一次函数的性质练习
第19章一次函数——基本性质专项练习 2022—2023学年人教版数学八年级下册
一次函数——基本性质◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?1-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.一次函数——基本性质(解析)◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?【解答】解:(1)y=mx+2m﹣10(m≠0).∵函数为正比例函数,∴2m﹣10=0,解得:m=5,(2)一次函数y=mx+2m﹣10(m≠0).∵函数y的值随着x值的增大而减小,∴m<0且m≠0,(3)∵函数的图象与直线y=x﹣4的交点在y轴上,∴x=0,y=﹣4,把x=0,y=﹣4代入y=mx+2m﹣10得,m=31-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.【解答】解:(1)设y﹣2=k(3x﹣4),将x=2、y=3代入,得:2k=1,解得k=,∴y﹣2=(3x﹣4),即y=x;(2)将点P(a,﹣3)代入y=x,得:a=﹣3,解得:a=﹣2;(3)当y=﹣1时,x=﹣1,解得:x=﹣,当y=1时,x=1,解得:x=,故﹣≤x≤.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.【解答】解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=﹣1时,y=2×(﹣1)=﹣2;(3)∵0≤y≤5,∴0≤2x≤5,解得:0≤x≤.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.【解答】解:(1)函数图象如右图所示;(2)∵y=﹣2x﹣2,∴当x=0时,y=﹣2,当y=0时,x=﹣1,∴图象与x轴、y轴的交点A、B的坐标分别为(﹣1,0),(0,﹣2);(3)∵点A(﹣1,0),点B(0,﹣2),∴OA=1,OB=2,∴AB==,即A、B两点间的距离是;(4)由(3)知,AB=,∵点C在坐标轴上,AB=AC,∴当C在x轴上时,点C的坐标为(﹣1﹣,0)或(﹣1+,0),当点C在y轴上时,点C的坐标为(0,2),由上可得,点C的坐标为:(﹣1﹣,0)、(﹣1+,0)或(0,2).◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.【解答】解:分两种情况:①当k>0时,把x=﹣1,y=0;x=1,y=3代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=x+;②当k<0时,把x=﹣1,y=3;x=1,y=0代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=﹣x+;综上可得,k=,b=或k=﹣,b=.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.【解答】解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4).∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.【解答】解:(1)设y=k(2x﹣1).∵当x=3时,y=10.∴10=k(6﹣1).∴k=2.∴y=2(2x﹣1)=4x﹣2.∴y与x之间的函数关系式为:y=4x﹣2.(2)由题意得:4x﹣2=﹣2.∴x=0.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【解答】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【解答】解:(1)∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP【解答】解:当x=0时,y=2x+2=2,则B(0,2),当y=0时,2x+2=0,解得x=﹣1,则A(﹣1,0),设P(t,kt),∵S△AOP:S△BOP=1:2,即S△BOP=2S△AOP,∴•|t|•2=2••1•|kt|,∴|k|=1,而k>0,∴k=1.3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积【解答】解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.【解答】解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B(0,3);(2)一次函数的图象如图所示:(3)∵A(2,0),∴OA=2,∵点P在x轴上,且OP=2OA,∴OP=2OA=4,∴P(4,0)或(﹣4,0),∴AP=2或6,∵S△ABP=,∴S△ABP==3或S△ABP==9,∴△ABP的面积为3或9.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.【解答】解:(1)设直线AB的表达式为y=kx+b(k≠0),∵点A(﹣4,0),B(0,6)在直线AB上,∴,∴,∴直线AB的表达式为y=x+6,∵C(m,3)是直线l上的一点,∴m+6=3,解得:m=﹣2,∴C(﹣2,3),设直线OC的表达式为:y=nx(n≠0),把C(﹣2,3)代入得:﹣2n=3,∴n=﹣,∴直线OC的表达式为:y=﹣x;(2)∵S△OCP=S△OAB,∴S△OCP=×=8,设P(x,x+6),分两种情况:①当点P在第一象限时,过P作PD⊥x轴于D,过C作CE⊥x轴于E,∵C(﹣2,3),∴OE=2,CE=3,∴S△OCP=(3+x+6)•(x+2)﹣=8,解得:x=,∴P(,7);②当点P在第三象限时,同理得:P(﹣,﹣1);综上,点P的坐标为P(,7)或(﹣,﹣1)练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.【解答】解:∵函数y=2x+4,∴当x=0,y=4,当y=0时,x=﹣2,即该函数图象过点(0,4),(﹣2,0),所画的函数图象如右图所示;(1)由图象可得,点A(﹣2,0),点B(0,4),则OA=2,OB=4,故△AOB的面积是=4;(2)由图象可得,当y<0时,x的取值范围是x<﹣2.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.【解答】解:∵x+2y=4,∴y=(4﹣x),∴S=×4×(4﹣x)=4﹣x,即S=4﹣x.∵点P(x,y)在第一象限内,且x+2y=4,∴,解得0<x<4;(2)当S=3时,4﹣x=3,解得x=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.【解答】解:(1)∵函数图象经过(2,4),(4,0)两点,∴,解得|k|=2,b=8,∴k=2,b=8或k=﹣2,b=8;(2)由题意可知点(﹣1,3)、(3,5)或(﹣1,5)、(3,3)都在一次函数:y1=﹣|k|x+b(k,b为常数且k≠0)图象上,则有:或,解得或(舍去),∴此一次函数的解析式为y=﹣x+.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.【解答】解:(1)∵函数y=(2n﹣8)x﹣n﹣3的图象经过原点,∴﹣n﹣3=0,解得:n=﹣3.(2)∵这个函数是一次函数,且图象经过二、三、四象限,∴,解得:﹣3<n<4.∴n的正整数值为1、2、3.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.【解答】解:(1)∵OF=3,∴F(0,3),∴b=3,把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,(2)如图,∴设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2或y=﹣2,∵P是直线EF上的一个动点,∴当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2),当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2),综上,点P的坐标为(﹣2,2)或(﹣10,﹣2).7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.【解答】解;(1)∵顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,∴S△ABO=OB•AB==,∴OB=1,AB=3,∴A(﹣1,3);(2)∵顶点A在直线y=﹣x﹣k上,∴3=1﹣k,∴k=﹣2,∴直线AC的解析式为y=﹣x+2;(3)直线y=﹣x+2中,令y=0,则x=2,∴直线AC与y轴的交点D的坐标为(2,0),∵点C的纵坐标是﹣1.∴S△AOC=S△AOD+S△COD=+=4.。
