PCR技术的原理与方法
pcr技术的原理步骤以及应用
PCR技术的原理步骤以及应用1. PCR技术的原理PCR(聚合酶链反应)是一种体外扩增DNA的方法,它可以在短时间内通过不断复制DNA分子,从而大量产生目标DNA序列。
PCR技术的原理主要包括以下部分:1.1 原料PCR反应中所需的原料包括DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)和DNA聚合酶。
1.2 PCR的步骤PCR技术一般分为三个步骤:变性、退火和延伸。
1.2.1 变性(Denaturation):PCR反应的第一步是将DNA模板的双链分离,使之变性成两个单链。
此过程需要将PCR反应体系升温至95°C,使DNA双链断裂成两条并带电的线性DNA。
1.2.2 退火(Annealing):在退火步骤中,温度降低至50-60°C,引物与目标DNA序列的单链片段结合形成两个引物-模板复合物。
引物是根据所欲扩增的目标序列设计的短DNA片段。
1.2.3 延伸(Extension):在延伸步骤中,将温度升高至72°C,此时DNA聚合酶能够将dNTPs加入到引物的3’端,从而合成新的DNA链,完成了一轮PCR反应。
这个新合成的DNA附着到模板DNA上,形成两个完整的DNA双链。
重复以上三个步骤可以进行PCR反应的循环扩增,有助于复制大量DNA。
1.3 PCR技术的应用PCR技术具有广泛的应用领域,包括:•基因检测和诊断:PCR技术可以用于检测和诊断疾病相关的基因突变、染色体异常等。
例如,通过PCR技术可以进行遗传性疾病的早期筛查。
•犯罪学和法医学:PCR技术在犯罪学和法医学中的应用较为常见。
通过PCR技术可以在犯罪现场收集到的微量DNA样本中进行基因分型,从而帮助解决刑事案件。
•遗传学研究:PCR技术也在遗传学研究中广泛应用。
例如,可以通过PCR技术进行基因表达研究、基因突变分析以及基因组水平上的DNA重排等。
•分子生物学研究:PCR技术是分子生物学研究中的一项关键工具。
PCR原理与操作
PCR原理与操作PCR(Polymerase Chain Reaction),也称为聚合酶链反应,是一种重要的分子生物学技术。
它是通过体外复制DNA分子来产生大量DNA分子的方法。
PCR技术在基因工程、医学诊断、犯罪现场调查等领域有广泛应用。
PCR技术依赖于DNA分子的核酸扩增过程。
其基本原理可分为三个步骤:变性、引物的结合和延伸。
1.变性:PCR反应开始时,DNA样本被加热至95℃到98℃的高温。
这个高温的作用是将DNA的两个螺旋链分离,使之成为单链DNA。
2.引物的结合:PCR反应中,引物是一段由合成的DNA片段。
引物的序列与待扩增的DNA序列的两端互补。
引物的加入使得单链DNA在较低的温度下重新连成双链结构。
引物被限制性核酸酶进行体外合成。
这个链合成过程是在一个低于变性温度的温度下进行的。
3.延伸:在第二步引物的结合后,加入了一定浓度的DNA聚合酶。
DNA聚合酶能够扩增引物,使得新的DNA链得以合成。
而且PCR反应中还加入了一定浓度的dNTPs(核苷酸三磷酸聚合物),它们是dATP、dCTP、dGTP和dTTP的混合溶液。
通过这些反应物,DNA聚合酶能够与引物进行大量的扩增。
PCR操作步骤及注意事项:1.样品准备:a.提取待扩增的DNA,保证DNA纯度和浓度。
b.使用无细菌污染的试剂和消毒的实验室设备。
2.PCR体系准备:a.准备PCR反应液,包括模板DNA、引物、酶、缓冲液、dNTP和盐。
b.根据所需扩增的目标序列和引物设计合适的引物。
c.确保PCR反应液没有污染,防止产生假阳性或假阴性结果。
3.PCR反应设置:a.取合适的PCR管,加入PCR反应液。
b.打开PCR仪,将PCR管放入合适的位置,设置温度和时间参数。
c.检查PCR仪的热盖是否正常工作,以确保反应条件的稳定性。
4.PCR反应:a.将PCR管放入预热PCR仪中,并启动程序。
b.进行PCR循环扩增反应,根据需要进行不同数目的循环。
PCR技术的原理与方法
