PCA主成分分析应用举例剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

> #### 作主成分分析 > student.pr<-princomp(student, cor=TRUE) > > #### 并显示分析结果 summary(student.pr, loadings=TRUE)
Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Standard deviation 1.8817805 0.55980636 0.28179594 0.25711844 Proportion of Variance 0.8852745 0.07834579 0.01985224 0.01652747 Cumulative Proportion 0.8852745 0.96362029 0.98347253 1.00000000 Loadings: Comp.1 Comp.2 Comp.3 Comp.4 X1 -0.497 0.543 -0.450 0.506 X2 -0.515 -0.210 -0.462 -0.691 X3 -0.481 -0.725 0.175 0.461 X4 -0.507 0.368 0.744 -0.232
> cor(student) X1 X2 X3 X4 X1 1.0000000 0.8631621 0.7321119 0.9204624 X2 0.8631621 1.0000000 0.8965058 0.8827313 X3 0.7321119 0.8965058 1.0000000 0.7828827 X4 0.9204624 0.8827313 0.7828827 1.0000000 > eigen(cor(student)) $values [1] 3.54109800 0.31338316 0.07940895 0.06610989 $vectors [,1] [,2] [,3] [,4] [1,] -0.4969661 0.5432128 -0.4496271 0.5057471 [2,] -0.5145705 -0.2102455 -0.4623300 -0.6908436 [3,] -0.4809007 -0.7246214 0.1751765 0.4614884 [4,] -0.5069285 0.3682941 0.7439083 -0.2323433
s=matrix(a,ncol=9) S为样本方差阵
求方差阵S的特征值和特征向量
c=eigen(s) c
样本前3个主成分的系数是:
rho=diag(1/(sqrt(diag(s))))%*%s%*%diag(1/(sqrt(diag(s)))) rho
例2
学生身体各指标的主成分分析.随机抽取30名某年级中学生,测 量其身高(X1)、体重(X2)、胸围(X3)和坐高(X4)。 试对中学 生身体指标数据做主成分分析.
PRINCOMP过程由相关阵出发进行主成分分析. 由相关阵的特征值可以看出,第一主成分的贡 献率已高达88.53%;且前二个主成分的累计贡献 率已达96.36%.因此只须用两个主成分就能很好 地概括这组数据. 另由第三和四个特征值近似为0,可以得出这4 个标准化后的身体指标变量(Xi*,i=1,2,3,4)有近 似的线性关系(即所谓共线性),如 0.505747 X1* -0.690844 X2* wenku.baidu.com0.461488 X3* -0.232343 X4*≈c(常数).
30名中学生的四项身体指标
#### 用数据框形式输入数据 student<-data.frame( X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139, 140, 161, 158, 140, 137, 152, 149, 145, 160, 156, 151, 147, 157, 147, 157, 151, 144, 141, 139, 148), X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31, 29, 47, 49, 33, 31, 35, 47, 35, 47, 44, 42, 38, 39, 30, 48, 36, 36, 30, 32, 38), X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68, 64, 78, 78, 67, 66, 73, 82, 70, 74, 78, 73, 73, 68, 65, 80, 74, 68, 67, 68, 70), X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74, 74, 84, 83, 77, 73, 79, 79, 77, 87, 85, 82, 78, 80, 75, 88, 80, 76, 76, 73, 78))
由最大的两个特征值对应的特征向量可以写出第 一和第二主成分: Z1=-0.4970 X1*-0.5146 X2*-0.4809 X3* -0.5069 X4* Z2=0.5432 X1* -0.2102 X2*-0.7246 X3*+0.3683X4* 第一和第二主成分都是标准化后变Xi*(i=1,2,3,4) 的线性组合,且组合系数就是特征向量的分量.
PCA主成分分析 应用举例
例1
a=c(177,179 , 95 , 96 , 53 , 32 , -7 ,-4 , -3 ,179,419 , 245 , 131 , 181 , 127 , -2 , 1 , 4 , 95 ,245 , 302 , 60 , 109 , 142 , 4 , 4 , 11 ,96 ,131 , 60 , 153 , 102 , 42 , 4 , 3 , 2 , 53 ,181 , 109 , 102 , 137 , 96 , 4 , 5 , 6 , 32 ,127 , 142 , 42 , 96 , 128 , 2 , 2 , 8 , -7 , -2 , 4 , 4 , 4 , 2 , 34 ,31 , 33 , -4 , 1 , 4 , 3 , 5 , 2 , 31 ,39 , 39 ,-3 , 4 , 11 , 2 , 6 , 8 , 33 ,39 , 48)
相关文档
最新文档