扩散工艺说明(尚德)

扩散工艺说明(尚德)
扩散工艺说明(尚德)

扩散工艺说明(尚德)

图号10

版号01

工位

名称

扩散

工位编

KS

需要

人数

第1张

共7张

1. 目的

确保单晶硅磷扩散工艺处于稳定受控状态

2. 适用范围

适用于单晶硅磷扩散工序

3. 责任

本工艺说明由技术部负责

4. 内容

4.1 工艺流程

4.1 按照设备点检表点检设备是否完好,符合运行条件。

4.2 升温

4.2.1 按照《扩散设备操作规程》进行升温。对于不常用的炉管,需先进行一次饱和。

4.3 装片、检验(见附页一)

4.3.1 打开传递窗,将片盒从传递窗拿出放到净化工作台里;

4.3.2 用舟叉将空石英舟端至净化工作台;

旧底图总号底图总号日期签名

SF 工艺说明名称编

SF5.405.

010GGS 产品

图号

SF5.405.0

10

版号01

工位

名称

扩散

工位编

KS

需要

人数

第2张

共7张

4.6 方块电阻测量(见附页三)

4.6.1 扩散工艺运行完毕后,用舟叉将石英舟端至卸片

台,按照从炉口到炉尾的方向依次均匀的取五片,

放入片盒中,注意区分扩散面和非扩散面,扩散

面一定要朝片盒的大面放置。

4.6.2 按照《四探针测试仪操作规程》测量方块电阻,

测量硅片中心点和四个角的方块电阻值,测量四

角方块电阻时注意探针距硅片边缘的距离要大于

1cm,测完后关闭四探针主机电源,并且正确填

写《方块电阻记录表》。

4.6.3 方块电阻值要求在40±5Ω范围内,不均匀度不

超过10%,如超出该范围,应立即通知工艺人员。

不均匀度的定义为:计算五片硅片的方块电阻平

均值,在这五个数值中取最大值和最小值,

旧底图总号底图总号

旧底图总号

日 期 签 名 名称 号 人数 共7张附页一:装片、检验

净化

插 片 插片

旧底图总号 片

严禁裸手操作,一定要戴

石英吸笔,从

底图总号日期签名

01

工位

名称

扩散

工位编

KS

需要

人数

第5张

共7张

向附页二:上桨

移动、

放置石

上桨

距离

底图总号日期签名

01

工位

名称

扩散

工位编

KS

需要

人数

第6张

共7张

向附页三:方块电阻测量

四探针

四探

测量

旧底图总号

底 图 总 号

日 期 签 名

01 工位名称 扩散 工位编号 KS 需要人数 第7张共7张 流向附页四:卸片、检验

卸 片

扩散

旧底图总号

底图总号日期签名

扩散工艺知识

第三章 扩散工艺 在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。 第一节 扩散原理 扩散是一种普通的自然现象,有浓度梯度就有扩散。扩散运动是微观粒子原子或分子热运动的统计结果。在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。 一.扩散定义 在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。 二.扩散机构 杂质向半导体扩散主要以两种形式进行: 1.替位式扩散 一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。硼(B )、磷(P )、砷(As )等属此种扩散。 2.间隙式扩散 构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进。这种扩散称间隙式扩散。金、铜、银等属此种扩散。 三. 扩散方程 扩散运动总是从浓度高处向浓度低处移动。运动的快慢与温度、浓度梯度等有关。其运动规律可用扩散方程表示,具体数学表达式为: N D t N 2?=?? (3-1) 在一维情况下,即为: 22x N D t N ??=?? (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量; N 为杂质浓度; t 为扩散时间; x 为扩散到硅中的距离。 四.扩散系数 杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。其表达式为: KT E e D D ?-=0 (3-3)

电池片工艺流程

电池片工艺流程 一、电池片工艺流程: 制绒(INTEX)---扩散(DIFF)----后清洗(刻边/去PSG)-----镀减反射膜(PECVD)------丝网、烧结(PRINTER)-----测试、分选(TESTER+SORTER)------包装(PACKING) 二、各工序工艺介绍: (一)前清洗 1.RENA前清洗工序的目的: (1) 去除硅片表面的机械损伤层(来自硅棒切割的物理损伤) (2) 清除表面油污(利用HF)和金属杂质(利用HCl) (3)形成起伏不平的绒面,利用陷光原理,增加对太阳光的吸收,在某种程度上增加了PN结面积,提高短路电流(Isc),最终提高电池光电转换效率。 2、前清洗工艺步骤: 制绒?碱洗?酸洗?吹干 Etch bath:刻蚀槽,用于制绒。所用溶液为HF+HNO3,作用: (1).去除硅片表面的机械损伤层; (2).形成无规则绒面。 Alkaline Rinse:碱洗槽。所用溶液为KOH,作用: (1).对形成的多孔硅表面进行清洗; (2).中和前道刻蚀后残留在硅片表面的酸液。 Acidic Rinse:酸洗槽。所用溶液为HCl+HF,作用: (1).中和前道碱洗后残留在硅片表面的碱液; (2).HF可去除硅片表面氧化层(SiO2),形成疏水表面,便于吹干; (3).HCl中的Cl-有携带金属离子的能力,可以用于去除硅片 1/13页 表面金属离子。 3. 酸制绒工艺涉及的反应方程式: HNO3+Si=SiO2+NOx?+H2O SiO2+ 4HF=SiF4+2H2O SiF4+2HF=H2[SiF6] Si+2KOH+H2O ?K2SiO3+2H2 4.前清洗工序工艺要求 (1)片子表面5S控制 不容许用手摸片子的表片,要勤换手套,避免扩散后出现脏片。 (2)称重 a.每批片子的腐蚀深度都要检测,不允许编造数据,搞混批次等。 b.要求每批测量4片。 c.放测量片时,把握均衡原则。如第一批放在1.3.5.7道,下一批则放在2.4.6.8道,便于检测设备稳定性以及溶液的均匀性。 (3)刻蚀槽液面的注意事项: 正常情况下液面均处于绿色,如果一旦在流片过程中颜色改变,立即通知工艺人员。 (4)产线上没有充足的片源时,工艺要求: a.停机1小时以上,要将刻蚀槽的药液排到tank,减少药液的挥发。 b.停机15分钟以上要用水枪冲洗碱槽喷淋及风刀,以防酸碱形成的结晶盐堵塞喷淋口及风刀。 c.停机1h以上,要跑假片,至少一批(400片)且要在生产前半小时用水枪冲洗风

