90°.2 2即Z1+Z 2=90 .结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相.推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相^5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB( ) (3)画线段AB的中点( (2)两条直线相交,只有一交点((4)若|x|=2 ,则x=2 ( )134、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1 个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a// b, b // c,那么all c ⑵ 同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式 (1)两点确定一条直线; (2)等角的补角相等;(3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据(1) '.'all b,「•/ 1=/ 3( ); (2) ・// 1=/ 3, ..・all b( ); (3) '.'all b,「•/ 1=/ 2( );(4) 「a// b,「./ 1+/ 4=180o ( (5) ・// 1=/ 2, ..・all b( ); (6) •// 1+/ 4=180o,「.a// b( ). 8、已知:如图 ABL BG BCLCD 且/ 1=/ 2, 证明:.「AB!BG BCLCD (已知)= =90(5)角平分线是一条射线( 2、下列语句不是命题的是( A.两点之间,线段最短 C.x 与y 的和等于0吗? 3、下列命题中真命题是( )A.两个锐角之和为钝角)B.不平行的两条直线有一个交点 D.对顶角不相等.B.两个锐角之和为锐角D.锐角小于它的余角・ ・•/ 1 = /2 (已知)(等式性质)/ ACB=90 ()・ ••/ BCD^/ ACD 勺余角・ ・•/BCD^/B 的余角(已知) ・•・ / ACDN B ()5.4平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )B.沿射线EC 的方向移动C 冰C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,?有一组中的两个图形经过平移其中一个能得到 -另一个,这组图形9、已知: 求证: 证明: BE// CF (/ ACDM B・•. ACL BC (已知)2、如图所示,4FDE 经过怎样的平移可得到4A.沿射线EC 的方向移动DB 长; 如图,ACL BCC 垂足为CABC.()4、如图所示,△ DEF经过平移可以得到△ ABC那的对应角和ED的对应边分-别是()A. / F,ACB. / BOD,BA;C. / F,BAD.5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________ 都相同,?因-此对应线段和对应角7、如图所示,平移△ ABC可得到△ DEF,如果// C=60 ,那么/ E=?-度,/ EDF=/F= ______ 度,/DOB= .........8、将正方形ABCDg对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点。
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七年级数学下册全册单元检测试卷及答案1
第五章《相交线与平行线》水平测试题班级 学号 姓名 成绩一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是( ).(A )平行线间的距离相等 (B )两点之间,线段最短 (C )垂线段最短 (D )两点确定一条直线2. 如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A. 同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到( )A .②B .③C .④D .⑤4.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ). A.4 B.3 C.2 D.15.如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ). A.互相垂直 B.互相平行 C.即不垂直也不平行 D.不能确定 6.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ). A.a ∥b B.c ∥d C.a ⊥d D.任两条都无法判定是否平行7.汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( )A.1个B.2个C.3个D.4个8.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A . 18° B .54° C .72° D .70°9.在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( ) A .1个 B .2个 C .3个 D .4个图2图1图3图4第3个第2个第1个10.如图6所示,已知∠3=∠4,若要使∠1=∠2,则还需( ) A .∠1=∠3 B .∠2=∠3 C .∠1=∠4 D .AB ∥CD 二、填空题(每题3分,共30分)11.如图7,当剪刀口∠AOB 增大21°时,∠COD 增大 。
(完整)人教版七年级数学下册各单元测试题及答案(3),推荐文档
A、第一象限 B、第二象限 C、第三象限 D、第四象限
3、若点 P 在 x 轴的下方,y 轴的左方,到每条坐标轴的距离都是 3,则点 P 的坐标为(
)
A、(3,3) B、(-3,3) C、(-3,-3)D、(3,-3)
4、点 P(x,y),且 xy<0,则点 P 在( )
y
y
A、第一象限或第二象限 B、第一象限或第三象限
) ) )
D
E
F
1
34
∴∠C=∠ABD( ∵∠C=∠D( ∴∠D=∠ABD(
)
2
)
A
B
C
第19题)
)
∴DF∥AC(
)
24、如图,DO 平分∠AOC,OE 平分∠BOC,若 OA⊥OB,
A
(1)当∠BOC=30°,∠DOE=_______________ 当∠BOC=60°,∠DOE=_______________
E
H
11、直线 AB、CD 相交于点 O,若∠AOC=100°,则
∠AOD=___________。 12、若 AB∥CD,AB∥EF,则 CD_______EF,其理由 是_______________________。
A
D
F
G
13、如图,在正方体中,与线段 AB 平行的线段有______
B
C
第13题
三、(每题 5 分,共 15 分)
17、如图,正方形 ABCD 的边长为 3,以顶点 A 为原点,且有一组邻边与坐标轴重合,求
出正方形 ABCD 各个顶点的坐标。
D
C
A (第17题) B
18、若点 P(x,y)的坐标 x,y 满足 xy=0,试判定点 P 在坐标平面上的位置。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等•其中错误的有()A . 1个B . 2个C . 3个D . 4个2 .点P 是直线I 外一点,,且PA=4 Cm 则点P 到直线I 的距离( )A .小于4 CmB .等于4 Cm C.大于4 CmD .不确定3 .如图,点在延长线上,下列条件中不能判定的是( )A .∠ 1 = ∠ 2B .∠ 3= ∠ 4 C.∠ 5=∠D .∠ +∠ BDC=180°7 .在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( )AV B.①② C.①②③ D.①②③④8.如图,DH // EG// BG DC// EF,那么与∠ DCB 相等的角(不包括∠ EFB 的个数为( ) A . 2个 B . 3个 C . 4个 D . 5个9•点P 是直线I 外一点,A 、B 、C 为直线I 上的三点,PA=4 Cm , PB=5 cm , PC=2 cm ,则点P 到直线I 的距离( )第3题图 第4题图4. 如图,,/ 3=108°,则∠ 1的度数是( )A . 72°B . 80°C. 82°D . 108°5.如图,BE 平分∠ ABC, DE// BC,图中相等的角共有( )A . 3对B . 4对 C. 5对 D . 6对C. 3个 D . 4个 第5题图第6题图 第8题图A .小于2 Cm B.等于2 CmC.不大于2 Cm D .等于4 Cm 10.两平行直线被第三条直线所截,同位角的平分线( A .互相重合 B .互相平行C.互相垂直D .相交二、填空题(共8小题,每小题3分,满分24分)∠ 1 =,则∠ 2= _____ .16. 如图,AB // CD,直线 EF 分别交 AB 、CD 于 E 、F,EG 平分∠ BEF,若∠ 1=72° ,则∠ 2= 17. 如图,直线 a // b ,第17题图18. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠三、解答题(共6小题,满分46分)第11题图12.如图,当剪子口∠ AoB 增大15°时,∠ CoD 增大C3DIlIri IB第13题图第14题图A 中,先作AB ⊥ CD,垂足为B,然后沿AB 开渠,能使所开第12题图13. 如图,计划把河水引到水池的渠道最短,这样设计的依据是14. 如图,直线 AB ,CD, EF相交于点O,且AB ⊥ CD,∠ 1与∠ 2的关系是 — 15. 如图,D 是 AB 上一点,CE// BD, CB// ED, EA ⊥ BA 于点 A ,若∠ ABC=38°,19.( 7分)读句画图:如图,直线CD与直线AB相交于C, 根据下列语句画图:(1)过点P作PQ// CD,交AB于点Q;(2)过点P作PF⊥ CD,垂足为R;3 )若∠ DCB=120 °,猜想∠ PQC是多少度?并说明理由. 第19题图20.( 7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1 ,则小鱼的面积为;21 . ( 8 分)已知:如图,∠ BAf+ Z APD= , Z 1 = Z 2.求证:∠ E = Z F.C P D第21题图1 = ∠2 , ∠3 = ∠ 4,∠ 5 = ∠ 6.求证:ED / FB.23 . ( 8 分)如图,CD 平分∠ ACB, DE// BC ,∠ AED=80°,求∠ EDC 的度数.E第23题图24. (8 分)如图,已知 AB / CD, / B=65°, CM 平分∠ BCE ∠ MCN=90°,求∠ DCN 的度若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
人教版版七年级数学下册全套单元试卷含答案(共3套)
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC 的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠111.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对15.(3分)如图,直线AB与CD交于点O,OE⊥AB于O,则图中∠1与∠2的关系是()A.对顶角B.互余C.互补D.相等16.(3分)如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6二、填空题17.(3分)小玮家在小强家的北偏西75度,则小强家在小玮家的坐标方向是度.18.(3分)若一个角的余角是30°,则这个角的补角为°.19.(3分)一个角与它的补角之差是20°,则这个角的大小是.20.(3分)如果一个角的补角是150°,那么这个角的余角是度.21.(3分)小明从点A沿北偏东60°的方向到B处,又从B沿南偏西25°的方向到C处,则小明两次行进路线的夹角为.22.(3分)把“同角的余角相等”写成“如果…,那么…”的形式为.23.(3分)如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=度.24.(3分)把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC=.25.(3分)如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=°,∠3=°,∠4=°.26.(3分)如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为.27.(3分)如图,直线l1∥l2,AB⊥CD,∠1=34°,求∠2的度数.28.(3分)如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD 的平分线FP相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=度.29.(3分)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.30.(3分)如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.请你认真完成下面的填空.证明:∵∠B=∠BGD(已知)∴AB∥CD()∵∠DGF=∠F;(已知)∴CD∥EF()∵AB∥EF()∴∠B+∠F=180°().三、计算题:31.(10分)如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=度,∠AOG=度.参考答案与试题解析一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交【考点】J7:平行线;J1:相交线.【分析】根据在同一平面内两直线的位置关系进行解答即可.【解答】解:同一平面内如果两条直线不重合,那么他们平行或相交;故选D.【点评】此题考查了平行线,掌握在同一平面内两直线的位置关系是本题的关键,是一道基础题.2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定【考点】JA:平行线的性质.【分析】由两条平行线被第三条直线所截,根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故选C.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°【考点】JA:平行线的性质.【专题】2B :探究型.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.【点评】本题考查的是平行线的性质,根据题意画出图形是解答此题的关键.4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【考点】JA:平行线的性质.【分析】延长BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据三角形外角的性质即可求解.【解答】解:延长BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【考点】J3:垂线.【专题】11 :计算题;32 :分类讨论.【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点评】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【考点】JB:平行线的判定与性质;J2:对顶角、邻补角.【专题】11 :计算题.