复变函数积分方法总结
复变函数积分方法总结精编WORD版
复变函数积分方法总结精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值 -π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )nk −1(z k -z k-1)= ∑f (?k )n k −1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向)例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
复变函数的积分
4i (cos i sin )d
0
2π
0.
第三章 复变函数的积分
1 例4 求 n 1 dz , C 为以 z0 为中心, r 为半 C (z z ) 0 y 径的正向圆周 n 为整数. ,
z
解: 积分路径的参数方程为
z0
o
r
z z0 re i
(0 2π ),
§3.1复变函数积分的概念 及其简单性质
1、 复变函数积分的定义与计算问题
2、复变函数积分的基本性质
第三章 复变函数的积分 光滑曲线的概念回顾:
对于简单曲线C : z x( t ) iy( t ) t 如果在 t 上, x( t ) 和 y( t ) 都是连续的, 且对于 t 的每一个值, 有 [x( t )]2 [y( t )]2 0,那末 称这曲线C为光滑的.
(2)
C
f ( z )dz {u(t ) iv(t )}{ x(t ) iy(t )}dt
f [ z(t )]z(t )dt .
第三章 复变函数的积分
计算 zdz , C : 从原点到点3 4i 的直线段. 例1 : C
解: C的参数方程为: z (3 4i )t , 0 t 1
这里 zk zk zk 1 ,
B
记 = max |zk-zk-1|
y
k z k zk 1
(4)求极限
当 n 无限增加且 0 时,
A
C z n 1
1 2
如果不论对 C 的分法及 k 的 o x 取法如何, Sn有唯一有限的极限J , 则称f ( z )沿着C的正 向可积,极限值J 称为函数 f ( z ) 沿曲线 C 的积分,记为
复变函数积分计算
复变函数积分计算方法总结1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分:()CCCf z dz udx vdy i udy vdx =-++⎰⎰⎰若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则:()[()]()Cf z dz f z t z t dt βα'=⎰⎰2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则:()0Cf z dz =⎰由闭路变形原理可得重要积分:100, 012, 0()n C n dz i n z z π+≠⎧=⎨=-⎩⎰ 可以把各种简单闭路变为圆周进行积分。
3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:00()2()f z dz if z z z πΓ=-⎰高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:()010()2()()!n n f z i dz f z z z n π+Γ=-⎰ 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。
4、 用洛朗级数展开式的-1次项系数计算积分00101()()() (r<) 2()n n n n C n f z f z c z z z z R c dz iz z π∞+=-∞=--<=-∑⎰,其中:其中C 为环域内任意围绕0z 的正向简单闭路。
当1n =-时,-1次项的系数为11()2Cc f z dz iπ-=⎰,因此1()2Cf z dz ic π-=⎰5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2Cs f z z f z dz iπ=⎰,即洛朗级数展开式中-1次项的系数。
复变函数积分计算方法
一.复变函数积分计算方法:
1. 线积分法,udy vdx i vdy udx z f c c c ++-=⎰⎰⎰
)( 2. 参数方程法,就是将积分线段分成几段,每一段尽可能简单,并且可以用一个参数式表达出来。
参考课本37页例3.1(2) 3. 原函数法,要用此方法必须保证函数f(z)在单连通区域D 内解析,求出f(z)的原函数G
(z ),则)z ()z ()(00G G dt t f z z -=⎰
4. 柯西积分公式,)z (2z -z z)(00
if dz f c π=⎰,用这种方法的关键是找出函数)z (f ,有时候要进行一些变形。
二.课本难点
课本47页例3.10(2) 他在解答过程中,有一步是令2)z ()z (i e f z +=,开始看的时候很难看明白是为什么,后来细心一想,原来他用了一个很巧妙的变换:
2
2222)()z /()])(z [()1z (111i z i e i z i e dz e z c z c z c -+=-+=+⎰⎰⎰ 这样就可以凑成柯西积分公式的形式,令2)z ()z (i e f z +=,就可以轻松使用柯西积分公式求出答案。
作业题很多都要用到这个技巧。
三.错误更正
课本55页作业6(3)的答案是i e π,课本答案e π是错误的。
四.规律总结
在做作业过程中,我找到以下两个公式:
ishz iz =sin
ithz iz =tan
特别是z=1的时候,有sini=ish1,tani=ith1
上面的公式根据定义就可以证明。
复变函数积分方法总结
复变函数积分方法总结The final revision was on November 23, 2020复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θθ称为主值 -π<θ≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f(k )n k−1(z k -z k-1)= ∑f(k )nk−1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(k )nk−1z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c=0. ∵f(z)=1 S n =∑f(k)nk−1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c存在,设k =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设k =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数积分方法总结()
4.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)设为z1,z2,…,zn 则f(z)在各奇点的留数总和为零,即
+Res[f(z), ]=0;
4.4.2Res[f(z), ]=-Res[f( ) ,0]
例题:求下列Res[f(z), ]的值
复变函数积分方法总结
经营教育
乐享
[选取日期]
复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i²=-1,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ₁θ₁称为主值-π<θ₁≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z=rcosθ+irsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ。
∑1= (zk-zk-1)
有可设k=zk,则
∑2= (zk-zk-1)
因为Sn的极限存在,且应与∑1及∑2极限相等。所以
Sn= (∑1+∑2)= =b2-a2
∴ =b2-a2
1.2定义衍生1:参数法:
f(z)=u(x,y)+iv(x,y), z=x+iy带入 得:
= - vdy + i + udy
再设z(t)=x(t)+iy(t) ( ≤t≤ )
= +
=
= + + +
=0+2πi+2πi+0
(完整版)复变函数积分方法总结
复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。
arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。
利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数与积分变换总结
复变函数与积分变换总结第一章小结一、复数及运算1.复数及代数运算2复数的几何表示复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积商的模等于模的积商,幅角等于幅角和差;复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便二、复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域三、复变函数1.对应于两个二元实变函数,因此对复变函数的研究有两种方法1参考一元实变函数的研究方法在0连续,且f00,证明必存在0的一个邻域,使得在此邻域内f0f02证明:设imff0,则对任意的0,存在0使得当0时ff0f02f02,因此f0ff02,所以f02转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论四、几个特定的复数问题及求解的关键步骤1证明复数模的不等式关键步骤:1证明原不等式两端平方后的不等式2利用22.确定平面曲线的复数方程关键步骤:转化为求,满足的方程3确定复数方程对应图形关键步骤:利用复数差模的几何意义;转化为关于,的方程;转化为关于r,将平面上的图形映到w平面上的图形关键步骤:1写出wf对应的两个二元实变函数2的极限及连续性关键步骤:1将wf看成一些简单函数的运算2通过分析这些简单函数对应的两个二元实变函数得到这些简单函数的极限及连续性3利用极限及连续的一些运算法则得到原函数的极限及连续性扩展阅读:复变函数与积分变换重要知识点归纳复变函数复习重点一复数的概念1.复数的概念:i,,是实数,Re,Imi21注:一般两个复数不比较大小,但其模(为实数)有大小2复数的表示1)模:22;2)幅角:在0时,矢量与轴正向的夹角,记为Arg(多值函数);主值arg是位于,]中的幅角。
3)arg与arctan之间的关系如下:;当0,argarctan0,argarctan当0,0,argarctan;4)三角表示:coiin,其中arg;注:中间一定是“”号。
复变函数与积分变换总结
第一章小结一、 复数及运算1. 复数及代数运算2. 复数的几何表示复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积(商)的模等于模的积(商),幅角等于幅角和(差);复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便 二、 复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域 三、复变函数1. 对应于两个二元实变函数,因此对复变函数的研究有两种方法 (1). 参考一元实变函数的研究方法例. 设函数()f z 在0z 连续,且0()0f z ≠,证明必存在0z 的一个邻域,使得在此邻域内()0f z ≠证明:设00lim ()()z z f z f z →=,则对任意的0(),2f z ε=存在0δ>使得当0z z δ-<时00()()(),2f z f z f z -<因此 00()()(),2f z f z f z -<所以 0()()0.2f z f z >>(2). 转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论 四、几个特定的复数问题及求解的关键步骤 1. 证明复数模的不等式 关键步骤:(1). 证明原不等式两端平方后的不等式 (2). 利用2zz z =2. 确定平面曲线的复数方程关键步骤:转化为求,x y 满足的方程 3. 确定复数方程对应图形关键步骤:利用复数差模的几何意义;转化为关于,x y 的方程;转化为关于,r θ的方程 4. 确定映射()w f z =将z 平面上的图形映到w 平面上的图形 关键步骤:(1). 写出()w f z =对应的两个二元实变函数(2). 利用z平面上的图形对应的方程将二元实变函数中的两个变量用同一个变量表示5. 讨论复变函数()=的极限及连续性w f z关键步骤:(1). 将()=看成一些简单函数的运算w f z(2). 通过分析这些简单函数对应的两个二元实变函数得到这些简单函数的极限及连续性(3). 利用极限及连续的一些运算法则得到原函数的极限及连续性。