PCR技术的原理与方法PCR(聚合酶链式反应)是一种重要的分子生物学技术,用于在体外扩增DNA序列。
它由美国生物化学家科里斯·莫利什(Kary Mullis)在1983年发明,并于1993年获得诺贝尔化学奖。
PCR技术能够快速、高效地扩增DNA,因此广泛应用于基因工程、疾病诊断、法医学和生物学研究等领域。
PCR的原理基于DNA的体外扩增,需要以下几个关键的成分和步骤:1.DNA模板:PCR需要一段待扩增的DNA模板,可以是从细菌、植物、动物或人类的细胞中提取的DNA。
2.引物:PCR需要两个短的DNA引物,用于标记待扩增的DNA序列的起始和终止点。
引物是通过序列特异性的DNA合成的,与待扩增的DNA序列在起始和终止点上有互补配对。
3. DNA聚合酶:PCR需要一种DNA聚合酶,可以是常用的热稳定的DNA聚合酶Taq聚合酶。
聚合酶能够将新的DNA链合成到已有的DNA链上。
PCR的方法步骤如下:1.反应体系准备:将PCR反应所需的试剂和溶液组装在一起。
包括DNA模板,两个引物,聚合酶,缓冲液和反应液添加剂(如dNTPs和镁离子)等。
2. Denaturation(变性):将反应体系加热到92-98摄氏度,使DNA双链解开为两条单链。
这个步骤可以通过热循环反应器中的高温来实现。
3. Annealing(退火):将反应体系降温至50-65摄氏度,使引物与待扩增的DNA序列的起始和终止点互补配对。
这个温度较低可使引物在模板上定向结合。
4. Extension(延伸):将反应体系升温至72摄氏度,使聚合酶在引物的引导下合成新的DNA链。
这个步骤需要在确保聚合酶活性的情况下进行,不同的DNA聚合酶需要不同的温度和时间。
5.重复反应循环:以上三个步骤组成了一次PCR循环,在一个PCR反应中,可以执行数百到数千个循环,每个循环将DNA扩增一倍。
这样重复循环可以扩增出大量的DNA。
通过PCR,可以在几小时内从极少量的DNA模板中扩增出足够的DNA。
PCR技术的原理及方法
PCR技术的原理及方法PCR(Polymerase Chain Reaction)技术是一种用于扩增DNA序列的重要方法,它的原理基于DNA的聚合酶链式反应。
第二步是退火,即降低温度使引物(primer)与DNA模板序列互补结合。
引物是一段较短的单链DNA分子,长度通常为18-25个核苷酸。
引物的选择至关重要,因为它们决定了扩增片段的起始和终止位置。
第三步是DNA的延伸,即在适温下,用DNA聚合酶引导两条引物分别在DNA模板序列的两个方向上进行扩增。
这个过程是由DNA聚合酶催化下的核苷酸加入,以形成新的DNA链。
上述三个步骤被称为一个PCR循环,一个PCR反应通常包含多个循环,每个循环可以产生几千万到几十亿个DNA复制子序列。
随着PCR循环的进行,目标DNA序列将指数级增加。
PCR方法通常包括以下几个步骤:1.DNA提取:从样品中提取目标DNA,例如从血液、组织或培养物中提取DNA。
2.引物的设计:根据目标DNA序列的信息设计特异性的引物。
引物应该与目标DNA序列互补,并且具有适当的退火温度。
3.PCR反应混合物的准备:制备PCR反应的混合物,包括引物、DNA模板、核酸酶抑制剂、核苷酸混合物和DNA聚合酶等。
4.PCR程序:PCR反应需要经历多个循环,每个循环包含变性、退火和延伸。
PCR程序需要根据目标DNA序列的长度和引物的特性进行优化。
5.分析扩增产物:扩增反应结束后,可以通过凝胶电泳、定量PCR或其他方法来检测和分析PCR产物。
凝胶电泳可以根据扩增片段的大小进行分离和检测。
PCR技术的应用非常广泛,包括基因检测、疾病诊断、遗传学研究、人类起源研究、病原体鉴定等。
PCR技术的高灵敏度、高特异性和简单易行的特点使其成为现代分子生物学和医学领域中不可或缺的工具之一、此外,PCR技术还催生了许多相关技术的发展,如实时PCR、逆转录PCR、多重PCR等,进一步拓展了其应用范围。
PCR技术的原理与方法
PCR技术的原理与方法
PCR定义
PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。
