X射线衍射方法的应用

合集下载

X射线衍射原理及应用

X射线衍射原理及应用

X射线衍射原理及应用X射线衍射是一种利用X射线与晶体相互作用产生的衍射现象研究物质结构的方法。

它是在19世纪末和20世纪初逐渐发展起来的。

在这个过程中,麦克斯·冯·劳厄和威廉·康拉德·伦琴分别做出了重要贡献。

X射线衍射的原理是基于能量很高、波长很短的X射线通过物质时,与物质中的原子或晶体晶格相互作用,形成一些衍射现象。

这些衍射现象可以由晶体的结构参数推导出来,从而获得物质结构的信息。

1.X射线的产生:通过射线管向靶发射高速电子,产生了能量很高的X射线。

2. X射线的散射:经过Fermi–Dirac分布后,X射线通过物质时,与物质中的电子和原子核相互作用。

3.X射线的衍射:在特定的角度下,经过物质散射后的X射线互相干涉,形成衍射图样。

4.衍射图样的测量:通过衍射图样的测量,可以获得物质结构的信息,如晶格常数、晶胞参数、晶体结构等。

1.确定晶体结构:X射线衍射可以确定晶体结构的各种参数,如晶胞参数、晶格常数、原子位置等,从而帮助人们了解晶体的组成和结构。

2.分析材料成分:X射线衍射可以通过衍射图样的特征峰值,来分析物质的成分和组成。

3.研究晶体缺陷:X射线衍射可以研究晶体中的缺陷,如晶体的位错和断裂等。

通过衍射图样的变化,可以推断出晶体的缺陷类型和密度。

4.相变和晶体生长研究:X射线衍射可以研究物质的相变过程和晶体的生长机制。

通过衍射图样的变化,可以观察到相变的相应信号,并得到相变的温度和压力等参数。

5.X射线衍射也可以应用于地球科学领域,如矿石的开采、火山活动的研究等。

总之,X射线衍射是一种非常重要的物质结构研究方法,通过测量衍射图样,可以了解物质的组成和结构。

在材料科学、结晶学、地球科学等领域都有广泛的应用前景,对于人类的科学研究和工业生产都具有重要的意义。

x射线衍射仪的原理与应用

x射线衍射仪的原理与应用

X射线衍射仪的原理与应用1. 引言X射线衍射是一种重要的物理现象,通过衍射实验可以获得物质的晶体结构信息。

X射线衍射仪是一种应用广泛的仪器,用于研究晶体结构、确定样品的晶体结构以及分析晶体中的相变现象等。

2. X射线衍射的原理X射线衍射的原理基于布拉格方程,即:nλ = 2d sinθ其中,n为入射X射线的衍射次数,λ为入射X射线的波长,d为晶面的间距,θ为入射X射线与对应晶面的夹角。

当入射X射线满足布拉格条件时,经过晶体衍射后的X射线将出现干涉,形成多种衍射图样。

这些衍射图样包含了晶体结构的信息,可以通过衍射图样的分析来确定晶体的晶格常数、晶胞结构以及晶胞内原子的排列方式。

3. X射线衍射仪的组成X射线衍射仪主要由以下三部分组成: - X射线源:产生高能的X射线,常用的源包括X射线管和同步辐射源。

- 样品支架:用于固定样品,使得X射线可以照射到样品上。

- X射线探测器:用于检测经过样品衍射后的X射线,常用的探测器包括闪烁探测器、CCD探测器和闪光点探测器等。

4. X射线衍射仪的应用X射线衍射仪在科学研究和工业生产中有着广泛的应用,以下列举了一些常见的应用领域:4.1 材料科学X射线衍射仪可以用于研究材料的晶体结构以及晶体相变的过程。

通过衍射图样的分析,可以确定材料中晶胞的尺寸、晶体的晶格类型以及晶格畸变等信息。

4.2 药物研究在药物研究中,X射线衍射仪可以用于分析药物的晶体结构,确定药物分子在晶格中的排列方式。

这对于开发合成新药以及改进药物的性能都具有重要的意义。

4.3 矿物学X射线衍射仪是矿物学研究中常用的工具之一。

通过对矿物样品进行X射线衍射实验,可以确定矿物的成分和晶体结构,帮助矿石勘探和矿石加工。

4.4 金属材料分析X射线衍射仪可以通过衍射图样的分析,确定金属材料的晶体结构和晶粒尺寸等参数。

这对于金属材料的质量控制和材料性能的改进具有重要的意义。

4.5 生物化学X射线衍射也可以应用于生物化学研究中。

X射线衍射技术在材料分析中的新应用

X射线衍射技术在材料分析中的新应用

材料分析方法大作业(一)——X射线衍射技术在材料分析中的新应用班级:0836306班学号:**********姓名:***X射线衍射技术在材料分析中的新应用一、X射线衍射原理由于X射线是波长在100Å~0.01 Å之间的一种电磁辐射,常用的X射线波长约在2.5 Å~0.5 Å之间,与晶体中的原子间距(1 Å)数量级相同,因此可以用晶体作为X射线的天然衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。

当X射线沿某方向入射某一晶体时,晶体中每个原子的核外电子产生的相关波彼此发生干涉。

当每两个相邻波源在某一方向的光程差(△)等于波长的整数倍时,它们的波峰与波峰将互相叠加而得到最大程度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。