【分析】本题首先应根据同位角相等判定两直线平行,再根据平行线的性质及邻补角的性质求出∠4的度数.【解答】解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选D.【点评】解答此题的关键是注意平行线的性质和判定定理的综合运用.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】JA:平行线的性质;IL:余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直【考点】J7:平行线;J3:垂线;J5:点到直线的距离;J8:平行公理及推论.【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【解答】解:A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过一点有且只有一条直线与已知直线平行,过直线外一点,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点评】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角【考点】JA:平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵l1∥l2,∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,∴∠1+∠2=180°,即∠1+∠2=90°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠1【考点】JA:平行线的性质.【专题】2B :探究型.【分析】过点C作CF∥AB,由AB∥DE可知,AB∥DE∥CF,再由平行线的性质可知,∠1=∠BCF,∠2+∠DCF=180°,故可得出结论.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选C.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个【考点】J9:平行线的判定.【专题】11 :计算题.【分析】①由∠1=∠2,利用内错角相等两直线平行得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,利用等式的性质一对内错角相等,进而得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,利用同旁内角互补得到AD∥BC,本选项不合题意.【解答】解:①由∠1=∠2,得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,得到∠ABC﹣∠4=∠ADC﹣∠3,即∠ABD=∠CDB,得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,得到AD∥BC,本选项不合题意,则符合题意的只有1个.故选C【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等【考点】JB:平行线的判定与性质;IL:余角和补角;J2:对顶角、邻补角.【分析】根据平行线的判定即可判断A;根据平行线的性质即可判断B;举出反例图形即可判断C;根据互余互补的性质即可判断D.【解答】解:A、内错角相等,两直线平行,正确,故本选项错误;B、两直线平行,同旁内角互补,正确,故本选项错误;C、如图CD⊥AB,则∠ADC=∠BDC,但两个角不是对顶角,错误,故半选项正确;D、等角的补角相等,正确,故本选项错误;故选C.【点评】本题考查了平行线的性质和判定,对顶角,互余互补当知识点,主要考查学生的辨析能力.13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角的定义,对每个图进行判断即可.【解答】解:(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点评】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对【考点】J9:平行线的判定.【分析】∠1、∠2是直线AE、DF被AD所截形成的内错角,根据内错角相等,两直线平行可知AE∥DF.【解答】解:∵∠1=∠2,∴AE∥DF(内错角相等,两直线平行).。
七年级下册数学单元测试卷及答案人教版
人教版七年级下数学第5章相交线与平行线单元测试卷一、选择题1. 已知:如图,AB//CD,∠1=∠2.求证:AM//CN.以下是排乱的证明过程:①∴AM//CN;②∵∠1=∠2;③∴∠EAM=∠ECN;④∴∠EAB=∠ECD;⑤∵AB//CD.证明步骤正确的顺序是( )A.②③⑤④①B.②④⑤③①C.⑤③②④①D.⑤④②③①2. 如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C 路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线3. 如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4. 下列说法正确的是( )A.若线段AC=BC,则点C是线段AB的中点B.相等的角是对顶角C.过一点有且只有一条直线与已知直线垂直D.从直线外一点到这条直线的垂线段,叫做点到直线的距离5. 平面上三条直线相互间的交点个数是( )A.3B.1或3C.1或2或3D.不一定是1,2,36. 在同一平面内,下列说法正确的是( )A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行7. 在同一平面内,两直线的位置关系必是( )A.相交B.平行C.相交或平行D.垂直二、填空题8. 如图,面积为6cm2的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ABED的面积为________ cm2.9. 如图CD⊥AB,垂足为C,∠1=130∘,则∠2=________度.10. 如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100∘,则∠AOC的度数为________度.11. 如图所示,∠1的内错角是________,∠B的同旁内角有________(只写一个).12. 如图,在一块长方形ABCD草地上,AB=10,BC=15,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2个单位),空白部分表示的草地面积是________.13. 命题“两个锐角的和是钝角”是________命题(填“真”或“假”).三、解答题14. 如图,在△ABC中,AC⊥BC,CD⊥AB垂足为D.(1)AB,AC,CD之间的大小关系为________(用“<”号连接起来).(2)若AC=4,BC=3,AB=5,求点C到直线AB的距离.15. 观察下面的变形规律:11×2=1−12;12×3=12−13;13×4=13−14;…解答下面的问题:(1)计算15×6=________;(2)若n为正整数,请你猜想1n(n+1)=________;(3)利用你的结论求:11×2+12×3+13×4+...+19×10.16. 如图,在△ABC中,AB>AC,点D在边上.(1)过点D,作平行线DE//BC,交AC于点E.(尺规作图,不写作法,保留作图痕迹)(2)在上(1)中,若∠B=50∘,∠A=60∘,求∠ADE的度数.17. 如图所示,有两条宽均为1米的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,若要硬化这两条小路,且每平方米造价50元,则硬化这两条小路需要多少钱?18. 宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?19. 问题解决:如图一,已知AB//CD,E是直线AB,CD内部一点,连接BE,DE若∠ABE=40∘,∠CDE=60∘,求∠BED的度数.嘉琪想到了如图二所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程,解:过点E作EF//AB,∴ ∠ABE=∠BEF=40∘.∴ AB//CD,∴ EF//CD,⋯请你补充完成嘉淇的解答过程:问题迁移:请你参考嘉琪的解题思路,完成下面的问题:如图三,AB//CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系参考答案与试题解析2021年新人教版七年级下数学第5章相交线与平行线单元测试卷(1)一、选择题1.【答案】D【解析】只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.2.【答案】B【解析】根据垂线段的性质解答即可.3.【答案】A【解析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.4.【答案】C【解析】利用相关定义,逐个判断说法的严谨性,即可得到答案.5. 【答案】D【解析】此题要根据直线的不同位置关系分析:①三直线平行;②三条直线相交于一点;③两直线平行被第三直线所截;④两直线相交,又被第三直线所截.故可得出答案.6.【答案】D【解析】在同一平面内,两直线的位置关系有2种:平行、相交,根据以上结论判断即可.7.【答案】C【解析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.二、填空题8.【答案】24【解析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.9.【答案】40【解析】此题暂无解析10.【答案】40【解析】利用邻补角性质可得∠EOD的度数,再利用角平分线定义核对顶角相等可得答案.11.【答案】∠ABC,∠C【解析】根据同位角和同旁内角的定义即可得出答案.12.【答案】130【解析】根据图形列出算式,再求出即可.13.【答案】假【解析】此题暂无解析三、解答题14. 【答案】CD<AC<AB(2)∵S△ACB=12AC⋅CB=12AB⋅CD,∴AC⋅CB=AB⋅CD,∵AC=4,BC=3,AB=5,∴12=5CD,∴CD=125.∴点C到直线AB的距离是125.【解析】(1)根据垂线段最短可得AC<AB,CD<AC,进而可得CD<AC<AB;(2)根据△ABC的面积可得AC⋅CB=AB⋅CD,再代入数可得答案.15.【答案】15−16.1n−1n+1.(3)11×2+12×3+13×4+...+19×10=1−12+12−13+...+19−110=1−110=910.【解析】(1)(2)将分数拆分即可求解;(3)先将分数拆分,再用抵消法即可求解.16.【答案】解:(1)如图所示,DE即为所求作的平行线.(2)∵DE//BC,∴∠ADE=∠B=50∘(两直线平行,同位角相等).【解析】此题暂无解析17.【答案】解:84×60−(84−1)×(60−1)=143(m2).143×50=7150(元)答:硬化这两条小路需要7150元钱.【解析】四边形ABCD是矩形,则AF // EC,又AF=CE,进而可判断四边形AECF的形状,继而面积可以利用底边长乘以高进行计算.18.【答案】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∴买地毯至少需要20×40=800元.【解析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.19.【答案】问题解决:剩余过程:∴ ∠FED=∠CDE=60∘,∴ ∠BED=∠BEF+∠FED=40∘+60∘=100∘.问题迁移:解(1)∠APC=α+β.理由如下:过点P作PE//AB,交AC于点E,∴ AB//CD,∴ PE//AB//CD,∴ ∠APE=α,∠EPC=β.∴ ∠APC=∠APE+∠EPC=α+β.(2)①当点P在直线DB延长线上时,过点P作PE//AB,∵PE//AB,AB//CD,∴PE//AB//CD.∴∠EPC=β,∠APC=α,∴∠APC=β−α.②当点P在直线DO上时,过点P作PE//CD,∵PE//CD,AB//CD,∴PE//CD//AB.∴∠CPE=α,∠APE=β,∴∠APC=α−β.【解析】此题暂无解析。
最新最全,人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
人教版初中七年级数学下册全册单元综合测试卷汇总一、第五章《相交线与平行线》单元综合测试卷(附详细参考答案)二、第六章《实数》单元综合测试卷(附详细参考答案)三、第七章《平面直角坐标系》单元综合测试卷(附详细参考答案)四、七年级下学期期中数学综合测试卷(附详细参考答案)五、第八章《二元一次方程组》单元综合测试卷(附详细参考答案)六、第九章《不等式与不等式组》单元综合测卷(附详细参考答案)七、第十章《数据的收集、整理与描述》单元综合测试卷(附详细参考答案)八、七年级下学期期末数学综合测试卷(附详细参考答案)七年级数学下册第五章《相交线与平行线》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )(A)75° (B)115° (C)65° (D)105°2.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )(A)100° (B) 105° (C) 110° (D) 115°3.下列图形中,只要用其中一部分平移一次就可以得到的有 ( )4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )(A)20° (B)25° (C)30° (D)35°5.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是( )(A)2 (B)4 (C)5 (D)66.某人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC 等于( )(A)75° (B)105° (C)45° (D)135°7.如图,已知AB∥CD,∠1 =∠2,∠E=n°,则∠F=( )(A)n° (B)2n° (C)90°-n° (D)40°二、填空题(每小题5分,共25分)8.“如果n是整数,那么2n是偶数”其中题设是_______,结论是_______,这是_______命题(填“真”或“假”).9.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=_______度.10.有一条直的等宽纸带,按图折叠时,纸带重叠部分中的∠α=_______度.11.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=_______.12.如图,在宽为30 m,长为40 m的矩形地面上修建两条宽都是1 m的道路,余下部分种植花草.那么,种植花草的面积为_______m2.三、解答题(共47分)13.(11分)如图,∠1=30°,AB⊥CD,垂足为O, EF经过点O.求∠2,∠3的度数.14.(12分)如图,a∥b,c∥d,∠1=113°,求∠2,∠3的度数.15.(12分)已知,如图,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.16.(12分)已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.七年级数学下册第五章《相交线与平行线》单元综合测试卷详细参考答案1.【解析】选D.如图,根据上下的两边平行可知∠1=∠3=75°,根据左右的平行可知∠2+∠3=180°,进而求得∠2=105°.2.【解析】选B.把图中的线适当延长,如下图因为∠1=65°,∠2=140°,所以∠4=75°.又因为a∥b,所以∠3=180°-∠4=180°-75°=105°.3.