是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。
可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。
PCR技术的基本原理
一、PCR反应成分:
1、模板DNA;
2、引物;
3、四种脱氧核糖核苷酸;
4、DNA聚合酶;
5、反应缓冲液、Mg2+等。
二、PCR反应基本步骤:
1、变性(denaturation):通过加热使模板DNA的双链之间的氢键断裂,双链分开而成单链的过程,高温使双链DNA解离形成单链(94℃,30s)。
2、退火(annealling):当温度降低时,引物与模板DNA中互补区域结合成杂交分子,低温下,引物与模板DNA互补区结合(55℃,30s)。
3、延伸(extension):在DNA聚合酶、dNTPs、 Mg2+存在下,DNA聚合酶催化引物按5’→3’方向延伸,合成出与模板DNA 链互补的DNA子链,中温延伸,DNA聚合酶催化以引物为起始点的DNA链延伸反应(70~72℃,30~60s)
以上述三个步骤为一个循环,每一循环的产物均可作为下一个循环的模板,经过n次循环后,目的DNA以2n的形式增加。
pcr技术的原理和步骤
PCR技术的原理和步骤一、引言PCR(聚合酶链式反应)是一种重要的分子生物学技术,它在许多领域中具有广泛的应用。
PCR技术的核心原理是通过体外复制DNA,使得我们能够从微量DNA样本中扩增出足够的DNA量进行后续分析。
本文将详细介绍PCR技术的原理和步骤。
二、PCR技术的原理PCR技术的原理主要基于DNA的复制与扩增过程,它包含以下三个重要步骤:变性、退火和延伸。
1. 变性PCR反应开始时,DNA模板被加热到95°C,使其两个DNA链分离。
这一步骤被称为变性,它破坏了氢键,使DNA双链变为单链。
变性是PCR技术的起始步骤,确保反应中的DNA单链能够被其他反应物所利用。
2. 退火在变性之后,温度降至50-60°C,引物加入PCR反应体系中与单链DNA互补配对。
引物是短的寡聚核苷酸序列,其中一个与DNA模板的一个单链区段互补,另一个与DNA模板的相对应的区段互补。
引物在退火温度下与DNA单链形成氢键,稳定地结合在DNA模板上。
3. 延伸在退火的温度下,酶聚合酶(Taq polymerase)被加入反应中,它能以引物为起始点,在DNA模板上合成互补链。
Taq polymerase是从一种热水生产的细菌中分离得到的,它能耐受高温,因此可以在PCR反应过程中保持活性。
Taq polymerase能够扩增DNA,其DNA合成速度约为每分钟1000个核苷酸。
PCR技术涉及多个步骤,包括DNA提取、反应体系的准备、PCR反应的设置和PCR产物的分析。
1. DNA提取PCR反应需要DNA作为模板。
DNA可以从多种样本中提取,如血液、组织、细胞培养物等。
DNA提取的方法有多种,包括使用商业DNA提取试剂盒或自行制备DNA提取试剂。
2. 反应体系的准备PCR反应体系通常包括DNA模板、引物、聚合酶、缓冲液和二硫苏糖醇(DMSO)等。
引物的浓度通常为0.2-0.5 μM,聚合酶的浓度为1-2.5 U/μL。
PCR技术的原理与方法
PCR技术的原理与方法PCR(聚合酶链式反应)是一种体外的DNA复制方法,它通过模拟细胞内的DNA复制过程,在离体条件下扩增DNA片段。
PCR技术的原理主要包括反应组分、温度循环和反应酶的作用三个方面。
1.反应组分PCR反应液的主要组成部分包括DNA模板、引物、dNTPs(四个脱氧核苷酸单元)、聚合酶和缓冲液。
DNA模板是PCR反应的起始物,可以是任何含有待扩增片段的DNA。
引物是DNA片段的两侧序列,它们是PCR反应酶(如Taq聚合酶)的起始点,引物序列应与目标DNA片段的两端互补。
2.温度循环PCR反应需要在不同的温度下进行循环,包括变性、退火和延伸步骤。
温度周期的设定是PCR反应中最关键的一步,它根据DNA的退火温度来决定。
-变性:将PCR反应液加热至94-98℃,使DNA双链解离成两条单链的DNA模板。
在变性步骤中,双链结构会解开,导致DNA模板的两条链分离。