在警惕的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。

晶体结构= 点阵+ 结构基元,点阵又包括直线点阵,平面点阵和空间点阵。

空间点阵可以看成是互不平行的三组直线点阵的组合,也可以看成是由互相平行且间距相等的一系列平面点阵所组成。

劳厄和布拉格就是分别从这两个角度出发,研究衍射方向与晶胞参数之间的关系,从而提出了著名的劳厄方程和布拉格方程。

布拉格父子在劳厄实验的基础上,导出了著名的布拉格定律:2d sinθ= nλ其中,θ称为布拉格角或半衍射角,这一定律表明了X射线在晶体中产生衍射的条件。

晶体X射线衍射实验的成功,一方面揭示了X射线的本质,说明它和普通光波一样,都是一种电磁波,只是它的波长较短而已;另一方面证实了晶体构造的点阵理论,解决了自然科学中的两个重大课题,更重要的是劳厄、布拉格等人的发现打开了进人物质微观世界的大门,提供了直接分析晶体微观结构的锐利武器,开辟了晶体结构X射线分析的新领域,奠定了X射线衍射学的基础。

第二章X射线衍射分析方法及应用

第二章X射线衍射分析方法及应用
➢这是什么化学物质? ➢是一种物质的单相? ➢还是多种晶相的混合物? ➢粉末X-射线衍射可以
告诉你答案。
第二章X射线衍射分析方法及应用
物相定性分析的基本原理:
(1)每一种物相都产生自己 特有的衍射花样,两种物相 不会给出完全相同的衍射花 样。 (2)多相试样的衍射花样是 各自相衍射花样的机械叠加 ,互不干扰。
第二章X射线衍射分析方法及应用
粉末衍射卡(Powder Diffraction File,简 称PDF) ➢PDF标准卡分为有机物和无机物两大类, ➢每张卡片记录一个物相。 ➢为说明卡片内容,可将卡片分为10个区。
第二章X射线衍射分析方法及应用
10 第二章X射线衍射分析方法及应用
PDF卡的内容分述如下: 区间la、1b、1c:低角度区(2<90°) 的
第二章X射线衍射分析方法及应用
区间6:样品来源、制备方式及化学分析数 据等,其中标出热处理、照相或扫描的温 度。
第二章X射线衍射分析方法及应用
区间7:物相的化学式和名称。 区间8:物相的矿物名。本区右上角为表示卡片 数据可靠程度的符号,其中 — 数据有较高的可靠性;
i — 数据可靠性稍差,表示资料经过指标化, 强度是估计的,准确性不如星号;
如, Diffractometer代表衍射仪法; Ref.—该区数据来源。
第二章X射线衍射分析方法及应用
区间4:物相的结晶学数据, 其中
Sys. — 晶系; S. G. — 空间群符号; a0、b0、c0 — 晶胞轴长; A、C — 轴率,A = a0/b0,C = c0/b0 、 、 — 轴角; Z — 单位晶胞内“分子”数; Dx — 计算的密度; Ref.— 该区数据来源。
最后判定存在的物相。 第二章X射线衍射分析方法及应用

