【区级联考】河南省洛阳市洛龙区2017-2018学年八年级(下)期中数学试题
2018-2019学年人教新版河南省洛阳市洛龙区六校联考八年级第二学期期中数学试卷及答案 含解析
2018-2019学年河南省洛阳市洛龙区六校联考八年级第二学期期中数学试卷一、选择题(共10小题)1.若二次根式有意义,则()A.a>2B.a≥2C.a<2D.a≤22.=()A.5B.7C.﹣5D.﹣73.下面二次根式中,是最简二次根式的是()A.B.C.D.4.下列计算正确的是()A.2 =B.+=C.4﹣3=1D.3+2=5 5.由线段a,b,c组成的三角形不是直角三角形的是()A.a2﹣b2=c2B.a=C.a=2,b=,c=D.∠A:∠B:∠C=3:4:56.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.209.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A.25B.9C.13D.169二、填空题(每小题3分,共15分)11.已知+|b﹣1|=0,则a+b=.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(共8个小题,满分75分)16.计算:(1)()﹣(3﹣4);(2)(2+5)(2﹣5)﹣()2.17.先化简,再求值:(+)÷,其中x=+2,y=﹣2.18.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.19.已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)20.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.21.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.22.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=s时,CE⊥AD;②当t=s时,平行四边形CEDF的两条邻边相等.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)参考答案一、选择题(每小题3分,共30分)1.若二次根式有意义,则()A.a>2B.a≥2C.a<2D.a≤2【分析】根据二次根式有意义的条件可得4﹣2a≥0,再解不等式即可.解:由题意得:4﹣2a≥0,解得:a≤2,故选:D.2.=()A.5B.7C.﹣5D.﹣7【分析】直接利用二次根式的性质化简得出答案.解:原式=6﹣1=5.故选:A.3.下面二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念进行判断即可.解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.4.下列计算正确的是()A.2 =B.+=C.4﹣3=1D.3+2=5 【分析】根据二次根式的加法法则和二次根式的性质判断即可.解:A、2==,故本选项符合题意;B、和不能合并,不等于,故本选项不符合题意;C、4﹣3=,故本选项不符合题意;D、3+2不等于5,故本选项不符合题意;故选:A.5.由线段a,b,c组成的三角形不是直角三角形的是()A.a2﹣b2=c2B.a=C.a=2,b=,c=D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.解:A、∵a2﹣b2=c2,即a2+c2=b2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵()2+12=()2,即c2+b2=a2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵22+()2=()2,即a2+b2=c2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,即∠C=75°,∴三角形不是直角三角形,故本选项正确.故选:D.6.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b【分析】写出各个命题的逆命题判断正误即可.解:A、逆命题为:同旁内角相等,两直线平行,成立;B、逆命题为:若两个数相等,则这两个数的绝对值相等,成立;C、逆命题为:相等的角为对顶角,不成立;D、逆命题为:若a=b,那么a2=b2,成立,故选:C.7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种【分析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.20【分析】根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE =CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.解:在平行四边形ABCD中,2(AD+CD)=36,∴AD+CD=18,易证△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴CF+CD+ED+EF=AE+ED+EF+CD=AD+CD+EF=18+6=24故选:C.9.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A.25B.9C.13D.169【分析】根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解:如图,∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是(13﹣1)÷4=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故选:A.二、填空题(每小题3分,共15分)11.已知+|b﹣1|=0,则a+b=2.【分析】利用非负数的性质求出a与b的值,再将a与b的值代入计算即可求出值.解:∵+|b﹣1|=0,∴a﹣b=0,b﹣1=0,解得a=1,b=1,则原式=1+1=2.故答案为:2.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为4或.【分析】此题要分两种情况:当3和5都是直角边时,当5是斜边长时,分别利用勾股定理计算出第三边长即可.解:当3和5都是直角边时,第三边长为:=,当5是斜边长时,第三边长为:=4,故答案为:4或.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是20.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为41.【分析】证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题(共8个小题,满分75分)16.计算:(1)()﹣(3﹣4);(2)(2+5)(2﹣5)﹣()2.【分析】(1)直接利用二次根式的性质分别化简二次根式进而计算得出答案;(2)直接利用乘法公式计算得出答案.解:(1)()﹣(3﹣4)=(2﹣)﹣(﹣2)=+;(2)(2+5)(2﹣5)﹣()2=20﹣50﹣(5+2﹣2)=﹣30﹣7+2=﹣37+2.17.先化简,再求值:(+)÷,其中x=+2,y=﹣2.【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得.解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.18.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.【分析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a,b,高为a+b;(2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积和,即.两者列成等式化简即可得:a2+b2=c2;19.已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)【分析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.解:(1)连接AC,∵AB=BC=1,∠B=90°∴AC=又∵AD=1,DC=∴()=12+()2即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××=+.20.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.【分析】连接BD,交AC于点O,欲证明证明四边形ABCD是平行四边形,只需证得AO=CO,DO=BO.【解答】证明:如图,连接BD,交AC于点O.∵四边形DEBF是平行四边形,∴OD=OB,OE=OF.又∵AE=CF,∴AE+OE=CF+OF,即OA=OC,∴四边形ABCD是平行四边形21.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.【分析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE和△CDF中,很容易确定SAS,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.【解答】证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM=BE,NF=DN=DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.22.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=4s时,CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等.【分析】(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;②求出△CDE是等边三角形,推出CE=DE,即可得出答案.解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=4s时,CE⊥AD,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=4,∴BM=2,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=4,BC=AD=6,∵AE=4,∴DE=2=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=6,AE=2,∴DE=4,∵CD=4,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等.故答案为:4,2.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)【分析】根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.解:在Rt△ABC中,∠ACB=90°,AC=8米,BC=6米.由勾股定理有:AB=10米,应分以下三种情况.①如图1,当AB=AD=10米时,∵AC⊥BD,∴CD=CB=6米,∴△ABD的周长=10+10+2×6=32(米).②如图2,当AB=BD=10米时,∵BC=6米,∴CD=10﹣6=4,∴AD===,∴△ABD的周长=10+10+4=(20+)米.③如图3,当AB为底时,设AD=BD=x米,则CD=(x﹣6)米,由勾股定理得:AD===x,解得x=.∴△ABD的周长为:AD+BD+AB=++10=(米).④如图④,延长AC至D,使AC=CD,连接BD,∵AC=CD,∠ACB=∠BCD,BC=BC,∴△ABC≌△DBC(SAS)∴AB=BD=10,∴△ABD的周长=AB+BD+AD=36米综上所述,扩充后等腰三角形绿地的周长为32米或(20+)米或米或36米.。
2017-2018学年河南省洛阳市洛龙区八年级(下)期中数学试卷(解析版)
2017-2018学年河南省洛阳市洛龙区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.如果二次根式有意义,那么x的取值范围是()A. B. C. D.2.下列二次根式中最简二次根式是()A. B. C. D.3.如图,在平行四边形ABCD中,下列结论一定正确的是()A.B.C.D.4.下列运算结果正确的是()A. B.C. D.5.下列说法错误的是()A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,对角线互相垂直的四边形是平行四边形6.已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是()A. :::4:5B. a:b:::2C. D.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A. 50mB. 48mC. 45mD. 35m8.如图,E是平行四边形ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D的度数是()A.B.C.D.9.如图所示,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10.如图,小蓓要赶上去实践活动基地的校车,她从点A知道校车自点B处沿x轴向原点O方向匀速驶来,她立即从A处搭一辆出租车,去截汽车.若点A的坐标为(2,3),点B的坐标为(8,0),汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为()A. B. C. D.二、填空题(本大题共5小题,共15.0分)11.在Rt△ABC中,∠C=90°,AC=6,BC=8,则AB边的长是______.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为______.三、计算题(本大题共2小题,共17.0分)13.计算:(1)2(2)14.已知:x=,求x2+5x-1的值.四、解答题(本大题共6小题,共58.0分)15.如图,在▱ABCD中,点E,F分别在边AD,BC上,点M,N在对角线AC上,且AE=CF,AM=CN,求证:四边形EMFN是平行四边形.16.17.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)18.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个直角三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是5.19.“过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC的中点,MN AC于点N,求NC的长.20.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG 的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=______s时,CE AD;②当t=______s时,平行四边形CEDF的两条邻边相等.21.如图1,抛物线y=ax2-6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.答案和解析1.【答案】A【解析】解:二次根式有意义,则x的取值范围是:x≥3.故选:A.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】C【解析】解:A、被开方数含开的尽的因数或因式,故A不符合题意;B、被开方数含开的尽的因数或因式,故B不符合题意;C、最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,故C符合题意D、被开方数含开的尽的因数或因式,故D不符合题意;故选:C.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.3.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∠A=∠C,∴∠A+∠B=180°.故一定正确的是B.故选:B.由四边形ABCD是平行四边形,根据平行四边形的性质,可得对角相等,邻角互补,继而求得答案.此题考查了平行四边形的性质.注意熟记定理是解此题的关键.4.【答案】C【解析】解:A、2、3不是同类二次根式,不能合并,此选项错误;B、2×3=6,此选项错误;C、=2÷=2,此选项正确;D、=6,此选项错误;故选:C.根据二次根式的加法、乘法、除法和二次根式的性质逐一计算即可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.5.【答案】D【解析】解:A、对角线互相平分的四边形是平行四边形,正确;B、两组对边分别相等的四边形是平行四边形,正确;C、一组对边平行且相等的四边形是平行四边形,正确;D、一组对边相等,对角线互相垂直的四边形是平行四边形,不一定是平行四边形;故选:D.根据平行四边形的定义即可判断;本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.6.【答案】A【解析】解:A、∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B、∵12+()2=22,∴∠C=90°,故能判定△ABC是直角三角形;C、∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D、∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.7.【答案】B【解析】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选:B.根据中位线定理可得:AB=2DE=48m.本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.【答案】B【解析】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∠B=∠D,∴∠1=∠F=70°.∵AB=BE,∴∠1=∠3=70°,∴∠B=40°,∴∠D=40°.故选:B.利用平行四边形的性质以及平行线的性质得出∠1=∠3,进而得出其度数,利用平行四边形对角相等得出即可.此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.9.【答案】A【解析】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=-1-.故选:A.点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.10.【答案】C【解析】解:作出题目中给出的图形:已知AC=3,OC=2,OB=8,在D点小蓓与汽车相遇,设OD=x,则CD=x-2,在直角△ACD中,AD为斜边,则AD2=AC2+CD2,AD=∵OD=x,则BD=8-x,存在8-x=,两边平方得到,3x2+4x-16=0解得:x=,故D点坐标(,0)故选:C.在D点小蓓与汽车相遇,则小蓓的行进路线为AD,设OD=x,在直角△ACD 中,AD为斜边,已知AC,CD,即可求AD,且BC=OB-OC=8,根据BD=AD的等量关系可以求得x,即可求相遇点D的坐标.本题考查了勾股定理在实际生活中的运用,考查了根据题意画出图形的能力,本题中找到汽车行驶速度为摩托车速度的2倍的等量关系,并且根据其求D 点坐标是解题的关键.11.【答案】10【解析】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴由勾股定理,得AB===10.故答案是:10.根据勾股定理得到AB=.