【解析】选B.判断一个图形是否由平移得到,要从两方面入手:①找到“基本图形”;②分析平移的方向和距离.其中第2个图形和第4个图形平移一次均能得到.4.【解析】选A.由图形可得,∠B=∠1+∠2=45°,∵∠1=25°,∴∠2=45°-25°=20°.5.【解析】选C.由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH,除∠1共5个.6.【解析】选C.按要求画出图形再计算.∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.7.【解析】选A.因为AB∥CD,知∠ABC =∠DCB,再由∠1=∠2,得∠EBC=∠FCB,由此得到EB∥FC,所以∠F=∠E=n°.8.【解析】“如果”开始的部分是题设,“那么”后面的部分是结论.答案:n是整数 2n是偶数真9.【解析】∵AB∥CD,∴∠B=∠2=40°,∵∠BED=∠1+∠B,∴∠BED=70°,∵EF平分∠BED,∴∠BEF=35°.答案:3510.【解析】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得展开图.由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠α=75°.答案:7511.【解析】由AB∥EF∥CD,可知∠BED=∠B+∠D.∵∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∵∠B-∠D=24°,所以∠D=∠B-24°.即∠B+∠B-24°=96°,解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.答案:30°12.【解析】利用平移,将两道路向上、向右平移(如图). 因此,种植花草的面积为:39×29=1 131(m2).答案:1 13113.【解析】由对顶角相等得∠3=∠1=30°,由AB⊥CD得∠BOD=90°,所以∠2=90°-∠3=90°-30°=60°. 所以∠2=60°,∠3=30°.14.【解析】∵a∥b(已知),∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知),∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).15.【解析】平行.由折叠可知,∠1=∠2,∠3=∠4,因为O′C∥BD,所以∠2=∠3,即∠1=∠4,所以O′D∥ AC.16.【证明】∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠BCA,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).七年级数学下册第六章《实数》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2π是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(C)(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b >0 (B)a-b >0 (C)ab >0 (D)ab>0 5.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③a a 的立方根;④.( ) (A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A表示的可能是( )(A)4的算术平方根(B)4的立方根(C)8的算术平方根(D)8的立方根7.如果m是2 012的算术平方根,那么2 012100的平方根为( )(A)m100± (B)m10(C)m10-(D)m±10二、填空题(每小题5分,共25分)8..9.3m-,则m的取值范围为___________.10.比较大小:用“<”或“>”号填空).11.若x,y y20-=,则x+y=_______.12.对于两个不相等的实数a、b,定义一种新的运算如下,>0),如:6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A,B,点B到点A的距离与点C到点O 的距离相等,设点C所表示的数为x,(1)请你写出数x的值;(2)求2(x的立方根.14.(12分)计算. (1)2121(2)-+--||;(2)15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d ≈r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)若a,b 为实数,且b 7=,求a+b 的平方根.七年级数学下册第六章《实数》 单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,ab<0, 故选项A 正确;选项B ,C ,D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】8==. 答案:89.【解析】3m -,∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*43==,所以6*31==. 答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22(x 11==,即2(x =1,1的立方根为1.14.【解析】(1)原式=1121144-+-=; (2)原式=3243655--+=-.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈16.【解析】由题意得a 2-4=0,且a+2≠0, 所以a=2,所以b=7, 所以a+b 的平方根为±3.七年级数学下册第七章《平面直角坐标系》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.点P在第二象限内,点P到x轴的距离为4,到y轴的距离为3,那么P点的坐标为( )(A)(4,3) (B)(3,4)(C)(-3,4) (D)(-4,3)2.若点P(x,y)的坐标满足xy=0,则点P 的位置是( )(A)在x轴上(B)在y轴上(C)是坐标原点(D)在x轴上或在y轴上或在原点3.点M(2,-1)向上平移2个单位长度得到的点的坐标是( )(A)(2,0) (B)(2,1) (C)(2,2) (D)(2,-3)4.正方形网格中的每个小正方形边长都为1,每个小方格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.如图所示,B,C两点的位置分别记为(2,0),(4,0),若格点三角形ABC是锐角三角形且面积为4,则满足条件的A点的位置是( )(A)(0,4) (B)(1,4)(C)(2,4) (D)(3,4)5.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为( )(A)(-5,4) (B)(4,3)(C)(-1,-2) (D)(-2,-1)6.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )(A)(4,2)或(-4,2) (B)(4,-2)或(-4,-2)(C)(4,-2)或(-5,-2) (D)(4,-2)或(-1,-2)7.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在的位置的点的坐标是( )(A)(1,1) (B)(-1,1) (C)(-1,-2) (D)(1,-2)二、填空题(每小题5分,共25分)8.如果点P(a,a-b)在第二象限,则点P′(-a,b-a)在第_______象限.9.如图所示,人头图形左边的嘴角的坐标是_________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为___________.11.若点P(x,y)的坐标满足x+y=xy,则称点P为和谐点,请写出一个和谐点的坐标.答:_________________________.12.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,该点A记作(30°,50),北偏西45°记作-45°,沿着此方向的反方向走20米记作-20,该点B记作(-45°,-20). 则(-75°,-15)表示的意义是____________,南偏西10°,沿着此方向走25米处的点C可记作___________.三、解答题(共47分)13.(10分)如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.(图中每个小正方形的边长均为1个单位长度)(1)请以国家AAAA级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:荷花池_________、平山堂__________、汪氏小苑_________;(2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以______为原点,以水平向右为x 轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:平山堂___________、竹西公园__________.14.(12分)如图,用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,问走哪条路吃到的胡萝卜最多? 走哪条路吃到的青菜最多?15.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.16.(13分)类比学习:一动点沿着数轴向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.七年级数学下册第七章《平面直角坐标系》单元综合测试卷详细参考答案1.【解析】选C.点P在第二象限内,横坐标为负数,纵坐标为正数,又“点P到x轴的距离为4,到y轴的距离为3”,所以点P的坐标为(-3,4).2.【解析】选D.由xy=0得,x=0或y=0或x=y=0,则点P在x轴上或在y轴上或在原点.3.【解析】选B.因为点M向上平移2个单位长度,横坐标不变,纵坐标加2,所以平移后得到的点的坐标是(2,1).4.【解析】选D.B,C两点与点(0,4)或(1,4)构成的格点三角形的面积为4,但不是锐角三角形;B,C两点与点(2,4)构成的格点三角形的面积为4,它是直角三角形.5.【解析】选A.A点平移到A′,是将A点向左平移6个单位,向上平移3个单位;B点按照同样的方法平移得到的点为(-5,4).6.【解析】选B.点M(3,-2)与点M′在同一条平行于x轴的直线上,所以y=-2,M′到y轴的距离等于4,所以|x|=4,所以x=±4.7.【解析】选B.长方形ABCD的周长为10,2 012÷10=201……2,说明细线绕了201圈,回到A点后又继续绕了2个单位,故到达B点,故选B.8.【解析】由题意知a<0,a-b>0,所以-a>0,b-a<0,所以点P′(-a,b-a)在第四象限.答案:四9.【解析】由图中所建立的坐标系可知,人头图形左边的嘴角的坐标是(-3,-1).答案:(-3,-1)10.【解析】点P(-1,4)向右平移2个单位长度后坐标为(1,4),再向下平移3个单位长度,则点P1的坐标为(1,1).答案:(1,1)11.【解析】答案不唯一,如(2,2),(0,0).答案:(2,2)(答案不唯一)12.【解析】由题意知,(-75°,-15)表示沿南偏东75°方向走15米;南偏西10°,沿着此方向走25米处的点C可记作(10°,-25).答案:南偏东75°,15米处 (10°,-25)13.【解析】(1)以瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置分别是:荷花池(-2,-3);平山堂(-1,3);汪氏小苑(2,-2);(2)以竹西公园为原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置分别是:平山堂(-4,0);竹西公园(0,0).(本题答案不唯一)14.【解析】(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜,所以可以类比点C 的坐标是(2,1),它表示的意义是放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示的意义是放置2个胡萝卜、2棵青菜;点E 的坐标是(3,3),它表示的意义是放置3个胡萝卜、3棵青菜;点F 的坐标是(3,2),它表示的意义是放置3个胡萝卜、2棵青菜. (2)若兔子走①A →C →D →B ,则可以吃到的胡萝卜数量是:3+2+2+2=9(个),吃到的青菜数量是:1+1+2+3=7(棵);走②A →F →D →B ,则可以吃到的胡萝卜数量是:3+3+2+2=10(个),吃到的青菜数量是:1+2+2+3=8(棵);走③A →F →E →B ,则可以吃到的胡萝卜数量是:3+3+3+2=11(个),吃到的青菜数量是:1+2+3+3=9(棵);由此可知,走第③条路吃到的胡萝卜、青菜都最多. 15.【解析】(1)图中格点△A ′B ′C ′是由格点△ABC 向右平移7个单位长度得到的;(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),则格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =115151522⨯⨯+⨯⨯=, 或S △DEF =11172427131222⨯-⨯⨯-⨯⨯-⨯⨯=73144522---=.16.【解析】(1){3,1}+{1,2}={4,3}, {1,2}+{3,1}={4,3}.(2)如图所示:最后的位置仍是点B.(3){2,3}+{3,2}+{-5,-5}={0,0}.七年级下学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(120分钟120分)一、选择题(每小题3分,共30分)1.下面四个图形中,∠1=∠2一定成立的是( )2. 4的算术平方根是( )(A)2 (B)-2 (C)±3.如图,∠ADE和∠CED是( )(A)同位角 (B)内错角(C)同旁内角 (D)互为补角4.课间操时,小华、小军、小刚的位置如图,小华对小刚说:如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )(A)(5,4) (B)(4,5) (C)(3,4) (D)(4,3) 5.下列实数中,无理数是( )(A)52-(B)π6.在平面直角坐标系中,点(-1,m 2+1)一定在( ) (A)第一象限 (B)第二象限(C)第三象限 (D)第四象限7.如图,把图①中的△ABC 经过一定的变换得到图②中的△A ′B ′C ′,如果图①中△ABC 上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P ′的坐标为( )(A)(a-2,b-3) (B)(a-3,b-2) (C)(a+3,b+2)(D)(a+2,b+3)8.计算( )(A)9.如图所示,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB 等于( )(A)40° (B)75° (C)85° (D)140°10.有个数值转换器,原理如下:当输入x为64时,输出y的值是( )(A) 4 (B)二、填空题(每小题3分,共24分)11.在伦敦奥运会主体育场“伦敦碗”一侧的座位席上,5排2号记为(5,2),则3排5号记为__________.12.计算: =__________.13.12_______12.(填“>”“<”或“=”)14.