x射线衍射技术的应用

x射线衍射技术的应用

x射线衍射技术的应用以X射线衍射技术的应用为标题,我们将探讨X射线衍射技术在不同领域的应用。

X射线衍射技术是一种利用X射线在物质中的相互作用进行分析和研究的方法。

该技术已经被广泛应用于材料科学、生物医学、地质学等领域,为我们的科学研究和工程实践提供了重要的支持和突破。

在材料科学领域,X射线衍射技术被用于材料的结构分析和晶体学研究。

通过研究材料的衍射图案,可以获得材料的晶体结构、晶格常数以及晶体中原子的排列方式等信息。

这些信息对于材料的性能和应用具有重要意义。

例如,在材料研发过程中,研究人员可以利用X射线衍射技术来确定新合成材料的晶体结构,从而指导进一步的材料设计和优化。

在生物医学领域,X射线衍射技术被广泛应用于蛋白质结构研究。

蛋白质是生物体中最重要的功能分子之一,其结构与功能密切相关。

通过X射线衍射技术,研究人员可以获得蛋白质的三维结构信息,进而揭示其功能机制。

这对于药物研发、疾病治疗等具有重要意义。

例如,通过研究蛋白质的结构,科学家们可以设计出更加高效的药物分子,提高药物的选择性和疗效。

在地质学领域,X射线衍射技术被广泛应用于矿物成分的分析和研究。

地球是由各种不同的矿物组成的,研究矿物的成分和结构对于地质学家来说是十分重要的。

通过X射线衍射技术,可以准确地确定矿物的成分和晶体结构,从而推断地质过程和环境的演化历史。

例如,在石油勘探中,研究人员可以利用X射线衍射技术来分析地下岩石中的矿物成分,从而判断油气的储集情况和潜在资源量。

除了上述领域,X射线衍射技术还被应用于材料缺陷分析、晶体生长研究、纳米材料表征等领域。

例如,在材料缺陷分析中,通过研究材料的X射线衍射图案,可以检测和定量分析材料中的晶体缺陷,如晶格畸变、晶界、位错等。

这对于材料性能的改进和缺陷修复具有重要意义。

在晶体生长研究中,X射线衍射技术可以用于监测晶体生长动态过程,了解晶体生长机制和控制晶体质量。

在纳米材料表征中,X射线衍射技术可以用于研究纳米材料的晶体结构和尺寸分布,揭示其特殊的物理和化学性质。

多晶材料x射线衍射 实验原理 方法与应用

多晶材料x射线衍射 实验原理 方法与应用

多晶材料x射线衍射实验原理方法与应用多晶材料x射线衍射是一种非常重要的材料结构表征方法,可以用来确定晶体结构、晶格常数、晶面间距、晶胞参数等信息。

本文将介绍多晶材料x射线衍射的实验原理、方法和应用。

实验原理
多晶材料x射线衍射法是利用x射线与晶体中的原子作用而产生衍射现象的一种方法。

当x射线入射晶体后,会与晶体中的原子发生作用,形成散射波,这些散射波在晶体中的原子排列方式的影响下,会发生干涉,最终形成衍射花样。

通过分析衍射花样,可以获得晶体的结构信息。

方法
多晶材料x射线衍射的实验步骤主要包括样品制备、x射线衍射仪调试、数据采集和数据处理等环节。

样品制备:样品需要磨成粉末或者切成薄片,以便x射线可以穿透并与其发生作用。

x射线衍射仪调试:确定适当的x射线波长、角度等参数,保证x射线能够穿透样品并产生足够的衍射强度。

数据采集:将x射线衍射仪测得的衍射花样数据记录下来,通常是以衍射强度随衍射角度的变化曲线的形式呈现。

数据处理:通过计算和分析衍射曲线,可以得到晶体的结构信息。

应用
多晶材料x射线衍射法在材料科学、地质学、化学等领域得到了
广泛应用。

其中,材料科学领域是其最主要的应用领域之一。

该方法可以用于研究材料的结构、相变、缺陷、应力等问题,对于新材料的设计、合成和改进具有重要意义。

此外,多晶材料x射线衍射法也可以用于分析矿物、岩石等地质样品的结构特征,为地质学研究提供了有力的工具。

X射线衍射在化学各领域中的应用

X射线衍射在化学各领域中的应用

X 射线衍射在化学各领域中的应用化学工程学院 应用化学 王圣自1896年X 射线被发现以来,可利用X 射线分辨的物质系统越来越复杂。

从简单物质系统到复杂的生物大分子,X 射线已经为我们提供了很多关于物质静态结构的信息。

此外,在各种测量方法中,X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X 射线衍射分析成为研究晶体最方便、最重要的手段。

本文主要介绍X 射线衍射在化学各领域的应用。

1、X 射线衍射原理1912年劳埃等人根据理论预见,并用实验证实了X 射线与晶体相遇时能发生衍射现象,证明了X 射线具有电磁波的性质,成为X 射线衍射学的第一个里程碑。

当一束单色X 射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X 射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X 射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。

这就是X 射线衍射的基本原理 。

衍射线空间方位与晶体结构的关系可用布拉格方程表示:2sin d n θλ=式中d 为晶面距离;n 为反射级数;θ为掠射角;λ为X 射线的波长。

布拉格方程是X 射线衍射分析的根本依据。

2、X 射线衍射方法研究晶体材料,X 射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。

所以X 射线衍射法被认为是研究固体最有效的工具。

在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

3、X 射线衍射分析的应用3.1 物相分析X 射线衍射主要用于:⑴确定材料的组成元素及其含量;确定这些元素的存在状态,即是什么物相;⑵成份分析:化学分析、光谱分析、X 射线荧光分析等;⑶物相分析或结构分析:X 射线衍射分析。