扩散原理及技术介绍

扩散原理及技术介绍 袁泽锐 2011.01.17

主要内容 扩散的微观规律 扩散的宏观规律 扩散对电性能的影响 扩散对晶体缺陷的影响 2

一、扩散的微观规律 扩散和布朗运动 扩散机制 晶体中的扩散 晶格原子的扩散 影响扩散系数的因素 3

1.1 扩散和布朗运动 布朗运动又称热运动,不仅在气体和液体中有,在固体中也同样存在;在固体中原子不断地从一个平衡位置跃迁到另一个平衡位置。例如,1223K时碳原子在 γ-Fe中每秒钟要跃迁1010次。 在晶格中原子每次跃迁的距离就是该方向上的原子间距a。一个原子经过多次跃迁才出现一个净位移,如下图所示。但单位时间内原子跃迁的次数愈多造成较大净位移的可能性愈大,或者说回到原来位置的可能性愈小。 所以可以认为单位时间内的净位移愈大,表征布朗运动愈 强烈。这种净位移的大小与浓度梯度的存在与否无关。没 有浓度梯度时原子的布朗运动照样存在,只是不出现定向 扩散流。 4

5 平均平方位移 各原子净位移,从统计观点看,由于有正有负,加起来为零。为了表征布朗运动的强弱,特引入平均平方位移。 平均平方位移的计算方法为:把每个杂质原子净位移的平方加起来再除以杂质原子总数。表示如下: 2222 12N X X X X N +++= 每个杂质原子平方位移和每次跃迁的关系式为: ()1 2 22121 11 2n n n i n j j k j j k j X s s s s s s ?===+=+++=+∑∑ ∑ 上式中,不可能为零,所以n 愈大,愈大,即的大小反映了布朗 运动的强弱。 2j s 2i X 2 X

硼磷扩散原理以及过程

一、硼扩散工艺原理(液态源) 目前,液态源硼扩散常用:硼酸三甲酯B(CH3O)3,硼酸三丙酯,三溴化硼B(B2)3,无水硼酸三甲酯B(CH3O)3,为无色透明液体,在室温下挥发形成,具有较高真气压,硼酸三甲酯遇水易分解,升成硼酸和甲醇。 B(CH3O)+ 3H2O=H3BO3 + 3(CH3OH) B(CH3O)500℃以上B2O3 + CO2 + H2O + C 2B2O3 + 3Si = 3SiO2 + 4B 硼酸三甲酯在高温(500℃以上)能够分解出三氧化二硼(B2O3),而三氧化二硼在900℃左右又能与硅片起反应,生成硼原子,并沉积在硅片表面,这就是预沉积过程;沉积后在基区窗口表面上生成具有色彩的硼硅玻璃。 二、硼扩散装置: 硼再分布:当炉温升到预定温度(1180℃以后)通干O2 20分钟,排除管道内空气,同时加热水浴瓶,是水浴温度达到设定温度值950℃,一切就绪后,即可将正片和陪片一起装入石英舟推入炉子恒温区,先通5分钟干氧,在改通30分钟湿氧,最后通5分钟干氧,时间到即可把硅片拉出石英管,倒在铜块上淬火,防止慢降温时,金从硅体中析出。 一、磷扩散工艺原理 5POCl3 >600℃3PCl5 + P2O5 2P2O5 + 5Si = 5SiO2 + 4P 4PCl5+5O2 过量O2 2P2O5+6Cl2 4PCl3+3O2 过量O2 2P2O5+6Cl2 磷预沉积时,一般通N2为20~80ml/分,O2为20~40ml/分,O2可通过,也可不通过源。 二、磷扩散装置