本题考查了勾股定理的知识,属于基础题目,像这类直接考查定义的题目,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.12.【答案】12【解析】【分析】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD =2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S=2S△ABD,四边形AFBD又∵BD=DC,∴S△ABC=2S△ABD,∴S=S△ABC,四边形AFBD∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S=12.四边形AFBD故答案为12.13.【答案】解:(1)原式=4-2+12=14;(2)原式=(+2-3)×=-×=-4.【解析】(1)先把各二次根式化简为最简二次根式,然后合并即可.(2)先把括号内的各二次根式化简为最简二次根式,然后合并后进行二次根式的乘法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.【答案】解:当x=时,x2+5x-1=()2+5()-1=5-2+1+5-5-1=3.【解析】将x的值代入求值即可.考查了二次根式的化简求值.属于基础计算题,熟记二次根式的计算法则即可解题.15.【答案】解:在平行四边形ABCD中,AD∥BC,∴∠DAC=∠BCA,∵AE=CF,AM=CN,∴△AEM≌△CFN,∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形.【解析】想办法证明EM=FN,EM∥FN即可解决问题.本题考查全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13-0.5×10=8(米),∴AD===(米),∴BD=AB-AD=12-(米),答:船向岸边移动了(12-)米.【解析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.【答案】解:(1)如图1所示,Rt△ABC即为所求;(2)如图所示,Rt△DEF即为所求;(3)如图所示,正方形PQRS即为所求.【解析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为、2、的线段,画三角形即可.(3)利用勾股定理作一个边长为的正方形即可得.此题主要考查了作图与应用作图.本题需仔细分析题意,结合图形,利用勾股定理即可解决.18.【答案】解:连接AM,∵点M为BC的中点,S△ABC=32,∴S△AMC=16,∵MN AC于点N,AC=8,∴MN=4,在Rt△MNC中,CM=5,MN=4,可得:CN=.【解析】连接AM,根据三角形中线的性质得到△AMC的面积,根据面积公式得出MN,再根据勾股定理求得CN的长.本题综合运用三角形的中线的性质,勾股定理.关键是根据三角形中线的性质得到△AMC的面积.19.【答案】3.5;2【解析】解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=3.5s时,CE AD,理由是:过A作AM BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;②求出△CDE是等边三角形,推出CE=DE,即可得出答案.本题考查了平行四边形的性质和判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形.20.【答案】解:(1)把点A(8,0)代入抛物线y=ax2-6ax+6,得64a-48a+6=0,∴16a=-6,a=-,∴y=-x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴ ,解得:,∴直线AB的解析式为y=-x+6.(2)∵E(m,0),∴N(m,-m+6),P(m,-m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴=,∴PM=AN=×=12-m.又∵PM=-m2+m+6-6+m=-m2+3m,∴12-m=-m2+3m,整理得:m2-12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.【解析】(1)把点A(8,0)代入抛物线y=ax2-6ax+6,可求得a的值,从而可得到抛物线的解析式,然后求得点A和点B的坐标,最后利用待定系数法可求得直线AB 的解析式;(2)E(m,0),则N(m,-m+6),P(m,-m2+m+6),然后证明△ANE∽△ABO,依据相似三角形的性质可求得AN的长,接下来,再证明△NMP∽△NEA,然后依据相似三角形的性质可得到=,从而可求得PM=12-m,然后依据PM=-m2+3m,然后列出关于m的方程求解即可;(3)①在(2)的条件下,m=4,则OE′=OE=4,然后再证明△OQE′∽△OE′A,依据相似三角形的性质可得到=,从而可求得OQ的值,于是可得到点Q的坐标;②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,于是得到BE′+AE′=BE′+QE′,当点B、Q、E′在一条直线上时,BE′+QE′最小,最小值为BQ的长.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、旋转的性质,列出关于m的方程是解题答问题(2)的关键,明确当点点B、Q、E′在一条直线上时BE′+AE′取得最小值是解题的关键.。
河南省洛阳市洛龙区六校联考2018-2019学年八年级下学期数学期中考试试卷
第1页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………河南省洛阳市洛龙区六校联考2018-2019学年八年级下学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( )A . 3种B . 4种C . 5种D . 6种2. 若二次根式有意义,则( )A . a >2B . a≥2C . a < 2D . a≤2 3. 计算:( )A . 5B . 7C . -5D . -74. 下面二次根式中,是最简二次根式的是( ) A .B .C .D .5. 下列计算正确的是( ) A . 2 = B . + = C . 4 -3 =1 D . 3+2 =56. 由线段 组成的三角形不是直角三角形的是( )A.B.C. D .答案第2页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………7. 下列各命题的逆命题不成立的是( ) A . 两直线平行,同旁内角互补B . 若两个数的绝对值相等,则这两个数也相等C . 对顶角相等D . 如果那么8. 如图,EF 过平行四边形ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若平行四边形ABCD 的周长为36,OE =3,则四边形EFCD 的周长为( )A . 28B . 26C . 24D . 209. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形的是( )A . AE=CFB . DE=BFC . ∥ADE=∥CBFD . ∥ABE=∥CDF10. 在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为 较长直角边长为那么2的值为( )A . 25B . 19C . 13D . 169第3页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共5题)1. 如图,在平行四边形ABCD 中,DE 平分∥ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是 .2. 已知则.3. 直角三角形的两边长分别为3和5,则第三条边长是 .4. 如图,M 是∥ABC 的边BC 的中点,AN 平分∥BAC,BN∥AN 于点N,延长BN 交AC 于点D,已知AB=10,BC=15,MN=3,则∥ABC 的周长是 .5. 如图,长方形ABCD 中,AB=3,BC=4,点E 是BC 边上的一点,连接AE ,把∥B 沿AE 折叠,使点B 落在点 处,当为直角三角形时,BE 的长为 .评卷人 得分二、计算题(共2题)(1)答案第4页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)7. 先化简,再求值: ,其中x =+2,y =-2.评卷人得分三、解答题(共2题)8. 已知:如图,A 、C 是□DEBF 的对角线EF 所在直线上的两点,且AE=CF. 求证:四边形ABCD 是平行四边形.9. 有一块直角三角形的绿地,量得两直角边长分别为6m 和8m ,现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.评卷人得分四、作图题(共1题)10. 如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为 和 斜边长为图(2)是以为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.第5页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)在图(3)处画出拼成的这个图形的示意图;(2)利用(1)画出的图形证明勾股定理. 评卷人 得分五、综合题(共3题)11. 如图,在四边形ABCD 中,AB=BC=1,CD= DA=1,且∥B=90°,求:(1)∥BAD 的度数;(2)四边形ABCD 的面积(结果保留根号)。
河南省洛阳市孟津县2017-2018学年八年级下学期期中考试数学试题(解析版)
2017-2018学年河南省洛阳市孟津县八年级(下)期中数学试卷一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1B.2C.3D.43.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3B.m C.m<3D.m<3或m6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣18.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.09.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1B.y=2x+1C.y=x﹣1D.y=二、填空題(每小题3分,共18分)13.若代数式有意义,则x的取值范围是.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴与C,若△AOB的面积为1,则y2的解析式是.17.已知,则=.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy ﹣2).(要求结果中不出现负整数指数幂)20.(6分)先化简,再求值:,其中x =.21.(7分)在同一坐标系中分别画出y =2x +1和y =﹣x ﹣2的图象,它们的交点为A ,求点A 的坐标.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n 为正整数)(2)(++…+.24.(8分)如图,在平面直角坐标系中,直线y =﹣2x +4分别交x 轴、y 轴于点A 、B ,将△AOB 绕点O 顺时针旋转90°后得到△A ′OB ′.(1)求直线A ′B ′所对应的函数表达式.(2)若直线A ′B ′与直线AB 相交于点C ,求△A ′BC 的面积.25.(8分)如图,一次函数y =ax +b 的图象与反比例函数y =图象相交于点A (﹣1,2) 与点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)在第二象限内,求不等式ax +b <的解集(请直接写出答案).26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?2017-2018学年河南省洛阳市孟津县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的 1.下列四个图象中,不是函数图象的是( )A .B .C .D .【分析】根据函数的定义可知y 与自变量x 是一一对应的,从而可以判断各个选项中的图象是否是函数图象,从而可以解答本题.【解答】解:由函数的定义可知,选项B 中的图象不是函数图象,故选:B .【点评】本题考查函数的图象、函数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.2.下列代数式:﹣,0,,2x ﹣y ,,其中分式个数有( ) A .1 B .2 C .3 D .4【分析】根据分式的定义即可求出答案.【解答】解:﹣,,是分式,故选:C .【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3B.m C.m<3D.m<3或m【分析】首先联立解方程组求得交点的坐标,再根据交点在第二象限列出不等式组,从而求得m 的取值范围.【解答】解:根据题意,得﹣3x+m=2x+3,解得x=,则y=.又交点在第二象限,则x<0,y>0,即<0,,解得.故选:A.【点评】考查了两条直线相交或平行问题,能够根据二元一次方程组求两条直线的交点,同时根据所在象限的位置确定字母的取值范围.6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.【解答】解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.8.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.0【分析】根据题意,对题目中的函数解析式变形,即可求得所求式子的值.【解答】解:∵P(x,y)是直线y=x﹣上的点,∴4y=2x﹣6,∴2x﹣4y=6,∴2x﹣4y﹣3=6﹣3=3,故选:A.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.9.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.【分析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.【解答】解:由矩形的面积公式可得xy=6,∴y=(x>0,y>0).图象在第一象限.故选:C.【点评】考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是( )A .将l 1向左平移3个单位B .将l 1向左平移9个单位C .将l 1向下平移3个单位D .将l 1向上平移9个单位 【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l 1:y =﹣3x +3平移后,得到直线l 2:y =﹣3x ﹣6,∴﹣3(x +a )+3=﹣3x ﹣6,解得:a =3,故将l 1向左平移3个单位长度.故选:A .【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.不论m 取何值,如果点P (2m ,m +1)都在某一条直线上,则这条直线的解析式是( )A .y =2x ﹣1B .y =2x +1C .y =x ﹣1D .y =【分析】分别计算自变量为2m 时四个函数的函数值,然后根据一次函数图象上点的坐标特征进行判断.【解答】解:当x =2m 时,y =2x ﹣1=4m ﹣1;y =2x +1=4m +1;y =x ﹣1=m ﹣1;y =x +1=m +1,所以点P (2m ,m +1)在直线y =x +1上.故选:D .【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.二、填空題(每小题3分,共18分)13.若代数式有意义,则x 的取值范围是 x ≥0且x ≠2 .【分析】令被开方数大于或等于0和分母不为0即可求出x 的范围【解答】解:∵解得:x ≥0且x ≠2故答案为:x ≥0且x ≠2【点评】本题考查二次根式以及分式有意义的条件,解题的关键是根据条件列出不等式组,本题属于基础题型.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.【分析】直接利用分式的性质将原式变形进而得出答案.【解答】解:∵分式的值为5,把式中的x,y同时扩大为原来的3倍,∴原式==×=.故答案为:.【点评】此题主要考查了分式的基本性质,正确将原式变形是解题关键.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第二象限.【分析】先根据反比函数的定义求出k的值,再根据一次函数的性质判断出一次函数y=x﹣2k 经过的象限即可.【解答】解:∵y=3x1﹣2k为反比例函数,∴1﹣2k=﹣1,解得k=1,∴一次函数y=x﹣2k的解析式为y=x﹣2,∴函数图象经过一、三、四象限,不经过第二象限.故答案为:二.【点评】本题考查的是反比例函数的定义及一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k>0,b<0时函数的图象在一、三、四象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴与C,若△AOB的面积为1,则y2的解析式是y=.【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为1.5,进而得出△CBO面积为2.5,即可得出y2的解析式.【解答】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,=×3=1.5,∴S△AOC=1,∵S△AOB∴△CBO面积为2.5,∴k=xy=5,∴y2的解析式是:y2=.故答案为:y2=.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出△CAO的面积为1.5,进而得出△CBO面积为2.5是解决问题的关键.17.已知,则=﹣3.【分析】将已知等式左边通分可得:=3,再将所求式子分子提公因式、约分后,代入可得结论.【解答】解:∵,∴=3,则===﹣3.故答案为:﹣3.【点评】本题考查了分子的加减法和因式分解,熟练掌握分式的加减法法则是关键.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是(1,﹣1).【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2018=201×10+2+3+2+1可得出当t=2018秒时点P在点D上方一个单位长度处,再结合点D的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,=2(AB+AD)=10.∴C矩形ABCD∵2018=201×10+2+3+2+1,∴当t=2018秒时,点P在点D上方一个单位长度处,∴此时点P的坐标为(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了规律型中点的坐标,根据点P的运动规律找出当t=2018秒时点P在点D上方一个单位长度处是解题的关键.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy﹣2).(要求结果中不出现负整数指数幂)【分析】直接利用积的乘方运算法则化简,进而利用分式的乘除运算法则计算得出答案.【解答】解:原式=××=.【点评】此题主要考查了分式的乘除运算,正确掌握积的乘方运算法则是解题关键.20.(6分)先化简,再求值:,其中x=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)在同一坐标系中分别画出y=2x+1和y=﹣x﹣2的图象,它们的交点为A,求点A的坐标.