-退火:将反应液温度降低至50-60℃,使引物与DNA模板的特定序列互补结合。
退火温度应低于目标DNA的退火温度,以保证引物的特异性结合。
-延伸:将反应液温度升至72℃,使聚合酶在这一温度下所具有的酶活性可以引导dNTPs与引物结合,从而在DNA模板上合成新的DNA链。
此步骤通常需要较长的时间,以确保完全延伸。
3.反应酶的作用PCR反应中使用的酶主要包括DNA聚合酶、外切酶和反转录酶。
其中DNA聚合酶是PCR反应的关键酶,最常用的DNA聚合酶是Taq聚合酶,因为它具有耐热性,能够在高温下保持酶活性。
- DNA聚合酶:在延伸步骤中,DNA聚合酶通过与引物结合以及dNTPs的加入,完成新DNA链的合成。
Taq聚合酶在延伸过程中能够保持酶活性,因此它是PCR反应中常用的酶。
-外切酶:在PCR反应中,外切酶用于切断PCR产物,以免产生错误的扩增产物。
-反转录酶:PCR反应也可用于合成DNA的互补RNA(cDNA),此时需要使用反转录酶将RNA转录为cDNA。
pcr技术的原理及应用
PCR技术的原理及应用1. PCR技术概述PCR(Polymerase Chain Reaction)技术是一种基因工程技术,用于在体外扩增DNA片段。
它是由美国生物化学家Kary B. Mullis于1983年发明的,已经成为现代分子生物学和生物医学研究中最基础和最重要的技术之一。
PCR技术的原理是通过逐渐增加DNA双链的方法,在体外扩增某一特定DNA片段,使之达到可以测定和分析的水平。
PCR技术的基本原理包括DNA的变性、引物的结合和DNA合成。
2. PCR技术的步骤PCR技术通常包括以下三个主要步骤:2.1 变性(Denaturation)PCR反应开始时,DNA样本被加热至高温(通常是94-98℃),使DNA双链变性,即将两个DNA链分离成两条单链。
2.2 引物结合(Annealing)PCR反应温度下降时,引物与目标DNA片段中的互补序列结合。
引物是短的DNA片段,以逆向互补的方式与目标DNA序列的两端配对。
引物的选择是PCR反应成功的关键,需要根据目标序列的特性进行设计。
2.3 DNA合成(Extension)在PCR反应过程中,酶(通常是热稳定的DNA聚合酶)通过引物作为起始点,沿着DNA模板合成新的DNA链。
该过程通常在高温下进行,使酶能够稳定在DNA链上进行复制。
每个PCR循环会产生两条新的DNA链,其中一条是目标序列的补充链。
3. PCR技术的应用PCR技术广泛应用于各个领域,包括基因检测、遗传学研究、医学诊断和法医学等。
3.1 基因检测PCR技术可以用于检测和鉴定各种基因突变、插入、缺失等基因变异。
通过PCR技术可以扩增出需要检测的基因片段,并可以通过其他技术(如DNA测序)对扩增产物进行分析和验证。
3.2 遗传学研究PCR技术在遗传学研究中起着重要的作用,可以用于DNA指纹鉴定、基因组重组、基因表达调控研究、基因治疗等方面。
例如,PCR技术被广泛应用于DNA 指纹鉴定,通过对DNA样本进行PCR扩增和电泳分析,可以确定个体之间的遗传关系。
PCR技术原理实验步骤和应用
PCR技术原理实验步骤和应用PCR(聚合酶链式反应)是一种体外复制DNA的技术。
它是通过复制DNA片段的方式,将少量的DNA扩增成数百万份,以供后续实验使用。
PCR技术的原理、实验步骤和应用如下所述。
一、PCR技术原理:1.变性:在这一步骤中,DNA样本被加热至高温(95-98°C),使双链DNA变为单链DNA。
这一步将断裂氢键,使双链分离。
2.退火:在这一步骤中,PCR反应混液降温至适宜的温度(55-72°C),引入一对特异性引物。
引物是短的DNA片段,它们被设计成与所要扩增的DNA片段的两个互补序列相匹配。
3.延伸:在这一步骤中,混合物再次升温至酶的最佳工作温度(72°C),以便DNA聚合酶可以结合到引物的3'末端,并以引物作为模板合成其互补链。
这个步骤会在每个引物上生成新的DNA链,并将引物的3'末端作为延伸的起始位点。
通过重复这个循环,PCR可以迅速和大量地复制DNA片段。
每周期(cycle)都会形成一倍的DNA数目。
