西方逻辑史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西方逻辑史
主要指形式逻辑和归纳逻辑在西方孕育、产生和发展的历史。它大致分为4个时期:①古希腊罗马时期的逻辑;②欧洲中世纪时期的逻辑;③自文艺复兴开始的近代时期的逻辑;
④现代时期的逻辑。
主要指形式逻辑和归纳逻辑在西方孕育、产生和发展的历史。它大致分为4个时期:①古希腊罗马时期的逻辑;②欧洲中世纪时期的逻辑;③自文艺复兴开始的近代时期的逻辑;
④现代时期的逻辑。
古希腊罗马时期的逻辑古希腊逻辑的产生是西方逻辑史的开端。早在亚里士多德之前,古希腊学者已经开始探讨逻辑问题。当时,希腊民主政治使得在政治上和法律上的公开辩论成为风气,按照一定的逻辑规则辩论的习惯已经形成。另一方面,由于古代希腊的生产和航海的发展,产生和发展了数学、天文学、动物学等科学门类,其中几何学尤为发达。毕达哥拉学派(见毕达哥拉和毕达哥拉学派)用归谬法证明了正方形的对角线与其一边即匇与1的不可公度性,提出了著名的毕达哥拉定理。论辩术、数学和自然科学的发展对逻辑学的产生具有决定性的影响。这一时期有不少哲学家,如爱利亚的芝诺、苏格拉底和柏拉图等,很重视逻辑论证和反驳的作用,对古代逻辑的形成和发展作出了一定的贡献。芝诺为了维护他的老师巴门尼德关于存在是一的一元论,从世界是多元的这一相反的假说引出荒谬的推断,以此证明相反的假说不能成立。芝诺所采用的方法称为归于不可能的方法或归谬法。他还用这种方法来论证他提出的几个疑难问题,如“飞矢不动”、“阿基里斯追不上乌龟”等。他证明“飞矢不动”的方法是假定箭在移动,在任何特定的时刻都占有特定的空间。这样一来,如果箭占有空间,那么它在这个位置上是不动的;既然箭在它“飞”的每一时刻都不动,所以它总是不动的。芝诺在西方逻辑史上最早应用归谬法,亚里士多德称他为论辩术的发明者。柏拉图的老师苏格拉底也使用归谬法来反驳对方,他用这种方法为伦理概念如美德、正义、勇敢等下定义。柏拉图的《对话录》中详尽论述了论辩的方法,如归谬法、包含有反驳的论证方法、寻找定义的方法等。他认为单独的名词或动词不能表达命题,同时他还区别了“是”的两种涵义,即“A是B”可表达“A具有属性B”和“A与B同一”。
古希腊逻辑在亚里士多德那里达到了最高的成就。亚里士多德集前人逻辑思想之大成,建立了系统的完整的形式逻辑体系,从而奠定了西方逻辑发展的传统方向。他的逻辑学说主要体现在《工具论》一书中,他所提出的直言三段论学说是其逻辑中最重要的部分。他根据中项和端项的3种排列方式把三段论分成3个格:①A述说C,而C述说B;②C分别述说A和B;③A和B分别述说C。亚里士多德三段论有以下几个特点:①不用单称命题作前提;
②前提与结论之间用“如果……则”联系,它表示了蕴涵关系,而不同于后来用“因为……所以”表示的前提与结论之间的推论关系;③亚里士多德在讨论三段论时,很少举具体例子,一般使用包含变项的表达式。他通常不使用“所有B是A”,而是说“A述说所有B”或“A属于所有B”。他常用的三段论形式是“如果R属于所有S,并且P属于有些S,则P属于有些R”等;④他从第1格的三段论演绎出第2格和第3格的三段论。亚里士多德是逻辑史上第一个演绎系统的创始人。还在逻辑史上第一次提出了公理方法的理论,认为一门科学是一个命题系列,是一些真的语句,它们可以包括两个部分。其中,第一部分包含一些基本命题或公理,这些特定的命题既不能证明,也不需要证明就确定是真的;第二部分包含一些命题或定理,它们只有靠公理的真才能证明是真的,在证明中需要应用规则。除直言三段论外,亚里士多德还提出了复杂的模态三段论理论(见模态逻辑),并制定了有关模态三段论的规则,例如,两前