一次函数性质专题练习
一、选择题(湖南省怀化市)如图,是张老师晚上出门散步时离家的距离y 与时间x 之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )(山东省)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )A .10B .16C .18D .20 (四川省绵阳市)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( )(四川省重庆市)如图,在直角梯形ABCD 中,D C A B ∥,90A ∠=,28AB =cm ,24DC =cm ,4AD =cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动.当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD 的面积2(cm )y 与两动点运动的时间(s)t 的函数图象大致是( )A .B .C .D .(四川省自贡市)如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前) 3y ax =-等式23x b ax +>-A . B .C .D .图1图23ax =-(四川省广安市)在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 . 三、应用题(2008福建省南平市,12分)“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元)与销售量x (支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)(2008广东省佛山市,8分)某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨. (1) 将这些货物一次性运到目的地,有几种租用货车的方案? (2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?(湖北省鄂州市)甲乙两人同时登西山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟 米,乙在A 地提速时距地面的高度b 为 米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?(湖北省咸宁市)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点.从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)(2) 设A、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3) 经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.(湖北省孝感市分)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m 元;(二)职工个人当年治病花费的医疗费年底按表1的办法分段处理:分和缴纳的医疗公积金m 元)为y 元.(1)由表1可知,当0150x ≤≤时,y x m =+;那么,当15010000x <≤时,y = ;(用含m n x ,,的方式表示)(3分) (2)该公司职员小陈和大李2007年治病花费的医疗费和他们个人实际承担的费用如表2: 表2请根据表(5分)(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)(2分)(四川省南充市)某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3)x x ≥个乒乓球,已知A B ,两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算? (2)当12x =时,请设计最省钱的购买方案.四、猜想、探究题 第18题.(河北省)如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标;(2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接..写出点P 的坐标.。
一次函数的图像与性质基础练习
一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。
一次函数性质练习题及答案
一次函数性质练习题及答案一次函数是数学中非常基础且重要的概念,它在许多实际问题中都有应用。
下面我们将通过一些练习题来加深对一次函数性质的理解,并给出相应的答案。
# 练习题1题目:已知直线y=kx+b经过点(2,3)和(-1,-2),求k和b的值。
解答:首先,我们可以将两个点的坐标代入一次函数的一般形式y=kx+b中,得到两个方程:\[ 3 = 2k + b \]\[ -2 = -k + b \]接下来,我们可以解这个方程组来求得k和b的值。
将第二个方程中的b用第一个方程表示,得到:\[ b = 3 - 2k \]将这个表达式代入第二个方程,得到:\[ -2 = -k + (3 - 2k) \]\[ -2 = -3k + 3 \]\[ 3k = 5 \]\[ k = \frac{5}{3} \]再将k的值代入b的表达式中,得到:\[ b = 3 - 2 \times \frac{5}{3} \]\[ b = 3 - \frac{10}{3} \]\[ b = \frac{9}{3} - \frac{10}{3} \]\[ b = -\frac{1}{3} \]所以,k=5/3,b=-1/3。
# 练习题2题目:若一次函数y=2x+4的图象与x轴交于点A,求点A的坐标。
解答:一次函数与x轴相交意味着y=0。
将y=0代入函数y=2x+4中,得到:\[ 0 = 2x + 4 \]\[ -4 = 2x \]\[ x = -2 \]因此,点A的坐标为(-2, 0)。
# 练习题3题目:一次函数y=-3x+5的斜率是多少?解答:一次函数的斜率就是函数表达式中x的系数。
在这个例子中,斜率k=-3。
# 练习题4题目:已知一次函数y=kx+b的图象经过第一、二、三象限,求k和b 的取值范围。
解答:一次函数的图象经过第一、二、三象限,说明函数是向上倾斜的,并且y轴截距是正的。
因此,k>0,b>0。
# 结语通过这些练习题,我们可以看到一次函数的性质和应用。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数的图像性质练习题
一次函数的图像性质练习题一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2 B.x>﹣1 C.x>0D.x>12.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0 B.b=﹣1 C.y随x的增大而减小D.当x>2时,kx+b<0 3.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.4.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>18.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2 9.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣410.一次函数y=2x﹣1的图象大致是()A.B.C.D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<214.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>416.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<017.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>218.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<320.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.021.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣322.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<225.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<328.