磷扩散源POCl3是无色透明有窒息性气味的毒性液体,要求扩散系统密封性好,源瓶进出口两端最好用聚四氟乙烯或聚氯乙烯管道连接。若用其他塑料管或乳胶管连接易被腐蚀,就需要经常更换。接口处最好用封口胶,由系统流出气体应通过排风管排到室外,不要泄漏在室内。 源瓶要严加密封,切勿让湿气进入源瓶。因为三氯氧磷吸水汽而变质,做扩散温度上不去。 2POCl3+3H2O=P2O5+5HCl 发现三氟氧磷出现淡黄色就不能使用。 一、磷沉积工艺条件: 炉温:1050℃ 气体流量:小N2为20~80ml/分小O2为20~40ml/分大N2为500ml/分 源温:0℃ 二、磷再分布工艺条件: 炉温:950℃~1000℃O2流量:500ml/分水温:95℃ 三、高温短时间磷扩散: 1、磷预沉积: 炉温:1200℃扩散源:POCl3 大N2流量300ml/分 小N2流量:70ml/分O2流量:85ml/分 扩散时间:4~5分钟(通源)+3分钟(关源) 2、磷再分布(三次氧化) 炉温:900℃O2流量:500ml/分 氧化时间:15分(湿O2)+10分(干O2) 四、HCl抛光: 当炉温1180℃时,HCl/N2=1.1%,N2流量为400ml/分情况下,抛光30分钟。 五、磷合金工艺文件:合金温度:500℃~570℃,合金时间:10~20分钟。

(工艺流程)图文详解液晶面板制造工艺流程

图文详解液晶面板制造工艺流程 时间:2009年11月02日来源:PCPOP作者:周冰【大中小】液晶显示器的核心:液晶面板 曾经爆发过的面板门事件,足以解释用户对于液晶显示器所采用液晶面板类型的重视,不仅如此,液晶显示器重要的技术提升,如LED背光,超广视角,都与面板有着直接的关系。而占一台液晶显示器80%成本的液晶面板,足以说明它才是整台显示器的核心部分,它的好坏,可以说直接决定了一台液晶显示器品质是否优秀。 如此来看,民用的液晶显示器的生产只是一个组装的过程,将液晶面板、主控电路、外壳等部分进行主装,基本上不会有太过于复杂的技术问题。难道这是说,液晶显示器其实是技术含量不好的产品吗?其实不然,液晶面板的生产制造过程非常繁复,至少需要300 道流程工艺,全程需在无尘的环境、精密的技术工艺下进行。 液晶面板的大体结构其实并不是很复杂,笔者将其分为液晶板与背光系统两部分。

液晶面板的LED背光系统 背光系统包括背光板、背光源(CCFL或LED)、扩散板(用于将光线分布均匀)、扩散片等等。由于液晶不会发光,因此需要借助其他光源来照亮,背光系统的作用就在于此,但目前所用的CCFL灯管或LED背光,都不具备面光源的特性,因此需要导光板、扩散片之类的组件,使线状或点状光源的光均匀到整个面,目的是为了让液晶面板整个面上不同点的发光强度相同,但实际要做到理想状态非常困难,只能是尽量减少亮度的不均匀性,这对背光系统的设计与做工有很大的考验。

液晶板在未通电情况下呈半透明状态 可弯曲的柔性印刷板起到信号传输的作用,并且通过异向性导电胶与印刷电路板(蓝 色PCB板的部分)压和,使两者连接想通 液晶板从外到里分别是水平偏光片、彩色滤光片、液晶、TFT玻璃、垂直偏光片,此外在液晶面板边上还有驱动IC与印刷电路板,主要用于控制液晶板内的液晶分子转动与

(完整word版)化学工艺学

化学工艺学 第一章 1化学工艺学定义、化学工艺学研究范畴、化学工艺学与工程的关系? 答:化学工艺学是将化学工程学的先进技术运用到具体的生产过程中,以化工产品为目标的过程技术。化学工程学主要研究化学工业和其他过程工业生产中所进行的化学过程和物理过程的共同规律,他的一个重要任务就是研究有关工程因素对过程和装置的效应,特别释放大中的效应。化学工艺学与化学工程学都是化学工业的基础科学。化学工艺与化学工程相配合,可以解决化工过程开发、装置设计、流程组织、操作原理及方法方面的问题;此外,解决化工生产实际中的问题也需要这两门学科的理论指导。 2现代化学工业的特点? 答:特点是:(1)原料、生产方法和产品的多样性和复杂性;(2)向大型化、综合化,精细化发展;(3)多学科合作、技术密集型生产;(4)重视能量的合理利用,积极采用节能工艺和方法;(5)资金密集,投资回收速度快,利润高;(6)安全与环境保护问题日益突出。 1. 生产磷肥的方法是哪两类? 答:生产磷肥的两种方法是: (1)酸法它是用硫酸或硝酸等无机酸来处理磷矿石,最常用的是硫酸。硫酸与磷矿反应生成磷酸和硫酸钙结晶,(2)热法利用高温分解磷矿石,并进一步制成可被农作物吸收的磷酸盐。 2、石油的主要组成是什么? 答:石油的化合物可以分为烃类、非烃类以及胶质和沥青三大类。烃类即碳氢化合物,在石油中占绝大部分。非烃类指含有碳、氢及其他杂原子的有机化合物。 第二章 1.化工生产过程包括哪些? 答:化工生产过程一般可概括为原料预处理、化学反应和产品分离及精制。 2、化工生产过程的定义及工艺流程图是什么? 答:将原料转变成化工产品的工艺流程称为化工生产工艺流程。工艺流程多采用图示方法来表达,称为工艺流程图。 5、进行工艺流程设计常用的三种方法是什么?