已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是______.15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=________°.5的相反数是________,绝对值是________.17.如图所示,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=________.18.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来:_________.三、解答题(共66分)19.(8分) 求下列各式中的x 的值. (1)(3x+2)2=16;(2)12(2x-1)3=-4. 20.(6分)如图为一辆公交车的行驶路线,“○”表示该公交车的中途停车点,现在请你帮助小明完成对该公交车行驶路线的描述:起点站→(1,1)→…→终点站.21.(8分)已知:如图,AB ∥CD ,EF 交AB 于点G ,交CD 于点F ,FH 平分∠EFD ,交AB 于点H ,∠AGE=50°. 求∠BHF 的度数.=+,求a+b的平方根.22.(8分)已知a,b b423.(8分)如图是某体育场看台台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标相比较有什么变化?(3)如果台阶有10级,你能求出该台阶的长度和高度吗?24.(8分)证明:两条平行线的同旁内角的角平分线互相垂直.25.(10分)中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,-2)上,试写出A,B,C,D四点的坐标.26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD.如图a,点P在AB,CD外部时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图b,将点P移到AB,CD内部,以上结论是否成立?若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.七年级下学期期中数学综合测试卷详细参考答案1.【解析】选B.选项A中,∠1与∠2是邻补角,∠1+∠2=180°;选项B中,∠1与∠2是对顶角,∠1=∠2;选项C中,根据平行线的性质及邻补角的定义可知∠1+∠2=180°;选项D中,根据三角形的内、外角之间的关系可知∠2>∠1.2.【解析】选A.因为22=4故选A.3.【解析】选B.∠ADE和∠CED在被截直线内部,在截线的两侧,是内错角.4.【解析】选D.以小华的位置为坐标原点建立平面直角坐标系,可知小刚的位置为(4,3).5.【解析】选B.选项A,C,D都是有理数;选项B是无理数.6.【解析】选B.由于一个数的平方具有非负性,所以(-1,m2+1)的纵坐标一定大于0,所以点在第二象限.7.【解析】选C.观察图形可知,△ABC经过向右平移3个单位长度,再向上平移2个单位长度得到△A′B′C′,所以点P′的坐标为(a+3,b+2).8.【解析】选D.=9.【解析】选C.∵AE,DB是正南正北方向,∴BD∥AE,∵∠EAB=45°,∴∠DBA=∠EAB=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-35°-60°=85°.10.【解析】选B.由题意知,64的立方根是4,4为有理数,需再取立方根,则输出的是11.【解析】由题意知,3排5号记为(3,5).答案:(3,5)12.【解析】-8的立方根是-2.答案:-213.【解析】2=,>1,所以11 22>.答案:>14.【解析】第二象限内点的横坐标为负,纵坐标为正;由角平分线的性质可知:角平分线上的一点到角的两边距离相等,故第二象限的角平分线上的点的横、纵坐标互为相反数,且横坐标为负,纵坐标为正.由此可得:(-3+a)+(2a+9)=0,即a=-2.答案:-215.【解析】因为∠1=∠2=70°,所以a∥b,因为∠3=60°,所以∠4=∠3=60°.答案:6016.的相反数是答案:5517.【解析】如图所示,∠4=90°-∠2=90°-35°=55°.由l1∥l2得∠3=180°-∠1-∠2-∠4=180°-35°-35°-55°=55°.答案:55°18.【解析】由题意可知(5,3),(6,3),(7,3)(4,1),(4,4)对应的字母分别是S,T,U,D,Y,这个英文单词是STUDY.答案:STUDY19.【解析】(1)由平方根的意义得,3x+2=±4,解得x=-2或x=23.(2)原方程变为:(2x-1)3=-8,由立方根的意义得,2x-1=-2,解得x=12 .20.【解析】起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→终点站.21.【解析】因为AB∥CD,∠AGE=50°.所以∠EFC=50°,所以∠EFD=130°,因为FH平分∠EFD,所以∠HFD=12∠EFD=65°,所以∠BHF=180°-65°=115°.22.【解析】由于a-5≥0,∴a≥5,同理10-2a≥0,∴a≤5,∴a=5.当a=5时,b+4=0,∴b=-4,∴a+b=5-4=1.∴a+b的平方根为±1.23.【解析】(1)以A点为原点,水平向右为x轴正方向,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.24.【解析】如图所示,直线a,b被直线c所截,且a∥b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:因为a∥b,所以∠CAE+∠ACF=180°.因为直线AB平分∠CAE,直线CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.∠1+∠2=12∠CAE+12∠ACF=90°,所以AB⊥CD.25.【解析】(1)如图(2)A(3,-1),B(2,0),C(6,2),D(7,-1)26.【解析】(1)不成立,结论是∠BPD=∠B+∠D. 延长BP交CD于点E,因为AB∥CD,所以∠B=∠BED.又∠BPD=∠BED+∠D,所以∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.又因为∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°. 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.七年级数学下册第八章《二元一次方程组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.二元一次方程组x y 4x y 2,-=⎧⎨+=⎩的解是( ) x 3(A)y 7=⎧⎨=-⎩ x 1(B)y 1=⎧⎨=⎩ x 7(C)y 3=⎧⎨=⎩ x 3(D)y 1=⎧⎨=-⎩2.方程ax-y=3的解是x 1y 2,,=⎧⎨=⎩则a 的取值是( ) (A)5 (B)-5 (C)2 (D)13.解方程组3x y z 42x 3y z 12x y 2z 3,①,②③-+=⎧⎪+-=⎨⎪+-=⎩以下解法中不正确的是( )(A)由①、②消去z,再由①、③消去z(B)由①、②消去z,再由②、③消去z(C)由①、③消去y,再由①、②消去y(D)由①、②消去z,再由①、③消去y4.由方程组2x m 1y 3m,+=⎧⎨-=⎩可得出x 与y 的关系是( )(A)2x+y=4(B)2x-y=4 (C)2x+y=-4 (D)2x-y=-4 5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )x y 50(A)6(x y)320,+=⎧⎨+=⎩ x y 50(B)6x 10y 320,+=⎧⎨+=⎩ x y 50(C)6x y 320,+=⎧⎨+=⎩ x y 50(D)10x 6y 320,+=⎧⎨+=⎩6.我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是( )(A)鸡24只,兔11只(B)鸡23只,兔12只 (C)鸡11只,兔24只 (D)鸡12只,兔23只7.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( )(A)6种 (B)5种 (C)4种 (D)3种二、填空题(每小题5分,共25分)8.方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为_____________.9.已知x 1y 2,=⎧⎨=⎩是关于x,y 的二元一次方程组2ax by 3ax by 6,-=⎧⎨+=⎩的解,则a+b=_________. 10.已知-2x m-1y 3和12x n y m+n 是同类项,则(n-m)2 012=________. 11.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需________元.12.三轮摩托车的轮胎安装在前轮上行驶12 000千米后报废,安装在左后轮和右后轮则分别只能行驶7 500千米和5 000千米.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3个轮胎最多可行驶_________千米.三、解答题(共47分)13.(12分)(1)解方程组:3x2y5,x3y9;-=⎧⎨+=⎩(2)解方程组x y8,3x y12.-=⎧⎨+=⎩14.(10分)若方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩求(a+b)2-(a-b)(a+b).15.(12分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳:75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少?16.(13分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A ,B 两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型盒子?多少个B 型盒子?(1)根据题意,甲和乙两同学分别列出的方程组如下:甲:x 2y 140,4x 3y 360;+=⎧⎨+=⎩乙x y 140,34x y 3602+=⎧⎪⎨+=⎪⎩:, 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义:甲:x 表示_________,y 表示;__________乙:x 表示_________,y 表示____________;(2)求出做成的A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)?七年级数学下册第八章《二元一次方程组》单元综合测试卷详细参考答案1.【解析】选D.x y 4,(1)x y 2,(2)-=⎧⎨+=⎩ (1)+(2)得,2x=6, 解得,x=3,代入(1)得,3-y=4,y=-1,故原方程组的解是x 3,y 1.=⎧⎨=-⎩2.【解析】选A.把x 1,y 2=⎧⎨=⎩代入方程ax-y=3,得a-2=3,解得a=5.3.【解析】选D.因为每个方程中均含有三个未知数,所以两次所消去的未知数必须相同,才能得到二元一次方程组,而选项D 中两次所消去的未知数不同,不能得到二元一次方程组,是错误的.4.【解析】选A.由2x+m=1,得m=1-2x ;由y-3=m ,得m=y-3,∴1-2x=y-3,即2x+y=4.5.【解析】选B.由题意得,x y 50,6x 10y 320.+=⎧⎨+=⎩6.【解析】选B.设鸡有x 只,兔有y 只,根据题意得x y 35,2x 4y 94,+=⎧⎨+=⎩解得x 23,y 12,=⎧⎨=⎩即有鸡23只,兔12只. 7.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人, 则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意.故学生分组方案有5种.故选B.8.【解析】两方程相加得5x=5,解得x=1,把x=1代入3x+y=3得3×1+y=3,解得y=0,所以方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为x 1,y 0.=⎧⎨=⎩答案:x 1y 0=⎧⎨=⎩9.【解析】把x 1y 2,=⎧⎨=⎩代入方程组2ax by 3ax by 6,-=⎧⎨+=⎩得2a 2b 3a 2b 6,,-=⎧⎨+=⎩解方程组得a 33b ,2,=⎧⎪⎨=⎪⎩代入a+b=92. 答案:9210.【解析】由同类项的概念得m 1n,m n 3.-=⎧⎨+=⎩解得m 2,n 1.=⎧⎨=⎩把m 2,n 1=⎧⎨=⎩代入(n-m)2 012得(1-2)2 012=1.答案:111.【解析】设一个单人间需要x 元,一个双人间需要y 元.根据题意得3x 6y 1 020,x 5y 700,①②+=⎧⎨+=⎩化简①得:x+2y=340③,②-③得:3y=360,y=120,把y=120代入③得:x=100,所以5(x+y)=1 100.答案:1 10012.【解析】三轮摩托车每行驶1千米,前胎、左后胎和右后胎分别损耗112 000,17 500和15 000,所以3个轮胎最多行驶3÷111()12 0007 500 5 000++=7 200千米. 设行驶x 千米时,把前胎和右后胎对换,再走y 千米,把左右后胎对换,再走z 千米,报废.x y z 1,12 000 5 0007 500x y z 1,7 5007 500 5 000x y z 1.5 00012 00012 000⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解得4x 3 428,73y 3 171,7z 600.⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩x+y+z=7 200. ∴行驶43 4287千米时,把前胎和右后胎对换,再走33 1717千米,把左右后胎对换,再走600千米,报废.答案:7 20013.【解析】(1)3x2y5, x3y9,①②-=⎧⎨+=⎩②×3-①,得11y=22,y=2;将y=2代入②,得x+6=9,x=3.∴方程组的解为x3, y 2.=⎧⎨=⎩(2)x y8, 3x y12,①②-=⎧⎨+=⎩①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8, 解得y=-3,所以方程组的解是x5, y 3.=⎧⎨=-⎩14.【解析】∵方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩∴a1b,1b a,+=⎧⎨-=⎩解得a0,b1,=⎧⎨=⎩所以(a+b)2-(a-b)(a+b)=(0+1)2-(0-1)(0+1)=1+1=2.15.【解析】(1)设掷到A区和B区的得分分别为x分,y分.根据题意,得5x3y77,3x5y75.+=⎧⎨+=⎩解得x10,y9.=⎧⎨=⎩答:掷中A区一次得10分,掷中B区一次得9分.(2)由(1)可知,4x+4y=76(分).答:小明的得分是76分.16.【解析】(1)甲:x表示能做成A型盒子的个数,y表示能做成B型盒子的个数.乙:x表示做一个A型盒子用正方形纸板的张数,y表示做一个B型盒子用正方形纸板的张数.(2)解方程组x2y140,4x3y360+=⎧⎨+=⎩得x60,y40.=⎧⎨=⎩答:做成的A型盒子有60个,做成的B型盒子有40个.七年级数学下册第九章《不等式与不等式组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列各数中,是不等式2x-3>0的解是( )(A)-1 (B)0 (C)-2 (D)22.如果a >b ,那么下列不等式不成立的是( )(A)a-5>b-5 (B)-5a >-5b (C)a b55> (D)-5a <-5b3.不等式-2x <4的解集是( )(A)x >-2 (B)x <-2(C)x >2 (D)x <24.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )x 2(A)x 1>⎧⎨≤-⎩x 2(B)x 1<>⎧⎨-⎩x 2(C)x 1<⎧⎨≥-⎩x 2(D)x 1<⎧⎨≤-⎩5.不等式组2x 4x, x 24x 1 ≤+⎧⎨+-⎩①<②的正整数解有( )(A)1个 (B)2个 (C)3个 (D)4个6.下列说法中,错误的是( )(A)不等式x <2的正整数解有一个(B)-2是不等式2x-1<0的一个解(C)不等式-3x >9的解集是x >-3。