根据PCR循环数的增加,DNA的数量呈指数性增加。
这种复制DNA的方式使得科学家能够扩增特定的DNA片段。
二、PCR技术实验步骤:PCR实验的主要步骤包括:2.准备PCR反应混合液:PCR反应混合液包括模板DNA、引物、DNA 聚合酶、缓冲液、MgCl2、dNTPs等。
这些成分的比例需要根据具体实验的要求进行调整,以确保最佳的反应条件。
3.设置PCR反应程序:根据所需的PCR循环数和反应条件,设置PCR 反应程序。
这涉及到变性、退火和延伸步骤的温度和时间等参数。
4.进行PCR扩增:将PCR反应混合液加载到热循环仪中,进行PCR扩增反应。
热循环仪会自动进行循环升温和降温操作,以完成PCR循环的过程。
5.分析PCR产物:通过凝胶电泳、实时荧光PCR或测序等方法,分析PCR反应产物的大小、纯度和数量等。
6.保存PCR产物:PCR产物可以储存以备后续实验使用,如测序、克隆、表达等。
pcr技术的原理和应用有哪些方面
pcr技术的原理和应用有哪些方面1. 引言PCR(聚合酶链反应)是一种在生物技术领域广泛应用的技术方法。
通过PCR,可以扩增并复制DNA片段,从而使得微量的DNA样本得到增加,为进一步的分析和研究提供了便利。
本文将介绍PCR技术的原理和应用的方面。
2. PCR技术的原理PCR技术利用了DNA的复制原理,通过反复进行加热、变性、退火和延伸等步骤,从而使DNA片段得到扩增。
具体而言,PCR的步骤包括:2.1 变性首先,将待扩增的DNA样本加热至高温,使DNA双链分离成两条单链。
这个过程称为变性。
2.2 引物结合然后,降低温度使DNA片段中的引物与DNA单链结合。
引物是两条DNA单链的起始序列,用于指导DNA复制的起始点。
引物的选择与待扩增的DNA片段有关。
2.3 DNA合成接下来,将DNA聚合酶(Taq DNA Polymerase)引入体系,该酶能够在较高温度下工作。
DNA聚合酶在引物的引导下,以单链DNA为模板,分别在两条单链的3’端合成新的DNA链。
这个过程称为延伸。
重复以上的变性、引物结合和DNA合成步骤,PCR技术可以使DNA片段多次复制,达到扩增的目的。
3. PCR技术的应用PCR技术在医学、生命科学、法医学等领域有着广泛的应用。
以下是几个PCR技术的应用方面的举例:3.1 分子诊断PCR技术可以用于检测疾病的分子诊断。
通过扩增病原体的DNA片段,可以在患者的样本中检测到病原体的存在,从而实现早期疾病的诊断和治疗。
3.2 遗传病筛查PCR技术可以用于遗传病的筛查。
通过扩增特定的基因片段,可以检测患者是否携带遗传病相关的基因突变,从而进行遗传咨询、家族规划等方面的工作。
3.3 基因工程PCR技术在基因工程中有着重要的应用。
它可以用于构建表达载体、定点突变、基因克隆等操作。
通过PCR技术,可以方便、快速地获取目标基因片段,并进行进一步的工程操作。
3.4 进化研究PCR技术可以用于进化研究。
通过扩增物种的特定基因片段,可以对其进行系统发育分析,了解物种的亲缘关系和进化历程。
简述PCR的工作原理及过程
简述PCR的工作原理及过程PCR(聚合酶链反应)是一种常用的分子生物学技术,它能够迅速复制少量的DNA 片段,从而使之扩增到足够数量进行后续实验分析。
PCR的工作原理主要基于DNA的复制过程,并利用酶的特性实现。
PCR的工作原理PCR主要利用DNA的复制过程进行模拟,基本原理包括三个步骤:变性、退火和延伸。
1.变性(Denaturation):将待扩增的DNA样品加热至高温,使双链DNA分离成两条单链。
这是为了使DNA分子的两条链能够独立于彼此进行扩增。
2.退火(Annealing):将体系温度降低,使引物(即扩增反应所需的两个端点序列)与DNA模板序列互相结合。
引物的序列与DNA模板上的序列互补配对。
3.延伸(Extension):在特定的温度和酶的作用下,DNA聚合酶(Taq聚合酶)将新的DNA链合成。
这个过程是在引物的基础上从3’端向5’端进行的,合成过程与原始DNA模板互补。
这样,通过多次重复这三个步骤,就可以实现DNA的指数级扩增。