扩散工艺

扩散工艺培训----主要设备、热氧化、扩散、合金

前言: 扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。本文主要介绍热氧化、扩散及合金工艺。 目录 第一章:扩散区域设备简介…………………………………… 第二章:氧化工艺 第三章:扩散工艺 第四章:合金工艺

第一章:扩散部扩散区域工艺设备简介 炉管设备外观: 扩散区域的工艺、设备主要可以分为: 炉管:负责高温作业,可分为以下几个部分: 组成部分功能 控制柜→对设备的运行进行统一控制; 装舟台:→园片放置的区域,由控制柜控制运行 炉体:→对园片进行高温作业的区域,由控制柜控制升降温 源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。FSI:负责炉前清洗。

第二章:热氧化工艺 热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。 2. 1氧化层的作用 2.1.1用于杂质选择扩散的掩蔽膜 常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。 1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。 2.1. 2缓冲介质层 其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。 2.1.3电容的介质材料 电容的计算公式: C=ε0*εr *S/d ε0:真空介质常数 εr :相对介电常数 S :电容区面积 D :介质层厚度 P-Well SiO 2 Si 3N 4

扩散工艺

扩散工艺培训 一、扩散目的 在P型衬底上扩散N型杂质形成PN结。达到合适的掺杂浓度ρ/方块电阻R□。即获得适合太阳能电池PN结需要的结深和扩散层方块电阻。 R□的定义:一个均匀导体的立方体电阻 ,长L,宽W,厚d R= ρ L / d W =(ρ/d) (L/W)此薄层的电阻与(L / W)成正比,比例系数为(ρ /d)。这个比例系数叫做方块电阻,用R□表示: R□ = ρ / d R = R□(L / W) L= W时R= R□,这时R□表示一个正方形薄层的电阻,与正方形边长大小无关。 单位Ω/□,方块电阻也称为薄层电阻Rs 在太阳电池扩散工艺中,扩散层薄层电阻是反映扩散层质量是否符合设计要求的重要工艺指标之一。 制造一个PN结并不是把两块不同类型(P型和N型)的半导体接触在一起就能形成的。必须使一块完整的半导体晶体的一部分是P型区域,另一部分是N型区域。也就是晶体内部形成P型和N型半导体接触。 目前绝大部分的电池片的基本成分是硅,在拉棒铸锭时均匀的掺入了B(硼),B原子最外层有三个电子,掺B的硅含有大量空穴,所以太阳能电池基片中的多数载流子是空穴,少数载流子是电子,是P型半导体.在扩散时扩入大量的P(磷),P原子最外层有五个电子,掺入大量P的基片由P型半导体变为N型导电体,多数载流子为电子,少数载流子为空穴。 在P型区域和N型区域的交接区域,多数载流子相互吸引,漂移中和,最终在交接区域形成一个空间电荷区,内建电场区。在内建电场区电场方向是由N区指向P区。当入射光照射到电池片时,能量大于硅禁带宽度的光子穿过减反射膜进入硅中,在N区、耗尽区、P区激发出光生电子空穴对。光生电子空穴对在耗尽区中产生后,立即被内建电场分离,光生电子被进入N区,光生空穴则被推进P区。光生电子空穴对在N区产生以后,光生空穴便向PN结边界扩散,一旦到达PN结边界,便立即受到内建电场作用,被电场力牵引做漂移运动,越过耗尽区进入P区,光生电子(多子)则被留在N区。P区中的光生电子(少子)同样的先因为扩散,后因为漂移而进入N区,光生空穴(多子)则留在P区.在PN结的两侧形成了正负电荷的积累,产生了光生电压,这就是“光生伏特效应”。 二、太阳电池磷扩散方法 1、三氯氧磷(POCl3)液态源扩散(本公司现在采用的方法) 2、喷涂磷酸水溶液后链式扩散 3、丝网印刷磷浆料后链式扩散 三、磷扩散的基本原理 三氯氧磷(POCl3)在高温下(>600℃)分解生成五氯化磷(PCl5)和五氧化二磷(P2O5),其反应式如下: 生成的五氧化二磷(P2O5)在扩散温度下与硅反应,生成二氧化硅(SiO2)和磷原子,其反应式如下:

扩散工艺-半导体制造

扩散工艺 前言: 扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。本文主要介绍热氧化、扩散及合金工艺。 目录 第一章:扩散区域设备简介…………………………………… 第二章:氧化工艺 第三章:扩散工艺 第四章:合金工艺

第一章:扩散部扩散区域工艺设备简介 炉管设备外观: 扩散区域的工艺、设备主要可以分为: 炉管:负责高温作业,可分为以下几个部分: 组成部分功能 控制柜→对设备的运行进行统一控制; 装舟台:→园片放置的区域,由控制柜控制运行 炉体:→对园片进行高温作业的区域,由控制柜控制升降温 源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。FSI:负责炉前清洗。