人教版七年级数学下册各单元测试题及答案----
123(第三题)AB CD1234(第2题)12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A BCDE(第10题)(第14题)A B M1A BCD EFGH第13题A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
新人教版七年级数学下册单元测验卷及答案全册
新人教版七年级数学下册单元测验卷及答案全册第一单元测验卷题目一1. 计算:$48 \div 6 = $ __________。
2. 如果一个电影票售价为30元,你用100元买了几张电影票?3. 一桶水有15升,倒出3升后,还剩多少升水?4. 用一个相同的正方形卡片贴满一个边长为6cm的正方形区域,需要多少个卡片?5. 将1200秒换算成分钟,是__________分钟。
答案一1. 82. 3张3. 12升4. 36个5. 20分钟第二单元测验卷题目二1. 1000克等于__________千克。
2. 一个木棍长4米1分米,换算成厘米是多少?3. 一个长方形花坛的长是8米, 宽是5米,面积是多少平方米?4. 一辆汽车每小时行驶75千米,行驶9个小时能够行驶多远?5. 半斤是__________克。
答案二1. 12. 401厘米3. 40平方米4. 675千米5. 250克第三单元测验卷题目三1. 计算:$ \frac{4}{9} \times 27 = $ __________。
2. 如果一包牛奶有200毫升,而你喝了一半,你喝了多少毫升?3. 一个圆形蛋糕的直径为8厘米,它的周长约为多少厘米?(取$\pi$近似值为3.14)4. 如果一个正方形图案重复排列,每个正方形边长为3厘米,排成2行5列,需要多少个正方形?5. 张三按每分钟4道题的速度做数学题,他做一个20道题的试卷需要多少分钟?答案三1. 122. 100毫升3. 约25厘米4. 10个5. 5分钟第四单元测验卷题目四1. 两个数的和是35,较大的数是15,求较小的数。
2. 一个单价为2元的零食袋子里有14个零食,你用10元可以买几袋零食?3. 已知一个长方形的面积是36平方米,长比宽大2倍,长是多少米?4. 一辆自行车每小时骑行8千米,骑行6个小时后,计算骑行的总路程。
5. 达标考试需要得分90分,已知小明得了80分,还差多少分才能达标?答案四1. 较小的数是202. 5袋零食3. 长是6米4. 总路程为48千米5. 还差10分。
人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(
)
D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(
)
A. 2 个
9. 81的平方根是
。
10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =
。
12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A
2022-2023学年全国初中七年级下数学人教版单元测试(含答案解析)091710
2022-2023学年全国初中七年级下数学人教版单元测试考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列计算正确的是( )A.B.C.D.2. 已知某新型感冒病毒的直径约为米,将用科学记数法表示为( )A.B.C.D.3. 下列说法正确的是( )A.的次数是B.的系数是C.的系数是D.是单项式4. 若,,则的值为( )A.B.C.D.5. 李老师给同学们出了一道单项式与多项式相乘的题目:,3a −2a =a2a ⋅3a =6a⋅=a 2a 3a 6(3a =6)2a 20.0000007330.0000007337.33×10−67.33×10−77.33×1067.33×1072πx 233xy23x 01a −b =3−=12a 2b 2a +b 48123−3(2x−[]+1)=−6+6y−3x 2x 3x 2x 2那么“”里应当是 A.B.C.D.6. 若,则的值为( )A.B.C.D.7. 下列计算正确的是( )A.B.C.D.8. 从边长为的正方形中剪掉一个边长为的正方形如图所示,然后将剩余部分拼成一个长方形如图所示根据图形的变化过程,写出的一个正确的等式是( )图图A.B.C.D.9. 若且,则代数式的值等于( )A.[]()−y−2y2y2xy=x,=y 102a 10b 104a+2b xyyx 2x 2y 2xy 2x+3=4x 2x 3=−4(a −2b)2a 2b 2−6÷2=−3a 6a 2a 3(−a +2)(−a −2)=−4a 2ab (1)(2).12=−2ab +(a −b)2a 2b 2a(a −b)=−aba 2b(a −b)=ab −b 2−=(a +b)(a −b)a 2b 2x−y =3xy =1(1+x)(1−y)5B.C.D.10. 如果,,,那么,,三数的大小为( )A.B.C.D.二、 填空题 (本题共计 13 小题 ,共计44分 )11. (3分) ________.12. (3分) 计算:________.13. (3分) 已知,,则的值________.14. (3分) 若则________.15. (3分) 已知_______.16. (3分) 计算的结果是________.17. (3分) 已知=,=,则=________.18. (3分) 若是关于的完全平方式,则________.19. (4分) 若是一个完全平方式,则常数________.20. (4分) 若关于的二次三项式是一个完全平方式,则________.−53−3a =−3−2b =(−13)−2c =(−12)0a b c a <c <bc <b <ac <a <bb <c <a(−y)⋅(−2xy+)=12x 215x 213⋅=(−)232020()322021+=39x 2y 2x−y =3(x+y)2=3,=8,2m 4n =23m+2n−1(−2x)÷(x)=x 312(a −2b +3c)2x−y 2x+y −4−x 2y 2+2(m+3)x+9x 2x m=−2(m−3)x+9x 2m=x +ax+16x 2a =21. (4分) 的个位数字是________.22. (4分) 若,且,则________.23. (4分) 因式分解:=________.三、 解答题 (本题共计 8 小题 ,共计75分 )24. (9分) 计算:.25. (9分) 先化简,再求值:,其中.26. (9分) 若,求的值.27. (9分) 已知:=,求代数式的值. 28.(9分) 如果=,那么为的劳格数,记为=,由定义可知:=与=所表示的、两个量之间的同一关系.(1)根据劳格数的定义,填空:=________,=________;(2)劳格数有如下运算性质:若、为正数,则=,=.根据运算性质,填空:________(为正数),若=,则=________,=________,=________;(3)如表中与数对应的劳格数有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.29.(10分) 已知,.求的值;求的值.30. (10分) 已知,,求代数式的值:. 31.(10分) 【操作】填空:________;(2+1)(+1)(+1)⋅⋯⋅(+1)+12224264−=10m 2n 2m−n =2m+n =−3+3x x 2(+|1−|−tan 14)−13–√27−−√30∘(2a −b)(b +2a)−(b −2a)2a =−2,b =−12−a −5x+2=(2+ax−1)(x−b)x 3x 2x 2a +b (x−1)(x+3)a +bx+c x 29a −3b +c 10b n b n b d(n)10b n b d(n)b n d(10)d()10−2m n d(mn)d(m)+d(n)d()m nd(m)−d(n)=d()a 3d(a)a d(2)0.3010d(4)d(5)d(0.08)x d(x)x1.5356891227d(x)3a −b +c 2a −b a +c 1+a −b −c 3−3a −3c 4a −2b 3−b −2c 6a −3b =49(a −b)2ab =18(1)+a 2b 2(2)(a +b)2a +b =2ab =−1b ++a 12a 3a 2b 212b 3(1)(x−1)(x+1)=________;________;________;【猜想】根据上述等式的规律,猜想 _______(用含的式子表示,不用说理);【应用】请根据猜想完成下列各题(直接写出结果,不用化简)计算: ________;因式分解:________.(1)(x−1)(x+1)=(2)(x−1)(x+1)(+1)=x 2(3)(x−1)(x+1)(+1)(+1)=x 2x 4……(4)(x−1)(x+1)(+1)⋅…⋅x 2n (i)(2+1)(+1)(+1)⋅…⋅2224(+1)=232(ii)−1=x 128参考答案与试题解析2022-2023学年全国初中七年级下数学人教版单元测试一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】此题暂无解析【解答】解:、,故正确;、,故错误;、,故错误;、,故错误;故选.2.【答案】B【考点】科学记数法--表示较小的数【解析】绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.【解答】A 3a −2a =a AB 2a ⋅3a =6a 2BC ⋅=a 2a 3a 5CD (3a =9)2a 2D A 1a ×10−n 00.000000733=7.33×−7解:.故选.3.【答案】D【考点】单项式的概念的应用单项式的系数与次数【解析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:,的次数是,故此选项不合题意;,的系数是:,故此选项不合题意;,的系数是,故此选项不合题意;,根据单项式的概念可知,单独的一个数或字母也是单项式,即是单项式,符合题意.故选.4.【答案】A【考点】平方差公式【解析】利用平方差公式解答.【解答】解:,,,.故选.5.【答案】C0.000000733=7.33×10−7B A 2πx 22B 3xy 232C x 1D 1D ∵a −b =3−=12a 2b 2∴(a +b)(a −b)=3(a +b)=12∴a +b =4A【考点】单项式乘多项式【解析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:,,故选6.【答案】C【考点】幂的乘方及其应用同底数幂的乘法【解析】此题暂无解析【解答】∵,∴,故选:7.【答案】D【考点】单项式除以单项式【解析】根据合并同类项、完全平方公式、单项式除以单项式、平方差公式分别进行计算,然后判断即可.【解答】(−6+6y−3)÷(−3)x 3x 2x 2x 2=2x−2y+12x+1−(2x−2y+1)=2y C.=x,=y 102a 10b =×=(×(=104a+2b 104a 102b 102a )210b )2x 2y 2C.解:不是同类项不能合并,故不符合题意;B 、 ,故不符合题意;c 、 ,故不符合题意;D 、 ,故符合题意.故答案为:.8.【答案】D【考点】平方差公式的几何背景【解析】利用正方形的面积公式和长方形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是第二个图形的面积是则故答案为:.9.【答案】C【考点】整式的混合运算——化简求值【解析】利用多项式的乘法法则把所求式子展开,然后代入已知的式子即可求解.【解答】解:,则当,时,原式.故选.10.【答案】AA,x,3x A =−4ab +4(a −2b)2a 2b 2B −6+2=−3a 6a 2a 4C (−a +2)(−a −2)=−4a 2D D a2−b 2(a +b)(a −b)a2−=(a +b)(a −b)b 2D (1+x)(1−y)=x−y−xy+1x−y =3xy =1=3−1+1=3C【考点】有理数大小比较零指数幂、负整数指数幂【解析】根据非零的零次幂等于,负整数指数幂与正整数指数幂互为倒数,可化简各数,根据有理数的大小比较,可得答案.【解答】解:,,,.故选.二、 填空题 (本题共计 13 小题 ,共计44分 )11.【答案】【考点】整式的混合运算【解析】本题考查了整式的混合运算.【解答】解:故答案为:.12.【答案】【考点】幂的乘方与积的乘方1∵a =−=−3−219b =(−=913)−2c =(−=112)0∴a <c <b A −y+−y 110x 4x 3y 216x 2(−y)⋅(−2xy+)=12x 215x 213−y+−y 110x 4x 3y 216x 2−y+−y 110x 4x 3y 216x 232【解析】根据题意利用积的乘方即可求得结果.【解答】解:原式.故答案为:.13.【答案】【考点】完全平方公式列代数式求值【解析】先把两边平方得到,而,然后利用整体的方法计算.【解答】解: ,,即.,,,.故答案为:14.【答案】【考点】同底数幂的除法同底数幂的乘法=××(−)232020()32202032=×(−×)2332202032=×(−1)202032=323269x−y =32xy =30=+2xy+(x+y)2x 2y 2∵x−y =3∴=9(x−y)2−2xy+=9x 2y 2∵+=39x 2y 2∴39−2xy =9∴2xy =30∴=+2xy+=39+30=69(x+y)2x 2y 269.108幂的乘方与积的乘方【解析】本题考查了同底数幂的乘除法,幂的乘方运算.【解答】解:,.故答案为:.15.【答案】【考点】多项式除以单项式【解析】根据多项式除以单项式的法则计算即可.【解答】解:,.故答案为:.16.【答案】【考点】完全平方公式【解析】把看作整体,两次运用完全平方公式展开即可得出结果.【解答】解:原式∵=3,==82m 4n 22n ∴=(×÷223m+2n−1)2m 322n =×8÷233=1081082−4x 2(−2x)÷(x)x 312=2−4x 22−4x 2−4ab +4+6ac −12bc +9a 2b 2c 2(a −2b)=[(a −2b)+3c]2=+6c(a −2b)+9(a −2b)2c 2−4ab +4+6ac −12bc +9222.故答案为:.17.【答案】【考点】平方差公式【解析】由平方差公式可知:=,将已知数据代入计算即可.【解答】∵=,=,∴===.18.【答案】或【考点】完全平方式【解析】利用完全平方公式的结构特征判断即可确定出的值.【解答】解:∵是关于的完全平方式,∴,解得:或.故答案为:或.19.【答案】或【考点】完全平方公式=−4ab +4+6ac −12bc +9a 2b 2c 2−4ab +4+6ac −12bc +9a 2b 2c 2−8−x 2y 2(x−y)(x+y)x−y 2x+y −4−x 5y 2(x−y)(x+y)2×(−3)−80−6m +2(m+3)x+9x 2x m+3=±3m=0−60−660【解析】利用完全平方公式的结构特征判断即可求出的值.【解答】解:是一个完全平方式,,解得:或.故答案为:或.20.【答案】【考点】完全平方公式【解析】此题暂无解析【解答】解:∵二次三项式是完全平方式,∴.