第二章 复变函数的积分
一.复变函数的积分
(复平面的路径积分) 复平面的路径积分)
∫ f (z )dz ≡ lim ∑ f (ξ )(z
l n →∞ k =1 k
l l
n
k
− z k −1 ) ≡ lim ∑ f (ξ k )dz k n→∞
k =1
n
∫ f (z )dz = ∫ u (x, y )dx − v(x. y )dy + i ∫ v(x, y )dx + u (x. y )dy
ez I =∫ 2 dz c ( z + 1) 2
z 2
2π i (n−1) f (ξ ) ∫ (ξ − z)n dξ = (n −1)! f (z) l
例:计算
z = a (> 1)
解:
I=∫
c1
e z /( z − i ) 2 e /( z + i) dz dz + ∫ 2 2 c2 ( z + i) ( z − i)
1
I 2 = ∫ xdz + ∫ xdz =
0
1
1+i
i
1 ∫ 0idy + ∫ xdx = 2 0 0
直线参数方程 : z = (1 + i)t或( y = x)
1
I 3 = ∫ t (1 + i )dt = 1 + i 2 0
(可见积分与路径有关)
例2
1+i
z 2 dz = ? 1)沿折线 0—1---1+i ∫
= 2π i [e z /( z + i) 2 ]′z =i + 2π i [e z /( z − i ) 2 ]′z = −i
复变函数与积分变换总结_1
复变函数与积分变换总结_1复变函数与积分变换总结_11.复变函数复变函数是定义在复数域上的函数。
和实变函数类似,复变函数也具有实部和虚部。
复变函数有很多重要的性质和定理,以下是其中的一些重要内容:(1)柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),其中u和v为实变函数,它们分别表示f的实部和虚部。
如果f在局部有定义且可导,则f满足柯西-黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x。
这个方程是复变函数可导的充分必要条件。
(2)柯西积分定理:柯西积分定理是复变函数理论中的重要定理,它表示若f是一个在区域D上解析的函数,则对于D内任意闭合曲线C,有∮Cf(z)dz=0。
这个定理说明,对于解析函数来说,沿着闭合曲线的积分值为0。
(3)柯西积分公式:柯西积分公式是复变函数理论中的另一个重要定理,它给出了在解析函数上对闭合曲线上的导数的表达式。
设f是D内的解析函数,z0是D内任意一点,且C是以z0为中心的一条简单闭曲线,且完全在D内,则有f(n)(z0)=n!/2πi∮C(f(z)/(z-z0)^(n+1))dz,其中n为正整数,f(n)(z0)表示f的n次导数在z0处的值。
2.积分变换积分变换是将一个函数通过其中一种数学变换转换为另一个函数的过程,常用的积分变换有傅里叶变换、拉普拉斯变换和z变换。
(1)傅里叶变换:傅里叶变换是将一个时间域上的函数转换为频域上的函数。
对于一个函数f(t),它的傅里叶变换表示为F(ω),其中ω是频域上的变量。
傅里叶变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
傅里叶变换广泛应用于信号处理、图像处理等领域。
(2)拉普拉斯变换:拉普拉斯变换是将一个时间域上的函数转换为复平面上的函数。
对于一个函数f(t),它的拉普拉斯变换表示为F(s),其中s是复平面上的变量。
拉普拉斯变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
拉普拉斯变换在控制系统、信号处理等领域具有重要应用。
复变函数与积分变换知识点总结
复变函数与积分变换知识点总结本文主要介绍复变函数与积分变换的相关知识点,包括基本概念、公式、定理及其应用。
复变函数是数学中重要的一门学科,它涉及到多种数学领域,如数学分析、微积分、拓扑学、数论等,具有广泛的应用价值和重要性。
一、复变函数和复数复变函数是指将复数作为自变量和函数值的函数,也就是输出值为复数的函数。
在复平面上,复数可以表示为 x+yi 的形式,其中 x 和 y 分别表示实部和虚部,i 是虚数单位。
从图形上看,复数可以看成是在平面坐标系上的点,其中实部 x 对应水平方向,虚部 y 对应垂直方向。
二、重要公式和定理1. 欧拉公式:e^(iθ)=cosθ+isinθ欧拉公式是复数理论中非常重要的公式,它表明了复数极坐标形式和直角坐标形式之间的关系。
欧拉公式常常被用来化简复数幂、求解复数方程等等。
2. 柯西-黎曼条件柯西-黎曼条件是指函数 f(z)=u(x,y)+iv(x,y) 在某一点处可导的充分必要条件。
它包括两个部分:一是实部和虚部的偏导数存在且相等;二是实部和虚部的偏导数在该点处连续。
3. 洛朗级数洛朗级数是指将复变函数在一个环域上展开成为一定形式的级数,它可以看成是泰勒级数的一种推广形式。
洛朗级数可以用来处理复变函数的奇点、留数及边界值等问题。
4. 度量定理度量定理是指一个可积函数的形式化定义,它对于研究函数的特殊性质和进行积分变换有很重要的作用。
度量定理是复变函数理论中的一个基本定理,它可用来刻画单复变函数的局部和全局性质。
三、应用及例子复变函数和积分变换广泛应用于数学、物理、工程、计算机科学等领域。
其中,最为著名的应用包括热传导方程、电动力学、量子力学等等。
下面列举一些具体的例子:1. 应用于调制技术调制技术是指将信息信号通过某种方式转换成为载波信号,以达到传输信号的目的。
而在调制过程中,使用的正交变换中的基函数,就是一种特殊的复变函数。
2. 应用于信号处理信号处理是指对信号进行数字化、滤波、噪声抑制等一系列工作,以提高信号的质量和准确度。
第三章 复变函数的积分
第三章 复变函数的积分复变函数的积分(简称复积分)是研究解析函数的有力工具,解析函数许多重要的性质都需要利用复积分来证明.本章主要介绍复变函数积分的定义、性质与基本计算方法,解析函数积分的基本定理——柯西-古萨定理及其推广,柯西积分公式及其推论以及解析函数与调和函数的关系.柯西-古萨定理和柯西积分公式是复变函数的理论基础,以后各章都直接地或间接地用到它们.§3.1 复变函数积分的概念1.复变函数积分的定义在介绍复变函数积分的定义之前,首先介绍有向曲线的概念.设平面上光滑或分段光滑曲线C 的两个端点为A 和B .对曲线C 而言,有两个可能方向:从点A 到点B 和从点B 到点A .若规定其中一个方向(例如从点A 到点B 的方向)为正方向,则称C 为 有向曲线.此时称点A 为曲线C 的起点,点B 为曲线C 的终点.若正方向指从起点到终点的方向,那么从终点B 到起点A 的方向则称为曲线C 的负方向,记作C -.定义3.1 设C 为一条光滑或分段光滑的有向曲线,其中A 为起点,B 为终点.函数f (z )在曲线C 上有定义.现沿着C 按从点A 到点B 的方向在C 上依次任取分点:A =z 0,z 1,…,z n -1,z n =B ,图3.1将曲线C 划分成 n 个小弧段.在每个小弧段1k k z z -(k =1,2,…,n )上任取一点,k ξ,并作和式1().nn k k k S f z ξ==∆∑其中1k k k z z z -∆=-.记λ为n 个小弧段长度中的最大值.当λ趋向于零时,若不论对曲线C 的分法及点k ξ的取法如何,n S 极限存在,则称函数f (z )沿曲线C 可积,并称这个极限值为函数f (z )沿曲线C 的积分.记作1()d lim (),nkkk Cf z z f z λξ→==∆∑⎰f (z )称为被积函数,f (z )d z 称为被积表达式.若C 为闭曲线,则函数f (z )沿曲线C 的积分记作()d Cf z z ⎰.2.复变函数积分的性质性质3.1(方向性)若函数f (z )沿曲线C 可积,则()d ()d .CC f z z f z z -=-⎰⎰ (3.1)性质3.2(线性性)若函数f (z )和g (z )沿曲线C 可积,则(()())d ()d ()d ,CCCf zg z z f z z g z z αβαβ+=+⎰⎰⎰ (3.2)其中αβ,为任意常数.性质3.3(对积分路径的可加性)若函数f (z )沿曲线C 可积,曲线C 由曲线段12,,,n C C C ,依次首尾相接而成,则12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰(3.3)性质3.4(积分不等式)若函数f (z )沿曲线C 可积,且对z C ∀∈,满足()f z M ≤, 曲线C 的长度为L ,则()d ()d ,CCf z z f z s ML ≤≤⎰⎰(3.4)其中d d s z ==, 为曲线C 的弧微分.事实上,记k s ∆为z k -1与z k 之间的弧长,有111()()().nn nkkk k k k k k k f zf z f s ξξξ===∆≤∆≤∆∑∑∑令0λ→,两端取极限,得到()d ()d .CCf z z f z s ≤⎰⎰又由于11(),nnk k k k k f s M s ML ξ==∆≤∆=∑∑所以有()d ()d .CCf z z f z s ML ≤≤⎰⎰3.复变函数积分的基本计算方法定理3.1 若函数f (z )=u (x,y )+iv (x,y )沿曲线C 连续,则f (z )沿C 可积,且()d d d d d .CCCf z z u x v y i v x v y =-++⎰⎰⎰ (3.5)证明:设11,,,,k k k k k k k k k k k k z x iy i x x x y y y ξζη--=+=+∆=-∆=-则11111()()()().k k k k k k k k k k k k k z z z x iy x iy x x i y y x i y -----∆=-=+-+=-+-=∆∆从而1111()((,)(,))()((,)(,))((,)(,)).nnkk k k k k k k k k nk k k k k k k nk k k k k k k f z u iv x i y u x v y i v x u y ξζηζηζηζηζηζη====∆=+∆+∆=∆-∆+∆+∆∑∑∑∑上式右端的两个和数是两个实函数的第二类曲线积分的积分和.已知f (z ) 沿C 连续,所以必有u 、v 都沿C 连续,于是这两个第二类曲线积分都存在.因此积分存在()d Cf z z ⎰,且()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰注(3.5)式可以看作是f (z )=u +iv 与d z =d x +i d y 相乘后得到:()d ()(d d )d d d d d d d d d .CCCCCf z z u iv x i y u x iv x iu y v yu x v y i v x u x u y =++=++-=-+++⎰⎰⎰⎰⎰定理3.1给出的条件仅仅是积分()d Cf z z ⎰存在的充分条件.该定理告诉我们,复变函数积分的计算问题可以化为其实部和虚部两个二元实函数第二类曲线积分的计算问题.下面介绍另一种计算方法--- 参数方程法.设C 为一光滑或为分段光滑曲线,其参数方程为()()()(),z z t x t iy t a t b ==+≤≤参数t =a 时对应曲线C 的起点,t =b 时对应曲线C 的终点.