第二章:热氧化工艺 热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。 2. 1氧化层的作用 2.1.1用于杂质选择扩散的掩蔽膜 常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。 1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。 2.1. 2缓冲介质层 其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。 2.1.3电容的介质材料 电容的计算公式: C=ε 0*εr *S/d ε0:真空介质常数 εr :相对介电常数 S :电容区面积 D :介质层厚度 P-Well SiO 2 Si 3N 4

石灰石-石膏湿法烟气脱硫工艺的化学原理题库

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO 2 烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, 3、气液界面处:参加反应的主要是SO 2和HSO 3 -,它们与溶解了的CaCO 3 的反应 是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO 2 在气流中的扩散, 2、扩散通过气膜 3、 SO 2 被水吸收,由气态转入溶液态,生成水化合物 4、 SO 2 水化合物和离子在液膜中扩散 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO 2 水化合物与溶解的石灰石粉发生反应) 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧 化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO 2 的物理、化学性质:无色有刺激性气味的有毒气体。密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能 溶解40体积的二氧化硫,成弱酸性。SO 2 为酸性氧化物,具有酸性氧化物的通性、

还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO 2 无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。 ②. 三氧化硫SO 3的物理、化学性质:由二氧化硫SO 2 催化氧化而得,无色易挥 发晶体,熔点16.8℃,沸点44.8℃。SO 3为酸性氧化物,SO 3 极易溶于水,溶于 水生成硫酸H 2SO 4 ,同时放出大量的热, ③. 硫酸H 2SO 4 的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点 为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO 2被液相吸收的反应:SO 2 经扩散作用从气相溶入液相中与水生成亚硫 酸H 2SO 3 亚硫酸迅速离解成亚硫酸氢根离子HSO 3 -和氢离子H+,当PH值较高时, HSO 3二级电离才会生成较高浓度的SO 3 2-,要使SO 2 吸收不断进行下去,必须中和 电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸 度迅速提高,PH值迅速下降,当SO 2溶解达到饱和后,SO 2 的吸收就告停止,脱 硫效率迅速下降 2、吸收剂溶解和中和反应:固体CaCO 3的溶解和进入液相中的CaCO 3 的分解, 固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。Ca2+的形 成是一个关键步骤,因为SO 2正是通过Ca2+与SO 3 2-或与SO 4 2-化合而得以从溶液中 除去, 3、氧化反应:亚硫酸的氧化,SO 32-和HSO 3 -都是较强的还原剂,在痕量过渡金属 离子(如锰离子Mn2+)的催化作用下,液相中的溶解氧将它们氧化成SO 4 2-。反应的氧气来源于烟气中的过剩空气和喷入浆液池的氧化空气,烟气中洗脱的飞灰和石灰石的杂质提供了起催化作用的金属离子。 4、结晶析出:当中和反应产生的Ca2+、SO 32-以及氧化反应产生的SO 4 2-,达到一 定浓度时这三种离子组成的难溶性化合物就将从溶液中沉淀析出。沉淀产物: ①. 或者是半水亚硫酸钙CaSO 3·1/2H 2 O、亚硫酸钙和硫酸钙相结合的半水固溶 体、二水硫酸钙CaSO 4·2H 2 O。这是由于氧化不足而造成的,系统易产生硬垢。

扩散课工艺培训培训内容 word

扩散课工艺培训培训内容扩散部设备介绍氧化工艺介绍 扩散工艺介绍 合金工艺介绍 氧化层电荷介绍 LPCVD工艺介绍 扩散部设备介绍卧式炉管立式炉管炉管工艺和应用(加) 氧化工艺-1氧化膜的作用 选择扩散和选择注入。 阻挡住不需扩散或注入的区域,使离子不能进入。 氧化工艺-2氧化膜的作用 缓冲介质层 二次氧化等,缓冲氮化硅应力或减少注入损伤氧化工艺-3氧化膜的作用器件结构的一部分:如栅(Gate)氧化层,非常关键的项目,质量要求

非常高;电容极板之间的介质,对电容的大小有较大影响氧化工艺-4氧化膜的作用隔离介质:工艺中常用的场氧化就是生长较厚的二氧化硅膜,达到器件隔离的目的。 氧化工艺-5氧化方法 干氧氧化SI+O2==SIO2 结构致密,均匀性、重复性好,掩蔽能力强,对光刻胶的粘附性较好,但生长速率较慢,一般用于高质量的氧化,如栅氧化等;厚层氧化时用作起始和终止氧化;薄层缓冲氧化也使用此法。 水汽氧化2H2O+SI==SIO2+2H2生长速率快,但结构疏松,掩蔽能力差,氧化层有较多缺陷。对光刻胶的粘附性较差。 氧化工艺-6氧化方法 湿氧氧化(反应气体:O2+H2O) H2O+SI==SIO2+2H2SI+O2==SIO2 生长速率介于干氧氧化和水汽氧化之间;H2O的由 H2和O2的反应得到;并通过H2和O2的流量比例来 调节氧化速率,但比例不可超过1.88以保安全;对杂 质掩蔽能力以及均匀性均能满足工艺要求;多使用在 厚层氧化中。 HCL氧化(氧化气体中掺入HCL) 加入HCL后,氧化速率有了提高,并且氧化层的质量也大有改善。目前栅氧化基本采用O2+HCL方法。 氧化工艺-7影响氧化速率的因素