故答案为:.21.【答案】【考点】平方差公式规律型:数字的变化类【解析】本题考查了平方差公式的运用,幂的个位数的求法.【解答】解:原式m ∵−2(m−3)x+9x 2∴m−3=±3m=6060±8+ax+16x 2a=±8±86=(2−1)(2+1)(+1)(+1)⋅⋅⋅⋅⋅⋅(+1)+12224264=(−1)(+1)(+1)⋅⋅⋅⋅⋅(+1)+1222224264=(−1)(+1)⋅⋅⋅⋅⋅(+1)+12424264=⋅⋅⋅⋅⋅⋅=−1+1128;个位数按照依次循环,而,原式的个位数故答案为:22.【答案】【考点】平方差公式列代数式求值【解析】将按平方差公式展开,再将的值整体代入,即可求出的值.【解答】解:,故.故答案为:.23.【答案】【考点】因式分解-提公因式法【解析】原式提取公因式即可得到结果.【解答】原式=,三、 解答题 (本题共计 8 小题 ,共计75分 )24.=−1+12128=2128∵=2,=4,=8,=16,=32,⋅⋅⋅⋅⋅⋅,21222324252,4,8,6128=32×4∴ 6.6.5−m 2n 2m−n m+n −=(m+n)(m−n)m 2n 2=(m+n)×2=10m+n =55−3x(x−1)−3x(x−1)【答案】解:.【考点】特殊角的三角函数值零指数幂、负整数指数幂绝对值【解析】利用负整数指数幂法则,绝对值的化简,最简二次根及特殊角的三角形函数值进行计算.【解答】解:.25.【答案】解:原式.当 时,原式=.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式.(+|1−|−tan 14)−13–√27−−√30∘=4+−1−3×3–√3–√3–√3=4+−1−33–√=3–√(+|1−|−tan 14)−13–√27−−√30∘=4+−1−3×3–√3–√3–√3=4+−1−33–√=3–√=(2a −b)(2a +b)−(−4ab +4)b 2a 2=4−−+4ab −4a 2b 2b 2a 2=4ab −2b 2a =−2,b =−14×(−2)×(−1)−2×(−1)2=8−2=6=(2a −b)(2a +b)−(−4ab +4)b 2a 2=4−−+4ab −4a 2b 2b 2a 2=4ab −2b 2当 时,原式=.26.【答案】解:∵,∴,,,解得,,∴.【考点】多项式乘多项式【解析】根据多项式的乘法把等式右边展开,然后根据对应项系数相等列方程求出、的值,然后相加计算即可得解.【解答】解:∵,∴,,,解得,,∴.27.【答案】∵==,∴=、=、=,则原式===.【考点】多项式乘多项式【解析】先根据多项式乘多项式法则计算等式左边,根据题意得出、、的值,再代入计算可得.【解答】∵==,a =−2,b =−14×(−2)×(−1)−2×(−1)2=8−2=6(2+ax−1)(x−b)x 2=2−(2b −a)−(ab +1)x+b x 3x 22b −a =a b =2ab +1=5b =2a =2a +b =2+2=4a b (2+ax−1)(x−b)x 2=2−(2b −a)−(ab +1)x+b x 3x 22b −a =a b =2ab +1=5b =2a =2a +b =2+2=4(x−1)(x+3)+3x−x−3x 2+2x−3x 2a 1b 2c −39×1−3×2−39−6−30a b c (x−1)(x+3)+3x−x−3x 2+2x−3x 2∴=、=、=,则原式===.28.【答案】,,,,若,则=,=,从而表中有三个劳格数是错误的,与题设矛盾,∴=,若,则=,∴=,=,表中也有三个劳格数是错误的,与题设矛盾.∴=.∴表中只有和的值是错误的,应纠正为:==,==.【考点】反证法整式的混合运算【解析】(1)根据定义可知,和就是指的指数,据此即可求解;(2)根据==即可求得的值;(3)通过=,=,可以判断是否正确,同理以依据=,假设正确,可以求得的值,即可通过,作出判断.【解答】=,=;故答案为:,;;因为=故==,===,===;若,则=,=,从而表中有三个劳格数是错误的,与题设矛盾,∴=,a 1b 2c −39×1−3×2−39−6−301−230.60200.6990−1.0970d(3)≠2a −b d(9)2d(3)≠4a −2b d(27)3d(3)≠6a −3b d(3)2a −b d(5)≠a +c d(2)1−d(5)≠1−a −c d(8)3d(2)≠3−3a −3c d(6)d(3)+d(2)≠1+a −b −c d(5)a +c d(1.5)d(12)d(1.5)d(3)+d(5)−13a −b +c −1d(12)d(3)+2d(2)2−b −2c d(10)d()10−210d()a 3d(a ⋅a ⋅a)d(a)+d(a)+d(a)d()a 3d(a)9322733d(3)510÷2d(5)d(2)d(8)d(12)d(10)1d()10−2−21−2==3d()a 3d(a)3d(a)d(a)d(2)0.3010d(4)d(2)+d(2)0.6020d(5)d(10)−d(2)1−0.30100.6990d(0.08)d(8×)10−23d(2)+d()10−2−1.0970d(3)≠2a −b d(9)2d(3)≠4a −2b d(27)3d(3)≠6a −3b d(3)2a −b若,则=,∴=,=,表中也有三个劳格数是错误的,与题设矛盾.∴=.∴表中只有和的值是错误的,应纠正为:==,==.29.【答案】解:..【考点】列代数式求值完全平方公式【解析】此题暂无解析【解答】解:..30.【答案】解:当,时,原式.【考点】因式分解的应用整式的加减——化简求值因式分解-提公因式法因式分解-运用公式法d(5)≠a +c d(2)1−d(5)≠1−a −c d(8)3d(2)≠3−3a −3c d(6)d(3)+d(2)≠1+a −b −c d(5)a +c d(1.5)d(12)d(1.5)d(3)+d(5)−13a −b +c −1d(12)d(3)+2d(2)2−b −2c (1)+=(a −b +2ab a 2b 2)2=49+2×18=85(2)(a +b =++2ab )2a 2b 2=85+2×18=121(1)+=(a −b +2ab a 2b 2)2=49+2×18=85(2)(a +b =++2ab )2a 2b 2=85+2×18=121b ++a =ab(+2ab +)12a 3a 2b 212b 312a 2b 2=ab(a +b 12)2a +b =2ab =−1=×(−1)×=−21222【解析】本题要求代数式的值,而代数式恰好可以分解为两个已知条件,的乘积,因此可以运用整体的数学思想来解答.【解答】解:当,时,原式.31.【答案】,,【考点】平方差公式规律型:数字的变化类【解析】利用平方差公式求解即可;利用平方差公式求解即可;利用平方差公式求解即可.根据上述等式的规律,猜想,再利用猜想即可得到答案.【解答】解:.故答案为:..故答案为:..故答案为:.根据上述等式的规律,猜想 .故答案为:.【应用】请根据猜想完成下列各题(直接写出结果,不用化简)b ++a 12a 3a 2b 212b 3b ++a 12a 3a 2b 212b 3ab 12(a +b)2b ++a =ab(+2ab +)12a 3a 2b 212b 312a 2b 2=ab(a +b 12)2a +b =2ab =−1=×(−1)×=−21222−1x 2−1x 4−1x 8−1x 2n+1−1264(+1)(+1)…(+1)(x−1)x 64x 32x 2(1)(2)(3)(4)(1)(x−1)(x+1)=−1x 2−1x 2(2)(x−1)(x+1)(+1)=(−1)(+1)=x 2x 2x 2−1x 4−1x 4(3)(x−1)(x+1)(+1)(+1)x 2x 4=(−1)(+1)(+1)x 2x 2x 4=(−1)(+1)x 4x 4=−1x 8−1x 8(4)(x−1)(x+1)(+1)⋅…⋅x 2(+1)=x 2n −1x 2n+1−1x 2n+1(2+1)(+1)(+1)⋅…⋅24(+1)=32−164计算: ;因式分解:.故答案为:;.(i)(2+1)(+1)(+1)⋅…⋅2224(+1)=232−1264(ii)−1=x 128(+1)(+1)…(+1)(x+1)(x−1)x 64x 32x 2−1264(+1)(+1)…(+1)(x+1)(x−1)x 64x 32x 2。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册 第五章 平行线与相交线 单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线l 1沿AB 的方向得到直线l 2,若∠1=50°,则∠2的度数是( )A .40°B .50°C .90°D .130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .︒30B .︒20C .︒15D .︒143.如图,∠1+∠2=180°,∠3=100°则∠4等于( )A .70°B .80°C .90°D .100° 4.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1= 20°,则∠2的度数为( )A .60°B .45°C .40°D .30° 5.如图,已知直线a ∥b ,∠1=131°,则∠2等于( )A.39°B.41°C.49°D.59°6.如图,直线a ∥b ,∠1=72°,则∠2的度数是( )A.118°B.108°C.98°D.72°7.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110°8.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A .30°B .60°C .80°D .120°9.下列命题的逆命题不正确的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等11.如图。
人教版七年级数学下册各单元测试题及答案汇总
123(第三题)A B C D E (第10题)AB CD1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①② B、①③ C 、①④ D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级下册数学各单元练习题含答案
123(第三题)ABCD 1234(第2题)12345678(第4题)ab c人教版七年级下册数学各单元练习题第一章《相交线与平行线》一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )A B CDE (第10题)ABCD E F G H第13题ABCD(第7题)BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册单元测试题全套及答案含期末试题第五章检测卷一、选择题(每题3分,共30分)1.下列图形中,∠1与∠2是对顶角的是()2.如图,两条直线相交于一点O,则图中共有()对邻补角.A.2 B.3 C.4 D.5(第2题)(第3题)(第6题)3.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格4.点P为直线l外一点,点A,B,C为直线l上三点,PA=4 cm,PB=5 cm,PC=3 cm,则点P到直线l的距离()A.等于4 cm B.等于5 cm C.小于3 cm D.不大于3 cm5.命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°7.如图,将木条a绕点O旋转,使其与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°(第7题)(第8题)(第9题)(第10题)8.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73°B.56°C.68°D.146°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°10.如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是()A.α+β B.180°-α C.12(α+β) D.90°+(α+β)二、填空题(每题3分,共30分)11.把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.12.如图,在同一平面内有A,B,C,D,E五个点,过其中任意两点画直线最多可以画________条.(第12题)(第13题)(第14题)13.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F.若∠1=42°,则∠2=________.14.如图,立定跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.6米,则小明从起跳点到落脚点的距离________4.6米(填“大于”“小于”或“等于”).15.如图,在所标识的角中,∠1的同位角有________个;添加条件________________,可使a∥b(填一个条件即可).(第15题)(第16题)(第17题)16.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=________度.17.如图,有一块长为32 m、宽为24 m的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m2.18.如图,a∥b,∠1=65°,∠2=140°,则∠3的度数是________.(第18题)(第19题)(第20题) 19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.20.以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠4且∠3=∠2;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三、解答题(24题10分,25题12分,26题14分,其余每题8分,共60分)21.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?(第21题)22.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.(第22题)23.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.(第23题)24.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.(第24题)25.如图,把一张长方形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(第25题)26.(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°,所以AB∥EF().又因为AB∥CD,所以CD∥EF().所以∠CDF+∠DFE=180°().所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.(2)根据以上解答进行探索:如图②,AB∥EF,∠BDF与∠B,∠F有何数量关系?并说明理由.(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.(第26题)答案一、1.C 2.C 3.C 4.D 5.D 6.C7.B8.A9.B点拨:如图,过点B作第一条公路的平行线MN,∵AD∥BN,∴∠ABN=∠A=72°.∵CH∥AD,AD∥MN,∴CH∥MN,∴∠NBC+∠BCH=180°,∴∠NBC=180°-∠BCH=180°-153°=27°.∴∠ABC=∠ABN+∠NBC=72°+27°=99°.