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣B.x≤﹣2 C.x≥1 D.x≤131.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<232.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣233.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>335.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<236.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x 的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第象限.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.一次函数的图像性质练习题参考答案与试题解析一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>1【解答】解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.方法二:一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.2.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限,当a>0,b<0时,一次函数y=ax+b的图象经过第一、三、四象限,函数y=bx+a的图象经过第一、二、四象限,当a<0,b>0时,一次函数y=ax+b的图象经过第一、二、四象限,函数y=bx+a的图象经过第一、三、四象限,当a<0,b<0时,一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限,由上可得,两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是B 中的图象,故选:B.3.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.【解答】解:∵m<﹣2,∴m+1<0,1﹣m>0,所以一次函数y=(m+1)x+1﹣m的图象经过一,二,四象限,故选:D.4.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【解答】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.【解答】解:一次函数y=x+1中,令x=0,则y=1;令y=0,则x=﹣1,∴一次函数y=x+1的图象经过点(0,1)和(﹣1,0),∴一次函数y=x+1的图象经过一、二、三象限,故选:C.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.8.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.9.一次函数y=2x﹣1的图象大致是()A.B.C.D.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.10.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2【解答】解:∵直线y=(m﹣2)x+m+3经过一、二、四象限,∴,解得﹣3<m<2,故选:D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四【解答】解:∵一次函数y=2x﹣1,k=2>0,b=﹣1<0,∴该函数图象经过一、三、四象限,故选:D.12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个【解答】解:在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有①y=﹣8x;⑤y=0.5x﹣3.故选:B.13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【解答】解:由图中可以看出,当x>﹣3时,kx+b<2,故选:A.14.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④【解答】解:由函数y=ax+1的图象可知,y随x的增大而增大,∴a>0,故①正确;在直线y=ax+1中,令x=0,则y=1,∴直线y=ax+1与y轴的交点B为(0,1),故②正确;由函数y=﹣x+4可知,D的坐标为(0,4),∴BD=3,∵E的横坐标为2,∴S△BDE=×3×2=3,故③正确;由图象可知,当x>2时,函数y=ax+1在函数y=﹣x+4的上方,∴ax+1>﹣x+4,故④错误,故选:A.15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>4【解答】解:由图可知:当x>4时,y<0,即kx+b<0;因此kx+b<0的解集为:x>4.故选:D.16.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<0【解答】解:一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点(2,1),所以不等式k1x+b1<k2x+b2的解集是x<2.故选:C.17.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.【解答】解:∵y=kx+k﹣1=k(x+1)﹣1,∴一次函数的图象一定过点(﹣1,﹣1),A.直线经过一、二,四象限,不经过第三象限,故不可能经过点(﹣1,﹣1),故A符合题意;B、C、D直线都经过第三象限,可能经过点(﹣1,﹣1),故可能经过点(﹣1,﹣1),故B、C、D不符合题意,故选:A.18.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>2【解答】解:由图象以及数据可知,当0≤y<3时,即直线在x轴上方,y轴的右侧,并且当y=0时,x=2,所以x的取值范围是0<x≤2.故选:C.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<3【解答】解:由图形可知,当x>﹣1时,kx+4>﹣x+b,所以,不等式的解集是x>﹣1.故选:A.20.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.0【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0.故①结论正确;∵y2=x+a的图象与y轴交于负半轴,∴a<0.故②结论正确;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故③结论错误.故选:B.21.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣3【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则k=﹣,∵k≥1,∴﹣≥1,∴﹣3≤a<0,故选:C.22.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.【解答】解:∵式子+(k﹣2)0有意义,∴,解得k>2,∴k﹣2>0,2﹣k<0,∴一次函数y=(k﹣2)x+2﹣k的图象经过第一、三、四象限,故选:B.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<2【解答】解:把点A(2,0)代入y=kx+4,得0=2k+4,解得k=﹣2,∴y=﹣2x+4,把点B(a,2)代入y=﹣2x+4,得2=﹣2a+4,解得a=1,则B点坐标为(1,2),所以当x<1时,直线y=mx都在直线y=kx+4的下方,∴不等式kx+4>mx的解集为x<1.故选:B.25.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.【解答】解:当k>3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、三、四象限,当0<k<3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、二、三象限;当k<0时,函数y=kx的图象经过第二、四象限且过原点,y=x+3﹣k的图象经过第一、二、三象限,由上可得,选项C不可能;故选:C.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定【解答】解:两条直线的交点坐标为(﹣1,3),且当x<﹣1时,直线l2在直线l1的下方,故不等式k1x>k2x+b的解集为x<﹣1.