扩散的工艺

----主要设备、热氧化、扩散、合金 扩散部 2002年7月

前言: 扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。本文主要介绍热氧化、扩散及合金工艺。 目录 第一章:扩散区域设备简介…………………………………… 第二章:氧化工艺 第三章:扩散工艺 第四章:合金工艺

第一章:扩散部扩散区域工艺设备简介 炉管设备外观: 扩散区域的工艺、设备主要可以分为: 炉管:负责高温作业,可分为以下几个部分: 组成部分功能 控制柜→对设备的运行进行统一控制; 装舟台:→园片放置的区域,由控制柜控制运行 炉体:→对园片进行高温作业的区域,由控制柜控制升降温 源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。FSI:负责炉前清洗。

第二章:热氧化工艺 热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。 2. 1氧化层的作用 2.1.1用于杂质选择扩散的掩蔽膜 常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。 1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。 2.1. 2缓冲介质层 其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。 2.1.3电容的介质材料 电容的计算公式: C=ε 0*εr *S/d ε0:真空介质常数 εr :相对介电常数 S :电容区面积 D :介质层厚度 P-Well SiO 2 Si 3N 4

扩散工艺说明(尚德)

扩散工艺说明(尚德)

图号10 版号01 工位 名称 扩散 工位编 号 KS 需要 人数 第1张 共7张 1. 目的 确保单晶硅磷扩散工艺处于稳定受控状态 2. 适用范围 适用于单晶硅磷扩散工序 3. 责任 本工艺说明由技术部负责 4. 内容 4.1 工艺流程 4.1 按照设备点检表点检设备是否完好,符合运行条件。 4.2 升温 4.2.1 按照《扩散设备操作规程》进行升温。对于不常用的炉管,需先进行一次饱和。 4.3 装片、检验(见附页一) 4.3.1 打开传递窗,将片盒从传递窗拿出放到净化工作台里; 4.3.2 用舟叉将空石英舟端至净化工作台;

旧底图总号底图总号日期签名

SF 工艺说明名称编 号 SF5.405. 010GGS 产品 图号 SF5.405.0 10 版号01 工位 名称 扩散 工位编 号 KS 需要 人数 第2张 共7张 4.6 方块电阻测量(见附页三) 4.6.1 扩散工艺运行完毕后,用舟叉将石英舟端至卸片 台,按照从炉口到炉尾的方向依次均匀的取五片, 放入片盒中,注意区分扩散面和非扩散面,扩散 面一定要朝片盒的大面放置。 4.6.2 按照《四探针测试仪操作规程》测量方块电阻, 测量硅片中心点和四个角的方块电阻值,测量四 角方块电阻时注意探针距硅片边缘的距离要大于 1cm,测完后关闭四探针主机电源,并且正确填 写《方块电阻记录表》。 4.6.3 方块电阻值要求在40±5Ω范围内,不均匀度不 超过10%,如超出该范围,应立即通知工艺人员。 不均匀度的定义为:计算五片硅片的方块电阻平 均值,在这五个数值中取最大值和最小值,

集成电路工艺流程

集成电路中双极性和CMOS工艺流程 摘要:本文首先介绍了集成电路的发展,对集成电路制作过程中的主要操作进行了简要讲述。双极性电路和MOS电路时集成电路发展的基础,双极型集成电路器件具有速度高、驱动能力强、模拟精度高的特点,但是随着集成电路发展到系统级的集成,其规模越来越大,却要求电路的功耗减少,而双极型器件在功耗和集成度方面无法满足这些方面的要求。CMOS电路具有功耗低、集成度高和抗干扰能力强的特点。文章主要介绍了双极性电路和CMOS电路的主要工艺流程,最后对集成电路发展过程中出现的新技术新工艺以及一些阻 碍集成电路发展的因素做了阐述。 关键词:集成电路,双极性工艺,CMOS工艺 ABSTRACT This paper first introduces the development of integrated circuits,mainly operating in the process of production for integrated circuits were briefly reviewed.Bipolar and MOS circuit Sas the basis for the development of integrated circuit.Bipolar integrated circuits with high speed, driving ability,simulated the characteristics of high precision,but with the development of integrated circuit to the system level integration,its scale is more and more big.So,reducing the power consumption of the circuit is in need,but bipolar devices in power consumption and integration can't meet these requirements.CMOS circuit with low power consumption,high integration and the characteristics of strong anti-interference ability.This paper mainly introduces the bipolar circuit and CMOS circuit the main technological process.finally,the integrated circuit appeared in the process of development of new technology and new technology as well as some factors hindering the development of the integrated circuit are done in this paper. KEY WORDS integrated circuit,Bipolar process,CMOS process