设f (z )沿曲线C 连续,则(())((),())((),())()().f z t u x t y t iv x t y t u t iv t =+=+由定理3.1有()d d d d d (()()()())d (()()()())d ,CCCb baaf z z u x v y i v x u yu t x t v t y t t i u t y t v t x t t =-++''''=-++⎰⎰⎰⎰⎰容易验证Re((())())()()()(),Im((())())()()()().f z t z t u t x t v t y t f z t z t u t y t v t x t '''=-'''=+所以()d (())()d .baCf z z f z t z t t '=⎰⎰(3.6)例3.1 分别沿下列路径计算积分2d Cz z ⎰和Im()d Cz z ⎰.(1) C 为从原点(0,0)到(1,1)的直线段;(2) C 为从原点(0,0)到(1,0)再到(1,1)的直线段. 解: (1) C 的参数方程为:z =(1+i )t, t 从0到1 .11222033310d ((1))d((1))(1)((1))d (1)(1).33Cz z i t i t i i t t t i i =++=++⎛⎫+=+⋅= ⎪⎝⎭⎰⎰⎰(2) 这两直线段分别记为C 1和C 2,C 1的参数方程为:y =0, x 从0到1; C 2的参数方程为:x =1, y 从0到1.1122203312103d d (1)d(1)33122(1)1.3333Cz z x x iy iy x y i y iy i i i i =+++⎛⎫=+-+ ⎪⎝⎭-+=+--==⎰⎰⎰ ()111000Im()d 0d d 1i d .2Ciz z x y y i y y =++==⎰⎰⎰⎰ 例3.2 计算积分d Czz z⎰,其中C 为图3.2所示半圆环区域的正向边界.图3.2解:积分路径可分为四段,方程分别是:C 1:z =t (-2≤ t ≤ -1); C 2:z =,i e θθ从π到0; C 3:z =t (1≤ t ≤ 2);C 4:z =2,i e θθe 从0到π.于是有123412π2π10d d d d d e 2e d e d d 2d e 2e24411.333CC C C C i i i i i i z z z z z z z z z z z z z z zt t t i t ie t t θθθθθθθθ----=+++=+++=++-=⎰⎰⎰⎰⎰⎰⎰⎰⎰例3.3 计算积分101d ()n Cz z z +-⎰,其中C 为以z 0为中心,r 为半径的正向圆周,n 为整数.解:曲线C 的方程为:0(02π)i z z re θθ=+≤≤.从而有2π11(1)002π2πd e ()e d ed .e i n n i n Cin n in nzir I z z r i i r r θθθθθθ+++-==-==⎰⎰⎰⎰图3.3当n =0时,2πd 2πI i i θ==⎰当n ≠0时,2π(cos sin )d 0niI n i n rθθθ=-=⎰.所以有0102π,0;d 0,0.()n z z ri n zn z z +-==⎧=⎨≠-⎩⎰ (3.7) 由此可见,该积分与积分路线圆周的中心和半径无关,在后面还要多次用到这个结果,需记住.§3.2 柯西-古萨定理(C auchy-Gour s at)及其推广1.柯西-古萨定理首先我们来看看上一节所举的例题,例3.1中被积函数f (z )=z 2在z 平面上处处解析,它沿连接起点与终点的任何路径的积分值相同,也就是说,该积分与路径无关.即沿z 平面上任何闭曲线的积分为零.而例3.1中另一被积函数()Im()f z z =在z 平面上处处不解析,其积分值依赖于连接起点与终点的路径.由例3.3得积分1d 2π0Cz i z z =≠-⎰,曲线C 表示圆周:|z -z 0|=r >0.其中被积函数01()f z z z =-在z 平面上除去点z 0外处处解析,但这个区域是复连通区域.由此可见,积分值与路径是否无关,可能与被积函数的解析性及区域的单连通性有关.其实,在实函数的第二类曲线积分中就有积分值与路径无关的问题.由于复变函数的积分可以用相应的两个实函数的第二类曲线积分表示,因此对于复积分与路径无关的问题,我们很自然地会想到将其转化为实函数积分与路径无关的问题来讨论.假设函数f (z )=u +iv 在单连通域D 内处处解析,f '(z )在D 内连续,由第二章2.3节中的(2.9)式知u,v 对x,y 的偏导数在D 内连续.设z =x +iy ,C 为D 内任一条简单闭曲线.则由(3.5)式,有()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰记G 为C 所围区域,由格林(Green)公式有d d d d ,G Cv u u x v y x y x y ⎛⎫∂∂-=-- ⎪∂∂⎝⎭⎰⎰⎰ 由于f (z )=u +iv 在D 内解析,所以u 、v 在D 内处处都满足柯西-黎曼方程,即,.u v v ux y x y∂∂∂∂==-∂∂∂∂ 因此d d d d 0.CCu x v y v x u y -=-=⎰⎰从而()d 0.Cf z z =⎰下面的定理告诉我们去掉条件“f '(z )在D 内连续”条件,这个结论也成立.这是复变函数中最基本的定理之一.定理3.2(柯西-古萨定理) 若函数f (z )是单连通域D 内的解析函数,则f (z )沿D 内任一条闭曲线C 的积分为零,即()d 0.Cf z z =⎰注:其中曲线C 不一定要求是简单曲线.事实上,对于任意一条闭曲线,它都可以看成是由有限多条简单闭曲线衔接而成的,如图3.4.图3.4这个定理是由柯西提出来的,后来由古萨给出证明.由于证明过程较复杂,我们略去其证明.由柯西-古萨定理可以得到如下两个推论:推论3.1 设C 为z 平面上的一条闭曲线,它围成单连通域D ,若函数f (z )在D D C=上解析,则()d 0.Cf z z =⎰推论3.2 设函数f (z )在单连通域D 解析,则f (z )在D 内积分与路径无关.即积分()d Cf z z⎰不依赖于连接起点z 0与终点z 1的曲线C ,而只与z 0、z 1的位置有关.证明:图3.5设C 1和C 2为D 内连接z 0 与z 1的任意两条曲线.显然C 1和2C -连接成D 内一条闭曲线C .于是由柯西-古萨定理,有12()d ()d ()d 0.CC C f z z f z z f z z -=+=⎰⎰⎰即12()d ()d .C C f z z f z z =⎰⎰2.原函数由推论\re f {cor2可知,解析函数在单连通域D 内的积分只与起点z 0 和终点z 1有关,而与积分路径无关.因此,函数f (z )沿曲线C 1和C 2的积分又可以表示为1212()d ()d ()d .z z C C f z z f z z f z z ==⎰⎰⎰固定下限z 0,让上限z 1在区域D 内变动,并令z 1=z ,则确定了一个关于上限z 的单值函数()()d .zz F z f ξξ=⎰ (3.8)并称F (z )为定义在区域D 内的积分上限函数或变上限函数.定理3.3 若函数f (z )在单连通域D 内解析,则函数F (z )必在D 内解析,且有F '(z )=f (z ). 证明:若D 内任取一点z ,以z 为中心作一个含于D 内的小圆B ,在B 内取点(0)z z z +∆∆≠,则由(3.8)式有()()()d ()d .z zzz z F z z F z f f ξξξξ+∆+∆-=-⎰⎰因为积分与路径无关,所以()d z zz f ξξ+∆⎰的积分路径可取从z 0到z 再从z 到z z +∆,其中从z 0到z 取与()d zz f ξξ⎰的积分路径相同.于是有()()()d .z zzF z z F z f ξξ+∆+∆-=⎰由于f (z )是与积分变量ξ无关的值,故()d ()d ().z zz zzzf z f z f z z ξξ+∆+∆==∆⎰⎰从而()()1()()d()1(()())d .z zz z zzF z z F z f z f f z z zf f z zξξξξ+∆+∆+∆--=-∆∆=-∆⎰⎰又f (z )在D 内解析,显然f (z )在D 内连续.所以对于任给的0ε>,必存在0δ>,使得当z ξδ-<(且ξ落在圆B 内),即当z δ∆<时,总有()()<f f z ξε-.图3.6由复积分的性质\re f {ji f e n xi n g z hi4,有()()1()(()())d 1()()d 1.z zzz zzF z z F z f z f f z z zf f z z z zξξξξεε+∆+∆+∆--=-∆∆≤-∆≤∆=∆⎰⎰即0()()lim()z F z z F z f z z ∆→+∆-=∆,也就是()()F z f z '=.与实函数相似,复变函数也有原函数的概念及类似于牛顿-莱布尼兹(Newton-Leibniz)公式的积分计算公式.定义3.2 若在区域D 内,()z ϕ的导数等于f (z ),则称()z ϕ为f (z )在D 内的原函数. 由定理定理3.3可知,变上限函数0()()d zz F z f ξξ=⎰为f (z )的一个原函数.那么函数f (z )的全体原函数可以表示为()()z F z C ϕ=+,其中C 为任意常数.事实上,因为(()())()()()()0z F z z F z f z f z ϕϕ'''-=-=-=,所以()()z F z C ϕ-=,即()()z F z C ϕ=+.这说明了f (z )的任何两个原函数仅相差一个常数.利用这一性质我们可以得到解析函数的积分计算公式.定理3.4 若函数f (z )在单连通域D 内处处解析,()z ϕ为f (z )的一个原函数, 则11010()d ()()()z zz z f z z z z z ϕϕϕ=-=⎰, (3.9)其中z 0、z 1为D 内的点.证明:由于0()()d zz F z f ξξ=⎰为f (z )的一个原函数.所以()()d ().zz F z f z C ξξϕ==+⎰当z =z 0时,根据柯西-古萨定理可知0()C z ϕ=-,于是()d ()()zz f z z ξξϕϕ=-⎰.需要特别注意的是这个公式仅适用于定义在单连通域内的解析函数.例3.4 求积分π2sin 2d i z z ⎰的值.解:因为sin2z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.容易验证1cos 22z -是sin2z 的一个原函数, ππ2200ππππ11sin 2d (cos πcos 0)cos 22211e e .12242i iz z i z e e --=-=--+⎛⎫+=-=-- ⎪⎝⎭⎰例3.5 求积分0(1)e d iz z z --⎰的值.解:因为(z -1)e -z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.(1)e d e d e d iiizzzz z z z z ----=-⎰⎰⎰, 上式右边第一个积分的计算可采用分部积分法,第二个积分可用凑微分法,得(1)e d e d e d esin1cos1.iiiizzz z i z z z zz ie i ------=+--=-=--⎰⎰⎰例3.6 设D 为直线3,2z t t ⎛=+-∞<<∞+ ⎝ 和直线4,55z t t i ⎛=+-∞<<∞-+ ⎝⎭所围成的区域. 求积分23d 2izz z +-⎰的值. 解: 尽管212z z +-在复平面上存在两个奇点1和-2,但是单连通域D 包含点3和i ,又不含奇点1和-2,因此212z z+-在区域D内解析,这样就可以用(3.9)式来计算.233311d dd2312i i iz zzz z z z⎛⎫=-⎪+--+⎝⎭⎰⎰⎰函数ln(z-1)和ln(z+2)在单连通域D内可以分解为单值的解析分支,ln(z-1)的各分支导数都为11z-,ln(z+2)的各个分支的导数都为12z+.我们可以应用任何一个分支来计算积分值,在这里我们都取主支. 所以()23311d ln(1)ln(2)231153π1ln arctan3224215π1ln arctan.62432iiz z zz zii i=--++-⎛⎫⎛⎫=++⎪⎪⎝⎭⎝⎭=++⎰3.