故选:B.27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<3【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式ax+4>2x的解集为x<.故选:B.28.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.【解答】解:∵一次函数y=πx﹣7,k=π>0,b=﹣7<0,∴该函数的图象经过第一、三、四象限,故选:D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.【解答】解:∵函数y=ax+a的图象经过点P(1,2),∴2=a+a,∴a=1,∴一次函数的解析式为y=x+1.∵k=1>0,b=1>0,∴一次函数的图象经过第一、二、三象限.故选:A.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥1D.x≤1【解答】∵要求kx﹣b≥0的解集,∴从图象上可以看出等y≥0时,x≥﹣2,故选:A.31.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<2【解答】解:由图象可知,直线l1和直线l2的交点为(﹣1,﹣2),直线l1中y随x的增大而减小,∵y=k1x+b交x轴于点(﹣3,0),关于x的不等式k2x<k1x+b的解集为x<﹣1,∴关于x的不等式k2x<k1x+b<0的解集是﹣3<x<﹣1,故选:A.32.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣2【解答】解:把P(n,﹣2)代入y=﹣2x+3得﹣2n+3=﹣2,解得n=,∴P,由图象可知不等式﹣x+m>﹣2x+3的解集为x>.故选:B.33.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=abx经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=abx经过二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,y=abx经过二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,y=abx经过一、三象限,故选:C.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>3【解答】解:观察函数图象,可知:y随x的增大而增大.∵直线y=kx+b与x轴交于点(﹣4,0),∴当y>0时,x>﹣4.故选:B.35.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<2【解答】解:由kx+b+3>0得kx+b>﹣3,直线y=kx+b与y轴的交点为B(0,﹣3),即当x=0时,y=﹣3,由图象可看出,不等式kx+b+3>0的解集是x>0.故选:A.36.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.【解答】解:∵直线y=2x+1经过点P(1,b),∴b=2+1,解得b=3,∴P(1,3),∴关于x,y的方程组的解为,故选:C.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵图象过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,故①②错误;又∵图象与x轴交于(﹣2,0),∴kx+b=0的解为x=﹣2,③正确;当x>﹣2时,图象在x轴上方,y>0,故④正确.综上可得③④正确,共2个,故选:B.二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第一、四象限.【解答】解:当a+b+c=0时,a=﹣(c+b),∴k==﹣1,此时函数y=﹣x+1的图象过第一、二、四象限;由===k,可得=k,当a+b+c≠0时,k=,此时函数y=x﹣的图象过第一、三、四象限;综上所述,函数y=kx﹣k的图象必过第一、四象限,故答案为:一、四.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.【解答】解:∵函数y=k1x+b1与函数y=k2x+b2的交点坐标是(﹣1,3),∴方程组的解为.故答案为.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.【解答】解:(1)将点A的坐标代入y1=x+1,得m+1=2,解得m=1,故点A的坐标为(1,2),将点A的坐标代入y2=k x,得k=2,则正比例函数的表达式为y=2x;(2)令x=0,则y1=1.∴B(0,1).∴OB=1.∴S△ABO==;(3)结合函数图象可得,当y1>y2时,x<1.。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中最基本的函数之一,它的图像呈现出直线的特点。
通过学习一次函数的图像和性质,我们可以更好地理解和应用数学知识。
下面是一些关于一次函数图像和性质的练习题,帮助我们巩固所学的知识。
练习题一:给定一次函数y = 2x + 3,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = 2(0) + 3 = 3,所以当x为0时,y的值为3。
2. 当y为0时,代入函数表达式得到0 = 2x + 3,解方程得到x = -1.5,所以当y为0时,x的值为-1.5。
3. 函数的斜率即为函数中x的系数,所以斜率为2。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为3。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,3)和(1,5)。
连接这两个点,得到一条斜率为2,截距为3的直线。
练习题二:给定一次函数y = -0.5x + 2,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = -0.5(0) + 2 = 2,所以当x为0时,y的值为2。
2. 当y为0时,代入函数表达式得到0 = -0.5x + 2,解方程得到x = 4,所以当y为0时,x的值为4。
3. 函数的斜率即为函数中x的系数,所以斜率为-0.5。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为2。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,2)和(4,0)。
连接这两个点,得到一条斜率为-0.5,截距为2的直线。
一次函数的图像和性质练习题
一次函数的图像和性质练习题1.一次函数y=kx+b(k≠0)经过正比例函数y=kx(k≠0)一定经过点(0,0),经过点(1,k+b),经过点(-b/k,0)。
2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。
与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为1.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(0,b+1)。
5.一次函数y=-x+3的图象经过点(-2,5)和(2,1)。
6.已知一次函数y=(1/2)x+2的图象与x轴、y轴分别交于点A(4,0)、B(0,2),求△XXX的面积。
答案为4.7.满足条件的函数为y=-x。
8.函数y=2x与y=2x+6的图象平行且不重合。
9.若直线y=2x+6与直线y=mx+5平行,则m=2.10.函数y=ax+b与y=3x+2平行,则a=3,b为任意实数。
11.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则k的取值范围是k≤2或k≥4.13.已知点A(-4.a),B(-2,b)都在一次函数y=3x+1的图象上,且a<b,则系是a<7/2.14.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0.15.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。
16.直线y=(1/2)x-5与x轴的交点坐标是(10,0),与y轴的交点坐标是(0,-5/2)。
17.直线y=2x-3可以由直线y=2x沿y轴上移3个单位而得到;直线y=-3x+2可以由直线y=-3x沿y轴下移2个单位而得到。
第2讲一次函数的图像及性质(练习)原卷版