扩散原理

扩散基本知识 一、半导体基本知识 太阳电池是用半导体材料硅做成的。容易导电的是导体,不易导电的是绝缘体,即不像导体那样容易导电又不像绝缘体那样不容易导电的物体叫半导体,譬如:锗、硅、砷化缘等。 世界上的物体都是由原子构成的,从原子排列的形式来看,可以把物体分成2大类,晶体和非晶体。晶体通常都有特殊的外形,它内部的原子按照一定的规律整齐地排列着;非晶体内部原子排列乱七八糟,没有规则;大多数半导体都是晶体。半导体材料硅是原子共价晶体,在晶体中,相邻原子之间是以共用电子结合起来的。硅是第四族元素,硅原子的电子层结构为2、8、4,它的最外层的四个电子是价电子。因此每个硅原子又分别与相邻的四个原子形成四个共价键,每个共价键都是相邻的两个原子分别提供一个价电子所组成的。 如果硅晶体纯度很高,不含别的杂质元素,而且晶体结构很完美,没有缺陷,这种半导体叫本征半导体,而且是单晶体。而多晶体是由许多小晶粒聚合起来组成的,每一晶体又由许多原子构成。原子在每一晶粒中作有规则的整齐排列,各个晶粒中原子的排列方式都是相同的。但在一块晶体中,各个晶粒的取向(方向)彼此不同,晶粒与晶粒之间并没有按照一定的规则排列,所以总的来看,原子的排列是杂乱无章的,这样的晶体,我们叫它多晶体。 半导体有很特别的性质:导电能力在不同的情况下会有非常大的差别。光照、温度变化、适当掺杂都会使半导体的导电能力显著增强,尤其利用掺杂的方法可以制造出五花八门的半导体器件。但掺杂是有选择的,只有加入一定种类和数量的杂质才能符合我们的要求。 我们重点看一下硼和磷这两种杂质元素。硼是第三族主族元素,硼原子的电子层结构为2、3,由于硼原子的最外电子层只有三个电子,比硅原子缺少一个最外层电子,因此当硼原子的三个最外层价电子与周围最邻近的三个硅原子的价电子结合成共价键时,在与第四个最邻近的硅原子方向留下一个空位。这个空位叫空穴,它可以接受从邻近硅原子上跳来的电子,形成电子的流动,参与导电。硼原子在硅晶体中起着接受电子的作用,所以叫硼原子为受主型杂质。掺有受主型杂质的半导体,其导电率主要是由空穴决定的,这种半导体又叫空穴型或P型半导体。 磷是周期表中第五族元素,磷原子的电子层结构为2、8、5,它的最外层的五个电子是价电子。由于磷原子比硅原子多一个最外层电子,因此当磷原子的四个价电子与周围最邻近的四个硅原子的价电子形成共价键后,还剩余一个价电子。这个价电子很容易成为晶体中的自由电子参与导电。磷原子在硅晶体中起施放电子的作用,所以叫磷原子为施主型杂质。掺有施主型杂质的半导体,其导电率主要是由电子决定的,这种半导体又叫电子型半导体或n型半导体。 二、扩散基本知识 我们知道,太阳能电池的心脏是一个PN结。我们需要强调指出,PN结是不能简单地用两块不同类型(p型和n型)的半导体接触在一起就能形成的。要制造一个PN结,必须使一块完整的半导体晶体的一部分是P型区域,另一部分是N型区域。也就是在晶体内部实现P型和N型半导体的接

扩散工艺

扩散工艺 扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN 结。在集成电路发 展初期是半导体器件生产的主要技术之一。但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。 3.1 扩散机构 3.1.1 替位式扩散机构 这种杂质原子或离子大小与Si 原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂 质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。硼、磷、砷等是此种方式。 3.1.2 填隙式扩散机构 这种杂质原子大小与Si 原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位 置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。镍、铁等重金属元素等是此种方式。 3.2 扩散方程 ?N / ?t = D*2N / ?x2 N=N (x ,t )杂质的浓度分布函数,单位是cm -3 D :扩散系数,单位是cm 2 /s 加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。 3.2.1 恒定表面浓度扩散 整个扩散过程中,硅片表面浓度N S 保持不变 N (x ,t )=N S erfc (x/(2*(Dt )1/2)) 式中erfc 称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。 3.2.2.限定源扩散 杂质源限定在硅片表面薄的一层,杂质总量Q 是常数。

N(x,t)=(Q/( Dt)1/2)*exp(-X2/4Dt) exp(-X2/4Dt)是高斯函数,因此限定源扩散时的杂质分布是高斯函数分布。 由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大 3.2.3 扩散系数 扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。D大,扩散速率快。D与扩散温度T、杂质浓度N、衬底浓度N B、扩散气氛、衬底晶向、缺陷等因素有关。 D=D0exp(-E/kT) T:绝对温度; K:波尔兹曼常数; E:扩散激活能 D0:频率因子 3.2.4 杂质在硅中的固溶度 杂质扩散进入硅中后,与硅形成固溶体。在一定的温度下,杂质在硅中有一个最大的溶解度,其对应的杂质浓度,称该温度下杂质在硅中的固溶度。固溶度在一定程度上决定了硅片的表面浓度。 扩散工艺按照作用可以分为推阱、退火、磷掺杂,不同工艺的作业炉管在配置上稍有不同。3.3.1推阱 由于CMOS是由PMOS和NMOS组成,因此需要在一种衬底上制造出另一种型号的衬底,才可以在一种型号的硅片上同时制造出N管、P管,在选择注入后的推阱工艺就可以在硅片上制出P阱、N阱;由于推阱一般需要有一定的结深,而杂质在高温下的扩散速率较大,因此推阱工艺往往需要在较高的温度(1150C)下进行,以缩短工艺时间,提高硅片的产出率。 3.3.1.1推阱工艺主要参数 3.3.1.1.1结深 比较关键,必须保证正确的温度和时间; 3.3.1.1.2膜厚 主要为光刻对位提供方便,同时会改变园片表面的杂质浓度,过厚或过薄均会影响N管或P管的开启电压; 3.3.1.1.3表面浓度 注入能量和剂量一定后,表面浓度主要受制于推阱程序的工艺过程,如高温的温度、工艺的时间、氧化和推结的前后顺序; 3.3.1.2影响推阱的工艺参数 3.3.1.2.1 温度