x衍射在医学上的应用原理

x衍射在医学上的应用原理

X衍射在医学上的应用原理1. 引言X衍射是一种物理现象,通过X射线与物质相互作用产生的干涉和衍射效应来研究物质结构和性质。

在医学领域中,X衍射技术被广泛应用于诊断、治疗和研究等方面。

本文将介绍X衍射在医学上的应用原理。

2. X衍射在医学影像学中的应用X衍射技术被广泛应用于医学影像学,用于获得有关人体内部结构和组织的信息。

以下是一些常见的X衍射在医学影像学中的应用:•X线摄影:X线摄影是一种将X射线通过人体或物体,然后记录下通过的射线的技术。

通过对X射线的吸收能力不同的组织进行摄影,可以获得有关骨骼结构、肺部疾病等的信息。

•计算机断层扫描(CT):CT扫描结合了X衍射和计算机处理技术,可以通过多个方向的X射线摄影来获取更精确的图像。

这种技术可以提供比传统X射线摄影更详细的人体内部结构信息。

•正电子发射断层扫描(PET):PET扫描使用放射性同位素,通过测量放射性同位素在体内的分布来获得信息。

X衍射技术在PET扫描中用于定位放射性同位素的分布和活动。

3. X衍射在医学研究中的应用除了医学影像学外,X衍射技术还被广泛应用于医学研究领域,用于研究生物分子的结构和功能。

以下是一些常见的X衍射在医学研究中的应用:•蛋白质结构研究:X衍射技术可以用来确定蛋白质的分子结构,进而揭示其功能和相互作用。

通过对蛋白质晶体进行X射线衍射实验,可以得到高分辨率的蛋白质结构信息。

•药物设计:X衍射技术可以帮助研究人员了解药物与靶标之间的相互作用,从而指导药物设计和优化。

通过确定药物与靶标结合的位置和方式,研究人员可以针对性地设计新的药物。

•DNA/RNA结构研究:X衍射技术可以用来研究DNA或RNA的分子结构,从而帮助理解遗传信息的存储和传递机制。

通过对DNA或RNA晶体进行X射线衍射实验,可以揭示其结构和构象变化。

4. X衍射在放射治疗中的应用除了诊断和研究应用,X衍射技术还被广泛应用于放射治疗中,用于治疗癌症等疾病。

以下是一些常见的X衍射在放射治疗中的应用:•放射性碘治疗:放射性碘治疗是一种常见的治疗甲状腺癌的方法。

X射线衍射技术的应用研究

X射线衍射技术的应用研究

X射线衍射技术的应用研究X射线衍射技术是一种利用X射线与物质相互作用的原理来研究物质的结构和性质的技术。

自从20世纪初X射线被发现以来,X射线衍射技术在材料科学、化学、物理学以及生物学等领域都得到了广泛的应用。

本文将介绍X射线衍射技术的应用研究。

首先,X射线衍射技术在材料科学中的应用非常广泛。

通过X射线衍射技术可以确定晶体的晶体结构,进而研究晶体的性质和合成方法。

例如,通过研究金属晶体的X射线衍射图案,可以确定晶体的晶格常数、晶体结构和晶体缺陷等信息,从而了解金属材料的力学性能、热学性能和导电性能等。

此外,X射线衍射技术还可以用于研究非晶态材料的结构和动力学行为。

其次,X射线衍射技术在化学领域中也有广泛的应用。

通过测量物质的X射线衍射图案,可以确定有机分子、无机化合物等的结构和键长、键角等信息,从而帮助化学家们了解化合物的性质和反应机理。

例如,X射线衍射技术可以用来确定天然产物的结构,辅助合成药物和开发新的材料。

此外,X射线衍射技术还可以用于研究表面科学和界面科学。

通过研究材料表面的X射线衍射图案,可以了解材料表面的结构、晶粒尺寸和纳米颗粒的形貌等信息。

这对于改善材料表面的性能、提高材料的稳定性以及开发新型催化剂具有重要意义。

例如,在纳米材料领域,X射线衍射技术被广泛应用于研究纳米颗粒的晶体结构和尺寸分布。

此外,X射线衍射技术还可以用于研究生物大分子的结构和功能。

通过测量生物大分子的X射线衍射图案,可以确定生物大分子的三维结构,包括蛋白质、核酸和多肽等。

这对于研究生物大分子的功能和活性机制具有重要意义。

例如,通过X射线衍射技术可以解析蛋白质结晶的结构,帮助研究人员设计新型药物以及理解生命现象的机理。

总之,X射线衍射技术是一种重要的研究工具,在材料科学、化学、物理学和生物学等领域都有广泛的应用。

通过测量物质的X射线衍射图案,可以确定物质的结构和性质,进而帮助科学家们理解和改善材料性能,开发新型材料和药物,以及探索生命现象的机理。

X射线衍射的应用

X射线衍射的应用

X射线衍射的应用在X射线衍射的应用中,经常涉及到点阵常数的精密测定、X射线物相分析以及X射线应力的测定。

如固溶体的晶格常数随溶质的浓度而变化,可以根据晶格常数确定某溶质的含量,而且晶体的热膨胀系数以及物质的内应力都可以通过点阵常数的测定而确定。

另外,在金属材料的研究中,常常需要通过点阵常数的测定来研究相变过程、晶体缺陷等,有时甚至需要对点阵常数的精密测定。

X射线的物相分析是一项广泛且有效的分析手段,在地质矿产、耐火材料、冶金、腐蚀生成物、磨屑、工厂尘埃、环保、考古食品等行业经常有所应用,如区分物质同素异构体时,X射线的分析非常迅速,已证实Al2O3的同素异构体有14种之多。

在测定应力时,X射线具有有效的无损检测方法,照射的面积可以小到1~2mm的直径,即可以测定小区域的局部应力。

1 点阵常数的精确测定1.1传统的测量理论我们对晶体的点阵常数进行精确测定,主要还是利用X射线技术来进行测量。

在测量中所用到的最基本的公式就是晶体衍射的布拉格方程:2dsinθ=nλ其中,d为晶面指数为(hkl)的面间距,θ为衍射角,也称布拉格角度,λ为所用X射线的波长,n为衍射的发生级数,布拉格衍射方程可以确定出多级衍射情况,但是,级数越高,所得到的衍射强度越小,光谱分析越不明显,误差也就越大,所以,在点阵常数的精确测定中,真正起作用的就是级数较低的情形。

点阵常数的精确度取决于sinθ的精确度,而不是θ测量值的精确度,当θ越接近90°时,对应的测量误差△θ的△sinθ值误差越小,由此计算点阵常数也就越精确。

对于布拉格方程的微分式分析作个微分近似处理得:△d/d=△λ/λ-cotθ*△θ如果不考虑波长误差则:△d/d=-cotθ*△θ由此可见,由布拉格角度所引起误差是一个与余切函数相关的函数,显然,布拉格角度θ越小,所引起误差就越大。

从精确度角度考虑,我们所选择的布拉格角度θ处于20°~35°这样的一个范围。

第四章 X射线衍射方法的实际应用

第四章  X射线衍射方法的实际应用

X射线物相定性分析原理
• X射线物相分析是以晶体结构为基础,通过比较晶体 射线物相分析是以晶体结构为基础, 衍射花样来进行分析的。 衍射花样来进行分析的。 • 对于晶体物质中来说,各种物质都有自己特定的结 对于晶体物质中来说, 构参数(点阵类型、晶胞大小、 构参数(点阵类型、晶胞大小、晶胞中原子或分子 的数目、位置等),结构参数不同则X ),结构参数不同则 的数目、位置等),结构参数不同则X射线衍射花样 也就各不相同,所以通过比较X 也就各不相同,所以通过比较X射线衍射花样可区分 出不同的物质。 出不同的物质。 • 当多种物质同时衍射时,其衍射花样也是各种物质 当多种物质同时衍射时, 自身衍射花样的机械叠加。它们互不干扰, 自身衍射花样的机械叠加。它们互不干扰,相互独 立,逐一比较就可以在重叠的衍射花样中剥离出各 自的衍射花样,分析标定后即可鉴别出各自物相。 自的衍射花样,分析标定后即可鉴别出各自物相。
X射线物相定性分析
• 1969年起,由ASTM和英、法、加拿大等国家的 1969年起, ASTM和英、 年起 和英 有关协会组成国际机构的“ 有关协会组成国际机构的“粉末衍射标准联合 委员会” 负责卡片的搜集、校订和编辑工作, 委员会”,负责卡片的搜集、校订和编辑工作, 所以,以后的卡片成为粉末衍射卡( 所以,以后的卡片成为粉末衍射卡(the File),简称PDF ),简称PDF卡 Powder Diffraction File),简称PDF卡,或 JCPDS卡 称JCPDS卡(the Joint Committee on Powder Standarda)。 Diffraction Standarda)。
应用字母索引进行物相鉴定的 步骤
根据被测物质的衍射数据,确定各衍射线的d 1. 根据被测物质的衍射数据,确定各衍射线的d值 及其相对强度。 及其相对强度。 根据试样成分和有关工艺条件,或参考有关文献, 2. 根据试样成分和有关工艺条件,或参考有关文献, 初步确定试样可能含有的物相。 初步确定试样可能含有的物相。按照这些物相的 英文名称,从字母索引中找出它们的卡片号, 英文名称,从字母索引中找出它们的卡片号,然 后从卡片盒中找出相应的卡片。 后从卡片盒中找出相应的卡片。 将实验测得的面间距和相对强度, 3. 将实验测得的面间距和相对强度,与卡片上的值 一一对比, 一一对比,如果某张卡片的数据能与实验数据的 某一组数据吻合, 某一组数据吻合,则待分析样中含有卡片记载的 物相。同理,可将其他物相一一定出。 物相。同理,可将其他物相一一定出。

X射线和中子衍射在材料研究中的应用

X射线和中子衍射在材料研究中的应用

X射线和中子衍射在材料研究中的应用材料科学与工程是现代科学技术的重要支柱之一,而材料的研究和发展一直都是科学技术的前沿和重要基础。

在材料研究领域中,X射线和中子衍射技术被广泛应用,并且在材料领域中起着至关重要的作用。

一、X射线衍射技术X射线是一种电磁辐射,其波长通常在0.08-0.1纳米之间。

X 射线衍射是一种非常有用的工具,可以用来检测材料中的晶体结构。

在材料的晶体结构中,晶体内部的原子间距和原子位置的分布情况都可以通过X射线衍射来确定。

此外,X射线衍射还可以用来确定材料的晶格常数和晶面结构等重要参数。

X射线衍射技术不仅可以帮助研究材料的结构,还可以帮助研究材料的性能。

通过测量材料的晶体结构,可以更好地理解材料的物理性质。

例如,通过研究金属材料的晶体结构,可以预测材料的塑性和强度等性能,从而为材料的设计和制造提供更准确的指导。

二、中子衍射技术中子衍射是一种利用自然界中存在的中子进行研究的技术。

中子衍射技术与X射线衍射技术一样,也可以用来研究晶体结构和晶格常数等参数。

但是,由于中子在物质中的散射截面比X射线大得多,因此中子衍射技术能够更好地研究材料中较重的原子和氢原子等轻元素。

与X射线衍射技术相比,中子衍射技术的另一个优势是可以帮助研究材料的动态性质。

例如,通过研究材料中原子之间的运动,可以更好地了解材料的热力学和动力学性质。

此外,中子衍射技术还可以用来研究磁性材料中的磁结构,这是X射线衍射所无法实现的。

三、应用领域X射线和中子衍射技术在材料研究中有着广泛的应用领域。

例如:1. 金属材料的研究。

在金属材料制造过程中,常常需要控制材料的微观结构和相变过程等特性。

利用X射线和中子衍射技术,可以更好地掌握金属材料的制造过程和性能调控。

2. 纳米材料的研究。

随着纳米材料的广泛应用,掌握纳米材料的结构和性质变得越来越重要。

利用X射线和中子衍射技术,可以测量纳米材料的晶格常数和晶体结构等参数,从而更好地了解纳米材料的特性。

x射线多晶衍射的应用和原理

x射线多晶衍射的应用和原理

X射线多晶衍射的应用和原理1. 引言X射线多晶衍射是一种重要的物理现象,具有广泛的应用。

本文将介绍X射线多晶衍射的应用领域和基本原理。

2. 应用领域•材料分析:X射线多晶衍射可以用于研究材料的结晶结构和晶格参数,从而了解材料的性质和性能。

它在各个领域的材料研究中都有广泛应用,如金属材料、陶瓷材料、聚合物材料等。

•药物研究:X射线多晶衍射可以用于研究药物的晶体结构和药物-配体相互作用。

通过观察药物与配体的结晶结构,可以了解它们之间的相互作用机制,从而提供新药物设计和开发的依据。

•生物学研究:X射线多晶衍射可以用于研究生物大分子的结晶结构,如蛋白质、核酸等。

通过解析生物大分子的结晶结构,可以了解其功能和表达机制,为药物设计和疾病治疗提供重要参考。

•能源材料:X射线多晶衍射可用于研究能源材料的结晶特性和晶格畸变,从而了解其性能和稳定性。

例如,用于锂离子电池的电极材料和储氢材料的研究。

3. 基本原理X射线多晶衍射基于布拉格方程,即:nλ = 2d*sinθ其中,n为正整数,λ为入射X射线波长,d为晶面间距,θ为入射X射线与晶面的夹角。

当入射X射线与晶面夹角满足布拉格方程时,会出现衍射现象。

衍射图样中的衍射斑点的位置和强度可以提供关于晶体结构的信息。

实际测量中,通常使用X射线衍射仪器来进行X射线多晶衍射实验。

仪器通常包括X射线源、样品台、衍射角探测器等部分。

衍射实验过程中,X射线照射到样品上,样品中的晶体结构会将入射的X射线分散成不同角度的衍射光。

衍射光经过衍射角探测器的检测,形成衍射图样。

根据衍射图样的特征,可以通过衍射数据的分析和处理来得到晶体结构的信息,如晶格参数、晶体对称性等。

4. 结论X射线多晶衍射是一种重要的结构分析技术,在材料科学、药物研究、生物学研究和能源材料等领域有广泛应用。

通过研究X射线在晶体中的衍射现象,可以得到晶体的结构信息,为材料设计和研究提供重要参考。

X射线多晶衍射的基本原理是基于布拉格方程,通过衍射实验和数据处理,可以得到晶体的晶格参数、晶体对称性等信息。

X射线衍射分析方法在铝合金研究中的应用

X射线衍射分析方法在铝合金研究中的应用
通过X射线衍射分析,可以确定铝合 金的晶体结构,如面心立方、体心立 方或六方结构等。