【分析】利用瞄点法画出直线即可,解方程组求交点坐标即可;【解答】解:列表描点画出图象:列方程组,解方程组得,∴两直线交点A的坐标是(﹣1,﹣1).【点评】本题考查一次函数的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?【分析】设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.【解答】解:设摩托车的是xkm/h,=+x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.【点评】本题考查分式方程的应用,设出速度,以时间做为等量关系可列方程求解.23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.【分析】(1)根据题意得出拆项规律,即可得到结果;(2)原式利用得出的拆项变形,计算即可得到结果.【解答】解:(1)原式===(2)原式====【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB 绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再由图形旋转的性质求出A′、B′的坐标,用待定系数法求出直线A′B′的解析式即可;(2)直接根据A′BC的坐标,利用三角形的面积公式进行计算即可.【解答】解:(1)∵直线y=﹣2x+4分别交x轴、y轴于点A、B,∴点A、B的坐标分别为(2,0)、(0,4).由旋转得,点A′、B′的坐标分别为(0,﹣2)、(4,0).设直线A′B′所对应的函数表达式为y=kx+b.∴,解得.∴直线A′B′所对应的函数表达式为.(2)依题意有,解得.∴点C的横坐标为.∵A′B=4﹣(﹣2)=6,∴.【点评】本题考查的是一次函数的图象与及几何变换、一次函数的性质及三角形的面积公式,根据题意求出直线A′B′的解析式是解答此题的关键.25.(8分)如图,一次函数y=ax+b的图象与反比例函数y=图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)在第二象限内,求不等式ax+b<的解集(请直接写出答案).【分析】(1)将点A(﹣1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数的解析式;(2)求得C 点的坐标后利用S △AOB =S △AOC ﹣S △BOC 求面积即可;(3)根据图象即可得到结论.【解答】解:(1)将点A (﹣1,2)代入函数y =,解得:m =﹣2,∴反比例函数解析式为y =﹣,将点A (﹣1,2)与点B (﹣4,)代入一次函数y =ax +b ,解得:a =,b =∴一次函数的解析式为y =+;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣=;(3)由图象知,不等式ax +b <的解集为:﹣5<x <﹣4或﹣1<x <0.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x 台,空调和彩电全部销售后商场获得的利润为y 元.(1)试出y 与x 之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?【分析】(1)根据题意和函数图象中的数据可以求得y 与x 之间的函数关系式;(2)根据题意可以列出相应的不等式组,从而可以解答本题;(3)根据(1)和(2)中的结果,利用一次函数的性质可以解答本题.【解答】解:(1)由题意可得,y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000,即y与x之间的函数关系式是y=300x+12000;(2)由题意得,,解得,10≤x≤,∵x为整数,∴x=10,11,12,∴有三种购买方案,方案1:购买空调10台,彩电20台,方案2:购买空调11台,彩电19台,方案3:购买空调12台,彩电18台;(3)∵y=300x+12000,∴该函数y随x的增大而增大,∴当x=12时,y取得最大值,此时y=300×12+12000=15600,答:x=12时,利润最大,最大利润为15600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。
2017-2018学年河南省洛阳市洛宁县八年级(下)期中数学试卷(解析版)
2017-2018学年河南省洛阳市洛宁县八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式-3x,,,,,,中,分式的个数为()A. 1B. 2C. 3D. 42.在平面直角坐标系中,点A(2,-1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知分式的值是零,那么x的值是()A. B. 0 C. 1 D.4.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A. 第一、二象B. 第一、三象限C. 第二、四象限D. 第三、四象限5.下列图形的性质中,平行四边形不一定具有的是()A. 邻边相等B. 对角相等C. 对边相等D. 不稳定性6.下列各式中正确的是()A. B. C. D.7.如果把分式的a、b都扩大3倍,那么分式的值一定()A. 是原来的1倍B. 是原来的3倍C. 是原来的6倍D. 不变8.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A. B.C. D.9.如图,A为反比例函数y=图象上一点,AB垂直x轴于B点,若S△AOB=3,则k的值为()A. 6B. 3C.D. 不能确定10.如图,关于x的函数y=kx-k和y=-(k≠0),它们在同一坐标系内的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.用科学记数法表示:0.000305=______.12.函数y=-x+2中,y的值随x值的减小而______.13.平行四边形两条对角线的长分别为8cm,6cm,则它的一边长a的取值范围是______.14.已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是______.15.关于x的方程=3的解是正数,则m的取值范围是______.三、计算题(本大题共1小题,共9.0分)16.求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.四、解答题(本大题共7小题,共66.0分)17.有一道题“先化简,再求值:其中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?18.如图所示,四边形ABCD是平行四边形,DB⊥AD,且AC=10,BD=6,求四边形各边的长.19.甲、乙两同学住在离学校1.8千米的A地,他们同时出发去学校,甲同学出发至100米时,发现书包忘在A地的家中,便立即返回,取了书包后立即从A地去学校,这样甲、乙二人同时到校.已知甲比乙每小时多走0.5千米,求甲、乙两人的速度.20.如图,在△ABC中,AB=AC,点D在BC上,DE∥AC交AB于点E,DF∥AB交AC于点F,试说明线段DE,DF,AB三者之间的数量关系.21.m为何值时,关于x的方程+=会产生增根?22.如图,已知直线y=x-2与双曲线y=(x>0)交于点A(3,m).(1)求m,k的值;(2)连接OA,在x轴的正半轴上是否存在点Q,使△AOQ是等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.23.甲、乙两个仓库要向A、B两地运送水泥,已知甲库可调出水泥100吨,乙库可调出水泥80吨;A地需水泥70吨,B地需水泥110吨,两仓库到A、B两地的路程和运费如下表:()设甲库运往地水泥吨,求总运费(元)关于(吨)的函数关系式及x 的取值范围;(2)当甲、乙两个仓库各运往A、B两地水泥多少吨时总运费最少?最少运费是多少?答案和解析1.【答案】D【解析】解:-3x,,的分母中均不含有字母,因此它们是整式,而不是分式.-,,,分母中含有字母,因此是分式.故选:D.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.【答案】D【解析】解:∵2>0,-1<0,∴点M(2,-1)在第四象限.故选:D.根据横坐标是正数,纵坐标是负数,是点在第四象限的条件.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.3.【答案】C【解析】解:若=0,则x-1=0且x+1≠0,故x=1,故选:C.分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.命题立意:考查分式值为零的条件.关键是要注意分母不能为零.4.【答案】B【解析】解:∵反比例函数的图象过点P(1,3),∴k=1×3=3>0,∴此函数的图象在一、三象限.故选:B.先根据反比例函数的图象过点P(1,3)求出k的值,进而可得出结论.本题考查的是反比例函数图象上点的坐标特点,根据反比例函数中k=xy的特点求出k的值是解答此题的关键.5.【答案】A【解析】解:平行四边形具有的性质:对角相等,对边相等,四边形的不稳定性.故B,C,D正确,A错误.故选:A.直接利用平行四边形的性质:对角相等,对边平行且相等,四边形的不稳定性;即可求得答案.此题考查了平行四边形的性质.注意熟记平行四边形的性质定理是解此题的关键.6.【答案】D【解析】解:A、分式的分子分母同时加上一个不为0的数,分式的值改变,故A错误,B、,故B错误,C、不能再约分,故C错误,D、,故选:D.根据分式的基本性质和分式的加减法法则对各选项进行判断.本题考查分式的基本性质,熟练掌握分式的基本性质是答题的关键.异分母分式的加减法,首先要经过通分化为同分母分式的加减运算.7.【答案】B【解析】解:原式==故选:B.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.8.【答案】D【解析】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.对四个图依次进行分析,符合题意者即为所求.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.【答案】A【解析】解:由于点A是反比例函数图象上一点,则S△AOB=|k|=3;又由于函数图象位于一、三象限,则k=6.故选:A.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10.【答案】B【解析】解:A、由反比例函数图象可得k<0,∴一次函数y=kx-k应经过一二四象限,故A选项错误;B、由反比例函数图象可得k>0,∴一次函数y=kx-k应经过一三四象限,故B 选项正确;C、由反比例函数图象可得k<0,∴一次函数y=kx-k应经过一二四象限,故C 选项错误;D、由反比例函数图象可得k>0,∴一次函数y=kx-k应经过一三四象限,故D 选项错误;故选:B.根据反比例函数判断出k的取值,进而判断出一次函数所在象限即可.综合考查了反比例函数和一次函数的图象特征;用到的知识点为:一次函数的比例系数大于0,一次函数经过一三象限,常数项大于0,还经过第二象限;常数项小于0,还经过第四象限;比例系数小于0,一次函数经过二四象限,常数项大于0,还经过第一象限,常数项小于0,还经过第三象限;反比例函数的比例系数大于0,图象的两个分支在一三象限;比例系数小于0,图象的2个分支在二四象限.11.【答案】3.05×10-4【解析】解:0.000305=3.05×10-4.故答案为:3.05×10-4.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】增大【解析】解:∵k=-1<0,∴函数y随x的减小而增大,故答案为:增大.根据一次函数y=kx+b的图象的性质作答.本题考查了一次函数的性质,解题的关键是牢记一次函数的增减性是由k的符号决定.13.【答案】1<a<7【解析】解:如图,∵四边形ABCD是平行四边形,AC=6,BD=8,∴OC=3,OB=4,在△BOC中,设BC=a,则OB-OC<a<OB+OC,即4-3<a<3+4即1<a<7.∴它的一条边长a的取值范围是1<a<7.故答案为1<a<7.根据平行四边形的性质得到,平行四边形的两条对角线的一半与它的一条边长a,构成的图形必须满足三角形三边关系的条件,列出不等式即可解答.本题考查平行四边形的性质以及三角形的三边关系定理.解题时注意:平行四边形的对角线互相平分.14.【答案】y1<y2【解析】解:∵反比例函数y=(k<0)的k<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故答案为y1<y2.由于反比例函数y=(k<0)的k<0,可见函数位于二、四象限,由于x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,于是根据二次函数的增减性判断出y1与y2的大小.本题考查了反比例函数图象上的点的坐标特征,函数图象上的点的坐标符合函数解析式.同时要熟悉反比例函数的增减性.15.【答案】m>-6且m≠-4【解析】解:解方程=3,得x=m+6,∵关于x的方程=3的解是正数,∴m+6>0,∴m>-6,∵x-2≠0,∴x≠2,∴m+6≠2,∴m≠-4,∴m的取值范围是m>-6且m≠-4;故答案为m>-6且m≠-4.先求得x的值,再根据解为正数,列出关于m的不等式,求解即可.本题考查了分式方程的解以及解一元一次不等式组,求出方程的解是解题的关键.16.【答案】解:当x=0时,y=-3,当y=0时,x=2,∴这条直线与两坐标轴围成的三角形的面积为×|-3×2|=3.【解析】分别求得函数与x轴、y轴的交点坐标,那么这条直线与两坐标轴围成的三角形的面积等于x轴,y轴上的数的积的绝对值的一半,把相关数值代入求解即可.考查一次函数图象上的点的坐标的特点;用到的知识点为:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.17.【答案】解:==x2+4,当x=3时,原式=32+4=13,当x=-3时,原式=(-3)2+4=13,∴小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的.【解析】化简题目中的式子,然后将x=3和x=-3分别代入化简后的式子即可解答本题.本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.18.【答案】解:∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=5,OB=OD=3,又∵DB⊥AD,∴∠ADO=90°,在Rt△ADO中,AD==4,在Rt△ABD中,AB==2,综上可得四边形ABCD各边长:BC=AD=4,DC=AB=.【解析】根据平行四边形的对角线互相平分,可得OA=OC=5,OB=OD=3,在Rt△AOD中利用勾股定理求出AD,在Rt△ABD中求出AB,继而得出四边形各边长.本题考查了平行四边形的性质及勾股定理的知识,解答把本题的关键是掌握平行四边形的对角线互相平分.19.【答案】解:设甲的速度为x千米/时,乙的速度为(x-0.5)千米/时.根据题意得:=,解得:x=5,经检验,x=5是原方程的根,符合题意.所以乙的速度:5-0.5=4.5(千米/时).答:甲的速度为5千米/时,乙的速度为4.5千米/时.【解析】设甲的速度为x千米/时,乙的速度为(x-0.5)千米/时.根据两人到校所用的时间相等建立方程求出其解即可.本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,时间=路程÷速度的运用,解答时根据时间相等建立方程是关键.20.【答案】解:DE+DF=AB,理由如下:∵AB=AC,∴∠B=∠C.∵DE∥AC交AB于点E,∴∠C=∠BDE,∴∠B=∠BDE,∴BE=DE.∵DE∥AC交AB于点E,DF∥AB交AC于点F,∴四边形AEDF是平行四边形,∴AE=DF.∵AE+BE=AB,∴DE+DF=AB.【解析】根据等腰三角形的性质,可得∠B与∠C的关系,根据平行线的性质,可得∠C 与∠BDE的关系,根据等腰三角形的判定,可得BE与DE的关系,根据平行四边形的判定与性质,可得DF与AE的关系.本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质、平行四边形的判定与性质,得出BE与DE的关系、DF与AE的关系是解题关键.21.【答案】解:原方程化为+=,方程两边同时乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),整理得(m-1)x+10=0,∵关于x的方程+=会产生增根,∴(x+2)(x-2)=0,∴x=-2 或x=2,∴当x=-2时,(m-1)×(-2)+10=0,解得m=6,当x=2时,(m-1)×2+10=0,解得m=-4,∴m=-4或m=6时,原方程会产生增根.【解析】先去分母得2(x+2)+mx=3(x-2),整理得(m-1)x+10=0,由于关于x的方程+=会产生增根,则(x+2)(x-2)=0,解得x=-2 或x=2,然后把x=-2 和x=2分别代入(m-1)x+10=0即可得到m的值.本题考查了分式方程的增根:先把分式方程转化为整式方程,解整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根.22.【答案】解:(1)∵点A(3,m)在直线y=x-2上∴m=3-2=1∴点A的坐标是(3,1)∵点A(3,1)在双曲线y=上∴1=∴k=3(2)存在①若OA=OQ,则Q1(,0);②若OA=AQ,则Q2(6,0);③若OQ=AQ,则Q3(,0).∴Q1(,0),Q2(6,0),Q3(,0).【解析】点A(3,m)在直线y=x-2上,把A点坐标代入解析式就可以求出m的值;再把A代入双曲线y=(x>0)中即可求解.本题主要考查了待定系数法求函数解析式,以及函数图象上的点与解析式的关系,图象上的点一定满足函数解析式.23.【答案】解:(1)设甲库运往A地水泥x吨,依题意得y=12×20x+10×25×(100-x)+12×15×(70-x)+8×20×(10+x)=-30x+39200 (0≤x≤70)(2)上述一次函数中k=-30<0∴y的值随x的增大而减小,∴x=70时,总运费y最少,最少的总运费为37100元.【解析】(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.。
【三套打包】洛阳市八年级下学期期中数学试卷含答案