封装工艺流程

阐述LED产品封装工艺流程 固晶站原材料准备》检查支架》清理模条》模条预热》发放支架》点胶》扩晶》固晶》固晶烤检》烘烤 焊线站焊线》焊线全检》点莹光粉》烘烤 封胶站胶水,模条准备》灌胶》支架沾胶》插支架》短烤》离模》长烤 后测一切》测试》外观》品检二切》品检》包装》入库 一、生产工艺 a) 清洗:采用超声波清洗PCB或LED支架,并烘干。 b) 装架:在LED管芯(大圆片)底部电极备上银胶后进行扩张,将扩张后的管芯(大圆片)安置在刺晶台上,在显微镜下用刺晶笔将管芯一个一个安装在PCB 或LED支架相应的焊盘上,随后进行烧结使银胶固化。 c)压焊:用铝丝或金丝焊机将电极连接到LED管芯上,以作电流注入的引线。LED 直接安装在PCB上的,一般采用铝丝焊机。(制作白光TOP-LED需要金线焊机) d)封装:通过点胶,用环氧将LED管芯和焊线保护起来。在PCB板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品的出光亮度。这道工序还将承担点荧光粉(白光LED)的任务。 e)焊接:如果背光源是采用SMD-LED或其它已封装的LED,则在装配工艺之前,需要将LED焊接到PCB板上。 f)切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。 g)装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。 h)测试:检查背光源光电参数及出光均匀性是否良好。 i)包装:将成品按要求包装、入库。 二、封装工艺 1. LED的封装的任务是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。 2. LED封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED等。 3. LED封装工艺流程 三.封装工艺说明 1.芯片检验镜检:材料表面是否有机械损伤及麻点麻坑(lockhill)芯片尺寸及电极大小是否符合工艺要求,电极图案是否完整。 2.扩片由于LED芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3.点胶在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC 导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED芯片,采用绝缘胶来固定芯片。)工艺难点在于点胶量

电池片扩散工艺流程

磷扩散 一、POCl3 简介 ⒈POCl3是目前磷扩散用得较多的一种杂质源 ? 无色透明液体,具有刺激性气味。如果纯度不高则呈红黄色。 ? 比重为1.67,熔点2℃,沸点107℃,在潮湿空气中发烟。 ? POCl3很容易发生水解,POCl3极易挥发。升温下与水接触会反应释放出腐蚀有毒 易燃气体。 ? POCl3液态源扩散方法具有生产效率较高,得到PN 结均匀、平整和扩散层表面良 好等优点,这对于制作具有大面积结的太阳电池是非常重要的。 2. POCl3应急处置 ? 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 ? 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 ? 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼 吸停止,立即进行人工呼吸。就医。 ? 食入:用水漱口,无腐蚀症状者洗胃。忌服油类。就医。 ? 呼吸系统防护:可能接触其蒸气时,必须佩戴自吸过滤式防毒面具(全面罩)或隔 离式呼吸器。紧急事态抢救或撤离时,建议佩戴空气呼吸器。 二、扩散的原理 ? POCl3在高温下(>600℃)分解生成五氯化磷(PCl5)和五氧化二磷(P2O5),其 反应式如下: ? ? 生成的P2O5在扩散温度下与硅反应,生成二氧化硅(SiO2)和磷原子,其反应式 如下: ? ? 由上面反应式可以看出,POCl3热分解时,如果没有外来的氧(O2)参与其分解是 不充分的,生成的PCl5是不易分解的,并且对硅有腐蚀作用,破坏硅片的表面状态。但在有外来O2存在的情况下,PCl5会进一步分解成P2O5并放出氯气(Cl2)其反应式如下: ? 生成的P2O5又进一步与硅作用,生成SiO2和磷原子,由此可见,在磷扩散时,为 了促使POCl3充分的分解和避免PCl5对硅片表面的腐蚀作用,必须在通氮气的同时通入一定流量的氧气 。 ? 在有氧气的存在时,POCl3热分解的反应式为: 322524526POCl O P O Cl +→+↑ ? POCl3分解产生的P2O5淀积在硅片表面,P2O5与硅反应生成SiO2和磷原子,并 在硅片表面形成一层磷-硅玻璃,然后磷原子再向硅中进行扩散 。 三、扩散的目的 提供PN 结 5253O P 3PCl 5POCl C 600+??→??>↓+=+4P 5SiO 5Si O 2P 252↑ +???→?+2522510Cl O 2P 5O 4PCl 2过量O

相关文档
最新文档