PCR的过程PCR通常在一台温度可控的仪器中进行,被称为PCR仪。
下面是PCR的主要步骤:1.反应体系的制备:将待扩增的DNA样品、引物、酶和缓冲液等组分按照一定比例混合。
2.反应管盖的密封:为了保证反应的稳定性和避免污染,需要在反应管上盖上密封盖。
3.程序设置:根据实验需要,设置PCR仪的温度和时间参数。
通常包括变性、退火和延伸三个步骤,每个步骤的时间和温度可以根据实验需求进行调整。
4.PCR扩增:将反应管放入PCR仪中,程序运行后仪器会按照设定的参数进行控制。
反应体系中的DNA片段会在多个循环中指数级扩增,形成大量的DNA产物。
5.结果分析:通过随后的实验手段(如凝胶电泳、序列测定等)可以对PCR扩增产物进行分析。
PCR的应用PCR技术在现代生物医学研究和生物工程领域有着重要的应用。
1.基因检测:PCR技术能够检测和分析人类基因组中的特定基因,从而判断患者是否携带相关基因变异,进而预测遗传疾病的风险。
pcr反应的原理及步骤
pcr反应的原理及步骤PCR(聚合酶链式反应)一种分子生物学技术,它利用酶的特定性质将少量的DNA序列扩增为大量的DNA序列,以便于后续研究。
PCR技术已经广泛应用于医学、生物学、法医学和环境科学等领域,成为生物分子研究中最重要的工具之一。
下面详细介绍PCR反应的原理及步骤。
一、PCR反应的原理PCR反应是指把少量的DNA模板扩增为大量DNA的技术。
该技术系多次复制小段DNA的过程,是一种体外的细胞复制技术。
PCR技术过程中主要包括三个重要的步骤:变性、引物与DNA复制。
在变性步骤,将DNA链分离成单链,使其能够与引物形成复合物,在引物的作用下,在DNA聚合酶的辅助下,进行合成反应,产生一个新的DNA链。
在PCR反应中,利用一种特殊的DNA聚合酶——Taq聚合酶。
由于Taq聚合酶稳定性高,耐高温和高盐浓度等多种条件下工作,使其成为PCR反应的首选酶之一。
PCR反应通常包括:预变性、变性、退变性、延伸和保持等步骤。
以下是详细的步骤介绍。
二、PCR反应的步骤(一)PCR反应的前期准备在进行PCR反应前,需要准备好以下的试剂和设备:1. DNA模板DNA模板是PCR反应的起点。
新鲜或保存时间较短的DNA更适合进行PCR反应,因为存放时间过长可能会导致DNA的降解。
2. 引物引物是指使用一对特定的寡核苷酸引物,用于聚合酶链反应的启动和反应的低温退火程序。
引物的设计对PCR反应的准确性、特异性和效率等方面起到关键作用。
3. dNTPsdNTPS是脱氧核苷酸三磷酸盐,是DNA链的合成所必需的单体,其中包括dATP、dCTP、dGTP和dTTP。
通常采用等浓度的四种dNTPs。
4. 反应缓冲液反应缓冲液含有pH、离子和其他的成分,与聚合酶链反应的酶活性最佳条件一致。
(二)PCR反应的步骤1. 预变性(Pre-denaturation)在PCR反应之前进行预变性,使反应混合物中暴露的DNA链变性转变成单链状态,从而使引物在继续链扩增时能与模板DNA复合。
pcr技术的原理和操作的注意事项包括
pcr技术的原理和操作的注意事项包括一、PCR技术的原理PCR技术,全称为聚合酶链式反应(Polymerase Chain Reaction),是一种在分子生物学领域广泛应用的技术方法。
其原理是通过DNA的体外扩增,将目标DNA序列放大成大量可检测的数量。
PCR技术主要基于DNA的复制原理,采用DNA聚合酶在特定条件下的循环反应。
具体而言,PCR由三个关键步骤组成:变性、引物结合和延伸。
首先,在高温下进行变性,将待扩增的DNA双链解开成单链,得到两条DNA链。
然后,下调温度至引物结合温度,引物与目标DNA的两端互补结合。
这两个引物将DNA序列固定住,从而起到引导复制的作用。
最后,在适宜的温度下,DNA聚合酶开始复制目标DNA片段。
此过程是循环进行的,每个循环会使DNA数量成倍增加,从而实现特定DNA片段的扩增。
二、PCR技术的操作注意事项在进行PCR技术操作时,需要注意以下几个方面:1. 实验前准备在进行PCR实验前,应根据实验需要准备好所需试剂和设备,确保实验过程的顺利进行。