第2讲 一次函数的图像及性质(练习)夯实基础一、单选题1.直线y =2x ﹣1在y 轴上的截距是( )A .1B .﹣1C .2D .﹣22.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <3.一次函数51y x =-的图像经过的象限是( )A .一、二、三B .一、三、四C .二、三、四D .一、二、四 4.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤5.在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .6.点A (﹣1,y 1)、点B (1,y 2)在直线y =﹣3x 上,则( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法比较y 1、y 2大小7.已知点A (﹣1,y 1),点B (2,y 2)在函数y =﹣3x +2的图象上,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 8.一次函数y=kx=k(k=0)的图象大致是( )A .B .C .D .二、填空题9.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.10.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______. 11.一次函数4y x =--的截距是_________.12.如果一次函数()21y k x =+-中,y 随x 的增大而减小,那么k 的取值范围是___________.13.一次函数5y x b =-+的图象不经过第一象限,则b 的取值范围是_________. 14.一次函数y kx b =+的图像经过点(3,0)与(0,3),那么关于x 的不等式0kx b +>的解集是________.三、解答题15.已知:一次函数y kx b =+的图像经过点(1,3)A 且与直线32y x =-+平行. (1)求这个一次函数的解析式;(2)求在这个一次函数的图像上且位于x 轴上方的所有点的横坐标的取值范围.能力提升一、单选题1.如果点()11,P x y 和点()22,Q x y 是直线()0y kx k =≠上两点,当12x x <时,12y y <,那么直线()0y kx k =≠和函数()0k y k x=≠在同一直角坐标系内的大致图像可能是( ) A . B .C .D .2.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 3.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n <C .0k >D .k 0< 4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .5.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a <7.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)二、填空题8.若直线y =kx+b 平行直线y =5x+3,且过点(2,﹣1),则b =_____.9.如图,一次函数y =f (x )的图象经过点(2,0),如果y >0,那么对应的x 的取值范围是_____.10.如果在一次函数y =(k +y 随自变量x 的增大而增大,那么k 的范围为_____.11.如图,已知一次函数y kx b =+的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式+kx b ﹤0的解集是_______.12.将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是_______ 13.如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.14.直线123y x =-与两根坐标轴围成的三角形的面积是_______________________. 15.在平面直角坐标系中,已知点(52,4)A m m --在第二象限,且m 为整数,则过点A 的正比例函数的解析式为___________.三、解答题16.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.17.小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y (米)与时间x (分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?18.在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt ABC,如图所示.(1)若ABC S 的值为5平方单位,求m 的值;(2)记BC 交y 轴于点D ,CE ⊥y 轴于点E ,当y 轴平分∠BAC 时,求AD CE 的值 (3)连接OC ,当OC +AC 最小时,求点C 的坐标.19.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且=POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.20.如图,已知直线:l y x =x 轴于点A ,y 轴于点B ,将AOB ∆沿直线l 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=>上.(1)求k 的值;(2)将ABC ∆绕AC 的中点旋转180︒得到PCA ∆,请判断点P 是否在双曲线k y x=上,并说明理由.。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数(linear function)是数学中的基础函数之一,也被称为线性函数。
它的图像是一条直线,具有特殊的性质和规律。
本文将为您提供一些关于一次函数的图像与性质的练习题,通过解答这些题目,您将更深入地理解一次函数的图像和性质。
1. 练习题一已知一次函数f(x)的图像经过点A(2, 3)和点B(4, 7),求f(x)的解析式及函数图像。
解析:由题意可知,函数f(x)过点A(2, 3)和点B(4, 7)。
我们可以利用两点间的斜率公式求解析式。
首先,计算斜率k:k = (7 - 3)/(4 - 2) = 2然后,我们可以使用点斜式求得解析式:f(x) - 3 = 2(x - 2)f(x) = 2x - 1因此,一次函数f(x)的解析式为f(x) = 2x - 1。
其函数图像为一条斜率为2的直线,经过点A(2, 3)和点B(4, 7)。
2. 练习题二已知一次函数g(x)的图像经过点C(1, 2),且g(3) = 4,求g(x)的解析式及函数图像。
解析:根据题意,函数g(x)过点C(1, 2),且g(3) = 4。
我们可以利用点斜式和函数的性质求解析式。
首先,由点斜式可得:g(x) - 2 = k(x - 1)然后,我们利用g(3) = 4,代入得到的解析式中:4 - 2 = k(3 - 1)2 = 2kk = 1因此,一次函数g(x)的解析式为g(x) = x + 1。
其函数图像为一条斜率为1的直线,经过点C(1, 2)。
3. 练习题三已知一次函数h(x)的图像经过点D(0, 1),且在x轴上的截距为5,求h(x)的解析式及函数图像。
解析:根据题意,函数h(x)过点D(0, 1),且在x轴上的截距为5。
我们可以利用截距式求解析式。
由截距式可得:h(x) = kx + b其中,b表示函数在y轴上的截距,即h(x)在x=0时对应的值,b = 1。
将截距b和点D(0, 1)代入解析式中,可求得斜率k:1 = k * 0 + 1k = 0因此,一次函数h(x)的解析式为h(x) = x + 1。
一次函数的图象及性质练习
一次函数的图象及性质(练习) 姓名:1、直线y =4x -2经过第 象限,Y 随X 的增大而 ,与x 轴的交点坐标是 ,与y 轴的交点坐标是2、直线231+-=x y 过点( ,0)、(0, ). 3、直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线x y 21-=+3可以看作是直线xy 21-=向 平移 个单位得到的.4、将直线y =-2x +3向下平移5个单位,得到直线 ,向上平移2个单位,得到直线 .5、函数y =kx -4平行于直线y =-2x ,则k= ,函数3y x =+与2y x b =-+的图象交于y 轴上同一点,则b = .6、函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____。