复合闭路定理柯西-古萨定理定理可推广到多连通域.设有n+1条简单闭曲线C0、C1、C2、…、C n,其中C1、C2、…、C n互不相交也互不包含,并且都含于C0的内部.这n+1条曲线围成了一个多连通区域D, D的边界C称作复闭路,它的正向为C0取逆时针方向,其它曲线都取顺时针方向.因此复闭路记作012nC C C C C---=++++.沿复闭路的积分通常取的是沿它的正向.定理 3.5若f(z)在复闭路012nC C C C C---=++++及其所围成的多连通区域内解析,则012()d()d()d()dnC C C Cf z z f z z f z z f z z=+++⎰⎰⎰⎰, (3.10) 也就是()d0Cf z z=⎰.为了叙述的简便,我们仅对n=2的情形进行说明.图3.7在图3.7中,做辅助线l1、l2和l3将C0、C1及C2连接起来,从而把多连通区域D划分为两个单连通区域D1及D2,并分别用1Γ及2Γ表示这两个区域的边界,由柯西-古萨定理有12()d 0, ()d 0.f z z f z z ΓΓ==⎰⎰于是12()d ()d 0.f z z f z z ΓΓ+=⎰⎰上式左端,沿辅助线l 1、l 2和l 3的积分,恰好沿相反方向各取了一次,从而相互抵消.因此上式左端为沿曲线C 0、1C -及2C -上的积分,即有:12()d ()d ()d 0.C C C f z z f z z f z z --=⎰⎰⎰也就是12()d ()d ()d .C C C f z z f z z f z z =+⎰⎰⎰例3.7 计算2d2Czz +⎰的值,C 为包含圆周|z |=1在内的 任何正向简单闭曲线. 解:显然z =0和z =-1是函数21z z+的两个奇点,由于C 为包含圆周|z |=1在内的任何正向简单闭曲线,因此也包含了这两个奇点.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =-1,C 2的内部只包含奇点z =0.图3.8因为21z z+在由C 、C 2、C 2所围成的复连通域内解析,所以由定理3.5、定理3.2及(3.7)式,得1211222222d d d d d d d 1102π2π00.CCC C C C C z z zz z z z z z z z z zz z z z i i =++++=-+-++=-+-=⎰⎰⎰⎰⎰⎰⎰ §3.3 柯西(C auchy)积分公式及其推论1.柯西积分公式利用复合闭路定理我们可以导出解析函数的积分表达式,即柯西积分公式.定理3.6 若f (z )是区域D 内的解析函数,C 为D 内的简单闭曲线,C 所围内部全含于D 内,z 为C 内部任一点,则1()()d 2πCf f z iz ξξξ=-⎰, (3.11) 其中积分沿曲线C 的正向.证明:取定C 内部一点z .因为f (z )在D 内解析,所以f (z )在点z 连续.即对任给的0ε∀>,必存在0δ>,当|z δξ<-时,有()()f f z εξ<-.令()()f F zξξξ=-,则()F ξ在D 内除去点z 外处处解析.现以z 为中心,r 为半径作圆周:B r z ξ=-(见图3.9),使圆B 的内部及边界全含于C 的内部.图3.9根据复合闭路定理有()()d d .C Bf f z z ξξξξξξ=--⎰⎰ 上式右端积分与圆B 的半径r 无关.令0r →,只需证明()d 2π()Bf if z z ξξξ→-⎰ 即可.由例3.3可知,1d 2πBi z ξξ=-⎰,而f (z )与ξ无关.于是 ()()()()()d 2π()d d d ()()d 2πd BB BBBBf f f z f f z if z z z z zf f z si rzξξξξξξξξξξξξξξ---==-----≤≤=-⎰⎰⎰⎰⎰⎰从而定理得证.公式(3.11)称为 柯西积分公式.在柯西积分公式中,等式左端表示函数f (z )在C 内部任一点处的函数值,而等式右端积分号内的()f ξ表示f (z )在C 上的函数值.所以,柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处值之间的关系:函数f (z )在曲线C 内部任一点的值可用它在边界上的值来表示,或者说f (z )在边界曲线C 上的值一旦确定,则它在C 内部任一点处的值也随之确定.这是解析函数的重要特征.例如,若函数f (z )在曲线C 上恒为常数K ,z 0为C 内部任一点,则根据柯西积分公式有0001()1()d d 2π.2π2π2πC Cf KKf z i K iz i z i ξξξξξ===⋅=--⎰⎰ 即f (z )在曲线C 的内部也恒为常数K .又如,若C 为圆周:0z R ξ-=,即0Re i z θξ=+(02π)θ≤≤,则d Re d i i θξθ=,从而2π00002π00(Re )Re 1()1()d d 2π2πRe 1(Re )d .2πi i i Ci f z i f f z iz i f z θθθθξξθξθ+⋅==-=+⎰⎰⎰即解析函数在圆心z 0处的值等于它在圆周上的平均值,这就是解析函数的平均值定理.若f (z )在简单闭曲线C 所围成的区域内解析,且在C 上连续,则柯西积分公式仍然成立. 柯西积分公式可以改写成()d 2π()Cf if z z ξξξ=-⎰. (3.12) 此公式可以用来计算某些复变函数沿闭路积分.例3.8 计算积分221d z z z z =+⎰的值. 解:因为{z ^2+1在|z |=2内解析,由柯西积分公式(3.12)有22021d 2π2π.(1)z zz z i i z z ==+=⋅=+⎰ 例3.9 计算积分2πsin6d 1Czz z -⎰的值,其中C 为: 33(1)1;(2)1;(3) 3.22z z z ===-+ 解: (1) 被积函数πsin61zz +在312z =-的内部解析,由(3.12)式有, 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =⎛⎫ ⎪=⋅==⋅=-+- ⎪⎝+⎭⎰⎰(2) 被积函数πsin61zz -在312z =+的内部解析,由(3.12)式有 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =-⎛⎫ ⎪=⋅==⋅=--+ ⎪⎝-⎭⎰⎰(3) 被积函数2πsin61zz -在|z |=3的内部有两个奇点1z =±.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =1,C 2的内部只包含奇点z =-1.由定理3.5的(3.10)式及(3.12)式,有12222πππsinsin sinππ666d d d π.11122CC C z z zi i z z z i z z z =+=+=---⎰⎰⎰例3.10 求积分42d 1z zz =-⎰的值, 其中C 为:|z |=2为正向. 解:因为z 4-1=0之解为z 1=1, z 2=i, z 3=-1, z 4=-i,分别作简单正向闭路C j 包围z j ,使C j (j =1, 2, 3, 4)互不包含,互不相交,均位于|z |=2内,则由复合闭路定理有4441d d 11jj CCz zz z ==--∑⎰⎰ 又由Cauchy 积分公式得()()()()()()()()()1141213121121312d 1d 112121i 111i πi πiπi2C Cz zz z z z z z z z z z z z z z z =⋅-----=---==-++⎰⎰同理可得234444d d d ,,1212π2π1πi C CC z z z z z z =-=-=---⎰⎰⎰. 所以 44412d d 011j j z C z zz z ====--∑⎰⎰.2.高阶导数公式 我们知道,一个实函数在某一区间上可导,并不能保证该函数在这个区间上二阶导数存在.但在复变函数中,如果一个函数在某一区域内解析,那么根据3.3节中的柯西积分公式推知,该解析函数是无穷次可微的.定理3.7 定义在区域D 的解析函数f (z )有各阶导数,且有()1!()()d (1,2,),2π()n n Cn f f z n iz ξξξ+==-⎰(3.13)其中C 为区域D 内围绕z 的任何一条简单闭曲线,积分沿曲线C 的正向.证明:用数学归纳法证明. 当n =1时,即证明21()()d .2π()Cf f z iz ξξξ'=-⎰也就是要证明2()1()limd .2π()z Cf z z f z iz ξξξ∆→+∆=∆-⎰由柯西积分公式(3.11)有1()()d ,2π1()()d .2πCCf f z i z f f z z iz z ξξξξξξ=-+∆=--∆⎰⎰于是22222()()1()d 2π()()()11()d d d 2π2π()1()1()d d 2π()()2π()()()()1d d ()()()()2πCC C CCCCC f z z f z f z iz f f f z z z i z i z f f i z z z z iz zf f f z z z z z ξξξξξξξξξξξξξξξξξξξξξξξξξξξξ+∆--∆-⎛⎫--= ⎪--∆-∆-⎝⎭-=∆--∆--∆+-=--∆---⎰⎰⎰⎰⎰⎰⎰⎰2d .Cξ⎰令上式为Q,显然2()1d .()()2πCzf Q z z z ξξξξ∆=--∆-⎰根据积分不等式(3. 4)有2()1d .2πCf z Q z z zξξξξ∆≤--∆-⎰因为f (z )在区域D 内解析,所以在闭曲线C 上解析并连续,从而在C 上是有界的. 即对于z C ∀∈,一定存在一个正数M ,使得|f (z )|≤M .设d 为从z 到C 上各点的最短距离,取z ∆充分小,满足2dz <∆.那么 ,.2d d z z z z z ξξξ≥≥->---∆-∆因此33212d ,d 2π2πd πd d 2CM M ML z z Q s L z ∆∆<=⋅=∆⋅⎰这里L 为C 的长度. 令0z ∆→,则0Q →,于是有()()1()()lim.2π()z Cf z z f z f f z d z iz ξξξ∆→+∆-'==∆-⎰假设n =k 时的情形成立,证明n =k +1时的情形成立.证明方法与n =1时的情形相似,但证明过程稍微复杂,这里就不证明了.这个定理实际上说明了解析函数具有无穷可微性.即 定理3.8 若f (z )为定义在区域D 内的解析函数,则在D 内其各阶导数都存在并且解析.换句话说,解析函数的导数也是解析函数.由解析函数的无穷可微性,我们可以得到判断函数在区域内解析的又一个充要条件.定理3.9 函数f (z )=u (x ,y )+iv (x ,y )在区域D 内解析的充要条件是(1),,,x y x y u u v v 在D 内连续;(2)(,),(,)u x y v x y 在D 内满足柯西-黎曼方程.证明:充分性即是定理2.8.下面证明必要性. 条件(2)的必要性由定理2.7给出.再来看条件(1),由于解析函数的导数仍然是解析函数,所以f '(z )在D 内解析,从而在D 内连续.而()x x y y f z u iv v iu '=+=-,所以,,,x y x y u u v v 在D 内连续.下面我们来看高阶导数公式的应用.高阶导数公式(3.13)可改写为()1()2πd ().()!n n Cf i f z z n ξξξ+=-⎰(3.14)可通过此式计算某些复变函数的积分.例3.11 求积分的1e d ()zn Cz ξξ+-⎰值, 其中C 为: 226x y y +=. 解:226x y y +=可化为22(3)9x y +-=,即|z -3i|=3. 被积函数2e π2z i z ⎛⎫- ⎪⎝⎭在C 的内部有一个奇点π2iz =,由(3.14)式有 π/22π/2e 2πe 2π2π.2π(e )π2zi z z i Ci i i i i z ====⋅=-'⎛⎫- ⎪⎝⎭⎰例3.12 求积分32cos πd (1)Czz z z -⎰的值,其中C 为: |z |=2.解 被积函数32cos π(1)zz z -在C 的内部有两个奇点z =0和z =1,作两条闭曲线C 1和C 2互不相交且互不包含,分别包围奇点z =0和z =1,且两曲线所围区域全含于C 的内部,则根据复合闭路定理3.5和高阶导数公式(3.14),有1212323232233223022cos πcos πcos πd d d (1)(1)(1)cos π1cos π1d d (1)(1)2πcos πcos π2π2π32!