八年级下学期期中考试数学试题及答案一.选择题(共10小题,满分30分,每小题3分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y km与已用时间x h之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h3.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7B.2:2:7:7C.2:7:7:2D.2:3:4:5 4.下列各组线段中,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.4,6,75.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>06.如图,在菱形ABCD中,AB=2,∠B=60°,E、F分别是边BC、CD中点,则△AEF 周长等于()A.B.C.D.37.如图,矩形ABCD中,∠AOB=60°,AB=2,则AC的长为()A.2B.4C.2D.48.将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120°D.不能确定9.已知一次函数y=﹣mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2B.m<0,n<2C.m<0,n>2D.m>0,n>2 10.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④二.填空题(共8小题,满分16分,每小题2分)11.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=.12.已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=.13.如图,在边长为4的正方形ABCD中,点E是BC上的一定点,且BE=3,点P是BD 上的一动点,则△PEC周长的最小值是.14.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=95°,则∠2的度数为.16.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为.17.在菱形ABCD中,AB=5cm,BC边上的高AH=3cm,那么对角线AC的长为cm.18.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.2元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.1元计算(不足1分钟按1分钟计算).在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分钟)之间的函数关系式为.三.解答题(共6小题,满分42分,每小题7分)19.设一次函数y=kx+b的图象过点A(2,﹣1)和点B,其中点B是直线y=x+3与y 轴的交点,求这个一次函数的解析式.20.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.21.如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.22.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y 1元,购买x (x >5)个B 品牌的计算器需要y 2元,分别求出y 1、y 2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?23.如图,在△ABC 中,∠A =135°,AB =20,AC =30,求△ABC 的面积.24.阅读材料,回答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”. 上述记载表明了:在Rt △ABC 中,如果∠C =90°,BC =a ,AC =b ,AB =c ,那么a ,b ,c 三者之间的数量关系是: .(2)对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:∵S △ABC =ab ,S 正方形ABDE =c 2,S 正方形MNPQ = .又∵ = ,∴(a +b )2=4×,整理得a 2+2ab +b 2=2ab +c 2,∴ .四.解答题(共2小题,满分12分,每小题6分)25.如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E (尺规作图的痕迹保留在图中了),连接EF .(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.26.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+3)2+=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP =S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.2018-2019学年北京市第八十五中学八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.2.【分析】观察函数图象得到小敏、小聪相遇时,小聪走了4.8千米,接着小敏再用2.8小时﹣1.6小时=1.2小时到达B点,然后根据速度公式计算他们的速度.【解答】解:小敏从相遇到B点用了2.8﹣1.6=1.2小时,所以小敏的速度==4(千米/时),小聪从B点到相遇用了1.6小时,所以小聪的速度==3(千米/时).故选:D.【点评】本题考查了函数的图象:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.函数图形上的任意点(x,y)都满足其函数的解析式;满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P (x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.3.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.【点评】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.4.【分析】判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32=13≠42,故A选项构成不是直角三角形;B、32+42=25≠62,故B选项构成不是直角三角形;C、52+122=169=132,故C选项构成是直角三角形;D、42+62=52≠72,故D选项构成不是直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.【分析】根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.【解答】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.6.【分析】连接AC,然后判定△ABC是等边三角形,根据等边三角形的性质求出AE,∠EAC=30°,同理可得AF,∠CAF=30°,然后判定△AEF是等边三角形,再根据等边三角形的周长求解即可.【解答】解:如图,连接AC,∵菱形ABCD,∠B=60°,∴△ABC是等边三角形,∵点E是BC的中点,∴AE=,∠EAC=30°,同理可得:AF=,∠FAC=30°,∴AE=AF,∠EAC=∠FAC,∴△AEF是等边三角形,∴△AEF的周长=3×=3.故选:B.【点评】本题考查了菱形的性质,等边三角形的判定与性质,作辅助线构造出等边三角形是解题的关键,也是本题的突破点.7.【分析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=2,易求AC.【解答】解:∵四边形ABCD是矩形,∴AO=BO,∵∠AOB=60°,∴∠OAB=∠ABO=60°,∴△ABO是等边三角形,∵AB=2,∴AO=BO=AB=2.∴AC=2A0=4,故选:B.【点评】本题考查的是矩形的性质以及等边三角形的有关知识,题目难度不大.8.【分析】根据旋转的性质得到∠BAD=100°,AB=AD,根据三角形内角和定理得到∠B=∠ADB=40°,计算即可.【解答】解:由旋转的性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.【点评】本题考查的是旋转变换的性质,掌握旋转方向、旋转角以及旋转的性质是解题的关键.9.【分析】根据一次函数图象经过第一、二、三象限,即可得出﹣m>0、n﹣2>0,解之即可得出结论.【解答】解:∵一次函数y=﹣mx+n﹣2的图象经过第一、二、三象限,∴,∴m<0,n>2.故选:C.【点评】本题考查了一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.10.【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【解答】解:根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.【点评】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二.填空题(共8小题,满分16分,每小题2分)11.【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点A(2,4)与点B(b﹣1,2a)关于原点对称,∴b﹣1=﹣2,2a=﹣4,解得:b=﹣1,a=﹣2,则ab=2.故答案为:2.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.12.【分析】把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a 的值.【解答】解:∵点P(﹣2,a)在一次函数y=3x+1的图象上,∴a=3×(﹣2)+1=﹣5.故答案是:﹣5.【点评】本题考查了一次函数图象上点的坐标特征.此题利用代入法求得未知数a的值.13.【分析】根据正方形的性质可得点C、点A关于BD对称,从而连接AE,则AE与BD 交点P′即是点P的位置,利用勾股定理求解AE即可解决问题;【解答】解:∵点C、点A关于BD对称,∴AE与BD的交点P′即是点P的位置,此时满足PE+PC的值最小,又∵AB=BC=BE+EC=12,∴在RT△ABE中,AE=AP′+P′E=P′C+P′E==5,∴△PEC的周长的最小值=5+1=6.故答案为6.【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用,利用轴对称的知识找出最短路径是解题关键,难度一般.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】先根据折叠的性质得到∠BEF=∠B′EF,∠CFE=∠C′FE,再根据邻补角的定义得到180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,则可计算出∠AEF=42.5°,再根据三角形内角和定理计算出∠AFE=77.5°,然后把∠AFE=77.5°代入180°﹣∠AFE=∠2+∠AFE即可得到∠2的度数.【解答】解:如图,∵△ABC沿EF翻折,∴∠BEF=∠B′EF,∠CFE=∠C′FE,∴180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,∵∠1=95°,∴∠AEF=(180°﹣95°)=42.5°,∵∠A+∠AEF+∠AFE=180°,∴∠AFE=180°﹣60°﹣42.5°=77.5°,∴180°﹣77.5=∠2+77.5°,∴∠2=25°.故答案为25°.【点评】本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4﹣3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.17.【分析】分AH在菱形ABCD内部,若AH在菱形ABCD外部两种情况讨论,由勾股定理可求AC的长.【解答】解:如图,若AH在菱形ABCD内部,连接AC∵四边形ABCD是菱形∴AB=BC=5cm在Rt△ABH中,BH==4cm∴CH=BC﹣BH=1,∴AC==如图,若AH在菱形ABCD外部,连接AC∵四边形ABCD是菱形∴AB=BC=5在Rt△ABH中,BH==4∴CH=BC+BH=9,∴AC==3故答案为:或3【点评】本题考查了菱形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.18.【分析】话费=三分钟以内的基本话费0.2+超过3分钟的时间×0.1,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.1×(x﹣3),所以:通话时间超过3分钟,话费y(元)与通话时间x之间的函数关系式为y=0.2+0.1x (x﹣3)=0.1x﹣0.1.故答案为:y=0.1x﹣0.1.【点评】考查了函数关系式,解决本题的关键是理解话费分为规定时间的费用+超过规定时间的费用.三.解答题(共6小题,满分42分,每小题7分)19.【分析】先利用解析式y=x+3确定B点坐标,然后利用待定系数法求经过A、B两点的一次函数解析式.【解答】解:当x=0时,y=x+3=3,则B点坐标为(0,3),把A(2,﹣1),B(0,3)代入y=kx+b得,解得,所以一次函数解析式为y=﹣2x+3.【点评】本题考查了待定系数法求一次函数解析式:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.也考查了数形结合的思想.20.【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.21.【分析】可连接AE、DB、BE,BE交AD于点O,由线段之间的关系可得OF=OC,OB=OE,可证明其为平行四边形.【解答】证明:连接AE、DB、BE,BE交AD于点O,∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.23.【分析】过点B 作BE ⊥AC ,根据勾股定理可求得BE ,再根据三角形的面积公式求出答案.【解答】解:过点B 作BE ⊥AC ,∵∠A =135°,∴∠BAE =180°﹣∠A =180°﹣135°=45°,∴∠ABE =90°﹣∠BAE =90°﹣45°=45°,在Rt △BAE 中,BE 2+AE 2=AB 2,∵AB =20,∴BE ==10,∵AC =30,∴S △ABC =AC •BE =×30×10=150.【点评】本题考查了解直角三角形,勾股定理以及三角形的面积公式,是基础知识比较简单.24.【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可.【解答】解:(1)在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,由勾股定理得,a 2+b 2=c 2,故答案为:a 2+b 2=c 2;(2)∵S △ABC =,S 正方形ABCD =c 2,S 正方形MNPQ =(a +b )2;又∵正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积, ∴(a +b )2=4×ab +c 2,整理得,a 2+2ab +b 2=2ab +c 2,∴a2+b2=c2,故答案为:(a+b)2;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;a2+b2=c2.【点评】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.四.解答题(共2小题,满分12分,每小题6分)25.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO 的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.26.【分析】(1)根据非负数的性质,可得a,b,根据待定系数法,可得函数解析式;(2)根据平行线间的距离相等,可得Q到AO的距离等于B到AO的距离,根据等底等高的三角形的面积相等,可得S△AOP =S△AOB,根据解方程组,可得P点坐标;(3)根据等腰直角三角形的性质,可得关于a的方程,根据解方程,可得a,根据平行于x轴直线上点的纵坐标相等,可得答案.【解答】解:(1)由(a+3)2+=0,得a=﹣3,b=4,即A(﹣3,3),B(0,4),设l2的解析式为y=kx+b,将A,B点坐标代入函数解析式,得,解得,l2的解析式为y=x+4;(2)如图1,作PB∥AO,P到AO的距离等于B到AO的距离,S△AOP =S△AOB.∵PB∥AO,PB过B点(0,4),∴PB的解析式为y=﹣x+4或y=﹣x﹣4,又P在直线y=5上,联立PB及直线y=5,得﹣x+4=5或﹣x﹣4=5,解得x=﹣1或﹣9,∴P点坐标为(﹣1,5)或(﹣9,5);(3)设M点的坐标为(a,﹣a),N(a,a+4),∵点M在点N的下方,∴MN=a+4﹣(﹣a)=+4,如图2,当∠NMQ=90°时,即MQ∥x轴,NM=MQ,+4=﹣a,解得a=﹣,即M(﹣,),∴Q(0,);如图3,当∠MNQ=90°时,即NQ∥x轴,NM=NQ,+4=﹣a,解得a=﹣,即N(﹣,),∴Q(0,),如图4,当∠MQN=90°时,即NM∥y轴,MQ=NQ,a+2=﹣a,解得a=﹣,∴Q(0,).综上所述:Q点的坐标为(0,)或(0,)或(0,).【点评】本题考查了一次函数综合题,解(1)的关键是利用非负数的性质得出a,b的值,又利用了待定系数法;解(2)的关键是利用等底等高的三角形的面积相等得出P在过B点且平行AO的直线上;解(3)的关键是利用等腰直角三角形的性质得出关于a的方程,要分类讨论,以防遗漏.最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。
2017洛龙区八年级上册期中考试真题
洛阳市2017-2018 学年洛龙区第一学期期中形成性测试八年级英语(满分120分,考试时间90分钟)听力部分(20分)一,听力理解(每题1分,共20分)第一节,听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案,并将其序号填入提前括号内。
每段对话读两遍。
( )1. What did Tom do yesterday morning?A.He went fishing.B. He went climbing.C. He went shopping.( )2. What does Jack’s mother often do on weekends?A.She often exercises.B. She often does the homework.C. She often reads newspapers.( )3. What does Lucy wear?A.A coat.B. A dressC. A shirt.( )4. What are the boy and the girl talking about ?A. A radio station.B. A cloth store.C. A movie theater( )5. What does Kevin watch last night?A. A game show.B. A sports show.C. A talent show.第二节,听下面几段对话或独白。
每段对话或独白后有几个小题,从题中所给的A,B,C三个选项中选出最佳答案,并将其标号填入提前括号内。
每段对话或独白读两遍。
听下面一段对话,回答第6至第7两个小题。
( )6. Where did Susan go for her winter vacation?A.To Shanghai.B. To BeijingC. To Hainan.( )7. How did Susan and her parents go there?A.By carB. By planeC. By train听下面一段对话,回答第8至第10三个小题。
2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议
17 S△ABC . 120
1 BM=5﹣2t, 2 17 1 17 由 S△PMD S△ABC ,即 12 t 5 2t , 120 2 2 2 ∴2t ﹣29t+43=0
①若点 M 在线段 CD 上,即 0 t
12.4 15.2
13.-4 16.3.
1 . 8 1 33 1 33 (2) x1 , x2 . 4 4
1 1 y 2 x 2 y x y x 18.(1)原式 2 2 2 2 , 2 y x y xy x
1 1 1 1 (1)已知 x 2 3 , y 2 3 ,求 的值. x y x y
(2)若 5 的整数部分为 a ,小数部分为 b ,写出 a , b 的值并计算
a 1 ab 的值. b
19.(本小题满分 8 分) 某校八年级对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由 低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下 列问题: (1)该班共有 ▲ 名同学参加这次测验; (2)这次测验成绩的中位数落在 ▲ 分数段内; (3)若该校一共有 800 名初三学生参加这次测验, 成绩 80 分以上(不含 80 分)为优秀,估计该校这 次数学测验的优秀人数是多少人?