7、已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 2;已知一次函数(3)21y m x m =-++的图像经过点11(,)x y 、22(,)x y ,且12x x >,12y y >,则m 的取值范围是 .8、已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,则m 的取值范围为 . 9、在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =-C.25y x =-+D.37y x =+10、 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )11、 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b <B.0k >且0b < C.0k <且0b >D.0k <且0b <12、如图已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )13、关于函数12+-=x y ,下列结论正确的是 ( )A 、图象必经过点(﹣2,1)B 、图象经过第一、二、三象限C 、当21>x 时,0<y D 、y 随x 的增大而增大14.若 a 是非零实数 , 则直线 y=ax-a 一 定( )A.第一、二象限B. 第二、三象限C.第三、四象限D. 第一、四象限15.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-1216.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3DCB .A .xxxxD .C.B . A .17、.某个一次函数的图象位置大致如下图所示,试分别确定k、b的符号(1)k 0, b 0 (2) k 0, b 018.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.19.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值; (2)当x取何值时,0<y<4?20、已知一次函数y=(1-2k)x+(2k+1).①当k取何值时,y随x的增大而增大?②当k取何值时,函数图象经过坐标系原点?③当k取何值时,函数图象不经过第四象限?。
一次函数图象性质同步练习题及答案(培优)
一次函数图象性质同步练习【例1】如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.【例2】已知一次函数y=﹣x+6的图象与x轴交于A,与y轴交于C,以O,A,C为顶点在第一象限作矩形OABC.(1)求点B的坐标,并在坐标系中画出函数y=﹣x+6的图象和矩形OABC.(2)若反比例函数y=(x>0)的图象与△OAC有公共点,求k的取值范围.(3)在线段AC上存在点P,以点P,B,C三点为顶点的三角形是等腰三角形,直接写出P点的坐标.【例3】如图正比例函数y=2x图像与一次函数y=kx+b图像交于点A(m,2),一次函数图像经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求C点的坐标;(3)求△AOD的面积。
【例4】已知一次函数y=kx﹣3k+6,回答下列问题:(1)若此函数的图象过原点,求k的值;(2)若此函数与y=3x﹣1平行,求它与坐标轴围成的三角形面积;(3)无论k取何值,该函数图象总经过一个定点,请你直接写出这个定点的坐标.【例5】如图,在平面直角坐标系中,已知一次函数y=0.5x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB的长;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.课堂同步练习一、选择题:1、一次函数y =2x +1的图像不经过( )A. 第一象限B.第二象限C.第三象限D.第四象限2、若正比例函数y=(1-4m)x 图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 取值范围是( )A.m <0B.m >0C.D.3、关于函数y=﹣2x+1,下列结论正确的是( )A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x >时,y <0D.y 随x 的增大而增大4、已知y=(m ﹣1)x+m+3的图象经过一二四象限,则m 的范围( )A.﹣3<m <1B.m >1C.m <﹣3D.m >﹣35、直线y=﹣x ﹣2与直线y=x+3的交点为( )A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)6、如图,已知一次函数y=ax +b 的图像为直线l ,则关于x 的不等式ax +b <1的解集为( )A.x <0B.x >0C.x <1D.x <27、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A. B. C. D.8、直线-x+3向上平移m 个单位后,与直线y=-2x+4的交点在第一象限,则m 取值范围( ).A.-2<m<1B.m>-1C.-1<m<1D.m<19、如图,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,点B 在第一象限,直线y=232+-x 与边AB 、BC 分别交于点D 、E,若点B 的坐标为(m,1),则m 的值可能是( )A.﹣1B.1C.2D.410、如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F →G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.11、次函数分别与x轴和y轴交于A、B两点,在x轴上取点C,使⊿ABC为等腰三角形,则这样的点C 最多有()A.1个B.2个C.3个D.4个12、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0),(4,0).将△ABC 沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.8二、填空题:13、若函数y=(m-1)x+m2-1是正比例函数,则m= .14、若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.15、过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.16、已知点P(a,b)在一次函数y=2x-1的图像上,则2a-b+1=.17、一次函数y=2x的图像沿x轴正方向平移3个单位长度,则平移后的图像所对应函数表达式为.18、点A为直线y=-3x-4上的一点,且到两坐标轴距离相等,则A点坐标为.19、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图方式放置,点A1、A2、A3…和点C1、C2、C3…分别在直线y=kx+b(k>0)和x轴上.已知点B1(1,1)、B2(3,2),请写出点B3坐标是,点B n坐标是。
一次函数相似性质练习题
一次函数相似性质练习题一、选择题1. 下列哪个选项表示的是一次函数?A. y = 2x^2 + 1B. y = 3x + 5C. y = √x + 2D. y = 4/xA. 当k > 0时,直线斜率为正B. 当k < 0时,直线斜率为正C. 当b > 0时,直线与y轴相交于负半轴D. 当b < 0时,直线与y轴相交于正半轴A. y = 2x + 3 和 y = 2x + 3B. y = 2x + 3 和 y = 2x 3C. y = 2x + 3 和 y = 2x + 5D. y = 2x + 3 和 y = 2x 3二、填空题1. 一次函数的一般形式为______,其中k为______,b为______。
2. 若一次函数y = 3x 2的图象与x轴相交于点A,则点A的坐标为______。
3. 已知一次函数y = kx + 1经过点(2, 5),则k的值为______。
三、解答题1. 已知一次函数y = 2x + 3和y = 2x + 5,求它们的交点坐标。
2. 一次函数y = kx + b的图象经过点(1, 3)和(3, 7),求k和b 的值。
3. 设一次函数y = kx + b的图象与x轴、y轴分别相交于点A、B,若OA = 4,OB = 3(O为坐标原点),求k和b的值。
4. 已知一次函数y = kx + 1与y = kx + 3的图象关于x轴对称,求k的值。
5. 一次函数y = kx + b的图象经过一、二、四象限,求k和b的取值范围。
四、判断题1. 一次函数的图象是一条经过原点的直线。
()2. 一次函数的斜率k决定了直线的倾斜方向,当k=0时,直线水平。
()3. 两个一次函数的图象如果平行,则它们的斜率一定相等。
()4. 一次函数y = kx + b中,如果k和b同时为0,则该函数表示y轴。
()5. 一次函数的图象与x轴的交点个数最多为1个。
()五、作图题1. 在同一坐标系中画出一次函数y = 2x + 1和y = 2x + 3的图象。
一次函数周期性质练习题