相组成研究
利用X射线衍射分析可以识别铝合金中 的不同相,如α相、β相、γ相等,并确 定各相的含量和分布。
铝合金的相变和热处理过程
相变研究
通过观察不同温度下铝合金的X射线衍射图谱,可以研究其在加热或冷却过程中的相变行为,如固溶 、析出等。
热处理过程的监控
通过实时监测热处理过程中铝合金的X射线衍射图谱变化,可以了解热处理过程中各相的演变和转变 。
铝合金的力学性能和微观结构
力学性能关联
X射线衍射分析可以揭示铝合金的微观结构和晶体取向,从而关联其力学性能,如强度、韧性、硬度等。
微观结构分析
通过X射线衍射分析,可以深入了解铝合金的微观结构,如晶粒大小、晶界特征、第二相分布等,这些因素对铝 合金的性能产生重要影响。
织构和各向异性
研究铝合金的织构和各向异性,了解其在不同受 力方向上的表现,为结构设计提供依据。
X射线衍射分析技术的发展趋势和未来展望
1 2 3
高能X射线衍射技术
随着X射线源和探测器技术的发展,高能X射线衍 射技术将进一步提高分辨率和灵敏度,为铝合金 研究提供更准确的数据。
同步辐射X射线衍射技术
利用同步辐射X射线源,可以实现大范围、高角 度分辨率的X射线衍射分析,为研究复杂结构材 料提供有力支持。
X射线衍射分析的应用范围
材料科学
用于研究材料的晶体结构、相组成、晶体取 向和微观结构等。
生物学
用于研究生物大分子的结构和构象。
化学
用于确定化合物的晶体结构和分子结构。
医学
用于研究人体骨骼、牙齿等硬组织的结构和 相组成。
02
X射线衍射分析在铝合金研究 中的应用

x射线衍射技术在材料中的应用

x射线衍射技术在材料中的应用

x射线衍射技术在材料中的应用
X射线衍射技术在材料中主要应用于以下几个方面:
1.物相分析:每种晶体的结构与其X射线衍射图之间都有着一一对应的关
系,通过制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相。

2.结晶度的测定:通过衍射仪法得到衍射图谱,根据衍射峰的强度和宽度来
计算结晶度。

3.晶粒大小的测定:通过谢乐公式计算晶粒的平均大小。

4.残余应力的测定:通过测量衍射峰的位移,可以计算出残余应力的大小。

X射线衍射分析在材料研究中的应用

X射线衍射分析在材料研究中的应用

* 总结
综上所述,X 射线衍射技术在材料分析领域有 着十分广泛的应用,在无机材料、有机材料、 钢铁冶金、纳米材料等研究领域中发挥越来 越重要的作用。 X 射线衍射技术已经成为人 们研究材料尤其是晶体材料最方便、最重要 的手段。随着技术手段的不断创新和设备的 不断完善升级 ,X 射线衍射技术在材料分析领 域必将拥有更广阔的应用前景。
* 点阵参数的测定
点阵参数是物质的基本结构参数, 任何一种晶 体物质在一定状态下都有一定的点阵参数。 测定点阵参数在研究固态相变、确定固溶体 类型、测定固溶体溶解度曲线、测定热膨胀 系数等方面都得到了应用。 点阵参数的测定是通过X射线衍射线位置的测 定而获得的 ,通过测定衍射花样中每一条衍射 线的位置均可得出一个点阵常数值。
* X射线衍射基本原理
X射线同无线电波、可见光、紫外线等一样,本质 上都属于电磁波 , 只是彼此之间占据不同的波长 范围而已。 X 射线的波长较短 , 大约在 10-8~1010cm 之间。 X 射线分析仪器上通常使用的 X 射线 源是X射线管,这是一种装有阴阳极的真空封闭管, 在管子两极间加上高电压 , 阴极就会发射出高速 电子流撞击金属阳极靶,从而产生X射线。 当X射线照射到晶体物质上,由于晶体是由原子规 则排列成的晶胞组成 , 这些规则排列的原子间距 离与入射X射线波长有相同数量级,故由不同原子 散射的X射线相互干涉,在某些特殊方向上产生强 X射线衍射, 衍射线在空间分布的方位和强度 ,与 晶体结构密切相关,不同的晶体物质具有自己独 特的衍射花样, 这就是X射线衍射的基本原理。
谢谢
* 物相鉴定
物相鉴定是指确定材料由哪些相组成和确定各 组成相的含量 , 主要包括定性相分析和定量相分 析。每种晶体由于其独特的结构都具有与之相 对应的X射线衍射特征谱, 这是X射线衍射物相分 析的依据。 将待测样品的衍射图谱和各种已知单相标准物 质的衍射图谱对比, 从而确定物质的相组成。确 定相组成后, 根据各相衍射峰的强度正比于该组 分含量,就可对各种组分进行定量分析。 X射线衍射物相定量分析有内标法外标法、增量 法、无标样法和全谱拟合法等常规分析方法。

x射线晶体衍射的应用

x射线晶体衍射的应用

x射线晶体衍射的应用
x射线晶体衍射是一种重要的材料结构表征技术,它在许多领
域具有广泛的应用。

以下是几个常见的应用:
1. 材料结构研究:x射线晶体衍射可以确定材料的晶体结构、
晶格常数、晶格缺陷等重要信息。

这对于研究材料的物理性质、化学反应机理以及材料改性和合成等方面都具有重要意义。

2. 药物研究:x射线晶体衍射可以确定药物的结晶结构,从而
帮助研究人员了解药物的活性和稳定性。

这对于药物设计、优化和稳定性评估非常重要。

3. 生物学研究:x射线晶体衍射在生物学研究中被广泛应用,
可以解析生物分子的结构,如蛋白质、核酸等。

这对于研究生物分子的功能、相互作用、折叠机制等具有重要的意义,有助于药物研发和疾病治疗的设计。

4. 燃料电池和储能材料研究:x射线晶体衍射可以帮助研究人
员了解燃料电池和储能材料的结构和性能,如储能材料的晶相转变、离子迁移机制等。

这对于开发高效的能源存储和转换材料具有重要意义。

5. 化学合成和催化研究:x射线晶体衍射可以揭示化学反应中
化学物质的结构和组成,帮助研究人员了解反应机理、催化材料的活性中心等。

这对于合成优化、催化剂设计和环境保护等方面都有重要意义。

总之,x射线晶体衍射在材料科学、化学、生物学等领域都具有重要的应用价值,为研究人员提供了了解物质结构和性质的有力工具。

X射线衍射在材料分析当中的应用

X射线衍射在材料分析当中的应用

X射线衍射在材料分析当中的应用摘要:X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。

将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

本文主要介绍X射线衍射分析在材料科学中应用并以测量内应力为例对其进行具体分析。

关键词:材料分析,射线衍射,应用1912年劳厄衍射实验的成功,为X射线衍射分析的应用开辟了广阔的前景。

根据衍射花样可以进行晶体和非晶体的结构测定,研究与结构和结构变化相关的各种问题。

X射线衍射的应用已渗透到物理、化学、地质、天文、生命科学、材料科学、石油化工、金属冶金、医药等行业 ,成为非常重要的近代物理分析方法。

X 射线衍射分析在石油化工领域的应用包括未知物物相鉴定、催化研究、结晶性聚合物研究。

X射线衍射分析用于催化研究已经有五十余年的历史,近年来由于X射线仪的新发展以及电子计算机技术的应用,使X射线衍射成为催化研究中不可缺少的分析手段。

在催化研究中的应用包括催化剂的剖析、催化剂研制及应用过程中各阶段物相组成变化、活性组分变化状况等。

从催化剂的剖析结果可以推断催化剂载体和活性组分的类型。

通过对催化剂研制过程中各阶段的样品分析, 帮助了解工艺条件变化对各物相组成的影响。

应用过程中各阶段物相组成变化、活性组分变化状况等对于寻找改善催化剂的途径,增加其活性与选择性是十分重要的。

在催化剂的研究中,总要涉及催化剂的活性、稳定性、失活机理等问题,这些问题与催化剂的活性物相有关。

催化剂的物相组成、晶粒大小等往往是决定其活性和选择性的重要因素。

目前各衍射仪厂家都可配备各种附件装置,包括高低温衍射附件、原位样品池,可以在高、低温条件下模拟生产过程,测量出相变或反应动力学的各种信息,高温加热中样品的晶体结构变化或各种物质相互熔解的变化,晶格常数漂移,熔融样品析出晶相的识别等。

X射线衍射技术的发展和应用

X射线衍射技术的发展和应用

X射线衍射技术的发展和应用X射线衍射是一种利用X射线穿过晶体的能量变化进行分析的技术。

它主要基于莱布尼茨的干涉与衍射理论,通过利用X射线的特性对晶体进行研究和分析。

自X射线的发现以来,X射线衍射技术在材料科学、化学、生物学等领域得到了广泛的应用。

X射线衍射技术的发展可以追溯到20世纪初期,当时德国物理学家馬克斯·香克提出了X射线的干涉与衍射理论。

之后,英国物理学家劳厄尔和布拉格父子独立地对X射线衍射进行了研究,并提出了X射线衍射的几何学原理,即著名的布拉格方程。

这一理论为后来的X射线衍射技术的应用奠定了基础。

20世纪中期,X射线衍射技术得到了快速的发展。

对于晶体的结构分析,X射线衍射技术提供了一种非常有效的方法。

通过测量X射线的干涉与衍射图案,可以推断出晶体的结构信息,包括晶胞参数、晶胞对称性和晶体中原子的排列方式等。

这种方法为材料科学的发展提供了重要的工具,促进了新材料的研发和应用。

此外,X射线衍射技术还可以用于分析材料的成分。

通过测量样品的X射线衍射图谱,可以判断样品中所含的元素种类和相对含量。

这对于材料的品质控制和检测具有重要意义。

例如,X射线衍射技术可以被广泛应用于金属材料、陶瓷材料、聚合物材料等各种不同类型的材料。

此外,X射线衍射技术还被广泛应用于生物学领域。

生物大分子如蛋白质、核酸等都具有一定的晶体结构,通过X射线衍射技术可以解析其三维结构信息。

这对于理解生物大分子的功能与机制具有重要意义。

近年来,X射线衍射技术在药物研发领域也得到了广泛应用。

通过测定药物与靶蛋白相互作用的晶体结构,可以设计出更加有效的药物分子。

总之,X射线衍射技术是一种重要的分析和研究工具,已经在材料科学、化学、生物学等领域得到了广泛应用。

随着技术的不断进步和发展,X射线衍射技术将会在更多领域有着更加广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin 2 1 : sin 2 2 : sin 2 3 : : sin 2 K 3 : 4 : 8 :11:12:16:19: 20
8
精确测定多晶体点阵常数的方法

晶体内部各种因素引起的点阵常数的变化十分微小,往往 在 10-4数量级,如果采用一般的测试技术,这种微弱的变 化趋势势必被试验误差所掩盖,所以必须对点阵常数进行 精确测定。 用X射线衍射方法测定晶体物质的点阵常数是一种间接的 方法,其实验依据是根据衍射谱上各衍射线所处位置的 θ 角,用Bragg方程和各个晶系的面间距公式,求出该晶体 的点阵常数。 多晶体衍射谱上每条衍射线都可以计算出点阵常数值,但 是哪一条衍射线确定的数值最接近实际呢?