第 2 页(共 3 页)
23.(1)∵AB=AC=13,AD⊥BC, ∴BD=CD=5cm,且∠ADB=90° , 2 2 2 ∴AD =AC ﹣CD ∴AD=12cm (2)AP=t, ∴PD=12﹣t, 在 Rt△PDC 中, PC 29 ,CD=5,根据勾股定理得,PC2=CD2+PD2, ∴29=52+(12﹣t)2 , ∴t=10 或 t=14(舍) (3)假设存在 t,使得 S△PMD ∵BC=10,AD=12, ∴ S△ABC
河南省洛阳市洛龙区2017-2018学年九年级(上)期中数学试卷(含解析)
2017-2018学年河南省洛阳市洛龙区九年级(上)期中数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.2x+1=0 B.y2+x=0 C.x2﹣x=0 D.+x2=02.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.3.(3分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=195.(3分)S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1+x)2=980 B.980(1+x)2=1500C.1500(1﹣x)2=980 D.980(1﹣x)2=15006.(3分)抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线为()A.y=3(x+3)2﹣2;B.y=3(x+3)2+2;C.y=3(x﹣3)2﹣2; D.y=3(x﹣3)2+27.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接A D.下列结论错误的是()A.BD平分∠ABC B.AD∥BCC.S△ABD=2S△BED D.△ABD是等边三角形8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3 B.﹣2或﹣3 C.1或﹣2或3 D.1或﹣2或﹣39.(3分)如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.75°D.85°10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)方程3x(x﹣1)=2(x﹣1)的根为.12.(3分)已知点(a,﹣1)与点(2,b)关于原点对称,则a+b=.13.(3分)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.14.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点P(3,0),则抛物线与x轴的另一个交点坐标为.15.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6厘米,DC=7厘米.把三角板DCE绕点C顺时针旋转15°得到△D1CE1,如图(2),这时AB与CD1相交于点O,与D1E1相交于点F.则AD1=cm.三、解答题(本大题共8小题,共75分)16.(8分)解方程:(1)4(x﹣5)2=36 (2)x2﹣x+1=0.17.(9分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,二次函数y=x2﹣(t﹣1)x+t﹣2的图象与x轴的两个交点横坐标互为相反数?请说明理由.18.(9分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.19.(9分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2)(1)该抛物线的顶点坐标是(2)求a的值;(3)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.20.(9分)如图,四边形ABCD,AB=3,AC=2,把△ABD绕点D按顺时针方向旋转60°后得到△ECD,此时发现点A、C、E恰好在一条直线上,求∠BAD的度数与AD的长.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x 的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)22.(10分)(1)问题发现:如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量与位置关系是关系:;(2)操作探究:如图②,将图①中的△ABC绕点A顺时针旋转α(0°<α<360°),(1)小题中线段BE与线段CD的关系是否成立?如果不成立,说明理由,如果成立,请你结合图②给出的情形进行证明;(3)解决问题:将图①中的△ABC绕点A顺时针旋转α(0°<α<360°),若DE=2AC,在旋转的过程中,当以A、B、C、D四点为顶点的四边形是平行四边形时,在备用图中画出其中的一个情形,并写出此时旋转角α的度数是度.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.2017-2018学年河南省洛阳市洛龙区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.2x+1=0 B.y2+x=0 C.x2﹣x=0 D.+x2=0【解答】解:A、方程2x+1=0未知数的最高次数是1,属于一元一次方程;故本选项错误;B、y2+x=0中含有2个未知数,属于二元二次方程,故本选项错误;C、x2﹣x=0符合一元二次方程的定义;故本选项正确;D、该方程是分式方程;故本选项错误;故选:C.2.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.3.(3分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选:D.4.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.5.(3分)S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1+x)2=980 B.980(1+x)2=1500 C.1500(1﹣x)2=980 D.980(1﹣x)2=1500【解答】解:依题意得:第一次降价的售价为:1500(1﹣x),则第二次降价后的售价为:1500(1﹣x)(1﹣x)=1500(1﹣x)2,∴1500(1﹣x)2=980.故选:C.6.(3分)抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线为()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+2 【解答】解:抛物线y=3x2的顶点坐标为(0,0),抛物线y=3x2向上平移2个单位,再向右平移3个单位后顶点坐标为(3,2),此时解析式为y=3(x﹣3)2+2.故选:D.7.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接A D.下列结论错误的是()A.BD平分∠ABC B.AD∥BCC.S△ABD=2S△BED D.△ABD是等边三角形【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,故D正确,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故B正确;∵将△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,∴∠DBC=180°﹣60°﹣60°=60°,∴∠ABD=∠DBC,即BD平分∠ABC,故A正确;故选:C.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3 B.﹣2或﹣3 C.1或﹣2或3 D.1或﹣2或﹣3【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.9.(3分)如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.75°D.85°【解答】解:∵将△ABC绕点A按逆时针方向旋转l10°得到△AB′C′,∴∠BAB′=∠CAC′=110°,AB=AB′,∴∠AB′B=(180°﹣110°)=35°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=35°,∴∠CAB′=∠CAC′﹣∠C′AB′=110°﹣35°=75°.故选:C.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④ B.②④ C.①②③D.①②③④【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)方程3x(x﹣1)=2(x﹣1)的根为x=1或x=.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.12.(3分)已知点(a,﹣1)与点(2,b)关于原点对称,则a+b=﹣1.【解答】解:∵点(a,﹣1)与点(2,b)关于原点对称,∴a=﹣2,b=1,∴a+b=﹣1,故答案为:﹣1.13.(3分)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:014.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点P(3,0),则抛物线与x轴的另一个交点坐标为(﹣1,0).【解答】解:由于函数对称轴为x=1,而P(3,0)位于x轴上,则设与x轴另一交点坐标为(m,0),根据题意得:=1,解得m=﹣1,则抛物线与x轴的另一个交点坐标为(﹣1,0),故答案是:(﹣1,0).15.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6厘米,DC=7厘米.把三角板DCE绕点C顺时针旋转15°得到△D1CE1,如图(2),这时AB与CD1相交于点O,与D1E1相交于点F.则AD1=5cm.【解答】解:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°﹣∠ACO﹣∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=3.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1﹣OC=4,由勾股定理得:AD1=5.三、解答题(本大题共8小题,共75分)16.(8分)解方程:(1)4(x﹣5)2=36(2)x2﹣x+1=0.【解答】解:(1)开方得:2(x﹣5)=6或2(x﹣5)=﹣6,解得:x1=8,x2=2;(2)这里a=1,b=﹣,c=1,∵△=10﹣4=6,∴x=.17.(9分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,二次函数y=x2﹣(t﹣1)x+t﹣2的图象与x轴的两个交点横坐标互为相反数?请说明理由.【解答】解:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:令y=0,得到x2﹣(t﹣1)x+t﹣2=0设方程的两根分别为m、n,由题意可知,方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.18.(9分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;19.(9分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2)(1)该抛物线的顶点坐标是(3,2)(2)求a的值;(3)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【解答】解:(1)∵y=a(x﹣3)2+2,∴该抛物线的顶点坐标是(3,2),故答案为:(3,2);(2)∵y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得,a=﹣1,即a的值是﹣1;(3))∵y=a(x﹣3)2+2,a=﹣1,∴该抛物线的图象在x<3时,y随x的增大而增大,在x>3时,y随x的增大而减小,∵点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,∴y1<y2.20.(9分)如图,四边形ABCD,AB=3,AC=2,把△ABD绕点D按顺时针方向旋转60°后得到△ECD,此时发现点A、C、E恰好在一条直线上,求∠BAD的度数与AD的长.【解答】解:∵点A、C、E在一条直线上,而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∠BAD=∠E=60°∴△ADE为等边三角形,∴∠E=60°,AD=AE,∴∠BAD=60°,∵点A、C、E在一条直线上,∴AE=AC+CE,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5,∴AD=AE=5.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x 的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)【解答】解:(1)当销售单价为70元时,每天的销售利润=(70﹣50)×[50+5×(100﹣70)]=4000元;(2)由题得y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500(x≥50).∵销售单价不得低于成本,∴50≤x≤100.(3)∵该企业每天的总成本不超过7000元∴50×[50+5(100﹣x)]≤7000(8分)解得x≥82.由(2)可知y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500∵抛物线的对称轴为x=80且a=﹣5<0∴抛物线开口向下,在对称轴右侧,y随x增大而减小.∴当x=82时,y有最大,最大值=4480,即销售单价为82元时,每天的销售利润最大,最大利润为4480元.22.(10分)(1)问题发现:如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量与位置关系是关系:BE=CD,BE⊥CD;(2)操作探究:如图②,将图①中的△ABC绕点A顺时针旋转α(0°<α<360°),(1)小题中线段BE与线段CD的关系是否成立?如果不成立,说明理由,如果成立,请你结合图②给出的情形进行证明;(3)解决问题:将图①中的△ABC绕点A顺时针旋转α(0°<α<360°),若DE=2AC,在旋转的过程中,当以A、B、C、D四点为顶点的四边形是平行四边形时,在备用图中画出其中的一个情形,并写出此时旋转角α的度数是45°或225°或315度.【解答】解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,BE⊥CD,∴AE﹣AB=AD﹣AC,∴BE=CD;故答案为:BE=CD,BE⊥CD;(2)(1)结论成立,理由:如图,∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,由旋转的性质得,∠BAE=∠CAD,在△BAE与△CAD中,,∴△BAE≌△CAD(SAS)∴BE=CD;∠AEB=∠ADC,∴∠BED+∠EDF=∠AED+∠AEB+∠EDF=∠AED+∠ADC+∠EDF=∠AED+∠ADE=90°,∴∠EFD=90°,即:BE⊥CD(3)如图,∵以A、B、C、D四点为顶点的四边形是平行四边形,△ABC和△AED都是等腰直角三角形,∴∠ABC=∠ADC=45°,∵ED=2AC,∴AC=CD,∴∠CAD=45°或360°﹣90°﹣45°=225°,或360°﹣45°=315°∴角α的度数是45°或225°或315°.故答案为:45°或225°或315.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+bx+c得,解得,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)存在.如图1中,∵C(0,2),D(,0),∴OC=2,OD=,CD==①当CP=CD时,可得P1(,4).②当DC=DP时,可得P2(,),P3(,﹣)综上所述,满足条件的P点的坐标为或或.(3)如图2中,对于抛物线y=﹣x2+x+2,当y=0时,﹣x2+x+2=0,解得x1=4,x2=﹣1 ∴B(4,0),A(﹣1,0),由B(4,0),C(0,2)得直线BC的解析式为y=﹣x+2,设E则F,EF=﹣=∴<0,∴当m=2时,EF有最大值2,此时E是BC中点,∴当E运动到BC的中点时,△FBC面积最大,∴△FBC最大面积=×4×EF=×4×2=4,此时E(2,1).。
河南省洛阳市洛龙区2017-2018学年八年级(下)期中数学试题(原卷版)
2017-2018学年河南省洛阳市洛龙区八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.有意义,则x的取值范围是()A. x≠3B. x>3C. x<3D. x≥32. 下列二次根式中最简二次根式是()A.B.C.D.3. 在平行四边形ABCD中,下列结论一定正确的是( )A. AC⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A+∠C=180°4. 下列运算结果正确的是()×C.D. 6=-5. 下列说法中,不正确...是()A. 对角线互相平分的四边形是平行四边形B. 两组对角分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边平行另一组对边相等的四边形是平行四边形6. 已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是()A. b2=a2﹣c2B. a:b:c=12C∠C=∠A﹣∠B D. ∠A:∠B:∠C=3:4:57. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A. 50mB. 48mC. 45mD. 35m 8. 如图,E 是平行四边形ABCD 边BC 上一点,且AB =BE ,连结AE ,并延长AE 与DC 的延长线交于点F ,∠F =70°,则∠D 的度数是( )A . 30°B. 40°C. 50°D. 70° 9. 如图,在数轴上点A 所表示的数为a ,则a 的值为( )A. 15--B. 15-C. 5-D. 15-+10. 如图,小蓓要赶上去实践活动基地的校车,她从点A 知道校车自点B 处沿x 轴向原点O 方向匀速驶来,她立即从A 处搭一辆出租车,去截汽车.若点A 的坐标为(2,3),点B 的坐标为(8,0),汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为( )A. (3,0)B. (3.5,0)C. (174,0)D. (5,0)二、填空题(共15分)11. 25=_________.12. 在Rt ABC 中,∠C=90o ,AC=6,BC=8,则AB 边的长是___________.13. 若△ABC 得三边a ,b ,c 满足(a ﹣b )(a 2+b 2﹣c 2)=0,则△ABC 的形状为__.14. 如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC交CE 的延长线于F ,则四边形AFBD 的面积为______.15. 如图,平行四边形ABCD ,AB 在水平方向上,AB =4,AD =2,且AD ⊥BD ,点P 、Q 分别在边DC 、BC 上,连接PQ ,将三角形CPQ 沿PQ 折叠,点C 落在点C '处,若点C '在对角线BD 上,则点C 在水平方向上可移动的距离为_____.三、解答题(共75分)16. 计算:(1)121263483-+; (2)(2035)105+-⨯ 17. 已知:x =51-,求x 2+5x ﹣1的值.18. 如图,在▱ABCD 中,点E ,F 分别在边AD ,BC 上,点M ,N 在对角线AC 上,且AE=CF ,AM=CN ,求证:四边形EMFN 是平行四边形.19. 在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)20. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个直角三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是5.21. “过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S △ABC =32,AC =8,BC =10,点M 为BC 的中点,MN ⊥AC 于点N ,求NC 的长.22. 如图,在平行四边形ABCD 中,AB=4cm ,BC=6cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点(E 不与A 、D 重合),且点E 由A 向D 运动,速度为1cm/s ,EG 的延长线与BC 的延长线交于点F ,连接CE 、DF ,设点E 的运动时间为().t s(1)求证:无论t 为何值,四边形CEDF 都是平行四边形;(2)①当___t =s 时,CE ⊥AD ;②当___t s =时,平行四边形CEDF 的两条邻边相等.23. 如图1,抛物线y=ax2-6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在X轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE',旋转角α(0°<α<90°),连接E'A、E'B.①在x轴上找一点Q,使△OQE'∽△OE'A,并求出Q点的坐标;②求BE'+12AE'的最小值.。
新人教版本20172018学年初中八年级的下期中数学试卷习题包括答案解析.docx
新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。
2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷(解析版)