一次函数周期性质练习题一、选择题1. 下列哪个函数是周期函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3sin(x)D. y = 5cos(2x)2. 一次函数y = kx + b(k≠0)的周期是?A. 不存在B. 2πC. πD. k二、填空题1. 一次函数y = 4x 7的周期是______。
2. 若一次函数y = kx的周期为T,则k = ______。
三、判断题1. 一次函数y = 5x + 2的图像是一条直线,因此它没有周期性。
()2. 所有周期函数都是一次函数。
()四、简答题1. 请简要说明一次函数的周期性质。
2. 举例说明一个具有周期性质的一次函数。
五、计算题1. 已知一次函数y = 3x 4的周期为T,求T的值。
2. 设一次函数y = ax + b(a≠0)的周期为T,求证:T = |a|。
六、应用题1. 在直角坐标系中,画出一次函数y = 2x + 3在一个周期内的图像。
2. 某物体做直线运动,其位移s(单位:米)与时间t(单位:秒)的关系为s = 4t + 1。
求该物体在一个周期内的运动距离。
七、作图题1. 请作出一次函数y = x + 5在一个周期内的图像,并标出该周期的长度。
2. 画出一次函数y = 1.5x 2的两个周期的图像,并指出这两个周期的共同特点。
八、综合题(1) y = 6x 9 + 2(2) y = 6(x 1) 9(3) y = 6x + 92. 设一次函数y = kx + b(k≠0)的周期为T,若将函数图像向右平移3个单位,再向上平移2个单位,求平移后函数的周期。
九、推理题(1) 当k>0时,T = k。
(2) 当k<0时,T = k。
2. 已知一次函数y = ax + b(a≠0)的周期为T,推理出当a和b同时变化时,周期T的变化规律。
十、探索题1. 探究一次函数y = kx(k≠0)的周期与k值之间的关系,并给出你的发现。
一次函数图像与性质习题全文
解析式. 解:直线y=kx+b与y轴交于点(0,b)
y
B (0,4)
∵直线y=kx+b与x轴交于点(4,0) ∴OA=|4|=4, OB=|b|
A
∵S△AOB=1/2×OA×OB=
0 4 x 1/2×4×|b|=8
∴|b|=4
∴b=±4
C
∴直线为:y=kx+4,y=kx-4;
∵直线y=kx+b过点(4,0)
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后, 油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
(D)
不平行
6.下列图形中,表示一次函数y=mx+n与正比例函数 y=mnx (m,n为常数,且mn≠0)在同一坐标系内的图 象可能是( A)
(A)
(B)
(C)
(D)
m<0,n>0 m<0,n>0 m>0,n>0 m>0,n<0
mn<0 mn<0 mn>0 mn<0
7.一次函数y=(4m+1)x-(m+1)
练一练:1 根据图象,求出相应的函数解析式:
y
4
x
02
2 小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是 多少?解释你的理由。
(完整版)一次函数图像与性质练习题
一 .讲课目的与考点剖析:函数一、一次函数图像与系数的关系1.函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象是一条直线:当 b >0时,直线 y kx b 是由直线 y kx 向上平移 b 个单位长度获得的;当 b <0时,直线 y kx b 是由直线 y kx 向下平移| b |个单位长度获得的.2.一次函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象与性质:正比率函数的图象是经过原点( 0,0)和点( 1,k)的一条直线;一次函数 y kx b(k0)图象和性质以下:3.k 、 b 对一次函数 y kx b 的图象和性质的影响:k 决定直线y kx b 从左向右的趋向,b决定它与y轴交点的地点,k、b一同决定直线y kx b 经过的象限.4. 两条直线l 11 1 和 l2 2 2的地点关系可由其系数确立:: y k xb : y k xb ( 1) k 1 k 2l 与 l 订交; ( 2) k 1 k 2 ,且 b 1 b 2l 与 l 平行;1212一次函数 y 2x 3 的图象不经过象限。
【 K 、B 与图像的关系】【例 1】 1.若 bk <0,则直线 y=kx+b 必定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限【变式 1】.假如一次函数 y=kx +b 的图象经过一、二、三象限,那么 k 、 b 应知足的条件是( )A .k >0,且 b >0B .k < 0,且 b <0C .k >0,且 b <0D .k < 0,且 b >02、若直线 ykx b ( k ≠0)不经过第一象限,则 k 、 b 的取值范围是( )A.k >0, b <0B. k >0, b ≤0C. k < 0, b <0D. k <0, b ≤ 03. (梅州)已知直线y=kx+b ,若 k+b=- ,kb= ,那么该直线不经过 第象限。
一次函数性质练习题及答案
一次函数性质练习题及答案一、选择题1. 若一次函数y = mx + b的图象经过点(2, 5)和(-1, -4),则m和b的值分别为:A) m = 3, b = -2B) m = -3, b = -2C) m = 3, b = 2D) m = -3, b = 2答案:A) m = 3, b = -22. 若一次函数的图象经过坐标轴上的两个点,且不经过第三个点(4,3),则该函数的解析式为:A) y = x + 6B) y = -x - 3C) y = -x + 3D) y = -x + 6答案:D) y = -x + 63. 若一次函数y = kx + 5的图象过点(3, 14),则k的值为:A) 3B) 4C) 9D) 11答案:B) 4二、计算题1. 求一次函数y = 2x - 3在x = 4时的函数值。
解答:将x = 4代入函数y = 2x - 3中,y = 2(4) - 3y = 8 - 3y = 5所以,当x = 4时,函数y = 2x - 3的值为5。
2. 已知一次函数的解析式为y = 3x + 2,求该函数的斜率和截距。
解答:该一次函数的斜率为3,截距为2。
三、应用题1. 一家超市的饮料销售额与销售数量之间存在一次函数的关系,已知当销售数量为20时,销售额为600元;当销售数量为50时,销售额为1500元。
求该一次函数的解析式,并根据该函数计算销售数量为80时的销售额。
解答:设该一次函数的解析式为y = mx + b。
根据题意可以列出以下两个方程:20m + b = 600 (1)50m + b = 1500 (2)将方程(1)乘以5,并与方程(2)进行消元,得到:100m + 5b = 3000 (3)50m + b = 1500 (2)将方程(3)减去方程(2),消去b,得到:50m = 1500m = 30将m = 30代入方程(2),求得b的值:50(30) + b = 1500b = 1500 - 1500b = 0所以,该一次函数的解析式为y = 30x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的性质练习
(检测时间50分钟满分100分)
班级_______ 姓名_______ 得分_____
一、选择题:(每小题4分,共24分)
1.如果一次函数y=kx+b的图象经过第一、三、四象限,则 ( )
A.k>0,b>0
B.k>0,b>0
C.k<0,b>0
D.k<0,b<0
2.若ab>0,bc<0,则直线y=
a b
x
b c
--经过( )
A.第一、二、三象限
B.第一、三、四象限
C.第二、三、四象限
D.第一、二、四象限
3.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴上,下列结论:
①k>0,b> 0;②k<0,b>0;③k>0,b<0;④k<0,b<0,其中正确的有( )
A.1个
B.2个
C.3个
D.4个
4.已知m为方程2x+x-6=0的根,那么对于一次函数y=mx+m,下列结论:
①图象一定经过第一、二、三象限; ②图象一定经过第二、三、四象限;③图象一定
经过第二、三象限;④图象一定经过点A(-1,0); ⑤y一定随x的增大而增大; ⑥y一定随x 的增大而减小,其中正确的是( )
A.③④
B.③④⑤
C.②③④
D.①④⑥
5.如图所示,若kb<0,且b-k>0,则函数y=kx+b的大致图象是( )
O A x
y
O B x
y
O C x
y
O D x
y
6.函数y=3x,y=-x+4的图象与x轴围成的三角形的面积是( )
A.6
B.12
C.18
D.16
二、填空题:(每小题3分,共30分)
1.一次函数y=-6+x中,y随x的增大而_________.