这包括核酸提取试剂、引物、模板DNA及PCR反应管等。
2. 周期条件设定PCR技术中,周期温度设定是非常重要的。
需根据所扩增的目标DNA序列的长度和GC含量等因素来设定最佳的循环条件。
通常情况下,标准的PCR循环包括变性、引物结合和延伸三个步骤,每个步骤所需的时间和温度应细致调节。
3. 引物设计引物的设计是PCR技术成功的关键之一。
好的引物设计可以提高PCR技术的灵敏性和特异性。
设计引物时,通常选择20-25个碱基长的寡核苷酸,确保其互补结合到目标DNA序列的两端。
同时还需考虑引物之间的互补配对和配对温度。
4. 模板DNA的处理模板DNA是进行PCR的重要材料之一。
在使用模板DNA时,需要严格避免交叉污染。
同时,需合理保存模板DNA,避免其降解或污染。
5. 反应管的选择选择合适的PCR反应管对PCR试验结果也有一定的影响。
简述PCR的原理及步骤及应用
简述PCR的原理及步骤及应用1. 原理介绍PCR(Polymerase Chain Reaction,聚合酶链反应)是一种重要的分子生物学技术,可以在体外扩增DNA片段的方法。
PCR的原理基于DNA的复制过程,在体外通过特定的温度变化和DNA材料,利用DNA聚合酶酶活产生大量的特定DNA片段。
2. 步骤说明PCR过程一般包括以下几个步骤:2.1 反应液配置PCR反应需要将DNA模板、引物以及其他反应条件组分混合在一起,构成所需的反应体系。
具体反应组分可以根据实验需求进行调整。
2.2 Denaturation(变性)通过升高反应体系的温度到95°C,将DNA双链解开,得到两条单链的DNA模板。
此步骤通常持续30秒至1分钟。
2.3 Annealing(退火结合)将反应体系温度降至一定的温度(通常为50-65°C),使引物与DNA模板特异性结合。
引物是设计用来启动DNA的合成过程,其序列应与目标序列互补。
此步骤时间一般为30秒至1分钟。
2.4 Extension(延伸合成)将反应体系温度升高至DNA聚合酶的最适合活性温度(通常为72°C),使DNA聚合酶可以在引物的引导下合成新的DNA链。
此步骤时间取决于所需扩增的DNA片段大小,一般为1-5分钟。
2.5 循环反应上述三个步骤被循环重复进行多次(通常40次以上),使DNA模板得到多轮扩增,产生大量目标DNA片段。
3. 应用领域PCR技术在生物学、医学、农业等领域都有广泛的应用。
3.1 基因检测与诊断PCR技术可以快速检测、诊断一系列遗传性疾病,如遗传性肿瘤、染色体异常等。
通过扩增特定的基因片段进行分析,可以帮助医生进行疾病的早期检测和确诊。
3.2 DNA克隆PCR技术可以扩增指定DNA片段,为后续的克隆工作提供原料。
通过PCR扩增得到的目标片段可以通过连接酶进行连接,构建目标基因克隆。
3.3 基因突变分析PCR技术可以通过扩增目标基因的特定片段,检测基因中的变异或突变。
PCR技术的原理、操作及应用
PCR反应体系的优化与设计
1 引物浓度
2 温度参数
3 反应体积
适当调整引物浓度可提高 PCR反应的特异性和效率。
优化PCR反应的温度参数, 包括变性、退火和延伸的 温度和时间,可以提高扩 增效果。
合理调整PCR反应的总体 积,保证反应均匀和充分。
基因组DNA的提取方法
酚-氯仿法
这种方法通过酚和氯仿的分相作 用,将DNA从细胞中提取出来。
变性
将DNA加热至95°C,使其两条 链分离。
退火
将温度降至50-60°C,使引物与 DNA结合。
延伸
将温度升至72°C,允许Taq聚 合酶合成新的DNA链。
PCR反应所需试剂及设备介绍
试剂
PCR反应所需的主要试剂包括引物、dNTPs和 Taq聚合酶。
设备
PCR反应需要热循环仪、离心机和聚丙烯酰胺 凝胶电泳设备。
常见PCR反应的问题及解决方法
1 非特异性扩增
2 扩增产物带重叠
增加引物特异性或优化PCR反应条件。
调整引物设计或优化PCR反应条件。
3 PCR抑制
优化样本制备和PCR反应条件。
离心法
这种方法通过离心的力将DNA与 其他细胞组分分离。
琼脂糖凝胶电泳法
这种方法通过电泳将DNA在琼脂 糖凝胶中分离和检测。
PCR主要反应条件的优化