2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若二次根式√4−2a有意义,则()A. a>2B. a≥2C. a<2D. a ≤22.√(−6)2−1=()A. 5B. 7C. −5D. −73.下面二次根式中,是最简二次根式的是()A. √24B. √0.5C. √a2+4D. √ab4.下列计算正确的是()A. 2 √12=√2 B. √2+√3=√5 C. 4√3−3√3=1 D. 3+2√2=5√2 5.由线段a,b,c组成的三角形不是直角三角形的是()A. a2−b2=c2B. a=54,b=1,c=34C. a=2,b=√3,c=√7D. ∠A:∠B:∠C=3:4:56.下列各命题的逆命题不成立的是()A. 两直线平行,同旁内角互补B. 若两个数的绝对值相等,则这两个数也相等C. 对顶角相等D. 如果a2=b2,那么a=b7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A. 3种B. 4种C. 5种D. 6种8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A. 28B. 26C. 24D. 209.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. OE=OFB. DE=BFC. ∠ADE=∠CBFD. ∠ABE=∠CDF10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A. 25B. 9C. 13D. 169二、填空题(本大题共5小题,共15.0分)11.已知√a−b+|b-1|=0,则a+b=______.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为______.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是______.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为______.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE 的长为______.三、计算题(本大题共1小题,共10.0分)16.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)四、解答题(本大题共7小题,共65.0分)17.计算:(1)(√12−4√18)-(3√13-4√0.5);(2)(2√5+5√2)(2√5-5√2)-(√5−√2)2.18.先化简,再求值:(1x+y +1x−y)÷1xy+y2,其中x=√5+2,y=√5-2.19.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.20.已知:如图,四边形ABCD中AB=BC=1,CD=√3,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)21.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.22.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.23.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=______s时,CE⊥AD;②当t=______s时,平行四边形CEDF的两条邻边相等.答案和解析1.【答案】D【解析】解:由题意得:4-2a≥0,解得:a≤2,故选:D.根据二次根式有意义的条件可得4-2a≥0,再解不等式即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.【答案】A【解析】解:原式=6-1=5.故选:A.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.3.【答案】C【解析】解:A 、不是最简二次根式,错误;B 、不是最简二次根式,错误;C 、是最简二次根式,正确;D 、不是最简二次根式,错误;故选:C.根据最简二次根式的概念进行判断即可.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】A【解析】解:A、2==,故本选项符合题意;B 、和不能合并,不等于,故本选项不符合题意;C、4-3=,故本选项不符合题意;D、3+2不等于5,故本选项不符合题意;故选:A.根据二次根式的加法法则和二次根式的性质判断即可.本题考查了二次根式的加法法则和二次根式的性质,注意二次根式的加法就是合并同类二次根式.5.【答案】D【解析】解:A、∵a2-b2=c2,即a2+c2=b2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵()2+12=()2,即c2+b2=a2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵22+()2=()2,即a2+b2=c2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,即∠C=75°,∴三角形不是直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.【答案】C【解析】解:A、逆命题为:同旁内角相等,两直线平行,成立;B、逆命题为:若两个数相等,则这两个数的绝对值相等,成立;C、逆命题为:相等的角为对顶角,不成立;D、逆命题为:若a=b,那么a2=b2,成立,故选:C.写出各个命题的逆命题判断正误即可.本题考查了命题与定理的知识,解题的关键是正确的写出各个命题的逆命题,难度不大.7.【答案】B【解析】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.8.【答案】C【解析】解:在平行四边形ABCD中,2(AD+CD)=36,∴AD+CD=18,易证△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴CF+CD+ED+EF=AE+ED+EF+CD=AD+CD+EF=18+6=24故选:C.根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.9.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴DE=BF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.根据平行四边形的判定和题中选项,逐个进行判断即可.本题需注意当大的平行四边形利用了对角线互相平分时,那么对角线是原平行四边形的一部分的四边形要想判断是平行四边形一般应用对角线互相平分的四边形是平行四边形进行证明.10.【答案】A【解析】解:如图,∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是(13-1)÷4=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故选:A.根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.本题考查了勾股定理以及完全平方公式.注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.11.【答案】2【解析】解:∵+|b-1|=0,∴a-b=0,b-1=0,解得a=1,b=1,则原式=1+1=2.故答案为:2.利用非负数的性质求出a与b的值,再将a与b的值代入计算即可求出值.此题考查了非负数的性质,利用非负数的性质求出a与b的值是解本题的关键.12.【答案】4或√34【解析】解:当3和5都是直角边时,第三边长为:=,当5是斜边长时,第三边长为:=4,故答案为:4或.此题要分两种情况:当3和5都是直角边时,当5是斜边长时,分别利用勾股定理计算出第三边长即可.此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.【答案】20【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.14.【答案】41【解析】解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】32或3【解析】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16.【答案】解:在Rt△ABC中,∠ACB=90°,AC=8米,BC=6米.由勾股定理有:AB=10米,应分以下四种情况.①如图1,当AB=AD=10米时,∵AC⊥BD,∴CD=CB=6米,∴△ABD的周长=10+10+2×6=32(米).②如图2,当AB=BD=10米时,∵BC=6米,∴CD=10-6=4,∴AD=√AC2+CD2=√82+42=4√5,∴△ABD的周长=10+10+4√5=(20+4√5)米.③如图3,当AB为底时,设AD=BD=x米,则CD=(x-6)米,由勾股定理得:AD=√AC2+CD2=√82+(x−6)2=x,解得,x=253.∴△ABD的周长为:AD+BD+AB=253+253+10=803(米).④如图4,延长AC至点D,使CD=8,连接BD.则BD=AB=10,AD=AC+CD=16,∴△ABD的周长为:AD+BD+AB=16+10+10=36.综上所述,扩充后等腰三角形绿地的周长为32米或(20+4√5)米或803米或36米.【解析】根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分四种情况讨论,不要漏解.17.【答案】解:(1)(√12−4√18)-(3√13-4√0.5)=(2√3-√2)-(√3-2√2)=√3+√2;(2)(2√5+5√2)(2√5-5√2)-(√5−√2)2=20-50-(5+2-2√10)=-30-7+2√10=-37+2√10.【解析】(1)直接利用二次根式的性质分别化简二次根式进而计算得出答案;(2)直接利用乘法公式计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【答案】解:原式=[x−y(x+y)(x−y)+x+y(x+y)(x−y)]÷1y(x+y)=2x(x+y)(x−y)•y(x+y)=2xyx−y,当x=√5+2,y=√5-2时,原式=2(√5+2)(√5−2)√5+2−√5+2=24=12.【解析】先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得. 本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.【答案】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=12(a +b)(a −b). 从上图我们还发现梯形的面积=三个三角形的面积,即12ab +12ab +12c 2. 两者列成等式化简即可得:a 2+b 2=c 2; 【解析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a ,b ,高为a+b ; (2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.此题考查勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定理. 20.【答案】解:(1)连接AC ,∵AB =BC =1,∠B =90°∴AC =√12+12=√2 又∵AD =1,DC =√3 ∴(√3)=12+(√2)2 即CD 2=AD 2+AC 2∴∠DAC =90°∵AB =BC =1∴∠BAC =∠BCA =45°∴∠BAD =135°;(2)由(1)可知△ABC 和△ADC 是Rt △, ∴S 四边形ABCD =S △ABC +S △ADC =1×1×12+1×√2×12 =12+√22.【解析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论. 本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【答案】证明:如图,连接BD ,交AC 于点O .∵四边形DEBF 是平行四边形, ∴OD =OB ,OE =OF . 又∵AE =CF ,∴AE +OE =CF +OF ,即OA =OC , ∴四边形ABCD 是平行四边形 【解析】连接BD ,交AC 于点O ,欲证明证明四边形ABCD 是平行四边形,只需证得AO=CO ,DO=BO . 本题考查了平行四边的判定与性质,解题的关键是学会添加常用辅助线,熟练掌握平行四边形的判定方法,属于中考常考题型.22.【答案】证明:(1)∵▱ABCD 中,AB =CD ,∠A =∠C ,又∵AE =CF ,∴△ABE ≌△CDF ;(2)四边形MFNE 平行四边形. 由(1)知△ABE ≌△CDF , ∴BE =DF ,∠ABE =∠CDF , 又∵ME =BM =12BE ,NF =DN =12DF ∴ME =NF =BM =DN , 又∵∠ABC =∠CDA , ∴∠MBF =∠NDE , 又∵AD =BC , AE =CF , ∴DE =BF ,∴△MBF ≌△NDE , ∴MF =NE ,∴四边形MFNE 是平行四边形. 【解析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE 和△CDF 中,很容易确定SAS ,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.此题考查了平行四边形的判定和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.23.【答案】3.5 2【解析】解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=3.5s时,CE⊥AD,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;②求出△CDE是等边三角形,推出CE=DE,即可得出答案.本题考查了平行四边形的性质和判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形.。
华师大版河南省洛阳市洛龙区2018-2019学年六校联考八年级(下)期中数学试卷(含答案)
2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)若二次根式有意义,则()A.a>2B.a≥2C.a<2D.a≤22.(3分)=()A.5B.7C.﹣5D.﹣73.(3分)下面二次根式中,是最简二次根式的是()A.B.C.D.4.(3分)下列计算正确的是()A.2 =B.+=C.4﹣3=1D.3+2=5 5.(3分)由线段a,b,c组成的三角形不是直角三角形的是()A.a2﹣b2=c2B.a=C.a=2,b=,c=D.∠A:∠B:∠C=3:4:56.(3分)下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b7.(3分)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种8.(3分)如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.209.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A.25B.9C.13D.169二、填空题(每小题3分,共15分)11.(3分)已知+|b﹣1|=0,则a+b=.12.(3分)已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为.13.(3分)如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是.14.(3分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN 交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:(1)()﹣(3﹣4);(2)(2+5)(2﹣5)﹣()2.17.(9分)先化简,再求值:(+)÷,其中x=+2,y=﹣2.18.(9分)图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.19.(9分)已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)20.(9分)已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE =CF.求证:四边形ABCD是平行四边形.21.(9分)已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.22.(10分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=s时,CE⊥AD;②当t=s时,平行四边形CEDF的两条邻边相等.23.(10分)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:由题意得:4﹣2a≥0,解得:a≤2,故选:D.2.【解答】解:原式=6﹣1=5.故选:A.3.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.4.【解答】解:A、2==,故本选项符合题意;B、和不能合并,不等于,故本选项不符合题意;C、4﹣3=,故本选项不符合题意;D、3+2不等于5,故本选项不符合题意;故选:A.5.【解答】解:A、∵a2﹣b2=c2,即a2+c2=b2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵()2+12=()2,即c2+b2=a2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵22+()2=()2,即a2+b2=c2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,即∠C=75°,∴三角形不是直角三角形,故本选项正确.故选:D.6.【解答】解:A、逆命题为:同旁内角相等,两直线平行,成立;B、逆命题为:若两个数相等,则这两个数的绝对值相等,成立;C、逆命题为:相等的角为对顶角,不成立;D、逆命题为:若a=b,那么a2=b2,成立,故选:C.7.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.8.【解答】解:在平行四边形ABCD中,2(AD+CD)=36,∴AD+CD=18,易证△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴CF+CD+ED+EF=AE+ED+EF+CD=AD+CD+EF=18+6=24故选:C.9.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴DE=BF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.10.【解答】解:如图,∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是(13﹣1)÷4=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故选:A.二、填空题(每小题3分,共15分)11.【解答】解:∵+|b﹣1|=0,∴a﹣b=0,b﹣1=0,解得a=1,b=1,则原式=1+1=2.故答案为:2.12.【解答】解:当3和5都是直角边时,第三边长为:=,当5是斜边长时,第三边长为:=4,故答案为:4或.13.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.14.【解答】解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.15.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题(本大题共8个小题,满分75分)16.【解答】解:(1)()﹣(3﹣4)=(2﹣)﹣(﹣2)=+;(2)(2+5)(2﹣5)﹣()2=20﹣50﹣(5+2﹣2)=﹣30﹣7+2=﹣37+2.17.【解答】解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.18.【解答】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积,即.两者列成等式化简即可得:a2+b2=c2;19.【解答】解:(1)连接AC,∵AB=BC=1,∠B=90°∴AC=又∵AD=1,DC=∴()=12+()2即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××=+.20.【解答】证明:如图,连接BD,交AC于点O.∵四边形DEBF是平行四边形,∴OD=OB,OE=OF.又∵AE=CF,∴AE+OE=CF+OF,即OA=OC,∴四边形ABCD是平行四边形21.【解答】证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM=BE,NF=DN=DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.22.【解答】解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=3.5s时,CE⊥AD,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等23.【解答】解:在Rt△ABC中,∠ACB=90°,AC=8米,BC=6米.由勾股定理有:AB=10米,应分以下四种情况.①如图1,当AB=AD=10米时,∵AC⊥BD,∴CD=CB=6米,∴△ABD的周长=10+10+2×6=32(米).②如图2,当AB=BD=10米时,∵BC=6米,∴CD=10﹣6=4,∴AD===,∴△ABD的周长=10+10+4=(20+)米.③如图3,当AB为底时,设AD=BD=x米,则CD=(x﹣6)米,由勾股定理得:AD===x,解得,x=.∴△ABD的周长为:AD+BD+AB=++10=(米).④如图4,延长AC至点D,使CD=8,连接BD.则BD=AB=10,AD=AC+CD=16,∴△ABD的周长为:AD+BD+AB=16+10+10=36.综上所述,扩充后等腰三角形绿地的周长为32米或(20+)米或米或36米.。
河南省XX市2017-2018学年八年级下册期中数学试卷含答案解析