(1)(6π)π6π(12π)π.CC C C C z z z z zz z z z z z z z z z z z z z z z z i z z i i z z i i i ===+---=⋅+⋅--'''⎛⎫⎛⎫=++⋅ ⎪⎪-⎝⎭⎝⎭=-+=-⎰⎰⎰⎰⎰§3.4 解析函数与调和函数的关系根据解析函数的导数仍是解析函数这个结论,我们来讨论解析函数与调和函数的关系. 定义3.3 在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程22220x yϕϕ∂∂+=∂∂ 的二元实函数(,)x y ϕ称为在D 内的调和函数.调和函数是流体力学、电磁学和传热学中经常遇到的一类重要函数.定理3.10 任何在区域D 内解析的函数f (z )=u (x ,y )+iv (x ,y ),它的实部u (x ,y )和虚部v (x ,y )都是D 内的调和函数.证明 由柯西-黎曼方程有,.v u v x y y xϕ∂∂∂∂==-∂∂∂∂ 于是222222,.u v u v x y x y x y∂∂∂∂==-∂∂∂∂∂∂ 由定理3.8可知,u (x ,y )与v (x ,y )具有任意阶连续偏导,所以22.v vy x x y∂∂=∂∂∂∂ 从而22220.u vx y ∂∂+=∂∂ 同理可证22220.v vx y∂∂+=∂∂ 即u (x ,y )与v (x ,y )都是调和函数.使u (x ,y )+iv (x ,y )在区域D 内构成解析函数的调和函数v (x ,y )称为u (x ,y )的共轭调和函数.或者说,在区域D 内满足柯西-黎曼方程u x =v y ,v x =-u y 的两个调和函数u 和v 中,v 称为u 的共轭调和函数.注意:u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u +iv 不一定就是解析函数.例如,f (z )=z 2=x 2-y 2+2xyi ,其中实部u =x 2-y 2,虚部v =2xy .由于f (z )=z 2解析,显然v =2xy 是u =x 2-y 2的共轭调和函数.但是v x =2y ,u y =-2y .因此以v 作为实部、u 作为虚部的函数g (z )=v +iu 不解析.下面介绍已知单连通域D 内的解析函数f (z )=u +iv 的实部或虚部,求f (z )的方法. 这里仅对已知实部的情形进行说明,关于已知虚部求f (z )的方法可以类似得到. (1) 偏积分法利用柯西-黎曼方程(2.5)先求得v 对y 的偏导v y =u x ,此式关于y 积分得d ()uv y g x x ∂=+∂⎰,然后两边对x 求偏导,由v x =-u y ,于是有d ().y uu y g x x x∂∂'-=+∂∂⎰ 从而()d .-d u u g x x C y x x x ∂∂∂⎛⎫=+- ⎪∂∂∂⎝⎭⎰⎰故d d .-d u u u v y x C y x x x x ∂∂∂∂⎛⎫=++- ⎪∂∂∂∂⎝⎭⎰⎰⎰ 例3.13 已知u (x ,y )=2(x -1)y , f (2)=-i ,求其共轭调和函数,并写出f (z )的形式.解 由柯西-黎曼方程(2.5),有v y =u x =2y ,此式两边关于y 积分:2d ()().uv y g x y g x x∂=+=+∂⎰而(),x v g x '=又2(1),x y v u x =-=-所以2()2(1)d 2,g x x x x x C =-=-+⎰其中C 为实常数. 于是222.v y x x C =-++从而22()2(1)(2).f z x y i y x x C =-+-++由条件 f (2)=-i ,得C =-1,故22222()2(1)(21)(22()1)(1).f z x y i y x x i x y ixy x iy i z =-+-+-=--+-++=-- (2) 线积分法利用柯西-黎曼方程(2.5)有d d d d d x y y x v v x v y u x u y =+=-+,故00(,)(,)d d .x y y x x y v u x u y C =-++⎰由于该积分与积分路径无关,因此可选取简单路径(如折线)进行计算.其中(x 0,y 0)为区域D 中的点.以例3.13进行说明,u x =2y , u y =2x -2 .取(x 0,y 0)=(0,0),路径为从(0,0)到(x ,0)的直线段再从(x ,0)到(x ,y )的直线段.于是(,)(0,0)22(22)d 2d (22)d 2d 2.x y yxv x x y y Cx x y x C x x y C =-++=-++=-++⎰⎰⎰以下同前.(3) 不定积分法根据柯西-黎曼方程(2.5)及解析函数的导数公式(2.9)有().x x x y f z u iv u iu '=+=-.将x y u iu -表示成z 的函数h (z ),于是()()d .f z h z z C =+⎰还是以例3.13进行说明,2,2 2.x y u y u x ==-()2(22)2(1)2(1).f z y i x i x iy i z '=--=-+-=--从而2()2(1)d 2.f z i z z C iz iz C =--+=-++⎰由条件 f (2)=-i ,得C =-i ,故2()(1).f z i z =--小 结复变函数的积分定义与微积分中定积分的定义在形式上十分相似,只是被积函数由后者的一元实函数换成了前者的复变函数,积分区间[a ,b ]换成了平面区域内的一条光滑有向曲线.复变函数的积分值不仅与积分曲线的起点和终点有关,而且一般也与积分路径有关.这些特点与微积分中第二类曲线积分相似,因而具有与第二类曲线积分类似的性质.计算复变函数的积分有两个基本方法:(1) 若被积函数为f (z )=u (x ,y )+iv (x ,y ),积分曲线为C ,则()d d d d d .C C Cf z z u x v y i v x v y =-++⎰⎰⎰ (2) 参数方程法. 设积分曲线C 的参数方程为()()z z t a t b =≤≤,则()d (())()d .bC af z z f z t z t t '=⎰⎰ 解析函数积分的基本定理主要包括柯西-古萨定理、柯西积分公式、高阶导数公式及它们的一些推论.柯西-古萨定理指在单连通域D 内解析的函数f (z )沿该区域内任一条闭曲线C 的积分为零,即()d 0C f z z =⎰.由此定理可以得到一个重要推论:在单连通域D 内解析的函数f (z )沿该区域内任一条曲线积分与路径无关.复变函数与实函数一样也有原函数的概念,并且任何两个原函数之间仅相差一个常数.基于此,对于单连通域内的解析函数有类似于实函数的牛顿-莱布尼兹公式.即1010()d ()()z z f z z z z ϕϕ=-⎰,其中f (z )为单连通域D 内的解析函数,()z ϕ为f (z )的一个原函数,01,z z D ∈分别为积分曲线的起点和终点.复合闭路定理是柯西-古萨定理的推广,即若函数f (z )在复闭路C =C 0+C 1-+C 2-+…+C n-及其所围成的多连通区域内解析,则 01()d ()d ,k nk C C f z z f z z ==∑⎰⎰ 也就是0()d 0C f z z =⎰.柯西积分公式1()()d 2πf f z i z ξξξ=-⎰ 与高阶导数公式1!()()d , 1,2,2π()n n n f z f z n i z ξξ+==-⎰是复变函数两个十分重要的公式,它们都是计算积分的重要工具.柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处之间的密切关系,而高阶导数公式表明解析函数的导数仍是解析函数,即解析函数具有无穷可微性.这是解析函数与实函数的本质区别.下面归纳复变函数积分的计算方法.(1)如果被积函数不是解析函数,那么不论积分路径是否封闭,只能运用上面提到的两种基本计算方法,即化为二元实函数的线积分和参数方程法.(2)如果被积函数是解析函数(包括含有有限个奇点的情形),并且积分路径封闭,那么可以考虑柯西积分公式、高阶导数公式,并常常需要联合运用柯西-古萨定理、复合闭路定理,有时还需将被积函数作变形化为公式中的相应形式.若积分路径不封闭,那么只要被积函数在单连通域内解析,就可用定理3.4进行计算.(3)若被积函数是解析函数(含有有限个或无限个奇点),积分路径封闭,而被积函数不能表示为柯西积分公式和高阶导数公式中所要求的形式,那么就只能用到第五章中的留数方法.解析函数f (z )=u +iv 的虚部v 为实部u 的共轭调和函数,u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u+iv 不一定是解析函数.已知单连通域D 内的解析函数f (z )的实部或虚部求f (z )的方法要求掌握,前面已经详细介绍了三种方法,这里不再赘述.重要术语及主题复积分 柯西-古萨定理 复合闭路定理 原函数柯西积分公式 高阶导数公式 调和函数习题三1. 计算积分2()d C x y ix z -+⎰,其中C 为从原点到点1+i 的直线段.2. 计算积分(1)d C z z -⎰,其中积分路径C 为(1) 从点0到点1+i 的直线段;(2) 沿抛物线y =x 2,从点0到点1+i 的弧段.3. 计算积分d C z z ⎰,其中积分路径C 为(1) 从点-i 到点i 的直线段;(2) 沿单位圆周|z |=1的左半圆周,从点-i 到点i ;(3) 沿单位圆周|z |=1的右半圆周,从点-i 到点i .4. 计算积分23d Cz z z -⎰,其中积分路径C 为 (1) 从z =-2到z =2沿圆周|z |=2的上半圆周;(2) 从z =-2到z =2沿圆周|z |=2的下半圆周;(3) 沿圆周|z |=2的正向.5. 计算积分1d (31)C z z z +⎰,其中C 为16z =. 6. 计算积分(e sin )d z C z z z -⎰,其中C 为0a z =>. 7. 计算积分,其中积分路径C 为:12341(1):;23(2):;21(3):;23(4):.2C z C z C z i C z i ===+=-8.利用1d 0,:12C z C z z ==+⎰,证明: π12cos d 0.54cos θθθ+=+⎰ 9. 计算积分1d (1)2C z i z z ⎛⎫+- ⎪⎝⎭⎰,其中C 为|z |=2. 10. 利用牛顿-莱布尼兹公式计算下列积分. π200π211(1)cos d ;(2)e d ;2ln(1)(3)(2)d ;(4)d ;1iz i ii z z z z iz z z z +--+++⎰⎰⎰⎰ 12011tan (5)sin d ;(6)d cos i z z z z z z +⎰⎰ (沿1到i 的直线段) . 11. 求积分2e d 1z C z z +⎰,其中C 为: 12. 计算积分221d 1C z z z z -+-⎰,其中C 为|z |=2. 13. 计算积分41d 1Cz z +⎰,其中C 为222x y x +=.14. 求积分2sin d 9r zz z z =+⎰,其中C 为|z -2i |=2. 15. 求积分()33d d (1)1C z z z z +-⎰,其中r ≠1. 16. 求下列积分的值,其中积分路径C 均为|z |=1. 53020e cos (1)d ;(2)d ;tan /21(3)d ,.()2z C CC z z z z z z z z z z <-⎰⎰⎰17. 计算积分33d d (1)(1)C z z z z -+⎰,其中C 为: (1) 中心位于点z =1,半径为R <2的正向圆周;(2) 中心位于点z =-1,半径为R <2的正向圆周;(3) 中心位于点z =1,半径为R >2的正向圆周;(4) 中心位于点z =-1,半径为R >2的正向圆周.18. 设函数3223()d f z ax bx y cxy y =+++是调和函数,其中a,b,c 为常数.问a,b,c 之间应满足什么关系?19. 验证下列函数为调和函数.3223(1)632;(2)e cos 1(e sin 1).x x x x y xy y y i y ωω=--+=+++ 20. 证明:函数2222,x u x y v x y =-=+都是调和函数,但f (z )=u +iv 不是解析函数. 21. 设u 是调和函数,且不恒为常数,问:(1) u 2是否是调和函数?(2) 对怎样的f ,函数f (u )为调和函数?22. 由下列各已知调和函数,求解析函数f (z )=u +iv :2222(1);(2),(1)0;(3)e (cos sin ),(0)2;(4)arctan ,0.x u x y xy y u f x y v y y x y x y f y v x x=-+==+=+++==> 23.设12()()()()n p z z a z a z a =---,其中(1,2,,)i a i n =各不相同,闭路C 不通过12,,,n a a a ,证明积分1()d 2π()C p z z i p z '⎰ 等于位于C 内的p(z )的零点的个数.24.试证明下述定理(无界区域的柯西积分公式):设f (z )在闭路C 及其外部区域D 内解析,且lim ()z f z A →∞=≠∞,则 (),,1()d ,.2πC f z A z D f A z G i zξξξ-+∈⎧=⎨∈-⎩⎰ 其中G 为C 所围内部区域.。