(第9题)10.A二、11.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 12.10 13.159° 14.大于 15.2;∠1=∠4(答案不唯一) 16.55 点拨:∵∠1=110°,纸条的两条对边互相平行,∴∠3=180°-∠1=180°-110°=70°.根据折叠的性质可知∠2=12(180°-∠3)=12(180°-70°)=55°.17.660 点拨:此题运用了转化思想,将四块草坪通过平移转化成一个长为30 m 、宽为22 m 的长方形,所以其总面积为30×22=660(m 2).18.105° 点拨:反向延长射线b 如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵a ∥b ,∴∠3=180°-∠4=180°-75°=105°.(第18题)19.140° 20.(1)(2)三、21.解:(1)如图所示,过点M ,N 分别作AB 的垂线,垂足分别为P ,Q ,则当施工车行驶到点P ,Q 处时产生的噪音分别对M ,N 两个村庄影响最大.(第21题)(2)由A 至P 时,产生的噪音对两个村庄的影响越来越大,到P 处时,对M 村庄的影响最大;由P 至Q 时,对M 村庄的影响越来越小,对N 村庄的影响越来越大,到Q 处时,对N 村庄的影响最大;由Q 至B 时,对M ,N 两个村庄的影响越来越小.点拨:本题运用了建模思想,即灵活运用数学知识解决实际问题,此题运用了垂线段最短的知识.22.解:(1)点D 及四边形ABCD 的另两条边如图所示. (2)得到的四边形A′B′C′D′如图所示.(第22题)23.解:∵AB ∥CD ,∴∠ABC =∠1=65°,∠ABD +∠BDC =180°.∵BC 平分∠ABD ,∴∠ABD =2∠ABC =130°.∴∠BDC =180°-∠ABD =50°.∴∠2=∠BDC =50°.24.解:如图,过点C 作∠ACF =∠A ,则AB ∥CF.∵∠A +∠ACD +∠D =360°,∴∠ACF +∠ACD +∠D =360°.又∵∠ACF +∠ACD +∠FCD =360°,∴∠FCD =∠D ,∴CF ∥DE ,∴AB ∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行公理的推论进行判定.(第24题)(第26题)25.解:∵AD∥BC,∴∠FED=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠FED=∠FEG,∴∠1=180°-∠FED-∠FEG=180°-2∠FED=70°,∴∠2=180°-∠1=110°.26.解:(1)同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行;两直线平行,同旁内角互补(2)∠BDF=∠B+∠F,理由如下:如图,过点D向右作DC∥AB,则∠B=∠BDC.又因为AB∥EF,所以DC∥EF,所以∠CDF=∠F.又∠BDF=∠BDC+∠CDF,所以∠BDF=∠B+∠F.(3)两个图形中,∠BDF与∠B,∠F的数量关系均为∠BDF=∠F-∠B.第六章达标检测卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.-3 D. 32.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.πD.(3)3.下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 017的值为()A.-1 B.1 C.32 017D.-32 0175.若平行四边形的一边长为2,面积为45,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a 是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是() A.①②B.①③C.①②③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为()(第7题)A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()(第8题)A.4 B.3 4C. 3D.3 29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()A.72cm2B.494cm2C.498cm2D.1472cm210.如图,数轴上A,B两点对应的实数分别为1和3,若点A关于点B的对称点为点C,则点C所对应的实数为()(第10题)A.23-1 B.1+ 3C.2+ 3 D.22+1二、填空题(每题3分,共30分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.13.估算比较大小:(1)-10________-3.2;(2)3130________5.14.计算|2-3|+2的值是________.15.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.16.若2x+7=3,(4x+3y)3=-8,则3x+y=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________. 19.若x ,y 为实数,且|x -2|+y +3=0,则(x +y)2 017的值为________.20.任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(21题16分,22题12分,23题6分,24题7分,25题9分,26题10分,共60分)21.计算:(1)(-1)2 017+16-94; (2)14+0.52-38;(3)-(-2)2+(-2)2-3-82; (4)2+|3-32|-(-5)2.22.求下列各式中未知数的值:(1)|a -2|=5; (2)4x 2=25; (3)(x -0.7)3=0.02723.已知a ,b ,c 在数轴上对应点的位置如图所示,化简:||a -||a +b +(c -a )2+||b -c . (第23题)24.若实数a ,b 互为相反数,c ,d 互为倒数,求2(a +b )+38cd 的值.25.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x -5互为相反数,求1-x 的值.26.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C 3.D 点拨:A 中49144=712;B 中-3-278=32;C 中-9无算术平方根;只有D 正确. 4.A 5.B6.C 点拨:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误. 7.C8.B 点拨:64的立方根是4,4的立方根是34.9.D 点拨:由题意可知,小正方体木块的体积为3438 cm 3,则每个小正方体木块的棱长为72 cm ,故每个小正方体木块的表面积为⎝⎛⎭⎫722×6=1472(cm 2). 10.A二、11.-6;±2 12.0 13.(1)> (2)>14.3 点拨:|2-3|+2=3-2+2= 3. 15.64 16.-117.1-6或1+6 点拨:数轴上到某个点距离为a(a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.18.7 点拨:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.19.-1点拨:∵|x-2|+y+3=0,∴|x-2|=0,y+3=0,∴x=2,y=-3.∴(x+y)2 017=[2+(-3)]2 017=(-1)2 017=-1.20.3;255三、21.解:(1)(-1)2 017+16-94=-1+4-32=32.(2)14+0.52-38=12+0.5-2=-1.(3)-(-2)2+(-2)2-3-82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.22.解:(1)由|a-2|=5,得a-2=5或a-2=- 5.当a-2=5时,a=5+2;当a-2=-5时,a=-5+2.(2)因为4x2=25,所以x2=254.所以x=±52.(3)因为(x-0.7)3=0.027,所以x-0.7=0.3.所以x=1.23.解:由数轴可知b<a<0<c,所以a+b<0,c-a>0,b-c<0.所以原式=-a-[-(a+b)]+(c -a)+[-(b-c)]=-a+a+b+c-a-b+c=-a+2c.24.解:由已知得a+b=0,cd=1,所以原式=0+38=2.25.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x+3x-5=0,所以x=4,所以1-x=1-2=-1.26.解:(1)当t=16时,d=7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d=35时,t-12=5,即t-12=25,解得t=37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第七章达标检测卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1) B.(-2,-1)C.(-4,1) D.(1,-2)(第3题)(第5题)4.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7) B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7) D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)(第6题)(第8题)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.38.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是() A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)(第10题)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 018次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 016,2) B.(-2 016,-2)C.(-2 017,-2) D.(-2 017,2)二、填空题(每题3分,共30分)11.写出平面直角坐标系中一个第三象限内点的坐标:________.12.在平面直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.(第13题)(第17题)(第19题)14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足x-2+(y+3)2=0,则点A的坐标是________.17.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP 的面积为6,则点P的坐标为________.18.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,三角形ABC是直角三角形且∠C不是直角,则满足条件的点C有________个.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,(n为自然数)的坐标为______(用n表示).那么点A4n+1(第20题)三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).(第21题)22.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).(第22题)张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x 轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,(第24题)点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.(第25题)26.如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及S四边形ABDC.(第26题)(2)在y 轴上是否存在一点Q ,连接QA ,QB ,使S △QAB =S 四边形ABDC ?若存在这样一点,求出点Q 的坐标;若不存在,试说明理由.(3)如图②,点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),给出下列结论:①∠DCP +∠BOP ∠CPO 的值不变,②∠DCP +∠CPO∠BOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.答案一、1.A 2.D3.C 点拨:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C .4.C5.C 点拨:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C .6.D 点拨:由长为3,可知A 点的横坐标为6-3=3,纵坐标与D 点相同,即A 点的坐标为(3,3).故选D .7.D 点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO ,然后运用转化思想将点的坐标转化为线段的长度,底BO =2,高为3,所以三角形ABO 的面积=12×2×3=3.8.D 点拨:由P ,Q 在图中的位置可知a <7,b <5,所以6-b >0,a -10<0,故点(6-b ,a -10)在第四象限.9.D 点拨:因为点P 到两坐标轴的距离相等,所以|2-a|=|3a +6|,所以a =-1或a =-4,当a =-1时,P 点坐标为(3,3),当a =-4时,P 点坐标为(6,-6).10.A二、11.(-1,-1)(答案不唯一) 12.(5,-2) 13.(2,4) 14.(-9,2) 15.二 16.(2,-3)17.(3,0)或(9,0) 点拨:设点P 的坐标为(x ,0),根据题意得12×4×|6-x|=6,解得x =3或9,所以点P 的坐标为(3,0)或(9,0).18.419.(2,1) 点拨:由题意知四边形BEB′D 是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D 的纵坐标相同,∴点B′的坐标为(2,1).20.(2n ,1) 点拨:由图可知n =1时,4×1+1=5,点A 5(2,1),n =2时,4×2+1=9,点A 9(4,1),n =3时,4×3+1=13,点A 13(6,1),…,所以点A 4n +1(2n ,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O 点15米处,(10°,-25)表示南偏西10°距O 点25米处.(2)如图.(第21题)22.解:(1)张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系的,图略.(2)李华同学是用方向和距离描述牡丹园的位置的.用张明同学所用的方法,描述如下:中心广场(0,0),音乐台(0,400),望春亭(-200,-100),游乐园(200,-400),南门(100,-600).23.解:(1)∵l ∥x 轴,点A ,B 都在l 上,∴m +1=-4,∴m =-5,∴A(2,-4),B(-2,-4),∴A ,B 两点间的距离为4.(2)∵l ∥x 轴,PC ⊥l ,x 轴⊥y 轴,∴PC ∥y 轴,∴C 点横坐标为-1.