提中一为必然一为实然的三段论,第1格的规则是:如果大前提是必然的,则结论是必然的。根据这一规则,以下形式就是正确的:“如果A必然属于所有B并且B属于所有C,则A必然属于所有C”。亚里士多德还确立了一些非三段论的规则。
继亚里士多德之后,对古希腊逻辑作出了较大贡献的是亚里士多德的学生泰奥弗拉斯多,其主要贡献表现在:①对亚里士多德的三段论学说作了补充,明确地为第1格增补了5个式,实际上就是第4格的5个式。例如,“所有B是A,所有C是B,所以,有的A是C”,把两个前提对调一下,就是第4格的AAI。②建立了与亚里士多德不同的模态逻辑。③提出了假言三段论,为麦加拉-斯多阿学派的命题逻辑打下了基础。
麦加拉学派和斯多阿学派由于一起参与创建命题逻辑,因而在逻辑史上合称麦加拉-斯多阿学派逻辑。麦加拉学派是麦加拉的欧几里得所建立的,他的继承者公元前4世纪的欧布里得,由于发现“说谎者”悖论而著名。后来在逻辑史上有名的麦加拉学者还有泰奥多罗及其学生费罗。泰奥多罗试图把必然、可能等模态概念与表示过去、现在、将来的时态概念联系起来。费罗则最早对条件命题作了真值函项的解释。麦加拉学派到公元前3世纪便不再存在了,其逻辑学说为斯多阿学派所继承和发展,斯多阿学派的创建者基底恩的芝诺是泰奥多罗的学生,但他并不是具有创造性的逻辑学家。直到该学派的第二位创建者、公元前3世纪的克里西普斯,才把麦加拉学派的逻辑思想加以发展和完成。克里西普斯提出了5个“不可证式”:①如果第一那么第二;第一;所以第二。②如果第一那么第二;并非第二;所以并非第一。③并非既是第一又是第二;第一;所以并非第二。④或者第一或者第二;第一;所以并非第二。⑤或者第一或者第二;并非第二;所以第一。他认为,按照一定的规则,就可以从这5个式导出多种多样的推理模式。
西方逻辑思想的发展,在从古希腊到中世纪的转变过程中,未取得重大的进展,大多数逻辑学家的工作主要是翻译和注释亚里士多德和斯多阿学派的逻辑。其中比较出名的逻辑学家是古罗马的波爱修。他将亚里士多德的逻辑著作译成拉丁文并作了注释,创造了一套拉丁语逻辑词汇。他的主要贡献是对假言推理作了充分的论述,发展了斯多阿学派的命题逻辑。这些工作对中世纪逻辑产生了很大影响。
欧洲中世纪逻辑欧洲在中世纪时期,占统治地位的哲学是为教会服务的经院哲学。经院哲学中有各种派别,它们之间所存在的斗争主要是唯名论与实在论关于共相性质问题的争论,这对逻辑的发展具有促进作用。中世纪的统治者适应当时的需要把逻辑列为大学的课程,以便使学生受到逻辑训练,在毕业后能从事法律和神学方面的工作。另一方面,古希腊罗马的逻辑成果通过波爱修等人传到了中世纪。中世纪逻辑就是在这样的背景下逐步完善起来的。西方逻辑思想在中世纪的发展可分为3个阶段:①过渡阶段,即中世纪前期;②创造阶段,约从12世纪中期至13世纪末;③完善阶段,从14世纪至中世纪末。对中世纪逻辑有较大贡献的逻辑学家主要有:P.阿贝拉尔、西班牙的彼得、奥康的威廉、J.布里丹、威尼斯的保罗等。
欧洲中世纪逻辑的主要成果有:①区别了范畴词和非范畴词,这与现代逻辑所作的非逻辑词项同逻辑常项的区别是类似的。②对命题中的词项的特性作了分析。例如,在“人是一个名词”这个命题中,词项“人”指称自身,它具有实质指代;在“人是有死的”这个命题中,“人”代表它所指称的语言外的对象,它具有形式指代。③对说谎者悖论作了深刻的研究,发现了说谎者悖论的许多新形式。例如:
(a):(b)是真的,
(b):(a)是假的。
(a)是真的还是假的呢?如果(a)真,则(a)假;如果(a)假,则(a)真。这就产生了悖论。中世纪逻辑学家探讨了解决这些悖论的方法,这些方法对逻辑语义学的发展具有重要意义。④发展了模态逻辑,提出了模态逻辑的一些新原理。例如: