实验设计与数据处理习题练习
课后作业试验设计与数据处理
1、 某机械厂为提高C6140车床加工轴杆的工效, 用正交表L9(34)安排正交试验, 试验指标为工时(越短越好)。
试验因素及水平、试验方案及试验结果如下表所示。
试分别用直观分析法(计算法)、方差分析法确定最佳工艺条件、各因素影响的显著性及主次顺序, 将有关结果填入相应的表格中。
(请自己绘制极差分析表、方差分析表等有关表格)极差表可知: (主)B 进给量 A 转速 C 切削深度(次); 由于试验指标(工时)为望小指标, 计算分析最佳水平组合是A3B1C1; 直观分析最佳水平组合是第七组: A3B1C3。
3、 方差分析法重复试验次数:k=1 试验数: n=9911042i i T y ===∑2120640.44T CT n ==821136046T i i Q y ===∑15405.56T T S Q CT =-=()22212313i i i i Q K K K =++i i S Q CT =-自由度: 819=-=T f2134=-====f f f f C B A方差:1925.69/==T T T f S V 1983.45/==A A A f S V 5518.78/==B B B f S V 107.11/==C C C f S V 93.45/444==f S V 第一类误差: 89.18641==S S e 241==f f e 第二类误差:∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛-=n i k j ij ni kj ij e y k y S 121112201 0)1(2=-=k n f e89.186421==+=S S S S e e e 221=+=e e e f f f93.45/===f S V V方差表可知: (主)B进给量 A转速 C切削深度(次)。
由于试验指标(工时)为望小指标, 方差分析最佳水平组合是A3B1C1。
实验设计与数据处理大作业及解答
《实验设计与数据处理》大作业班级:姓名:学号:1、用Excel(或Origin)做出下表数据带数据点的折线散点图(1)分别做出加药量和剩余浊度、总氮TN、总磷TP、COD Cr的变化关系图(共四张图,要求它们的格式大小一致,并以两张图并列的形式排版到Word 中,注意调整图形的大小);(2)在一张图中做出加药量和浊度去除率、总氮TN去除率、总磷TP去除率、COD Cr去除率的变化关系折线散点图。
2、对离心泵性能进行测试的实验中,得到流量Q v、压头H和效率η的数据如表所示,绘制离心泵特性曲线。
将扬程曲线和效率曲线均拟合成多项式(要求作双Y轴图)。
流量Qv、压头H和效率η的关系数据序号123456Q v(m3/h) H/m0.015.000.414.840.814.561.214.331.613.962.013.65η0.00.0850.1560.2240.2770.333序号789101112Q v(m3/h) H/mη2.413.280.3852.812.810.4163.212.450.4463.611.980.4684.011.300.4694.410.530.4313、用分光光度法测定水中染料活性艳红(X-3B)浓度,测得的工作曲线和样品溶液的数据如下表:(1)列出一元线性回归方程,求出相关系数,并绘制出工作曲线图。
(2)求出未知液(样品)的活性艳红(X-3B)浓度。
4、对某矿中的13个相邻矿点的某种伴生金属含量进行测定,得到如下一组数据:试找出某伴生金属c与含量距离x之间的关系(要求有分析过程、计算表格以及回归图形)。
提示:⑴作实验点的散点图,分析c~x之间可能的函数关系,如对数函数y=a+blgx、双曲函数(1/y)=a+(b/x)或幂函数y=dx b等;⑵对各函数关系分别建立数学模型逐步讨论,即分别将非线性关系转化成线性模型进行回归分析,分析相关系数:如果R≦0.553,则建立的回归方程无意义,否则选取标准差SD最小(或R最大)的一种模型作为某伴生金属c与含量距离x之间经验公式。
数据处理与实验设计考试卷
数据处理与实验设计考试卷一、单选题(每题3分,共30分)1. 在数据处理中,以下哪种统计量可以反映数据的集中趋势?()A. 方差。
B. 标准差。
C. 平均数。
D. 极差。
2. 对于一组数据12,15,18,20,25,其中位数是()。
A. 18.B. 19.C. 20.D. 15.3. 在实验设计中,以下哪种设计可以同时研究多个因素对实验结果的影响?()A. 完全随机设计。
B. 随机区组设计。
C. 析因设计。
D. 拉丁方设计。
4. 当我们想要检验两个总体均值是否相等时,通常使用()。
A. t检验。
B. F检验。
C. 卡方检验。
D. 秩和检验。
5. 在数据收集过程中,如果样本存在偏差,可能会导致()。
A. 结果的准确性提高。
B. 结果的可靠性降低。
C. 结果不受影响。
D. 实验更容易进行。
6. 数据的离散程度可以用()来衡量。
A. 众数。
B. 中位数。
C. 方差。
D. 平均数。
7. 在实验设计中,控制组的作用是()。
A. 作为实验处理的对象。
B. 与实验组进行对比,排除无关因素的影响。
C. 增加实验的样本量。
D. 确定实验的变量。
8. 以下关于标准差的说法正确的是()。
A. 标准差越大,数据越集中。
B. 标准差越小,数据越分散。
C. 标准差是方差的平方根。
D. 标准差与数据的集中趋势无关。
9. 若要研究施肥量和灌溉量对农作物产量的影响,最合适的实验设计是()。
A. 单因素实验设计。
B. 双因素实验设计。
C. 多因素实验设计。
D. 重复测量设计。
10. 在进行数据分组时,分组的组数一般()。
A. 越多越好。
B. 越少越好。
C. 根据数据的特点和研究目的确定。
D. 固定为5组。
二、多选题(每题5分,共25分)1. 以下属于数据处理步骤的有()。
A. 数据收集。
B. 数据整理。
C. 数据分析。
D. 数据解释。
E. 数据删除。
2. 在实验设计中,影响实验结果的因素包括()。
A. 自变量。
B. 因变量。
C. 控制变量。
实验设计与数据处理第五章例题及课后习题答案
习题5.1、
优选过程:
1、首先在试验范围0.618处做第一个实验,这一点的温度为:x1=340+(420-340)×
0.618=389.44.
2、在这点的对称点,即0.382处做一个实验,这一点的温度为:x2=420-(420-340)×0.618=370.56.
3、比较两次的实验结果,发现第一点比第二点的合成率高,故舍去370.56以下部分,在
370.56-420之间,找x1的对称点:x3=420-(420-370.56)×0.618=389.44608.
4、比较两次的实验结果,发现第一点比第三点的合成率高,故舍去389.44608以下部分,
在389.44608-420之间,找x1的对称:x4=420-(420-389.44608)×0.618=401.11767744. 5、比较两次的实验结果,得到最佳点为401.1177。
习题5.2、
优选过程:
1、首先在试验范围3/5处做第一个实验,这一点加入的白砂糖桶数为:
x1=3+3/5*(8-3)=6桶
2、在这点的对称点,即2/5处做一个实验,这一点加入的白砂糖桶数为:
x2=8-3/5*(8-3)=5桶
3、比较两次的实验结果,发现第一点比第二点的实验结果好,故舍去5以下的部分,在5-8之间,找x1的堆成点
习题5.3
目标函数。
实验设计与数据处理4计算题
三、计算题1、随机抽测了10只兔的直肠温度,其数据为:38.7、39.0、38.9、39.6、39.1、39.8、μ=39.5(℃),试检验38.5、39.7、39.2、38.4(℃),已知该品种兔直肠温度的总体平均数μ是否存在显著差异?该样本平均温度与(10 分)抽测5个不同品种的若干头母猪的窝产仔数,结果见下表,试检验不同品种母猪平均窝产仔数的差异是否显著。
(不必进行多重比较) F0.05(4,20)=2.87, F0.01(4,20)=4.432、11只60日龄的雄鼠在x射线照射前后之体重数据见下表(单位:g):检验雄鼠在照射x射线前后体重差异是否显著?3、某鸡场种蛋常年孵化率为85%,现有100枚种蛋进行孵化,得小鸡89只,问该批种蛋的孵化结果与常年孵化率有无显著差异?4、在同样饲养管理条件下,三个品种猪的增重如下表,试对三个品种增重差异是否显著进行检验。
品种增重x(kg)ijA116 12 18 18 13 11 15 10 17 18A210 13 11 9 16 14 8 15 13 8A311 8 13 6 7 15 9 12 10 115、为了比较4种饲料(A)和猪的3个品种(B),从每个品种随机抽取4头猪(共12头)分别喂以4种不同饲料。
随机配置,分栏饲养、位置随机排列。
从60日龄起到90日龄的时期内分别测出每头猪的日增重(g),数据如下,试检验饲料及品种间的差异显著性。
4种饲料3个品种猪60~90日龄日增重A1A2A3A4 B1505 545 590 530B2490 515 535 505B3445 515 510 4956、两对相对性状杂交子二代A—B—,A—bb,aaB—,aabb 4种表现型的观察次数依次为:315、108、101、32,问是否符合9∶3∶3∶1的遗传比例?7、某生物药品厂研制出一批新的鸡瘟疫苗,为检验其免疫力,用200只鸡进行试验,某中注射100只(经注射后患病的10只,不患病的90只),对照组(注射原疫苗组)100只(经注射后患病的15只,不患病的85只),试问新旧疫苗的免疫力是否有差异。
实验设计与数据处理习题集
水平号12345678序号AB112478224857336336448715551284663663775142887521y5.86.34.95.444.533.6SUMMARY OUTPU回归统计Multiple R 0.99970596265R Square 0.99941201175Adjusted R Sq 0.99917681646标准误差0.03240370349190230180220170210137.5138138138.5139139.5140底水量(x 1)/g 2202302404.0,4.5,3.0,3.6。
已知试验指标与两因素之间成二元线性关系,试用回归分析法139.5140吸氨时间(x 2)/min 136.5137吸氨时间(x 2)/min 选用均匀表U 8*(85)安排实验,8个试验结果(吸氨量/g)依次为:5.8,6.3,4.9,5.4,出较好工艺条件,并预测该条件下相应的吸氨量。
138.5139170180190200210137240第七章 均匀设计1、在啤酒生产的某项工艺实验中,选取了底水量(A)和吸氨时间(B)两个因素都取了8个水平,进行试验设计,因素水平如下。
试验指标为吸氨量,越大越好。
137.5回归方程模型为y =a+b 1x 1+b 2x 2136.5200底水量(x 1)/g观测值8方差分析dfSS MS F Significance F 回归分析28.9235 4.461754249.285714288.38342726421残差50.005250000000.00105总计78.92875Coefficients 标准误差t Stat P-value Lower 95%Intercept 96.52583333331.4768020536165.36138888561.5871169308092.7295928008底水量(x1)/-0.69666666660.010********-66.7626010421.42755955001-0.7234906467吸氨时间(x2)0.021*********.0005217491941.84641500741.470141026900.020********RESIDUAL OUTP 观测值预测 y 残差15.797500000000.0024999999926.32250000000-0.022******** 4.88250.017499999994 5.4075-0.00750000005 3.967500000000.032499999996 4.49250.007500000007 3.0525-0.052500000083.577500000000.022********观测值预测 y15.7975000000026.322500000003 4.88254 5.40755 3.967500000006 4.49257 3.052583.57750000000R=0.99 和Significance F=8.38342726421806E-09<0.01,说明该回归方程非常显y=96.5-0.70X 1+0.02X 2个因素,越好。
实验设计与数据处理
实验设计与数据处理第二次作业正交实验设计与数据处理姓名:班级:学号拟水平法:某啤酒厂实验期用不发芽的大麦制造啤酒新工艺的过程中,选择因素、水平及结果如下,不考虑交互作用,考察粉状粒越高越好,采用拟水平法将因素D的水平一136重复一次作为第二水平,(表一),按L9(34)安排实验,得到结果如表二,请分别进行直观分析、方差分析,并找出最好的工艺条件。
表一:因素水平表表二:实验设计及结果1.正交试验设计结果的直观分析法表三:试验方案及试验结果分析因素主次 C A B D优方案C1A3B3D1图一:趋势图2.正交试验设计结果的方差分析法表4正交实验的实验方案及结果分析试验号 A B C D粉状粒y i/%1 2 3 4 5 611122212312312323112331264.2553.2539.2544.2528.2553.25赤霉素浓度 /(mg/kg) 氨水浓度/% 吸氨量/g 底水/g粉状粒,y i /%⑴计算离差平方和: T=∑=91i iy=64.25+53.25+39.25+44.25+28.25+53.25+41.25+60.25+61.25=445.25 Q=∑=912i i y =64.252+53.252+39.252+44.252+28.252+53.252+41.252+60.252+61.252 =23179.06P=211⎪⎭⎫⎝⎛∑=n i i y n =T 2/n=445.252/9=22027.51SS T =21∑=-⎪⎭⎫ ⎝⎛-ni i y y =21121⎪⎭⎫ ⎝⎛-∑∑==n i i n i i y n y =Q-P=23179.06-22027.51=1151.55对于3水平正交实验的方差分析,由于r=3,所以任一列(第j 列)的离差平方和为:SS J =⎪⎭⎫⎝⎛∑=3123i i K n -PSS A =3/9(156.752+125.752+162.752)-22027.51=262.89 SS B =3/9(149.752+141.752+153.752)-22027.51=24.89 SS C =3/9(177.752+158.752+108.752)-22027.51=846.89因素D 的第一水平重复了6次,第二水平重复了3次,所以D 因素引起的离差平方和为:SS D =K12/6+K32/3-P=301.52/6+143.752/3-22027.51=10.89 误差的离差平方和为: SSe=SS T -(SS A +SS B +SS C +SS D )=1151.55-(262.89+24.89+846.89+10.89)=5.99 ⑵计算自由度:总自由度:dfT=n-1=9-1=8各因素自由度:dfA=dfB=dfC=r-1=3-1=2 dfD=2-1=1dfe=dfT-(dfA+dfB+dfC+dfD )=8-(2+2+2+1)=1 ⑶计算均方:(不考虑交互作用) MS A =SS A /dfA=262.89/2=131.445 MS B =SS B /dfB=24.89/2=12.445 MS C =SS C /dfC=846.89/2=423.45MS D=SS D/dfD=10.89/1=10.89MSe=SSe/dfe=5.99/1=5.99⑷计算F值:F A=MS A/MSe=131.445/5.99=21.94F B=MS B/MSe=12.445/5.99=2.08F C=MS C/MSe=423.45/5.99=70.69F D=MS D/MSe=10.89/5.99=1.82⑸F检验:查得临界值F0.10(2,1)=49.5,F0.10(1,1)=39.86,所以对于给定的显著性水平0.10,因素C对试验结果有显著影响。
实验设计与数据处理第八章例题及课后习题答案doc资料
0
428
0 1.162084
492
0 1.162084
512
0
0
509
0
0
Signific ance F
7.93E-05
Lower Upper 下限 上限
95%
95% 95.0% 95.0%
465.4405 471.5595 465.4405 471.5595
5.242078 12.93644 5.242078 12.93644
0.002795085 2.593838854 0.122018
例8-2
回归方程: 由该回归方程 中偏回归系数 绝对值的大 小,可以得到 各因素和交互 作用的主次顺 序为:
y=0.50475+0.00 975z1+0.03375z 2+0.00475z1z20.00575z3+0.00 725z1z3
0 0 -41.73590203
y=468.5+9.09z1 -26.56z2+z3
标准误差
t Stat P-value
1.10193312 425.1619191 1.84E-10
1.385649972 6.55956341 0.002794
1.385649972 -19.17042163 4.36E-05
SS 0.0091125
0.001626 0.0108635
MS
F
0.0091125 33.62546
0.000271
试验号
z1 1 2 3 4 5 6 7 8 9 10 11
z2 1 1 1 1 -1 -1 -1 -1 0 0 0
z3 1 1 -1 -1 1 1 -1 -1 0 0 0
实验设计与数据处理习题答案完整版
部分习题答案习题三1、62621086.6S 104.1ˆ002.74ˆ--⨯=⨯=σ=μ2、λ的极大似然估计和矩估计量均为x =λˆ 3、5、 6、(1)(5.608, 6.392) (2)(5.558, 6.442) 7、(1)(6.675, 6.681), (6.8×10-6, 6.8×10-5) (2)(6.61, 6.667), (3.8×10-6, 5.06×10-5) 8、σ已知6.239;σ未知6.356 9、4.052610、接受H O 11、认为不合格 12、认为显著大于10 13、拒绝H O 19、接受H O习题四1、差异显著;2、只有浓度的影响是显著的.习题五1、 填料A 用量范围可能选低了.2、培烧温度与三氧化铝两个因素用量范围可能偏低.习题六1、(2)xy5503.129584.13ˆ+= (4)(11.82,13.28)(5)(19.66,20.18) 2、xy05886.06287.24ˆ+= 3、(2))17.14,29.13)(3(,988.0104.0ˆx y+-=4、x0867318.0e 4556.32y ˆ-=5、2020381.00086.10333.19ˆx x y-+= 6、(1)31321x15.1x 575.09.9yˆ)2(x 15.1x 55.0x 575.09.9yˆ++=+++=习题七1、218.079.1419.300ˆz z y+-= 2、)1(21-=n c 212211,n n n b n n n a +=+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-+-⎪⎭⎫⎝⎛-+⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-++=-625.1589625.1102879.11025.105613.0625.160073.0263.2ˆ332z z z z y3、 4、 5、 6、 最优工艺条件 7、 最优凝固条件 即 8、.078.1=γ习题八习题九(1) E(5, , 0) (2)(i)扩大反射)1(>α;(ii)内收缩)0(<α;(iii )反射收缩)10(<α<;(3)B(2,4,3),A '(1.5,3,3.5),D '(2.5,2.5,2.5),C '(3,3.5,2)习题十1、 A 3B 3C 32、A 2B 3CD3、最优工艺条件x 1=-0.076,x 2=-0.118,即z 1=3. 848,z 2=0. 753,9.37ˆ=y4、 最优适宜条件 x 1=-0.0135, x 2=0.2557,x 3=-0.3364, 即z 1=6.4865, z 2=112.7865,z 3=0.3318.习题十一1、3.3962、3.54, 3.463、 5、6、 7、有系统误差2221212122212121z 9.21z 676.0z z 469.4z 465.50z 566.8572.2x504.3x 704.2xx 575.3x 1.1x 833.0838.37yˆ---++=-----=323121232221321x x 3.5x x 35.2x x 78.2x 38.3x 8.2x 1.3x 95.0x 388.0x 163.04.37y ˆ---------=.nσ.T2l g⎪⎭⎫⎝⎛σ+⎪⎭⎫⎝⎛σ≈σ.VMVV,VW W M σ+σ+σ≈σ-=.z 0019.0z 0148.0z 1388.0z 1269.06250.47yˆ4321--++=.z z 2.2z 15.058.125y ˆ321+++-=.z 0201.0z 00225.0z 00184.0z 000885.0114.0y ˆ4321-+--=,x 041.0x 023.0.x x 002.0x 052.0x 017.0351.0yˆ22212121--+++=.371.0yˆ,576.8z ,9.119z ,644.0x ,398.0x 2121=====即xx 02.0xx 025.0x025.0x475.0x 400.0218.89yˆ-+-++=,x 896.0x947.0x 399.0x x 375.023222132---+,0735.0x ,261.0x,483.0x 321===.38.89yˆ,02.6z ,13.4z ,42.17z 321====3108、无系统误差 9、是异常数据.习题十二1、543.02、(1)0.695 (2) (3)0.4253、(1)(2)2.98; (3) 0.898;4、(-1.28, -0.255, 0.675, 1.645)习题十四(1)一般; 2.5888(介于良与一般之间);(2)68.2245分.习题十五1、{}{}6,5,4,3,2,12、{}{}6,5,4,3,2,1习题十六2、ρ︒复相关系数上的投影在是其中与;),,,(L ˆ,)ˆ(*p *2*1***o*x x x y y y y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=16.0431.06.0165.0431.065.01R )10.1,10.1,27.0,55.0,37.1,55.0(x)28.1,91.0,18.0,18.0,91.0,28.1(x ---=---=参考文献[1] Andenson T W. An Introduction to Multivariate StatisticalAnalysis. znd ed . New york: Wiley, 1984[2] 费荣昌试验设计与数据处理,4(1997)[3] 方开泰实用多元统计分析,上海:华东师范大学出版社,1989[4] 盛骤等概率论与数理统计,北京:高等教育出版社,1989[5] 朱道元等多元统计分析与软件SAS,南京:东南大学出版社,1999[6] 彭昭英SAS系统应用开发指南,北京:北京希望电子出版社,2000[7] 邓勃分析测试数据的统计处理方法,北京:清华大学出版社,1995[8] 中国现场统计会三次设计组,正交法和三次设计,北京:科学出版社,1985[9] 张尧庭、方开泰多元统计分析引论,北京:科学出版社,1983[10] 上海师范大学数学系回归分析及其试验设计,上海:上海教育出版社,1978[11] 韦博成、鲁国斌统计诊断引论,南京:东南大学出版社,1991[12] 张明淳工程矩阵理论,南京:东南大学出版社,1995[13] 赵德齐模糊数学,北京:中央民族大学出版社,1995[14] 胡永宏、贺思辉综合评价方法,北京:科学出版社,2000[15] 张崇甫等统计分析方法及其应用,重庆:重庆大学出版社,1995[16] 蒋尔雄等线性代数,北京:人民教育出版社,1978[17]王松桂线性模型的理论及其应用,合肥:安徽教育出版社,1987。
大学生期末考试真题《实验设计与数据处理》试验设计与数据处理(附有答案)
一、单选题(题数:50,共 50.0 分)1在正交实验设计中,定量因素各水平的间距是( )(1.0分)1.0分正确答案:C 我的答案:C答案解析:2*随机单位设计要求( )。
(1.0分)0.0分单位组内没有个体差异,单位组间差异大正确答案:A 我的答案:3当组数等于2时,对于同一资料,方差分析结果与t检验结果( ) 。
(1.0分)0.0分t检验结果更准确完全等价且正确答案:D 我的答案:B答案解析:方差分析与t检验的区别与联系。
对于同一资料,当处理组数为2时,t检验和方差分析的结果一致且,因此,正确答案为D。
4下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.(1.0分)0.0分正确答案:C 我的答案:5在对两个变量,进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据、),,…,;③求线性回归方程;④求未知参数; ⑤根据所搜集的数据绘制散点图。
如果根据可行性要求能够作出变量具有线性相关结论,则在下列操作中正确的是( ) (1.0分)0.0分正确答案:D 我的答案:6*方差分析中变量变换的目的是( )。
(1.0分)0.0分正确答案:D 我的答案:7两个变量与的回归模型中,通常用来刻画回归的效果,则正确的叙述是( ) (1.0分)0.0分越小,残差平方和越小越大,残差平方和越大与残差平方和无关越小,残差平方和越大正确答案:D 我的答案:答案解析:8在一个正交实验中,因素A和B的水平数都为3,那么A和B的交互作用的自由度为( )(1.0分)0.0分正确答案:C 我的答案:答案解析:9单因素方差分析中,当P<0.05时,可认为( )。
(1.0分)0.0分正确答案:B 我的答案:答案解析:方差分析的检验假设及统计推断。
方差分析用于多个样本均数的比较,它的备择假设(H1)是各总体均数不等或不全相等,当P<0.05时,接受h1,即认为总体均数不等或不全相等。
实验设计与数据处理第三四五章例题及课后习题答案
试验号 x1 1 2 3 4 5 6 7
总和 平均
x2 1 1.4 1.8 2.2 2.6 3 3.4 15.4 2.2
L11
4.48L22252源自L337L12
16.8
L23
10.5
L31
1.4
L1y
0.2404
L2y
0.564
L3y
0.5245
检验线性回归方程的显著性
(1)F检验
SSt
SSr
标准误差 0.001341014 0.006113002
t Stat
P-value
-210.877979 2.86E-16
88.77758147 2.89E-13
例4-8 xi yi
i
xi
1
2
3
4
5
6
7
8
9
SUM
yi 1 3 4 5 6 7 8 9 10 53
1 2
x1 2 7 8 10 11 12 10 9 8 77
L22
800
L33
8
P1
0.315761009
P2
0.412918242
P3
0.850125793
t1
7.505553499
t2
9.814954576
t3
20.20725942
例4-7
p/atm M/(mol/min)
2.01 0.763
1.78 0.715
1.75 0.71
1.73 0.695
x
y
t Stat
P-value
3.941801374 0.016934
7.505553499 0.001686
实验设计与数据处理第一章例题及课后习题(附答案)
1、 根据三组数据的绝对误差计算权重:12322211110000,25,400000.010.20.005w w w ====== 因为123::400:1:1600w w w = 所以1.54400 1.71 1.53716001.53840011600pH ⨯+⨯+⨯==++2、 因为量程较大的分度值也较大,用量程大的测量数值较小的物理量会造成很大的系统误差。
3.、含量的相对误差为0.2g ,所以相对误差为:0.20.99790525.3Rx E x ∆===。
4、 相对误差18.20.1%0.0182x mg mg ∆=⨯= 故100g 中维生素C 的质量范围为:18.2±0.0182。
5、1)、压力表的精度为1.5级,量程为0.2,则max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1的汞柱代表的大气压为0.133,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1水柱代表的大气压为gh ρ,其中29.8/g m s =则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯6、样本测定值算术平均值 3.421666667 3.48 几何平均值 3.421406894 3.37 调和平均值 3.421147559 3.47 标准差s 0.046224092 3.38 标准差 0.04219663 3.4 样本方差 0.002136667 3.43 总体方差0.001780556 算住平均误差 0.038333333极差 0.117、依题意,检测两个分析人员测定铁的精密度是否有显著性差异,用F双侧检验。
根据试验值计算出两个人的方差及F值:221221223.733, 2.3033.7331.621232.303s s s F s ===== 而0.9750.025(9,9)0.248386,(9,9) 4.025994F F ==, 所以0.9750.025(9,9)(9,9)F F F <<两个人的测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
实验设计与数据处理习题练习教学提纲
09印刷工程5班方桂森 0902105261、某饮料生产企业研制出一种新型饮料。
饮料的颜射共有四种,分别为橘黄色、粉色、绿色和物色透明。
随机从超市市场收集了前一期该种饮料的销售量(万元),如下表所示,试问饮料的颜色是否对销售产生影响。
答:实验数据处理如下表:实验分析:其中F-crit是显著性水平为0.05时F的临界值,也就从F分布表中查到的F0.05(3,16),在本次试验中,F=10.4>F-crit=3.23,所以颜色因素对实验指标销售有显著影响,而 P-value=0.000466<0.01,说明颜色因素对销售有显著影响,因为P-value表示的是因素对实验结果无显著影响的概率。
2、在用原子吸收分光光度法测定镍电解液中微量杂质铜时,研究了乙炔和空气流量变化对铜在某波长上吸光度的影响,得到下表所示的吸光度数据。
试根据表中数据分析乙炔和空气流量的变化对铜吸光度的影响。
答:实验数据分析如下表:实验分析:表中行代表的是乙炔流量,列代表的是空气流量。
在乙炔流量因素中,我们可以看到,F=23.39361> F-crit=3.490295且P-value=0.000026586498341<0.01,所以乙炔流量这个因素对铜吸光度的影响非常显著,而在空气流量中F< F-crit且P-value>0.01,所以空气因素对铜吸光度的影响不大。
3、为了研究铝材材质的差异对于它们在高温水中的腐蚀性能的影响,用三种不同的铝材在去离子水和自来水中于170°C进行了一个月的腐蚀试验,测得的深蚀率(µm)如下表所示。
试由下表所述结果考察铝材材质和水质对铝材腐蚀的影响。
试验数据处理结果:试验数据分析:表中样本表示铝材材质,列表示去不同液体,交互表示的是两个因素的交互作用,从表中可以看到,样本的F> F-crit=5.143253和列F> F-crit=5.987378的以及交互的F > F-crit=5.143253,同时样本的P-value和列的P-value以及交互的P-value都远远小于0.01,所以我们可以读出结论,铝材材质和不同液体对实验结果铝材腐蚀的影响较大,同时铝材材质和不同液体的交互作用对铝材腐蚀有显著影响。
试验设计与数据处理课后习题
试验设计与数据处理课后习题机械工程6120805019 李东辉第三章3-7分别使用金球和铂球测定引力常数(单位:)1. 用金球测定观察值为 6.683,6.681, 6.676, 6.678, 6.679, 6.6722. 用铂球测定观察值为 6.661, 6.661,6.667, 6.667, 6.664设测定值总体为N(u,)试就1,2两种情况求u的置信度为0.9的置信区间,并求的置信度为0.9的置信区间。
用sas分析结果如下:第一组:第二组:3-13下表分别给出两个文学家马克吐温的8篇小品文以及斯诺特格拉斯的10篇小品文中由3个字母组成的词的比例:马克吐温:0.225 0.262 0.217 0.240 0.230 0.229 0.235 0.217斯诺特格拉斯:0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223 0.220 0.201设两组数据分别来自正态总体,且两个总体方差相等,两个样本相互独立,问两个作家所写的小品文中包含由3个字母组成的词的比例是否有显著差异(a=0.05)取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。
实验设计与数据处理第二章例题及课后习题答案
0
23 23.3 23.6 22.9
30 25 20 15 10 5 0
0
两种高吸水性树脂保水性能比较
5
10
t/h
微波法 常规法
15
10
10
c/(g/L)
η/% He/m
1
系列1
0.1
0
2
4
6
8
10
t/min
例四
qv/(L/s) η/%
0 4 8 12 16 20 24 28 32
He/m
0 24.8 33 24.8 51 24.5 64 23.9 71 23.2 77 21.8 78 20.5 76 18.7 70 16.3
吸附量
/(mg/g)
17.14
AB-8 D-4006 D-101 S-8
NKA-Ⅱ
17.77 1.87 13.71 0.55 13.33 3.67
吸附量/(mg/g)
20 18 16 14 12 10 8 6 4 2 0
DA-201 NKA-9
AB-8 D-4006 D-101 树脂型号
S-8 NKA-Ⅱ
1
5.4
5.8
2
3
4
5
6
5.9
5.8
5.7
24.5 13.3 11.2 10.1
9.5
8.1
ph值
30 25 20 15 10
5 0
0
发酵时间与PH值及残糖量的关系图
5 发酵时间/d
6.1 6 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 10
残糖量 PH值
习题4
树脂型号 DA-201 NKA-9
实验设计与数据处理
填空1.单因素试验的数学模型可归纳为:效应的可加性、分布的正态性、方差的同质性。
这是方差分析的前提条件或基本假定。
2.多重比较的方法甚多,常用的有最小显著差数法和 最小显著极差法.3.生物试验中,由于试验误差较大,常采用新复极差法4.两因素试验按水平组合的方式不同,分为交叉分组和系统分组两类5.随机模型在遗传、育种和生态试验研究方面有广泛的应用。
6.统计推断主要包括假设检验和参数估计两个方面7.判断处理效应是否存在是假设检验的关健。
8.区间估计是在一定概率保证下指出总体参数的可能范围,所给出的可能范围叫置信区间,给出的概率称为 置 信 度 或 置 信概 率9.在实际进行直线回归分析时,可用相关系数显著性检验代替直线回归关系显著性检验10.我们用正交表安排的试验,具有均衡分散和整齐可比的特点。
11.反映两个连续变量间的相关性的指标可采用 相关系数 表示;反映一个连续变量和一组连续变量间的相关性的指标可采用 复相关系数 表示;讨论一组连续变量和一组连续变量间的相关性可采用 典型相关分析 方法讨论。
12.在数据处理中概率可用 频率 近似;分布的数学期望可用 样本均值 近似;分布的方差可用 样本方差 近似.13.配方试验中,若成分A 、B 、C 的总份数必须满足A+B+C=60份,采用正交试验的因素水平见表若正交)3(49L 的第9号试验条件 为(A 、B 、C )=(3、3、2),请给出具体的试验方案(取小数点后一位)A= 6.7 份,B= 13.3 份,C= 40 份14.抽样调查不同阶层对某改革方案的态度,统计分析方法应为 方差分析 ;研究学历对收入的影响,统计分析方法应为 回归分析 或相关性分析 。
P5315.设x1,x2,…,xn 是出自正态总体N (μ,σ2)的样本,其中σ2未知。
对假设检验H0∶μ=μ0, H1∶μ≠μ0,则当H0成立时,常选用的统计量是__T =(x ˉ-μ0)S /√n _______,它服从的分布为____t_(n-1)_____.16.设有100件同类产品,其中20件优等品,30件一等品,30件二等品,20件三等品,则这四个等级的标准分依次为 1.28 、0.39 、 -0.39 、 -1.28 A B C 水平1 18份 1.5倍A 1倍B 水平2 20份 1倍A 3倍B水平3 22份 2倍A 2倍B≤)=α查标准正态表可得u65.0=0.39,u7.0=0.12,u8.0=0.84, u9.0=1.28) (记P(U uα17.正交表有三个典型特点,分别是正交性、均衡性、独立性。
实验设计与数据处理习题答案完整版
实验设计与数据处理习题答案完整版实验设计与数据处理是科学研究中非常重要的一环,通过合理的实验设计和数据处理,可以得到准确的实验结果,并从中得出科学结论。
实验设计部分:答:该实验的目的是研究不同光照条件对植物生长的影响。
因变量是植物的生长情况,自变量是光照条件。
实验步骤如下: 1)选择同一种植物作为研究对象。
2)将植物分为三组,分别置于不同的光照条件下:组A为强光照条件,组B为中等光照条件,组C为弱光照条件。
3)每组植物种植在相同的土壤中,并给予相同的水分和养分供应。
4)每天记录植物的生长情况,包括高度、叶片数量等指标。
5)进行一定时间的观察和测量后,比较各组植物的生长情况,得出结论。
数据处理部分:1.对于上述实验,假设我们已经得到了每组植物的生长数据,如何进行数据处理来得出结论?答:首先,我们需要对数据进行描述性统计分析,计算每组植物的平均生长情况、标准差等指标。
然后,我们可以使用方差分析(ANOVA)来比较不同组之间的差异是否显著。
如果ANOVA结果显示差异显著,我们可以进行事后多重比较(如Tukey's HSD test)来确定哪些组之间存在显著差异。
最后,我们可以根据数据和统计分析的结果得出结论,判断不同光照条件对植物生长的影响是否显著。
2.如果实验中有一个组的数据明显偏离其他组,该如何处理?答:如果一个组的数据明显偏离其他组,我们需要先检查该组数据是否存在异常值或错误。
如果没有异常值或错误,我们可以考虑将该组数据排除在统计分析之外,重新进行分析。
如果该组数据确实存在问题,我们可以考虑重新进行实验或者进行更多的观察和测量,以获得更准确的结果。
3.如果实验中的样本量较小,该如何进行数据处理?答:如果实验中的样本量较小,我们可以考虑使用非参数统计方法来进行数据处理。
非参数统计方法不依赖于数据的分布情况,适用于小样本量的情况。
常见的非参数统计方法包括Wilcoxon秩和检验、Mann-Whitney U检验等。
实验设计与数据处理习题练习
09印刷工程5班方桂森 01、某饮料生产企业研制出一种新型饮料。
饮料的颜射共有四种,分别为橘黄色、粉色、绿色和物色透明。
随机从超市市场收集了前一期该种饮料的销售量(万元),如下表所示,试问饮料的颜色是否对销售产生影响。
:答:实验数据处理如下表SUMMARY组观测数方差求和平均橘黄色5粉色5绿色55无色实验分析:其中F-crit是显着性水平为时F的临界值,也就从F分布表中查到的(3,16),在本次试验中,F=>F-crit=,所以颜色因素对实验指标销售有显着影响,而 P-value=<,说明颜色因素对销售有显着影响,因为P-value表示的是因素对实验结果无显着影响的概率。
2、在用原子吸收分光光度法测定镍电解液中微量杂质铜时,研究了乙炔和空气流量变化对铜在某波长上吸光度的影响,得到下表所示的吸光度数据。
试根据表中数据分.析乙炔和空气流量的变化对铜吸光度的影响。
答:实验数据分析如下表:行 255行 35行 44列 14列 24 3列4 4列54列实验分析:表中行代表的是乙炔流量,列代表的是空气流量。
在乙炔流量因素中,我们可以看到,F=> F-crit=且P-value=<,所以乙炔流量这个因素对铜吸光度的影响非常显着,而在空气流量中F< F-crit且P-value>,所以空气因素对铜吸光度的影响不大。
3、为了研究铝材材质的差异对于它们在高温水中的腐蚀性能的影响,用三种不同的铝材在去离子水和自来水中于170°C进行了一个月的腐蚀试验,测得的深蚀率(μm)如下表所示。
试由下表所述结果考察铝材材质和水质对铝材腐蚀的影响。
.铝材材质去离子水自来水123试验数据处理结果:SUMMARY去离子自来水总计水 14观测数2215求和平均方差242观测数23求和平均方差03422观测数求和试验数据分析:表中样本表示铝材材质,列表示去不同液体,交互表示的是两个因素的交互作用,从表中可以看到,样本的和列的以及交F> F-crit=F> F-crit=互的F > F-crit=,同时样本的P-value和列的P-value以及交互的P-value都远远小于,所以我们可以读出结论,铝材材质和不同液体对实验结果铝材腐蚀的影响较大,同时铝材材质和不同液体的交互作用对铝材腐蚀有显着影响。
(完整word版)实验设计与数据处理试题库
一、名词解释:(20分)1.准确度和精确度:同一处理观察值彼此的接近程度同一处理的观察值与其真值的接近程度2.重复和区组:试验中同一处理的试验单元数将试验空间按照变异大小分成若干个相对均匀的局部,每个局部就叫一个区组3回归分析和相关分析:对能够明确区分自变数和因变数的两变数的相关关系的统计方法:对不能够明确区分自变数和因变数的两变数的相关关系的统计方法4.总体和样本:具有共同性质的个体组成的集合从总体中随机抽取的若干个个体做成的总体5.试验单元和试验空间:试验中能够实施不同处理的最小试验单元所有试验单元构成的空间二、填空:(20分)1.资料常见的特征数有:(3空)算术平均数方差变异系数2.划分数量性状因子的水平时,常用的方法:等差法等比法随机法(3空)3.方差分析的三个基本假定是(3空)可加性正态性同质性4.要使试验方案具有严密的可比性,必须(2空)遵循“单一差异”原则设置对照5.减小难控误差的原则是(3空)设置重复随机排列局部控制6.在顺序排列法中,为了避免同一处理排列在同一列的可能,不同重复内各处理的排列方式常采用(2空)逆向式阶梯式7.正确的取样技术主要包括:()确定合适的样本容量采用正确的取样方法8.在直线相关分析中,用(相关系数)表示相关的性质,用(决定系数)表示相关的程度。
三、选择:(20分)1试验因素对试验指标所引起的增加或者减少的作用,称作(C)A、主要效应B、交互效应C、试验效应D、简单效应2.统计推断的目的是用(A)A、样本推总体B、总体推样本C、样本推样本D、总体推总体3.变异系数的计算方法是(B)4.样本平均数分布的的方差分布等于(A)5.t检验法最多可检验(C)个平均数间的差异显著性。
6.对成数或者百分数资料进行方差分析之前,须先对数据进行(B)A、对数B、反正弦C、平方根D、立方根7.进行回归分析时,一组变量同时可用多个数学模型进行模拟,型的数据统计学标准是(B)A、相关系数B、决定性系数C、回归系数D、变异系数8.进行两尾测验时,u0.10=1.64,u0.05=1.96,u0.01=2.58,那么进行单尾检验,u0.05=(A)9.进行多重比较时,几种方法的严格程度(LSD\SSR\Q)B10.自变量X与因变量Y之间的相关系数为0.9054,则Y的总变异中可由X与Y的回归关系解释的比例为(C)A、0.9054B、0.0946C、0.8197D、0.0089四、简答题:(15分)1.回归分析和相关分析的基本内容是什么?(6分)配置回归方程,对回归方程进行检验,分析多个自变量的主次效益,利用回归方程进行预测预报:计算相关系数,对相关系数进行检验2.一个品种比较试验,4个新品种外加1个对照品种,拟安排在一块具有纵向肥力差异的地块中,3次重复(区组),各重复内均随机排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09印刷工程5班方桂森 0
1、某饮料生产企业研制出一种新型饮料。
饮料的颜射共有四种,分别为橘黄色、
粉色、绿色和物色透明。
随机从超市市场收集了前一期该种饮料的销售量(万元),如下表所示,试问饮料的颜色是否对销售产生影响。
答:实验数据处理如下表:
实验分析:其中F-crit是显着性水平为时F的临界值,也就从F分布表中查到的(3,16),在本次试验中,F=>F-crit=,所以颜色因素对实验指标销售有显着影响,而P-value=<,说明颜色因素对销售有显着影响,因为P-value表示的是因素对实验结果无显着影响的概率。
2、在用原子吸收分光光度法测定镍电解液中微量杂质铜时,研究了乙炔和空气流量变
化对铜在某波长上吸光度的影响,得到下表所示的吸光度数据。
试根据表中数据分
析乙炔和空气流量的变化对铜吸光度的影响。
答:实验数据分析如下表:
实验分析:表中行代表的是乙炔流量,列代表的是空气流量。
在乙炔流量因素中,我们可以看到,F=> F-crit=且P-value=<,所以乙炔流量这个因素对铜吸光度的影响非常显着,而在空气流量中F< F-crit且P-value>,所以空气因素对铜吸光度的影响不大。
3、为了研究铝材材质的差异对于它们在高温水中的腐蚀性能的影响,用三种不同的铝
材在去离子水和自来水中于170°C进行了一个月的腐蚀试验,测得的深蚀率(μm)如下表所示。
试由下表所述结果考察铝材材质和水质对铝材腐蚀的影响。
试验数据处理结果:
试验数据分析:表中样本表示铝材材质,列表示去不同液体,交互表示的是两个因素的交互作用,从表中可以看到,样本的F> F-crit=和列F> F-crit=的以及交互的F > F-crit=,同时样本的P-value和列的P-value以及交互的P-value都远远小于,所以我们可以读出结论,铝材材质和不同液体对实验结果铝材腐蚀的影响较大,同时铝材材质和不同液体的交互作用对铝材腐蚀有显着影响。