复变积分知识点总结
复变积分知识点总结一、复变函数的积分1. 复变函数的积分复变函数的积分是指对复平面上的函数进行积分,其中积分路径可以是一条曲线或者一条闭合曲线。
复变函数的积分包括对于实部和虚部的积分两部分,也可以看作是对于复变函数的实部和虚部的积分的和。
复变函数的积分可以用复积分的方式来表示,即对于积分路径上的每一个点,都可以对应一个复数,这样对于整个路径上的所有点的积分就可以用复数来表示。
2. 复变函数的积分性质复变函数的积分具有一些独特的性质,比如线性性、可微性、路径无关性等。
其中线性性是指对于复变函数的积分满足线性组合的性质,即对于两个复变函数的积分和它们的线性组合的积分是相同的。
而可微性是指对于复变函数的积分可以通过对积分路径上的点进行微分来得到,这与实部和虚部的积分分别成立。
路径无关性是指对于一个复变函数在不同的积分路径上积分得到的结果是相同的。
3. 古代积分定理古代积分定理是复变积分的重要定理之一,它是复平面上函数积分的一个基本定理,也是复变函数在复平面上的积分与在实数轴上的积分之间的联系的一个重要桥梁。
古代积分定理表明,对于一个复变函数在一个简单闭合曲线内的积分等于该函数在这个闭合曲线上的积分。
古代积分定理同时也说明了对于一个复变函数在整个复平面上的积分等于该函数在所有简单闭合曲线上的积分之和。
4. 柯西-黎曼积分定理柯西-黎曼积分定理是复变积分的另一个重要定理,它是复变函数积分在实数轴上的积分的推广和深化,也是复变积分的一个基本定理。
柯西-黎曼积分定理表明了对于一个复变函数来说,如果它在一个闭合曲线内保持解析,那么对于这个曲线内的复变函数的积分一定等于零。
柯西-黎曼积分定理是复变积分中一个非常重要且基础的定理,它为复变函数积分的计算和应用提供了一个非常重要的方法和途径。
5. 积分的应用复变积分在工程、物理、数学等领域都有广泛的应用,比如它可以用来求解一些特殊的积分问题,解决一些特殊的微分方程问题,描述一些特殊的物理现象等。
复变函数积分的几种计算方法
复变函数积分的几种计算方法1.直接计算:直接计算是最基本的方法,通过对复变函数$f(z)$在积分路径上进行参数表示,然后将被积函数代入并对参数进行一定的变换和化简,最后进行求和或积分求解。
这种方法适用于被积函数的表达式简单,并且路径也比较简单的情况。
例如,对于一个简单的复变函数$f(z)=z^2$,可以沿着一个简单闭合的路径求积分。
2.共形映射:共形映射是一个重要而强大的工具,它可以将一个复平面上的路径映射到另一个复平面上的路径,并保持路径上的角度不变。
通过选择适当的共形映射,可以将复变函数$f(z)$在原路径上的复变积分变换为相对简单的形式。
例如,对于一条围绕原点的圆形路径,可以通过一个合适的共形映射将其映射为一条直线路径,这样原本的复变函数积分就可以转化为实变函数积分。
3.柯西-黎曼方程:柯西-黎曼方程是复变函数的基本性质之一,它表明对于任意一个复变函数$f(z)$,其满足柯西-黎曼方程的实部和虚部的偏导数存在且连续。
利用柯西-黎曼方程可以将复变函数$f(z)$表示为一个实部$f(x,y)$和虚部$g(x,y)$的形式,然后对实部和虚部分别进行求积分,最后进行合并得到原始的复变函数积分结果。
4.留数定理:留数定理是复变函数积分的重要工具,它给出了对于一个复变函数在围道内的积分结果与围道内的奇点有关。
根据留数定理,复变函数的积分结果可以表示为该函数在奇点处的留数与围道内奇点的总个数之和。
通过计算围道内的奇点的留数,可以得到复变函数的积分结果。
5.应用级数展开:对于一些复变函数,可以通过级数展开的方法进行计算。
例如,对于一个解析函数,可以将其展开为泰勒级数,并根据泰勒级数的性质进行积分。
通过截取级数展开的有限项,可以得到复变函数积分的近似解。
除了上述方法,还有一些特殊的积分计算方法,例如分部积分法、换元法等,这些方法在复变函数积分中同样适用。
关键在于选取合适的方法和工具,根据具体的被积函数和路径选择最合适的计算方法。
复变函数的积分
第二章 复变函数的积分2-1 复变函数的积分一、复变函数的路径积分()()()11lim -=∞→-≡∑⎰k k n k kn l z z f dz z f ξ()()()()()⎰⎰⎰++-=l ll dy y x u dx y x v i dy y x v dx y x u dz z f .,., 二、复变函数的路径积分的简单性质()29p2-2 科希定理一、单连通区域上的科希定理若()z f 是闭合回路l 所围区域上的解析函数,则 ()0=⎰dz z f l或()()()1221Z F Z F dz z f z z -=⎰2.复连通区域上的科希定理若()z f 是闭合回路l 所围区域上的解析函数,则 ()()021=+⎰⎰dz z f dz z f l l ()()dz z f dz z f l l ⎰⎰'=21 例1 计算回路积分dz a z l ⎰-1解:(1)回路l 不包围a 的情况 根据科希定理01=-⎰d z a z l (2)回路l 包围a 的情况根据复连通区域上的科希定理,有dz a z dz a z C l ⎰⎰-=-11令 ϕi a z Re =-,则()i id a d dz a z dz a z i i C l 2Re Re 112020πϕππϕϕ==+=-=-⎰⎰⎰⎰ 例2 计算回路积分()dz a z l n ⎰-, (1-≠n )解:(1)0≥n 的情况()z f 是闭合回路l 所围区域上的解析函数,根据科希定理 ()0=-⎰dz a z ln(2)1-<n 的情况仿例2,有()01120)1(1)1(201=+==-++++⎰⎰πϕϕπϕn i n n i n l n e R n d e iR dz a z 2-4 科希公式()()dz a z z f i a f l ⎰-=21π 或()()ξξξπd z f i z f l ⎰-= 21 解析函数的两个重要性质● 解析函数在任一内点z 的值()z f 等于包围点z 的任一境界线的回路积分。
复变函数积分计算方法
()()()011.lim nkkT k Cf z dz f z λς→==∆∑⎰(定义法)2.()d d d d d CCCf z z u x v y v x u y=-++⎰⎰⎰1.计算函数()Re f z z =沿下列曲线的积分. (2)2C 为从点0z =到点11z =再到点21z i =+的折线.解:从点0z =到点11z =的直线段参数方程为z x =(01)x ≤≤,在它上有()1,Re z x z x '==,则 11210,101Re 1 22xI z dz x dx ==⋅==⎰⎰,从点11z =再到点21z i =+的直线段参数方程为1(01),z yi y =+≤≤在它上有(),z y i '=Re 1z =,则11201,10Re 1 iI z dz i dy iy i+==⋅==⎰⎰,于是由复积分对积分路径的可加性可得2121Re .2C z dz I I i =+=+⎰4.计算()||f z z =沿下列曲线的积分. (1)1C 为从11z =-到21z =的直线段; (2)2C 为从11z =-到21z =的上半圆周;(3)3C 为从11z =-到21z =的下半圆周.解:(1)直线段1C 的参数方程为(11),z x x =-≤≤在它上有()1,z x '=||||z x =,则110111011|| || 1;22C z dz x dx x dx x dx --==-+=+=⎰⎰⎰⎰(2)上半圆周2C 的参数方程为()(0),i z eπθθπ-=≤≤在它上有()(),i z ieπθθ-'=-||1z =,则2()()|| 1() 1(1)2;i i C z dz ied eπππθπθθ--=⋅-==--=⎰⎰(3)下半圆周3C 的参数方程为(0),i z e θπθ=-≤≤在它上有(),i z ie θθ'=||1z =,则20|| 1 1(1) 2.i i C z dz ied eθθππθ--=⋅==--=⎰⎰6.设C 为从0z =到11z i =+的直线段,计算函数2()f z x y ix =-+沿C 的积分. 解:直线段C 参数方程为0[(1)0] (01)z i t t it t =++-=+≤≤,在它上有()1, ,,z t i x t y t '=+== 则122130() ()(1)1 (1).33CCf z dz x y ix dz t t it i dtt ii i =-+=-++-+=+=⎰⎰⎰用Cauchy 积分定理计算积分||12z dzI z ==+⎰的值,且证明等式2012cos 0.54cos d πθθθ+=+⎰(1)解:被积函数12z +的奇点2z =-在积分路径||1z =的外部,所以被积函数在闭区域||1z ≤上解析,于是由Cauchy 积分定理得 ||10.2z dzI z ===+⎰ (2)证明:圆周||1z =的参数方程为(02)i z e θθπ=≤≤,在它上有(),i z ie θθ'=于是2||102022202022(cos sin ) cos sin 2(sin cos )(cos 2sin ) (cos 2)sin 2sin (12cos ) 54cos i i z dz ieI d z e i i d i i i d i d θπθπππθθθθθθθθθθθθθθθθθ===+++=++-++-=++-++=+⎰⎰⎰⎰⎰22002sin 12cos 54cos 54cos d i d ππθθθθθθ-+=+++⎰⎰由(1)0I =得22002sin 12cos 054cos 54cos d i d ππθθθθθθ-++=++⎰⎰所以比较等式两边的虚部得2012cos 0.54cos d πθθθ+=+⎰注:此题常见错误:因为12cos 54cos θθ++在02θπ≤≤处处解析,所以2012cos 0.54cos d πθθθ+=+⎰非常数实函数在整个复平面上处处不解析!3.试讨论函数()1/f z z =沿正向圆周0||z z r -=的积分值,其中0,r >且00||,||0z r z ≠≠.解:函数()1/f z z =的奇点为0z =. (1)当0||r z <时,()f z 的奇点在圆周0||z z r -=的外部,所以()f z 在闭区域0||z z r -≤上解析,于是由Cauchy 积分定理得0||() 0;z z rf z dz -==⎰(2)当0||r z >时,0z =在圆周0||z z r -=的内部,则由解析函数积分的闭路变形原理可得00|||||0|11() 2,00z z r z z r z f z dz dz dz i z z επ-=-=-====--⎰⎰⎰(其中0ε>为任意实数).5.计算下列积分值,其中积分路径都取正向.(2)||3212(1)(2)z z idz z z i =++++⎰解:令212(1)(2)12z i A B z z i z z i ++=+++++,则有212(1)212(2), 2211z i B z z i A z i A Bz i z i z z ++++++=+=+++++上面第一式令1z =-得2(1)12112i A i-++==-+;上面第二式令2z i=-得2(2)12121i i B i -++==-+.