测角器刻度误差:固有机械误差;
这两项误差所导致的△ 2 θ ,一般调试后约为 0.01º ,若采
用光学方法校正,可以达到0.001º 。
13
精确测定多晶体点阵常数的误差原因
试样误差:

试样平板状,与聚焦园不能重合而散焦;
这些都是经验表达式,没有公认可靠的外推函数
11
精确测定多晶体点阵常数的误差原因
德拜法:半径误差、底片误差、偏心误差、吸收误差
衍射仪法:
峰位的确定 仪器误差
试样误差
X射线误差 测试方法误差
12
精确测定多晶体点阵常数的误差原因
仪器误差:仪器未经精确校准。

零点偏差:接收器零点误差,此误差是恒定的;
5
粉末衍射花样的指标化
晶胞参数未知时衍射线的指标化:

在衍射角θ(晶面间距d)已知的情况下,干涉指数和晶胞 参数两者是相互依赖的,无法直接求得。

在不同晶系中,晶胞参数中未知值的个数是多寡不一的,
对立方晶系来说,只有一个未知数 a,中级晶族中为 a和 c 两个未知数,低级晶族中未知数则多至3、4和6个。 因此,在粉晶法中,指标化对立方晶系来说是肯定可能的, 对中级晶族一般是有可能的,而对低级晶族则一般是非常 困难的。
2 2 2 2
体心立方晶体:110,200,211,220,310,222,312,400
sin 1 : sin 2 : sin 3 : : sin K 2 : 4 : 6 : 8 :10:12:14:16:
2 2 2 2
面心立方晶体:111,200,220,311,222,400,331,420
0
10
精确测定多晶体点阵常数的误差消除

一般用外推法消除测量误差: 根据若干条衍射线测得的点阵常数,外推至θ=90º

对德拜照相法,外推函数f(θ)由J. B. Nelson和A. Taylor分 别从实验和理论证明为:f(θ)=(cos2θ/sinθ+cos2θ/θ) /2

衍射仪法的外推函数有:cos2θ、 ctg2θ、 cosθ ctgθ
6

立方晶系粉末衍射花样的指标化
对立方晶系来说:
1 (h 2 k 2 l 2 ) 2 d a2
对同一物质的同一个衍射花样,X射线波长和晶胞参数是常数
sin 2 1 : sin 2 2 : sin 2 3 : : sin 2 K
2 2 2 (h12 k12 l12 ) : (h22 k 22 l22 ) : (h32 k32 l32 ) : : (hK kK lK )
4
粉末衍射花样的指标化
晶胞参数已知时衍射线的指标化:
立方晶系: sin 2 [ /(2a)]2 (h 2 k 2 l 2 ) 四方晶系: sin 2 [ /(2a)]2 (h 2 k 2 ) [ /(2c)]2 l 2 斜方晶系: sin 2 [ /(2a)]2 h 2 [ /(2b)]2 [ /(2c)]2 l 2
7
立方晶系粉末衍射花样的指标化
根据晶体结构因子和点阵消光法则,立方晶系中能产生 衍射的晶面归纳如下: 简单立方晶体:100,110,111,200,210,211,220,221
ห้องสมุดไป่ตู้
sin 1 : sin 2 : sin 3 : : sin K 1: 2 : 3 : 4 : 5 : 6 : 8 : 9 :
9


精确测定多晶体点阵常数的误差分析

主要取决于sin的精确度
sin / 2d
sin cos 2 d

对于立方晶系:
d/d= a/a=-ctg 90 º 时,ctg


2d 若用85º 数据求d其准确度比 sin d =50º 时高100倍 d 精确求算晶胞参数的数据要求: d cos 强度大;衍射角度测量准确; d sin 单一面指数;高角度。 ctg

通过点阵常数的变化测定弹性应力已经发展为一种成熟的
专门方法
3
多晶体点阵常数的精确测定
精确测定已知多晶材料点阵常数的基本步骤:
1. 用照相法或者衍射仪法获取待测试样的粉末衍射谱; 2. 根据衍射线的角位置计算相应晶面间距d;
3. 标定各衍射线条的干涉指数hkl(指标化);
4. 由d及相应的hkl计算点阵常数(a、b、c等); 5. 消除误差。晶体内部各种因素引起的点阵常数的变化非 常小,往往在10-4数量级,这就要求测量精度非常高; 6. 得到精确的点阵常数值。

晶体学基本知识 X射线衍射原理 X射线衍射分析方法 X射线物相分析 X射线衍射分析方法的应用
1
X射线衍射分析方法的应用

多晶体点阵常数的精确测定 纳米材料晶粒尺寸的测定 晶格畸变及衍射线形分析 多晶体择优取向的测定 晶体结晶度的测定


薄膜材料掠角入射物相分析
小角度散射研究超晶格结构 宏观残余内应力的测定 薄膜厚度的测量
2
多晶体点阵常数的精确测定

点阵常数是晶体物质的基本结构参数,它随物质的化学组 成和外界条件(温度、压力等)变化 点阵常数的变化反映了晶体内部原子结合力、密度、热膨

胀、固溶体类型、受力状态、缺陷类型、浓度等的变化,
通过测量点阵常数的变化,可以揭示出上述问题的物理本 质和变化规律
相关文档
最新文档