2017-2018学年八年级(下)期中数学试卷一、选择题:每小题3分,共24分1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n22.下列是中心对称图形的是()A.B.C.D.3.如图,△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是()A.2个B.3个C.4个D.5个4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.下列定理中逆定理不存在的是()A.全等三角形的对应角相等B.如果在一个三角形中,两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.角平分线上的点到这个角的两边的距离相等6.现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有()A.4个B.5个C.6个D.7个7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.78.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D二、填空题:每小题3分,共21分9.“x的3倍与2的差是非负数”用不等式表示为.10.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.11.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为°.12.边长相等的等边三角形ABC和等边三角形DEF如图所示摆放,重叠部分的周长为6,等边三角形ABC的边长为.13.已知关于x,y的方程组的解满足x+y>0,则a的取值范围是.14.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是.15.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是.三、解答题:共9个小题,满分75分16.解不等式,并把它的解集在数轴上表示出来.17.解不等式组,并求出它的整数解的和.18.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为度时,AP平分∠CAB.19.在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C ,D ;(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是.20.阅读材料:解分式不等式.解:根据实数的除法法则,同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①,②.解不等式组①,得:x>3.解不等式组②,得:x<﹣2.所以原分式不等式的解集是x>3或x<﹣2.请仿照上述方法解分式不等式:<0.21.如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.22.如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B.若AC=10,AB=25,求CD的长.23.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24.在等腰直角三角形ABC中,∠C=90°,AC=BC=10cm,等腰直角三角形DEF的顶点D为AB的中点.(1)如图(1)所示,DE⊥AC于M,BC⊥DF于N,则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF绕着点D旋转一定的角度,且AC与DE相交于M,BC与DF相交于N,如图(2),则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?参考答案与试题解析一、选择题:每小题3分,共24分1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变2.下列是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故选项错误;B、不是中心对称图形.故选项错误;C、是中心对称图形.故选项正确;D、不是中心对称图形.故选项错误.故选C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定.【分析】根据等腰三角形的判断解答即可.【解答】解:△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是△ABC,△ABE,△CDE,△BEC,△BDC,故选D【点评】本题考查了等腰三角新的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>2;由②得,x≤3,故此不等式组的解集为:2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.下列定理中逆定理不存在的是()A.全等三角形的对应角相等B.如果在一个三角形中,两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.角平分线上的点到这个角的两边的距离相等【考点】命题与定理.【分析】分别得出各定理的逆定理,进而判断得出答案.【解答】解:A、全等三角形的对应角相等的逆命题是:对应角相等,两三角形全等,是假命题,即其逆定理不存在,故此选项正确;B、如果在一个三角形中,两边相等,那么它们所对的角也相等,其逆命题为:两角对应相等,则其对应边相等,此定理存在,故此选项错误;C、同位角相等,两直线平行,其逆命题为:两直线平行,同位角相等,此定理存在,故此选项错误;D、角平分线上的点到这个角的两边的距离相等,其逆命题为:到角的两边距离相等的点在角的平分线上,其逆定理存在,故此选项错误;故选:A.【点评】此题主要考查了命题与定理,正确掌握相关性质得出逆命题的正确与否是解题关键.6.现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有()A.4个B.5个C.6个D.7个【考点】一元一次不等式组的应用.【分析】设有x个小组,根据“根据老师将43本书分给各小组,每组8本,还有剩余;每组9本却又不足”列出不等式组求解即可.【解答】解:设有x个小组,根据题意得:,解得:<x<.∵x为正整数,∴x=5;故选B.【点评】本题考查一元一次不等式组的应用,解答此题的关键是找出关键性的描述语言,列出不等式组.在求解时不要忽略x为正整数这一关键性条件7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【考点】含30度角的直角三角形;垂线段最短.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【考点】旋转的性质.【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.二、填空题:每小题3分,共21分9.“x的3倍与2的差是非负数”用不等式表示为3x﹣2≥0 .【考点】由实际问题抽象出一元一次不等式.【分析】x的3倍即3x,非负数是大于或等于0的数,按语言叙述列出式子即可.【解答】解:“x的3倍与2的差是非负数”用不等式表示为3x﹣2≥0.故答案为3x﹣2≥0.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.10.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为3或.【考点】勾股定理的逆定理.【分析】因为没有指明哪个是斜边,所以分两种情况进行分析.【解答】解:①当第三边为斜边时,第三边==;②当边长为5的边为斜边时,第三边==3.【点评】本题利用了勾股定理求解,注意要分两种情况讨论.11.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为25 °.【考点】平移的性质.【分析】根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.【解答】解:∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.【点评】本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.12.边长相等的等边三角形ABC和等边三角形DEF如图所示摆放,重叠部分的周长为6,等边三角形ABC的边长为 3 .【考点】等边三角形的性质.【分析】利用等边三角形的性质推知重叠部分的周长为FD+BC=6,易求FD=BC=3.【解答】解:∵△ABC和△DEF都是等边三角形,∴∠F=60°,FG=FH,FD=BC,∴△FHG是等边三角形,∴GH=FG.同理,IJ=ID,EL=KL,JK=KA,∴重叠部分的周长为:FD+BC=6,∴FD=BC=3,即等边△ABC的边长是 3.故答案是3.【点评】本题考查了等边三角形的判定与性质,根据题意推知△FGH是等边三角形是解题的难点.13.已知关于x,y的方程组的解满足x+y>0,则a的取值范围是a>.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:,①+②得:3x=6a+3,即x=2a+1,把x=2a+1代入①得:y=a﹣2,代入x+y>0得:3a﹣1>0,解得:a>,故答案为:a>【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是x>﹣3 .【考点】一次函数与一元一次不等式.【分析】不等式kx+b>0的解集为直线y=kx+b落在x轴上方的部分对应的x的取值范围.【解答】解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(﹣3,0),并且函数值y随x的增大而增大,因而不等式kx+b>0的解集是x>﹣3.故答案为x>﹣3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是(b+1,﹣a+1).【考点】坐标与图形变化-旋转.【专题】常规题型.【分析】过点A作AC⊥x轴,过点A′作A′D⊥x轴,垂足分别为C、D,根据旋转变换的性质可得△ABC与△A′BD全等,再结合图形根据全等三角形对应边相等求出OD、A′D的长度,然后根据点A′在第四象限写出即可.【解答】解:过点A作AC⊥x轴,过点A′作A′D⊥x轴,垂足分别为C、D,显然Rt△ABC≌Rt△A′BD,∵点A的坐标为(a,b),点B的坐标是(1,0),∴OD=OB+BD=OB+AC=1+b,A′D=BC=OC﹣OB=a﹣1,∵点A′在第四象限,∴点A′的坐标是(b+1,﹣a+1).故答案为:(b+1,﹣a+1).【点评】本题考查了坐标与图形的变化,作出全等三角形,利用全等三角形对应边相等求出点A′到坐标轴的长度是解题的关键.三、解答题:共9个小题,满分75分16.解不等式,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】计算题.【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【解答】解:去分母得,8﹣(7x﹣1)>2(3x﹣2),去括号得,8﹣7x+1>6x﹣4,移项得,﹣7x﹣6x>﹣4﹣8﹣1,合并同类项得,﹣13x>﹣13,系数化为1得,x<1.在数轴上表示如下:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.17.解不等式组,并求出它的整数解的和.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出各不等式的解集,在数轴上表示出来,其公共部分即为不等式组的解集,在其解集范围内找出x的整数值,求出其和即可.【解答】解:解不等式①,得x<3,解不等式②,得x≥﹣4.在同一数轴上表示不等式①②的解集,得∴这个不等式组的解集是﹣4≤x<3,∴这个不等式组的整数解的和是﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查的是解一元一次不等式组及一元一次不等式组的整数解,能利用数形结合求不等式组的解集是解答此题的关键.18.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为30 度时,AP平分∠CAB.【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.【解答】解:(1)如图,(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.【点评】本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.19.在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C (﹣3,0),D (﹣5,﹣3);(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是18 .【考点】坐标与图形变化-平移.【专题】计算题;作图题.【分析】(1)根据平移的性质,结合A、B坐标,点A向左平移6个单位到达C点,横坐标减6,坐标不变;将点B向下平移6个单位到达D点,横坐标不变,纵坐标减6,即可得出;(2)根据各点坐标画出图形,然后,计算可得.【解答】解:(1)∵点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点,∴得C(﹣3,0),D(﹣5,﹣3);(2)如图,S四边形ABCD=S△ABC+S△ACD,=×3×6+×3×6,=18.故答案为(﹣3,0),(﹣5,﹣3);18.【点评】本题考查了坐标的变化﹣平移,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.20.阅读材料:解分式不等式.解:根据实数的除法法则,同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①,②.解不等式组①,得:x>3.解不等式组②,得:x<﹣2.所以原分式不等式的解集是x>3或x<﹣2.请仿照上述方法解分式不等式:<0.【考点】解一元一次不等式组;解一元一次不等式.【分析】根据题中给出的例子列出关于x的不等式组,求出x的取值范围即可.【解答】解:原分式不等式可化为①,②,不等式组①无解;解不等式组②得,﹣1<x<<,故不等式组的解集为:﹣1<x<<.【点评】本题考查的是解一元一次不等式组,根据同号两数相除得正数,异号两数相除得负数列出关于x的不等式组是解答此题的关键.21.如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.【考点】全等三角形的判定与性质;直角三角形全等的判定.【分析】先证明Rt△BDF≌Rt△ADC,得AD=BD=3,由勾股定理求AB的长.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△BDF和Rt△ADC中,∵,∴Rt△BDF≌Rt△ADC(HL),∴AD=BD=3,在Rt△ABD中,AB2=AD2+BD2,∴AB2=32+32,AB=3.【点评】本题考查了直角三角形全等的性质和判定,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件;同时本题还运用了勾股定理求线段的长.22.如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B.若AC=10,AB=25,求CD的长.【考点】等腰三角形的判定与性质.【分析】如图,延长CD交AB于点E,构建全等三角形:△ADE≌△ADC(ASA).由全等三角形的对应边相等推知AE=AC=10,DE=DC;根据BE=CE,AB=25,得出AB=AE+BE=10+2DC=25,即可求得DC=7.5.【解答】解:如图,延长CD交AB于点E.∵AD平分∠BAC,∴∠1=∠2.∵CD⊥AD,∴∠ADE=∠ADC=90°.∵在△ADE与△ADC中,,∴△ADE≌△ADC(ASA).∴AE=AC=10,DE=DC.∵∠DCB=∠B,∴BE=CE=2DC.∴AB=AE+BE=10+2DC=25.∴DC=7.5.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质.注意此题中辅助线的作法.23.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.【考点】一次函数的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【解答】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点评】本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.24.在等腰直角三角形ABC中,∠C=90°,AC=BC=10cm,等腰直角三角形DEF的顶点D为AB的中点.(1)如图(1)所示,DE⊥AC于M,BC⊥DF于N,则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF绕着点D旋转一定的角度,且AC与DE相交于M,BC与DF相交于N,如图(2),则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?【考点】三角形综合题.【专题】综合题;三角形.【分析】(1)连接DC,由等腰直角三角形ABC及D为AB中点,利用三线合一得到CD垂直于AB,及两对角相等,利用AAS得到三角形ADM与三角形CDN全等,利用全等三角形对应边相等得到DM=DN,重叠部分面积等于三角形DNC与三角形DMC面积之和,等量代换等于三角形ADC面积,即为三角形ABC面积一半,求出即可;(2)连接DC,由等腰直角三角形ABC及D为AB中点,利用三线合一得到CD⊥AB,∠A=∠DCB=45°,AD=CD,利用同角的余角相等得到∠ADM=∠CDN,利用ASA得到三星级AMD与三角形CDN全等,利用全等三角形对应边相等得到DM=DN,同(1)求出重叠部分面积即可.【解答】解:(1)连接DC,∵AC=BC,D为AB的中点,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠A=∠B=45°,∴∠A=∠DCN,AD=DC,∵DM⊥AC,DN⊥BC,∴∠DMA=∠DNC,∴△ADM≌△CDN(AAS),∴DM=DN,则S重叠=S△DNC+S△DMC=S△DMA+S△DMC=S△ADC=S△ABC=××1×1=(cm2);(2)连接CD,则CD⊥AB,∠A=∠DCB=45°,AD=CD,∵∠ADM+∠MDC=∠MDC+∠CDF=90°,∴∠ADM=∠CDN,∴△AMD≌△CND(ASA),∴DM=DN,同(1)可得S重叠=S△ABC=××1×1=(cm2).【点评】此题属于三角形综合题,涉及的知识有:等腰直角三角形的性质,等腰三角形的三线合一性质,全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。
河南省洛阳市孟津县八年级数学下学期期中试题(扫描版) 新人教版
河南省洛阳市孟津县2017-2018学年八年级数学下学期期中试题2017—2018学年第二学期期中教学质量调研八年级数学试题参考答案及评分标准一、选择题:(本大题12个小题,每小题2分,共24分)(每小题三、解答题:(8个小题,共58分)19. 解:原式=)19(162722463y x x y x y ⨯⨯÷……………………2分 =2426391627yxy x x y ⨯⨯……………………4分 =33316yx ……………………6分 20. 解:原式=4)2()1()2)(2(4)2(1)2(222-⋅----+=-⋅⎥⎦⎤⎢⎣⎡----+x xx x x x x x x x x x x x x …………2分 =2222)2(14)2(4-=-⋅-+--x x x x x x x x . ……………………4分当25=x 时,原式=4)225(12=-. ……………………6分21.解:列表描点画出图像………………………4分列方程组⎩⎨⎧--=+=212x y x y ………………………5分解方程组得⎩⎨⎧-=-=11y x ……………………6分∴两直线交点A 的坐标是(-1,-1)……………………7分22.(7分)解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时.……………1分 根据题意得 6015513030+=x .x……………………4分 解这个方程,得40=x ……………………5分 故605.1=x ……………………6分经检验,40=x 是原方程的解,且符合题意. 答:略.……………………7分 23.(7分)解:(1)原式=111413131212111+-+-+-+-n n ……………………2分 =11111+=+-n nn ……………………3分 (2)原式=20181201714131212111111+-+++-+-+++-+++-x x x x x x x x x …5分 =201811+-x x ……………………6分 =)2018(2018+-+x x xx=)2018(2018+x x ………………………7分24.(1)∵直线y =-2x +4分别交x 轴、y 轴于点A 、B , ∴点A 、B 的坐标分别为(2,0)、(0,4).由旋转得,点A ′、B ′的坐标分别为(0,-2)、(4,0). ……………………2分 设直线A ′B ′所对应的函数表达式为b kx y +=.∴⎩⎨⎧=+-=.04,2b k b 解得⎪⎩⎪⎨⎧-==.2,21b k∴直线A ′B ′所对应的函数表达式为221-=x y .……………………4分(2)直线AB 所对应的函数表达式为42+-=x y .42221+-=-x x ,解得512=x . ……………………6分 ∴点C 的横坐标为512=c x . ∵A ′B =4-(-2)=6, ∴53651262121=⨯⨯=⋅'='∆C BC A x B A S . ……………………8分25.解:(1)()2,1-A 在函数xmy =的图象上, 2-=∴m ,∴反比例函数的解析式为:x y 2-=.…………………… 1分∴⎪⎭⎫ ⎝⎛-21,4B b ax y += 经过()2,1-A ,⎪⎭⎫⎝⎛-21,4B ,………………… 2分 ⎪⎩⎪⎨⎧=+-=+-2142b k b k ,解之得⎪⎩⎪⎨⎧==2521b k ,∴一次函数的解析式为:2521+=x y …………………3分 (2)C 是直线AB 与x 轴的交点,∴当0y =时,5-=x ,∴点()0,5-C …………………4分5=∴OC ,B A COB AOC AOB y OC y OC S S S ⨯-⨯=-=∴∆∆∆2121…………………6分 415455215212521=-=⨯⨯-⨯⨯=…………………7分 (3) 5410x x -<<--<<或 …………8分 26.(1)y =(6100-5400)x +(3900-3500)(30-x ) 整理得:y =300x+12000…………………………..2分 所以y 与x 满足一次函数关系式 y =300x +12000 (2)由题意得300x +12000>15000 ① 5400x +3500(30-x )<128000 ②………………………4分 解得:10<x <19230……………………5分 满足条件的x =10,11,12 共3种方案 方案1:购买空调10台,彩电20台 方案2:购买空调11台,彩电19台方案3:购买空调12台,彩电18台……………………7分 (3)根据一次函数y =300x +12000 性质 利润y 随着x 的增大而增大 固当x =12时,利润最大 最大利润y =300X12+12000=15600答:当x =12时,利润最大,最大利润为15600元…………………………………9分。
【名师精选】2017-2018学年河南省洛阳市八年级上期末数学试卷(有答案)
2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE 交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣2【解答】解:∵分式有意义,∴+2≠0,即≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=,∠B=+30°,分情况讨论:当∠A=∠C为底角时,2+(+30°)=180°,解得=50°,顶角∠B=80°;当∠B=∠C为底角时,2(+30)+=180°,解得=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(﹣6)(+4)+(3+2)(2﹣3)=2﹣2﹣24+4﹣92=﹣82﹣2﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为元/m3,则2016年1月起居民用水价格为(1+)元/m3.…(1分)依题意得:﹣=5.解得=1.8.检验:当=1.8时,(1+)≠0.所以,原分式方程的解为=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE 交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。
河南省洛阳市洛宁县2017-2018学年八年级数学下学期期中试题(扫描版) 新人教版
河南省洛阳市洛宁县2017-2018学年八年级数学下学期期中试题2017—2018学年第二学期期中考试八年级数学参考答案一、选择题1。
A 2、D 3、C 4、B 5、A 6、D 7、B 8、D 9、C 10、B 二、填空题11、3.05×10—4 12、增大 13、1<x 〈7 14、y 1〈y 2 15、m 〉—6且m ≠—4 三、解答题 16、 解:原式=()()4442222-⨯-+-x x x x ………………………………………2分 =x x x 4442++- …………………………………………………4分=24x + ………………………………………………………6分当x=—3时, 原式= 2(3)4-+=13……………………………………………6分 因为原式化简后结果为24x +∴当x=3或x=—3时,计算结果都是13………8分17、解:∵四边形ABCD 是平行四边形,AC=10,BD=6,……………………1分 ∴OA=OC=21AC=5, OB=OD=21BD=3,………………………………………4分 又∵DB ⊥AD ,∴∠ADO=90°,………………………………………………6分 在Rt △ADO 中,AD=4352222=-=-OD OA ……………………………7分在Rt △ADB 中,AB=52642222=+=+BD AD …………………………8分综上可得四边形ABCD 各边长:BC=AD=4,DC=AB=52………………………9分18、解:解:令y=0时,得x=2, ………………………………………2分∴ 直线与x 轴的交点为(2,0) ………………………………………4分令x=0,得y=-3,……………………………………………………… 6分∴ 直线与y 轴的交点为(0,-3)……………………………………… 8分∴这条直线与两坐标轴围成的三角形的面积为 3-221⨯⨯=3.…………9分19、解:设甲的速度为x 千米/小时,乙的速度为(x —0。
洛阳市孟津县2017-2018学年八年级下期中数学试题((有答案))AlAqll
2017-2018学年河南省洛阳市孟津县八年级(下)期中数学试卷一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1B.2C.3D.43.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3B.m C.m<3D.m<3或m6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣18.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.09.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1B.y=2x+1C.y=x﹣1D.y=二、填空題(每小题3分,共18分)13.若代数式有意义,则x的取值范围是.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y 轴与C,若△AOB的面积为1,则y2的解析式是.17.已知,则=.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy﹣2).(要求结果中不出现负整数指数幂)20.(6分)先化简,再求值:,其中x=.21.(7分)在同一坐标系中分别画出y=2x+1和y=﹣x﹣2的图象,它们的交点为A,求点A的坐标.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB绕点O 顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.25.(8分)如图,一次函数y=ax+b的图象与反比例函数y=图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)在第二象限内,求不等式ax+b<的解集(请直接写出答案).26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?2017-2018学年河南省洛阳市孟津县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.【分析】根据函数的定义可知y与自变量x是一一对应的,从而可以判断各个选项中的图象是否是函数图象,从而可以解答本题.【解答】解:由函数的定义可知,选项B中的图象不是函数图象,故选:B.【点评】本题考查函数的图象、函数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1B.2C.3D.4【分析】根据分式的定义即可求出答案.【解答】解:﹣,,是分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3B.m C.m<3D.m<3或m【分析】首先联立解方程组求得交点的坐标,再根据交点在第二象限列出不等式组,从而求得m的取值范围.【解答】解:根据题意,得﹣3x+m=2x+3,解得x=,则y=.又交点在第二象限,则x<0,y>0,即<0,,解得.故选:A.【点评】考查了两条直线相交或平行问题,能够根据二元一次方程组求两条直线的交点,同时根据所在象限的位置确定字母的取值范围.6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.7.若关于x的方程无解,则m的值是()A.3B.2C.1D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.【解答】解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.8.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3B.﹣3C.1D.0【分析】根据题意,对题目中的函数解析式变形,即可求得所求式子的值.【解答】解:∵P(x,y)是直线y=x﹣上的点,∴4y=2x﹣6,∴2x﹣4y=6,∴2x﹣4y﹣3=6﹣3=3,故选:A.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.9.如果矩形的面积为6cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是( )A .B .C .D .【分析】根据题意有:xy =6;故y 与x 之间的函数图象为反比例函数,且根据x 、y 实际意义x 、y 应>0,其图象在第一象限,即可得出答案.【解答】解:由矩形的面积公式可得xy =6,∴y =(x >0,y >0).图象在第一象限.故选:C .【点评】考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限. 10.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .【分析】根据动点从点A 出发,首先向点D 运动,此时y 不随x 的增加而增大,当点P 在DC 上运动时,y 随着x 的增大而增大,当点P 在CB 上运动时,y 不变,据此作出选择即可.【解答】解:当点P 由点A 向点D 运动,即0≤x ≤4时,y 的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l1:y=﹣3x+3平移后,得到直线l2:y=﹣3x﹣6,∴﹣3(x+a)+3=﹣3x﹣6,解得:a=3,故将l1向左平移3个单位长度.故选:A.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1B.y=2x+1C.y=x﹣1D.y=【分析】分别计算自变量为2m时四个函数的函数值,然后根据一次函数图象上点的坐标特征进行判断.【解答】解:当x=2m时,y=2x﹣1=4m﹣1;y=2x+1=4m+1;y=x﹣1=m﹣1;y=x+1=m+1,所以点P(2m,m+1)在直线y=x+1上.故选:D.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.二、填空題(每小题3分,共18分)13.若代数式有意义,则x的取值范围是x≥0且x≠2.【分析】令被开方数大于或等于0和分母不为0即可求出x的范围【解答】解:∵解得:x≥0且x≠2故答案为:x≥0且x≠2【点评】本题考查二次根式以及分式有意义的条件,解题的关键是根据条件列出不等式组,本题属于基础题型.14.如果分式的值为5,把式中的x,y同时扩大为原来的3倍,则分式的值是.【分析】直接利用分式的性质将原式变形进而得出答案.【解答】解:∵分式的值为5,把式中的x,y同时扩大为原来的3倍,∴原式==×=.故答案为:.【点评】此题主要考查了分式的基本性质,正确将原式变形是解题关键.15.若y=3x1﹣2k为反比例函数,则一次函数y=x﹣2k不经过第二象限.【分析】先根据反比函数的定义求出k的值,再根据一次函数的性质判断出一次函数y=x﹣2k经过的象限即可.【解答】解:∵y=3x1﹣2k为反比例函数,∴1﹣2k=﹣1,解得k=1,∴一次函数y=x﹣2k的解析式为y=x﹣2,∴函数图象经过一、三、四象限,不经过第二象限.故答案为:二.【点评】本题考查的是反比例函数的定义及一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限.16.双曲线y1,y2在第一象限的图象如图,y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴与C,若△AOB的面积为1,则y2的解析式是y=.【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为1.5,进而得出△CBO面积为2.5,即可得出y2的解析式.【解答】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S=×3=1.5,△AOC∵S=1,△AOB∴△CBO面积为2.5,∴k=xy=5,∴y2的解析式是:y2=.故答案为:y2=.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出△CAO的面积为1.5,进而得出△CBO面积为2.5是解决问题的关键.17.已知,则=﹣3.【分析】将已知等式左边通分可得:=3,再将所求式子分子提公因式、约分后,代入可得结论.【解答】解:∵,∴=3,则===﹣3.故答案为:﹣3.【点评】本题考查了分子的加减法和因式分解,熟练掌握分式的加减法法则是关键.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是(1,﹣1).【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2018=201×10+2+3+2+1可得出当t=2018秒时点P在点D上方一个单位长度处,再结合点D的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,∴C=2(AB+AD)=10.矩形ABCD∵2018=201×10+2+3+2+1,∴当t=2018秒时,点P在点D上方一个单位长度处,∴此时点P的坐标为(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了规律型中点的坐标,根据点P的运动规律找出当t=2018秒时点P在点D上方一个单位长度处是解题的关键.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy﹣2).(要求结果中不出现负整数指数幂)【分析】直接利用积的乘方运算法则化简,进而利用分式的乘除运算法则计算得出答案.【解答】解:原式=××=.【点评】此题主要考查了分式的乘除运算,正确掌握积的乘方运算法则是解题关键.20.(6分)先化简,再求值:,其中x=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)在同一坐标系中分别画出y=2x+1和y=﹣x﹣2的图象,它们的交点为A,求点A的坐标.【分析】利用瞄点法画出直线即可,解方程组求交点坐标即可;【解答】解:列表描点画出图象:列方程组,解方程组得,∴两直线交点A的坐标是(﹣1,﹣1).【点评】本题考查一次函数的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?【分析】设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.【解答】解:设摩托车的是xkm/h,=+x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.【点评】本题考查分式方程的应用,设出速度,以时间做为等量关系可列方程求解.23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.【分析】(1)根据题意得出拆项规律,即可得到结果;(2)原式利用得出的拆项变形,计算即可得到结果.【解答】解:(1)原式===(2)原式====【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB绕点O 顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再由图形旋转的性质求出A′、B′的坐标,用待定系数法求出直线A′B′的解析式即可;(2)直接根据A′BC的坐标,利用三角形的面积公式进行计算即可.【解答】解:(1)∵直线y=﹣2x+4分别交x轴、y轴于点A、B,∴点A、B的坐标分别为(2,0)、(0,4).由旋转得,点A′、B′的坐标分别为(0,﹣2)、(4,0).设直线A′B′所对应的函数表达式为y=kx+b.∴,解得.∴直线A′B′所对应的函数表达式为.(2)依题意有,解得.∴点C的横坐标为.∵A′B=4﹣(﹣2)=6,∴.【点评】本题考查的是一次函数的图象与及几何变换、一次函数的性质及三角形的面积公式,根据题意求出直线A ′B ′的解析式是解答此题的关键.25.(8分)如图,一次函数y =ax +b 的图象与反比例函数y =图象相交于点A (﹣1,2)与点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)在第二象限内,求不等式ax +b <的解集(请直接写出答案).【分析】(1)将点A (﹣1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数的解析式;(2)求得C 点的坐标后利用S △AOB =S △AOC ﹣S △BOC 求面积即可;(3)根据图象即可得到结论.【解答】解:(1)将点A (﹣1,2)代入函数y =,解得:m =﹣2,∴反比例函数解析式为y =﹣,将点A (﹣1,2)与点B (﹣4,)代入一次函数y =ax +b ,解得:a =,b =∴一次函数的解析式为y =+;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣=;(3)由图象知,不等式ax +b <的解集为:﹣5<x <﹣4或﹣1<x <0.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?【分析】(1)根据题意和函数图象中的数据可以求得y与x之间的函数关系式;(2)根据题意可以列出相应的不等式组,从而可以解答本题;(3)根据(1)和(2)中的结果,利用一次函数的性质可以解答本题.【解答】解:(1)由题意可得,y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000,即y与x之间的函数关系式是y=300x+12000;(2)由题意得,,解得,10≤x≤,∵x为整数,∴x=10,11,12,∴有三种购买方案,方案1:购买空调10台,彩电20台,方案2:购买空调11台,彩电19台,方案3:购买空调12台,彩电18台;(3)∵y=300x+12000,∴该函数y随x的增大而增大,∴当x=12时,y取得最大值,此时y=300×12+12000=15600,答:x=12时,利润最大,最大利润为15600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【区级联考】河南省洛阳市洛龙区2017-2018学年
八年级(下)期中数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 要使二次根式有意义,则x的取值范围是()
A.x≠3B.x>3 C.x<3 D.x≥3
2. 下列二次根式中最简二次根式是()
A.B.C.D.
3. 在平行四边形ABCD中,下列结论一定正确的是( )
A.AC⊥BD B.∠A+∠B=180°
C.AB=AD D.∠A+∠C=180°
4. 下列运算结果正确的是()
A.2+3=5B.2×3
=5
C.D.
5. 下列说法中,不正确是()
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.一组对边平行且相等的四边形是平行四边形
D.一组对边平行另一组对边相等的四边形是平行四边形
6. 已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是()
A.b2=a2﹣c2B.a:b:c=1::2
C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5
7. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,
DE=24m,则AB=()
A.50m B.48m C.45m D.35m
8. 如图,E是平行四边形ABCD边BC上一点,且AB=BE,连结AE,并延长AE 与DC的延长线交于点F,∠F=70°,则∠D的度数是()
A.30°B.40°C.50°D.70°
9. 如图,在数轴上点所表示的数为,则的值为()
A.B.C.D.
10. 如图,小蓓要赶上去实践活动基地的校车,她从点A知道校车自点B处沿x轴向原点O方向匀速驶来,她立即从A处搭一辆出租车,去截汽车.若点A 的坐标为(2,3),点B的坐标为(8,0),汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为()
A.(3,0)B.(3.5,0)
D.(5,0)
C.(,0)
二、填空题
11. 计算:_________.
12. 在Rt ABC中,∠C=90o,AC=6,BC=8,则AB边的长是___________.
13. 若△ABC得三边a,b,c满足(a﹣b)(a2+b2﹣c2)=0,则△ABC的形状为__.
14. 如图,在中,,,,点、分别是
、的中点,交的延长线于,则四边形的面积为
______.
15. 如图,平行四边形ABCD,AB在水平方向上,AB=4,AD=2,且AD⊥BD,点P、Q分别在边DC、BC上,连接PQ,将三角形CPQ沿PQ折叠,点C落在点C'处,若点C'在对角线BD上,则点C在水平方向上可移动的距离为
_____.
三、解答题
16. 计算:
(1);
(2)
17. 已知:x=,求x2+5x﹣1的值.
18. 如图,在?ABCD中,点E,F分别在边AD,BC上,点M,N在对角线AC 上,且AE=CF,AM=CN,求证:四边形EMFN是平行四边
形.
19. 在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)
20. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个直角三角形,使它的三边长都是有理数;
(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;
(3)在图3中,画一个正方形,使它的面积是5.
21. “过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC
的中点,MN⊥AC于点N,求NC的长.
22. 如图,在平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为
1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E的运动时间
为
(1)求证:无论为何值,四边形CEDF都是平行四边形;
(2)①当s时,CE⊥AD;
②当时,平行四边形CEDF的两条邻边相等.
23. 如图,抛物线y=ax2-6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在X轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
()分别求出直线AB和抛物线的函数表达式;
()设△PMN的面积为S
1,△AEN的面积为S
2
,若S
1
:S
2
=36:25,求m的值;
()如图2,在()条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°<α<90°),连接E'A、E'
A.
①在x轴上找一点Q,使△OQE'∽△OE'A,并求出Q点的坐标;
②求BE'+AE'的最小值.。