所以21211(1)(2)12z i z z i z z i ++=+++++,于是||3||3||3||321211()(1)(2)121112 22 4.z z z z z idz dzz z i z z i dz dzz z ii i i πππ====++=+++++=+++=+=⎰⎰⎰⎰1.计算下列积分,其中积分闭路取正向.(1)3|1|11z dz z -=-⎰ 解:23|1|1|1|1211/(1)1112123z z z dz z z dz z z i z z iππ-=-==++=--=++=⎰⎰(4)44||1(2)z dz z z =-⎰解:4444||1||14071/(2)(2)21 3!(2)1203(02)5 16z z z dz z dz z z z i z i iπππ===-=-'''⎡⎤=⎢⎥-⎣⎦-=⋅-=⎰⎰(6)41||2sin ()n z zdzz i +=-⎰ 解:[](4)41||2sin 2sin ()(4)!2 sin (4)!2 sin (4)!2 sh1(4)!n n z i z z izdz i z z i n iz n iin n ππππ+====-==-=⎰(8)43||2(1)(2)(16)z dzz z z =-++⎰解:被积函数41(1)(2)(16)z z z -++有6个奇点,只有1z =在圆||3/2z =的内部,于是函数41(2)(16)z z ++在闭圆域||3/2z ≤上解析,则由Cauchy 积分公式得4433||||22411/(2)(16)(1)(2)(16)112(2)(16)2 51z z z dzz z dz z z z z i z z iππ===++=-++-=++=⎰⎰4.用Cauchy 积分公式计算函数()/zf z e z =沿正向圆周||1z =的积分值,然后利用圆周||1z =的参数方程()i z e θπθπ=-≤≤证明下面积分cos 0cos(sin ).ed πθθθπ=⎰(1)解:函数()/zf z e z =的奇点0z =在积分路径||1z =的内部,而函数ze 在闭区域||1z ≤上解析,于是由Cauchy 积分公式得||122.zzz z e dz i ei z ππ====⎰(2)证明:圆周||1z =的参数方程为()i z e θπθπ=-≤≤,在它上有(),i z ie θθ'=于是||1cos sin cos cos cos cos cos 2 [cos(sin )sin(sin )] [sin(sin )cos(sin )] sin(sin )cos(sin )i ze i i z i ee ie i dz d z ee id ei id eied ed i ed θθπθππθθππθππθθπππθθπππθθθθθθθθθθθθ=-+-----====+=-+=-+⎰⎰⎰⎰⎰⎰⎰比较等式两边的虚部得cos cos(sin )2ed πθπθθπ-=⎰又cos 0cos cos 0cos()cos 0coscos 0coscoscos(sin ) cos(sin )cos(sin )cos(sin())()cos(sin ) cos(sin )cos(sin ) cos(sin )cos(sin )ed e d ed e d e d e d e d e d e d πθππθθπωθπωθππωθππωθθθθθθθωωθθωωθθωωθ--=--=+=--+=-+=+⎰⎰⎰⎰⎰⎰⎰⎰0cos 02cos(sin )e d ππθθθθ=⎰⎰所以cos 0cos(sin ).ed πθθθπ=⎰10.设()f z 和()g z 在简单闭路C 上及其内部解析,试证:(1)若()f z 在C 上及其内部处处不为零,则有()0;()Cf z dz f z '=⎰(2)若在C 上有()(),f z g z =则在C 的内部有()().f z g z =证明:(1)因为()f z 在简单闭路C 上及其内部解析并且处处不为零,则()()f z f z '在简单闭路C 上及其内部处处解析,于是由Cauchy 积分定理得()0;()Cf z dz f z '=⎰ (2)若对于C 上的任意一点ζ有()(),f g ζζ=由于()f z 和()g z 在简单闭路C 上及其内部解析,则对于C 的内部的任意一点z ,由Cauchy 积分公式得1()1()()(),22C C f g f z d d g z i z i zζζζζπζπζ===--⎰⎰所以在C 的内部有()().f z g z =一、将下列函数在指定环域内展开成Laurent 级数,且计算其沿正向圆周||6z =的积分值I .(1)11()sin , 0|1|;1f z z z=<-<∞- 解:环域0|1|z <-<∞的中心01z =,对应的Laurent 级数展开式中0z 取1,于是1()f z 在环域0|1|z <-<∞内的Laurent 级数展开式为1210121011()sin sin11(1)1 (21)!1(1) (1),(21)!n n n n n n f z z z n z z n +∞=+∞--===----⎛⎫=- ⎪+-⎝⎭-=-+∑∑ 取0n =得1()f z 在环域0|1|z <-<∞内的Laurent 级数展开式的负一次幂系数11c -=-,又正向圆周||6z =为环域0|1|z <-<∞内围绕环心01z =的正向简单闭路,所以11||6()22.z I f z dz ic i ππ-====-⎰(3)361(), 1|1|;(1)f z z z z =<+<∞+ 解:环域1|1|z <+<∞的中心01z =-,对应的Laurent 级数展开式中0z 取-1,于是3()f z 在环域1|1|z <+<∞内的Laurent 级数展开式为()3666707111()(1)(1)(1)111 |1|11 |1/(1)|11(1)1111 (1)1 (1),n n n n f z z z z z z z z z z z z z ∞=∞--===⋅+++-+>+=⋅⇒+<+-+⎛⎫= ⎪++⎝⎭=+∑∑3()f z 在环域1|1|z <+<∞内的Laurent级数展开式不含有负一次幂,则负一次幂系数10c -=,又正向圆周||6z =在环域1|1|z <+<∞内部且正向围绕环心01z =-,所以31||6()20.z I f z dz ic π-====⎰(5)19251()2()cos , 0||.f z z i z i z i=+<+<∞+ 解:环域0||z i <+<∞的中心0z i =-,对应的Laurent 级数展开式中0z 取-i ,于是5()f z 在环域0||z i <+<∞内的Laurent 级数展开式为19251921901921911()2()cos2 ()(1cos )(1)2 ()(1)(2)!(1)4 2()(),(2)!n n n n n n n f z z i z i z i z iz i n z i z i z i n ∞=∞-+==++=+++-⎛⎫=++ ⎪+⎝⎭-=+++∑∑取10n =得5()f z 在环域0||z i <+<∞内的Laurent 级数展开式的负一次幂系数101420!c -=,又正向圆周||6z =在环域0||z i <+<∞内部且正向围绕环心0z i =-,所以1051||62()24.20!z i I f z dz ic ππ-====⎰2.利用留数计算下列沿正向圆周的积分.(2)2||31z z dz z =-⎰解:被积函数的奇点1z =和1z =-都在圆||3z =的内部,它们都是一级极点,且满足留数的计算规则3的条件,则由规则3得2212211Re ,1,1(1)21Re ,1,1(1)2z z z z s z z z z s z z ==-⎡⎤==⎢⎥'--⎣⎦⎡⎤-==⎢⎥'--⎣⎦于是由留数定理得222||32{Re ,1Re ,1}111112{}222.z z z z dz i s s z z z i i πππ=⎡⎤⎡⎤=+-⎢⎥⎢⎥---⎣⎦⎣⎦=+=⎰(4)22||2(1)zz edz z =-⎰解:被积函数的奇点1z =在圆||2z =的内部,它是二级极点,则利用留数的计算规则2得22222211Re ,1lim (1)2,(1)(21)!(1)zzz e e s z e z z →'⎡⎤⎡⎤=-=⎢⎥⎢⎥---⎣⎦⎣⎦于是由留数定理得2222||2222Re ,1(1)(1) 22 4.zz z e e dz i s z z i ee i πππ=⎡⎤=⎢⎥--⎣⎦=⋅=⎰(6)3||21cos m z zdz z =-⎰(其中m 为整数)解:当0m ≤时,被积函数在圆||3/2z =内部没有奇点,此时3||21cos 0;m z zdz z =-=⎰当0m >时,被积函数的奇点0z =在圆||3/2z =的内部,其中:当1,2m =时,0z =是可去奇点,此时[]2Re (1cos )/,00, Re (1cos )/,00,s z z s z z ⎡⎤-=-=⎣⎦于是由留数定理得3||21cos 1cos 2Re ,00;m m z z z dz i s z z π=--⎡⎤==⎢⎥⎣⎦⎰当3m ≥时,0z =是1m -级极点,则利用留数的计算规则2得(1)01cos 11cos Re ,0lim (0)(1)!1, 43,N (1)!0, 44,N1, 45,N (1)! 0, 46m m m m z z z s z z m z m k k m m k k m k k m m k -→--⎡⎤⎡⎤=-⎢⎥⎢⎥-⎣⎦⎣⎦=+∈-=+∈=-=+∈-=+32,N(1), 23, N (1)!0, 24,N m k m k k m m k k -⎧⎪⎪⎪⎨⎪⎪∈⎪⎩⎧-⎪=+∈=⎨-⎪=+∈⎩于是由留数定理得3||2321cos 1cos 2Re ,02(1), 23, N (1)! 0, 24,N.m m z m z z dz i s z z i m k k m m k k ππ=---⎡⎤=⎢⎥⎣⎦⎧⎪-=+∈=⎨-⎪=+∈⎩⎰综合可得:当3m ≥且为奇数时,323||21cos 2(1);(1)!m m z zidz z m π-=-=--⎰当m 为其他整数时,3||21cos 0.m z zdz z =-=⎰4.计算下列各积分,C为正向圆周.(1)10423 , : || 3.(2)(2)C zdz C z z z =+-⎰解:被积函数10423()/[(2)(2)]f z z z z =+-在环域2||z <<∞内解析,它的五个奇点都在圆周||3z =的内部,用留数定理计算比较困难.该积分满足5.2节定理2的条件,则由定理2得1042324234230()(2)(2)11 2Re ,012Re ,0(12)(12)12lim(12)(12) 2.C C z dz f z dzz z i s f i s i i ζπζζπζζζπζζπ→=+-⎡⎤⎛⎫=⎢⎥⎪⎝⎭⎣⎦⎡⎤=⎢⎥+-⎣⎦=+-=⎰⎰(2)13, : || 2.1z C z e dz C z z =+⎰解:被积函数13()/(1)zf z z e z =+在环域1||z <<∞内解析,它的奇点121, 0z z =-=都在圆周||2z =的内部,其中11z =-为一级极点,20z =为本性奇点,由于()f z 在本性奇点20z =的留数不容易计算,故用留数定理计算比较困难.该积分满足5.2节定理2的条件,则由定理2得1324403240()111 2Re ,0 2Re ,0(1)2 lim 3!(1)2(42) lim 3!(1)z C Cz e dz f z dzz i s f e i s i ei e ζζζζζπζζπζζπζζπζζζζ→→=+⎡⎤⎛⎫=⎢⎥⎪⎝⎭⎣⎦⎡⎤=⎢⎥+⎣⎦'''⎛⎫= ⎪+⎝⎭---=+⎰⎰2 .3iπ=-.利用留数计算下列定积分. (1)20153sin d πθθ+⎰解:令i z e θ=,则dzd iz θ=, 22112153sin 3103532izz z iz izθ==-++-+,从而有22||11253sin 3103z d dz z iz πθθ==++-⎰⎰. 