又点C 在l 上,∴C(-1,-4). 24.解:(1)C 1(4,-2). (2)△A 1B 1C 1如图所示.(3)如图,△AOA 1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=6.(第24题)25.解:(1)(7,7)或(1,5)或(5,1).(2)以A ,B ,C 为顶点的三角形的面积为3×3-12×3×1-12×2×2-12×1×3=4.所以,这个平行四边形的面积为4×2=8.26.解:(1)依题意,得C(0,2),D(4,2), S 四边形ABDC =AB ×OC =4×2=8.(2)存在.设点Q 到AB 的距离为h ,则S △QAB =12×AB ×h =2h ,由S △QAB =S 四边形ABDC ,得2h =8,解得h =4,∴Q 点的坐标为(0,4)或(0,-4).(3)结论①正确,如图,过P 点作PE ∥AB 交OC 于E 点,则AB ∥PE ∥CD ,∴∠DCP =∠CPE ,∠BOP =∠OPE ,∴∠DCP +∠BOP =∠CPE +∠OPE =∠CPO , ∴∠DCP +∠BOP∠CPO=1.(第26题)点拨:第(2)问易丢解,注意线段长转化为点的坐标时,要进行分类,体现了分类讨论思想的应用;第(3)问的技巧是分解图形法,把题目已知中涉及的几何条件从平面直角坐标系中分离出来,将问题转化为常见的求角度之间的数量关系来解决.第八章达标检测卷一、选择题(每题3分,共30分)1.二元一次方程x -2y =3有无数多个解,下列四组值中不是该方程的解的是( )A .⎩⎪⎨⎪⎧x =0,y =-32 B .⎩⎨⎧x =1,y =1 C .⎩⎨⎧x =3,y =0 D .⎩⎨⎧x =-1,y =-2 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=1 4.已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( )A .-1B .2C .3D .45.以⎩⎨⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的2倍少15°,设∠ABD 与∠DBC 的度数分别为x°,y°,根据题意,下列方程(第6题)组正确的是( )A .⎩⎨⎧x +y =90,x =y -15B .⎩⎨⎧x +y =90,x =2y -15C .⎩⎨⎧x +y =90,x =15-2yD .⎩⎨⎧x +y =90,x =2y +157.如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的解是( ) A .-3 B .3 C .6 D .-68.如果关于x ,y 的二元一次方程组⎩⎨⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A .34B .-47C .74D .-439.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为( )A .150,100B .125,75C .120,70D .100,15010.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A .2 015B .2 016C .2 017D .2 018(第10题)二、填空题(每题3分,共30分)11.把方程5x -2y +12=0写成用含x 的代数式表示y 的形式为________.12.已知(n -1)x |n|-2y m -2 018=0是关于x ,y 的二元一次方程,则n m =________. 13.方程组⎩⎨⎧x +y =12,y =2的解为________.14.在△ABC 中,∠A -∠B =20°,∠A +∠B =140°,则∠A =________,∠C =________. 15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.16.定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm .设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.(第17题)(第20题)18.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.19.若x ,y 是方程组⎩⎨⎧3y +2x =100-2a ,3y -2x =20的解,且x ,y ,a 都是正整数.①当a ≤6时,方程组的解是________;②满足条件的所有解的个数是________.20.如图①所示,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②所示,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.三、解答题(21题12分,25题10分,26题14分,其余每题8分,共60分) 21.解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2;(2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1; (4)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.22.已知关于x ,y 的方程组⎩⎨⎧mx +ny =7,2mx -3ny =4的解为⎩⎨⎧x =1,y =2,求m ,n 的值.23.对于x ,y 定义一种新运算“Ø”,xØy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3Ø5=15,4Ø7=18,求1Ø1的值.24.某村粮食专业队去年计划生产水稻和小麦共150 t ,实际完成了170 t .其中水稻超产15%,小麦超产10%.问:该专业队去年实际生产水稻、小麦各多少吨?25.小明和小刚同时解方程组⎩⎨⎧ax +by =26,cx +y =6.(第25题)根据小明和小刚的对话,试求a ,b ,c 的值.26.电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x分;②每完成一列加y分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:(1)通过列方程组,求x(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?答案一、1.B 2.D 3.A 4.D5.A 点拨:方程组的解为⎩⎨⎧x =32,y =12,x ,y 均为正数,所以点(x ,y)在第一象限.6.B7.B 点拨:解方程组⎩⎪⎨⎪⎧x +2y =-4,2x -y =7,得⎩⎪⎨⎪⎧x =2,y =-3.把x =2,y =-3代入y -kx +9=0,得-3-2k +9=0,解得k =3.故选B .8.B9.A 点拨:设他们每人买了x 个信封和y 张信笺.由题意得⎩⎪⎨⎪⎧y -x =50,x -y 3=50,解得⎩⎪⎨⎪⎧x =100,y =150.故选A .10.A二、11.y =52x +6 12.-113.⎩⎪⎨⎪⎧x =10,y =2 14.80°;60° 15.2 16.10 点拨:根据题中的新定义化简已知等式得⎩⎪⎨⎪⎧a +2b =5,4a +b =6.解得⎩⎪⎨⎪⎧a =1,b =2.则2*3=4a +3b =4+6=10.17.4;5 点拨:根据题意得⎩⎪⎨⎪⎧2x +3y =23,3x +2y =22,解得⎩⎪⎨⎪⎧x =4,y =5.18.5 点拨:设驴子原来所驮货物为x 袋,骡子原来所驮货物为y 袋,则依题意有⎩⎪⎨⎪⎧2(x -1)=y +1,x +1=y -1,解得⎩⎪⎨⎪⎧x =5,y =7.19.①⎩⎪⎨⎪⎧x =17,y =18 点拨:解方程组可得⎩⎨⎧x =20-a2,y =20-a 3,又x ,y ,a 均为正整数且a ≤6,所以a =6.故x =17,y =18.②6 点拨:当a =6,12,18,24,30,36时,x ,y ,a 均为正整数.20.100 点拨:根据题意得出⎩⎪⎨⎪⎧a +b =30,a -b =20,解得⎩⎪⎨⎪⎧a =25,b =5,故Ⅱ部分的面积是5×20=100.三、21.解:(1)⎩⎪⎨⎪⎧x -2y =3,①3x +y =2,②由①,得x =3+2y.③将③代入②,得9+6y +y =2, 即y =-1.将y =-1代入③,得x =3-2=1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-1.(2)⎩⎨⎧x 3-y2=6,①x -y2=9,②②-①,得23x =3,解得x =92.将x =92代入①得32-y2=6,解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y)-(x -y)=6,③ ①-③,得-3(x -y)=0,即x =y.将x =y 代入③,得3(x +x)-0=6,即x =1.所以y =1.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1.(4)⎩⎪⎨⎪⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60.③ ②-①,得3x +3y =0,④ ③-①,得24x +6y =60,⑤ ④⑤组成方程组得⎩⎪⎨⎪⎧3x +3y =0,24x +6y =60,解得⎩⎨⎧x =103,y =-103.将⎩⎨⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.22.解:将⎩⎪⎨⎪⎧x =1,y =2代入方程组得⎩⎪⎨⎪⎧m +2n =7,2m -6n =4.解得⎩⎪⎨⎪⎧m =5,n =1.23.解:由题意,得⎩⎪⎨⎪⎧3a +5b =15,4a +7b =18,解得⎩⎪⎨⎪⎧a =15,b =-6.∴1Ø1=15×1+(-6)×1=9.24.解:设计划生产水稻x t ,小麦y t ,依题意,得⎩⎪⎨⎪⎧x +y =150,15%x +10%y =170-150.解得⎩⎪⎨⎪⎧x =100,y =50. 则实际生产水稻(1+15%)×100=115(t), 实际生产小麦(1+10%)×50=55(t).所以该专业队去年实际生产水稻115 t 、小麦55 t.25.解:把⎩⎪⎨⎪⎧x =4,y =-2,⎩⎪⎨⎪⎧x =7,y =3代入方程组的第1个方程中得⎩⎪⎨⎪⎧4a -2b =26,7a +3b =26.解得⎩⎪⎨⎪⎧a =5,b =-3.再把⎩⎪⎨⎪⎧x =4,y =-2代入方程cx +y =6中,得4c +(-2)=6,所以c =2.故a =5,b =-3,c =2.26.解:(1)依题意得⎩⎪⎨⎪⎧2y -66x =634-500,5y -102x =898-500.解得⎩⎪⎨⎪⎧x =1,y =100.(2)设他一共操作了a 次,则10×100-a ×1=1 182-500,解得a =318.答:他一共操作了318次.第九章达标检测卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D .1x -3x ≥0 2.“x 的2倍与3的差不大于8”列出的不等式是( ) A .2x -3≤8 B .2x -3≥8 C .2x -3<8 D .2x -3>83.一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A .-2<x <1B .-2<x ≤1C .-2≤x <1D .-2≤x ≤14.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92 D .m >05.在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围是( ) A .-1<m <3 B .1<m <3 C .-3<m <1 D .m >-16.若关于x 的一元一次不等式组⎩⎨⎧x -2m <0,x +m >2有解,则m 的取值范围是( )A .m >-23B .m ≤23C .m >23D .m ≤-23 7.解不等式2x -12-5x +26-x ≤-1,去分母,得( )A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-1 8.方程组⎩⎨⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( )A .10B .11C .12D .1310.定义[x]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x]=x(x 为整数)B .0≤x -[x]<1C .[x +y]≤[x]+[y]D .[n +x]=n +[x](n 为整数)二、填空题(每题3分,共30分)11.下列数学表达式中:①a 2≥0;②5p -6q <0;③x -6=1;④7x +8y ;⑤-1<0;⑥x ≠3.其中是不等式的是________.(填序号)12.如图是某机器零件的设计图纸,用不等式表示零件长度的合格尺寸,则长度l 的取值范围是______________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a -1________2b-1.15.不等式组-3≤2x -13<5的解集是____________. 16.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.17.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字购买了________支.18.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b)2 019=________.19.如果不等式组⎩⎨⎧4x -a ≥0,3x -b <0的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有________个.20.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是________.(第20题)三、解答题(22~24题每题8分,其余每题12分,共60分)21.解下列不等式或不等式组,并把它们的解集在数轴上表示出来.(1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x>2(2x -1).②22.已知关于x ,y 的方程组⎩⎨⎧x +2y =1,x -2y =m.(1)求这个方程组的解;(2)当m 取何值时,这个方程组的解x 大于1,y 不小于-1.23.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m-11的值.24.对x ,y 定义一种新运算T ,规定:T(x ,y)=ax +by2x +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a ×0+b ×12×0+1=b.已知T(1,-1)=-2,T(4,2)=1.(1)求a ,b 的值;(2)若关于m 的不等式组⎩⎨⎧T (2m ,5-4m )≤4,T (m ,3-2m )>p 恰好有3个整数解,求实数p 的取值范围.25.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n 棵.设购买甲种树苗x 棵,(1)当n=500时,①根据信息填表(用含x的式子表示);树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n 的最大值.(第25题)26.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?。