2.一次函数y=
1
2
-x+5中,y随x的增大而________.
3.若函数y=kx+b的图象过点A(1,5),且在y轴上的截距是3,则k=_____.
4.直线y=-x-2与y=x+3的交点的坐标是_______.
5.直线y=-2x+4与x轴的交点的坐标是______,与y轴的交点的坐标是_______, y随x的
增大而________.
6.若函数y=kx的图象经过第二、四象限,则函数y=-kx-2的图象不经过第____象限.
7.如果一次函数y=(m-1)x+(n- 2) 的图象不经过第一象限, 则m 的取值范围是_______,n
的取值范围是_________.
8.已知一次函数y=kx+b,当x 减小9时,y 反而增大3,则k=______.
9.请写出一个一次函数,使它的图象经过第一、二、四象限:________.
10.若一次函数y=(m-1)x+2m +2的图象与y 轴交点的纵坐标是3,则m=________.
三、基础训练:(每小题9分,共18分)
1.已知一次函数112y k x =+在x=5时,y=4时,一次函数226y k x =-的图象经过P(- 5,4),试求这两个函数的解析式.
2.已知直线1l 经过点A(2,3)和B(-1,-3),直线2l 与1l 相交于点C(-2,m),与y 轴交点的纵坐标为1. (1)试求直线1l ,2l 的解析式; (2)求1l ,2l 与x 轴围成的三角形的面积; (3)x 取何值时,1l 的函数值大于2l 的函数值?
四、提高训练:(每小题9分,共18分)
1.如图所示,圆柱的底面半径是x,高为20.
(1)求圆柱的侧面积y 与底面半径x 之间的函数关系式;
(2)当x 每增加1时,y 是如何变化的?请说明理由;
(3)当侧面积大于628时,x 大约在什么范围内取值?
2.如果一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应函数值y 的取值范围是-11≤x≤9,求此函数的解析式.
五、中考题与竞赛题:(共10分)
某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1 元印制费, 另收1500元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.
(1)分别求出两厂的收费y(元)与印制数量x(份)之间的关系式;
(2)在同一直角坐标系内画出它们的图象;
(3)根据图象回答,印制800份宣传材料时,选择哪家印刷厂比较合算, 电视机厂打算
拿3000元用于印制宣传材料,找哪家印制宣传材料合算.
答案:
一、1.B 2.D 3.B 4.A 5.B 6.A
二、1.增大 2.减小 3.2 4.51(,)22- 5.(2,0) (0,4) 减小 6.二 7.m<1 n<2 8.13
- 9.y=-3x+2等 10.-1 三、1.y 1= x+2,y 2=-2x-6.
2.(1)1y =2x-1,2y =3x+1
(2)解:对于1l ,令1y =0,则x=12,对于2l ,令2y =0,则x=13
- ∴1l ,2l 与x 轴围成的三角形的底边长为
115()236--=, 1l ,2l 交点的纵坐标为-5,则底边上的高为5, ∴S=152552612
⨯⨯= (3)解:∵2x -1>3x+1,∴x<-2.
四、1.(1)y=40x π (x>0) (2)y 增加40π (3)x 大约在大于5的范围内取值.
2.解:对k 的值进行讨论:
①当k>0时,y 随x 的增大而增大,此时,当x=-2时,y=-11,当x=6时,y=9.
∴ 11296k b k b -=-+⎧⎨=+⎩, ∴526
k b ⎧=⎪⎨⎪=-⎩
∴y=52
x-6. ②当k<0时,y 随x 的增大而减小,此时当x=-2时,y=9;当x=6时,y=-11.
∴ 92116k b k b =-+⎧⎨-=+⎩, ∴524
k b ⎧=-⎪⎨⎪=⎩
∴y=-52
x+4. 综上所述,符合条件的解析式为y=
52x-6 或y=-52x+4. 五、(1)甲厂的收费表达式为y=x+1500,乙厂的收费表达式为y=2.5x (2)略. (3)印制800份材料时,选择乙厂合算;用3000元印制宣传材料时,找甲厂合算.。