函数22()3103f z z iz =+-在||1z <内只有一个简单极点/3z i =-,在||1z =上无奇点,且2/321Re [(),/3](3103)4z i s f z i z iz i=--=='+-,由留数定理得22||11253sin 3103 2Re [(),/3]1 2.42z d dz z iz i s f z i i i πθθπππ==++-=-=⋅=⎰⎰(3)221(1)dx x +∞-∞+⎰ 解:221()(1)f z z =+满足5.3节定理2推论的条件,在上半平面内只有一个二级极点z i =,且22211Re [(),]lim ()(1)4z i s f z i z i z i →'⎡⎤=-=⎢⎥+⎣⎦, 因此得22112Re [(),]2.(1)42dx i s f z i i x i πππ+∞-∞==⋅=+⎰注:此类型题常见的错误:计算中取函数的所有奇点而不是只取上半平面的奇点:错解:2212{Re [(),]Re [(),]}.(1)dx i s f z i s f z i x π+∞-∞=+-+⎰(5)2cos 45xdx x x +∞-∞++⎰ 解:函数2()45iz ize f z e z z =++在上半平面内只有一个简单极点2z i =-+,且1222Re [(),2](45)2iz iizz i e e s f z e i z z i--=-+-+=='++,由5.3节定理3推论得2122Re [(),2]45 2(cos2sin 2)2ixizi e dx i s f z e i x x e i i i eπππ+∞-∞--=-+++==-⎰,因此取其实部得22cos Re cos2.4545ix x edx dx x x x x eπ+∞+∞-∞-∞⎧⎫==⎨⎬++++⎩⎭⎰⎰注:此类型题常见的错误:① 计算中取函数的所有奇点而不是只取上半平面的奇点;② 计算出留数后取实部或虚部再乘以2i π得出结果,而不是计算出留数乘以2i π后再取实部或虚部才得出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i²=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ₁θ₁称为主值 -π<θ₁≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=ξ(z k-z k-1)=ξ∆z k记∆z k= z k- z k-1,弧段z k-1 z k的长度=,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为:=ξ∆z k设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作 (C圆周正方向为逆时针方向)例题:计算积分 ,其中C表示a到b的任一曲线。
(1)解:当C为闭合曲线时,=0.∵f(z)=1 S n=ξ(z k-z k-1)=b-a∴ =b-a,即 =b-a.(2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则∑1= ( )(z k-z k-1)有可设ξk=z k,则∑2= ( )(z k-z k-1)因为S n的极限存在,且应与∑1及∑2极限相等。
所以S n= (∑1+∑2)==b2-a2∴=b2-a21.2 定义衍生1:参数法:f(z)=u(x,y)+iv(x,y), z=x+iy带入得:= - vdy + i + udy再设z(t)=x(t)+iy(t) (≤t≤)=参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0+re iθ,(0≤θ≤2π)例题1:积分路线是原点到3+i的直线段解:参数方程 z=(3+i)t=′=(3+i)3=6+i例题2:沿曲线y=x2计算( )解:参数方程或z=t+it2 (0≤t≤1)=( )=(1+i) + 2i]=-+i1.3定义衍生2 重要积分结果:z=z0+ re iθ,(0≤θ≤2π)由参数法可得:dθ=dθ=( )=例题1:例题2:解: =0 解 =2πi2.柯西积分定理法:2.1 柯西-古萨特定理:若f(z)dz在单连通区域B内解析,则对B内的任意一条封闭曲线有:=02.2定理2:当f为单连通B内的解析函数是积分与路线无关,仅由积分路线的起点z0与终点z1来确定。
2.3闭路复合定理:设函数f(z)在单连通区域D内解析,C与C1是D内两条正向简单闭曲线,C1在C的内部,且以复合闭路Γ=C+C1所围成的多连通区域G 全含于D 则有:Γ= +=0 即 =推论:=例题:C 为包含0和1的正向简单曲线。
解: 被积函数奇点z=0和z=1.在C 内互不相交,互不包含的正向曲线c 1和c 2。
=+==+++=0+2πi+2πi+0=4πi2.4原函数法(牛顿-莱布尼茨公式):定理2.2可知,解析函数在单连通域B 内沿简单曲线C 的积分只与起点z 0与终点z 1有关,即ξ ξ = ξξ 这里的z 1和z 0积分的上下限。
当下限z 0固定,让上限z 1在B 内变动,则积分 ξξ在B内确定了一个单值函数F(z),即F(z)=ξξ所以有若f(z)在单连通区域B内解析,则函数F(z)必为B内的解析函数,且 =f(z).根据定理2.2和2.4可得= F(z1) - F(z0).例题:求解:函数zcosz在全平面内解析∴=zsinz-= isin i+cosz=isin i+cos i-1=i+-1=e-1-1此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。
2.5柯西积分公式法:设B为以单连通区域,z0位B中一点,如f(z)在B内解析,则函数在z0不解析,所以在B内沿围绕z0的闭曲线C的积分一般不为零。
取z0位中心,以>0为半径的正向圆周=位积分曲线 ,由于f(z)的连续性,所以==2πif(z0)2.5.1定理:若f(z)在区域D内解析,C为D内任何一条正向简单闭曲线,它的内部完全含于D,z0为C内的任一点,有:f(z0)=例题:1))解:=2π isin z|z=0=0 解: ==2πi|z=-i=2.6解析函数的高阶导数:解析函数的导数仍是解析函数,它的n阶导数为f(n)(z0)=dz(n=1,2…)其中C为f(z)的解析区域D内围绕z0的任一条正向简单闭曲线,而它的内部全含于D.例题: C:=1解:由高阶导数的柯西积分公式:原式=2πi(e z)(4)|z==3.解析函数与调和函数:定义:(1)调和函数:如果二元实函数(x,y)在区域D内具有二阶连续函数,且满足拉普拉斯方程:+=0,则称(x,y)为区域D内的调和函数。
若f(z)=u+iv为解析函数,则u和v都是调和函数,反之不一定正确(2)共轭调和函数:u(x,y)为区域内给定的调和函数,我们把是u+iv在D内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。
若v是u的共轭调和函数,则-u是v的共轭调和函数关系:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数;且虚部为实部的共轭调和函数。
3.1求解方法:(1)偏积分法:若已知实部u=u(x,y),利用C-R方程先求得v的偏导数=,两边对y积分得v=.再由=又得+=-从而 =dx + Cv= + dx + C同理可由v(x,y)求u(x,y).3.2不定积分法:因为 =U x+i V x= U x-iU y= V y+iV X所以f(z)=+c f(z)=+c3.3线积分法:若已知实部u=u(x,y),利用C-R方程可得的dv=dx+dy=-dx+故虚部为v=( , )(, ,)+C该积分与路径无关,可自选路径,同理已知v(x,y)也可求u(x,y). 例题:设u=x2-y2+xy为调和函数,试求其共轭函数v(x,y)级解析函数f(z)=u(x,y)+iv(x,y)解:利用C-R条件=2x+y =-2y+x =2 =-2所以满足拉普拉斯方程,有==2y-x ==2x+y所以v=+=2xy- +=2x+=2x+y=y =+cv(x,y)=2xy-+cf(z)=u(x,y)+iv(x,y)=(2-i)+iC4.留数求积分:留数定义:设z0为函数f(z)的一个孤立奇点,即f(z)在去心邻域、0<< ,我们把f(z)在z0处的洛朗展开式中负一次幂项系数c-1称为f(z)在z0处的留数,记为Res[f(z),z0]即Res[f(z),z0]=c-1或者Res[f(z),z0]= C为0<<4.1留数定理:设函数f(z)在区域D内除有限个孤立奇点z1z2…z n,其中z k表示函数 的孤立奇点4.2孤立奇点:定义:如果函数在z0不解析,但在z0某个去心邻域0<<内解析,则称z0为 的孤立奇点。
例如、都是以z=0为孤立奇点函数以z=-1、z=2为孤立奇点..........( )在孤立奇点z=z0的去心邻域内,函数 可展开为洛朗级数=( )洛朗级数中负幂项是否存在,若存在是有限项还是无限项,这对f(z)在z0处的奇异性将起着决定性的作用。
讨论孤立奇点z0的类型:4.2.1可去奇点:若函数f(z)在孤立奇点z0的去心邻域内的洛朗展开式中不含负幂项,即对一切n<0有c n=0,则称z0是f(z)的可去奇点因为没有负幂项,即c-n=0,(n=1,2.....)故c-1=0。
遇到函数f(z)的奇点类型是可去奇点,一般对函数求积分一般为零判断可去奇点方法:⑴函数在某个去心邻域0<<内解析,则z0是 的可去奇点的充要条件是存在极限 ( )=c0,其中c0是一复常数;⑵在⑴的假设下,z0是f(z)可去奇点的充要条件是:存在r≤,使得f(z)在0<<r内有界4.2.2极点:若函数f(z)在孤立奇点z0的去心邻域内洛朗级数展开式中只有有限个负幂项,即有正整数m,c-m0,而当n<-m时c-n=0 则称z0是f(z)的m级极点。
其洛朗展开式是:f(z)=( )+( )+…++c0+c1(z-z0)n+m+…+c0(z-z0)n +…这里c-m0,于是在 0<<有f(z)=[( )+( )+…++c0+c1(z-z0)n+m+…+c0(z-z0)n +…]=. * 一个在0<<解析,同时 ,则z0是f(z)的m级极点。
判断定理:(1)f(z)在z0的去心邻域0<<解析,z0是f(z)的m级极点的充要条件是可以表示成*的形式。
(2)z0是f(z)的m级极点的充要条件是 =.4.2.3本性奇点:若函数f(z)在孤立奇点z0的去心邻域内洛朗级数展开式中只有无限个负幂项,则称z0是f(z)的本性奇点判断方法:孤立奇点是本性奇点的充要条件是不存在有限或无穷的极限 。
4.3函数在极点的留数:准则一:若z0为一级极点,则Res[f(z),z0]=准则二:做z0为m级极点,则Res[f(z),z0]={(z-z0)m f(z)}准则三:设f(z)=,P(z)以及Q(z)都在z0解析,如果P(z0)0,Q(z0) ,则z0是f(z)的一级极点,而且:Res[f(z),z0]=4.4无穷远处的留数:定义:扩充z平面上设z=为f(z)上的孤立奇点,即f(z)在R<<+内解析,C为圆环绕原点z=0的任一条正向简单闭曲线,则积分值称为f(z)在z=处的留数,记作Res[f(z),]=如果f(z),在R<<+内的洛朗展开式为f(z),=则有Res[f(z),]=-c-14.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)设为z1,z2,…,z n,则f(z)在各奇点的留数总和为零,即+Res[f(z),]=0;4.4.2 Res[f(z),]=-Res[f(),0]11例题:求下列Res[f(z),]的值(1)f(z)= (2)f(z)=解:(1)在扩充复平面上有奇点:1,,而1为f(z)的一级极点且Res[f(z),1]===eRes[f(z),-1]===-∵Res[f(z),] + Res[f(z),1] + Res[f(z),-1]=0得∴Res[f(z),]=-{ Res[f(z),1]+ Res[f(z),-1]}=( )=-sh1(2) 由公式Res[f(z),]=-Res[f(),0],而f()=以z=0为可去奇点,所以Res[f(z),]= -Res[f(),0]=04.5用留数定理计算积分:4.5.1形如d的定积分计算;其中 为cos与的有理函数。