1
变性温度
一般为95°C,可根据引物的长度和碱基组成进行微调。
2
退火温度
一般为50-60°C,确保引物能与目标DNA片段特异性结合。
3
延伸温度
一般为72°C,适合Taq聚合酶的活性。
PCR技术的原理、操作及 应用
PCR技术是一种重要的分子生物学技术,用于快速扩增DNA片段。本演示将 介绍PCR技术的原理、操作步骤和应用领域。
pcr技术原理方法及应用
pcr技术原理方法及应用PCR技术原理方法及应用PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,可以在体外扩增DNA片段,被广泛应用于基因工程、医学诊断、疾病研究等领域。
本文将从PCR技术的原理、方法和应用三个方面进行介绍。
一、PCR技术原理PCR技术的核心原理是DNA的体外扩增,它包括三个基本步骤:变性、引物结合和延伸。
PCR反应体系中的DNA双链经过高温变性,使其解开成两条单链DNA。
这一步骤通常在94-96摄氏度进行,使DNA链变性并断开氢键。
接下来,引物(PCR反应中的两个短链DNA片段)与目标DNA 序列的两端互补结合。
引物是通过设计与目标DNA序列互补的两条单链DNA,它们分别位于目标DNA序列的两端。
引物的结合位置是PCR反应的关键,它决定了扩增的DNA片段的起始和终止位置。
然后,反应中的DNA聚合酶(Taq聚合酶)在适当的温度下,将引物作为模板,合成新的DNA链。
这一步骤通常在72摄氏度进行。
Taq聚合酶是从热波菌属中分离得到的一种DNA聚合酶,它具有耐高温的特点,能够在高温下进行DNA合成。
这三个步骤在一个PCR循环中重复进行,每个循环的结果是目标DNA序列的指数级增加。
几十个循环后,可以从初始数量很少的DNA样本中扩增出大量目标DNA片段。
二、PCR技术方法PCR技术具体的操作方法如下:1. 准备PCR反应液:PCR反应液通常包括DNA模板、引物、dNTPs(四个脱氧核苷酸)、T aq聚合酶和缓冲液等。
2. 设计引物:根据目标DNA序列的特点,选择合适的引物。
引物应具有足够的互补性,以确保在PCR反应中能够特异性结合目标DNA序列。
3. 设置PCR反应条件:根据目标DNA序列的长度和GC含量,设置合适的PCR反应温度和时间。
4. 进行PCR反应:将PCR反应液加入PCR管或96孔板中,放入PCR仪中进行反应。
通常,PCR反应的循环次数为25-40次。
pcr技术的原理和步骤
pcr技术的原理和步骤PCR技术的原理和步骤PCR技术是一种基于DNA复制的技术,可以在短时间内扩增DNA 序列,从而使得微量的DNA样本也能够被检测到。
PCR技术的原理和步骤如下:一、PCR技术的原理PCR技术的原理是利用DNA聚合酶(DNA polymerase)在一定条件下,对DNA进行连续的复制,从而扩增DNA序列。
PCR技术的核心是DNA的复制,而DNA的复制需要三个基本元素:DNA模板、DNA聚合酶和引物(primers)。
DNA模板是PCR反应中的原始DNA序列,DNA聚合酶是一种酶类,能够在一定条件下将DNA模板复制成新的DNA序列,引物是一种短的DNA序列,能够在DNA模板上定位并启动DNA聚合酶的复制作用。
PCR技术的步骤二、PCR技术的步骤PCR技术的步骤主要包括:DNA模板的制备、引物的设计、PCR 反应体系的构建、PCR反应的条件和PCR产物的检测等。
1. DNA模板的制备DNA模板的制备是PCR反应的第一步,DNA模板可以来源于各种生物样本,如血液、组织、唾液等。
DNA模板的制备需要先将生物样本进行裂解,使得DNA能够被释放出来,然后通过离心等方法将DNA分离出来。
2. 引物的设计引物是PCR反应中的关键因素之一,引物的设计需要根据所需扩增的DNA序列进行设计。
引物的长度一般在20-30个碱基对之间,引物的GC含量应该在40%-60%之间,引物的两端应该含有一定的碱基序列,以便于引物与DNA模板的结合。
3. PCR反应体系的构建PCR反应体系的构建需要将DNA模板、引物、DNA聚合酶、缓冲液、dNTPs等反应物混合在一起,构建出PCR反应的体系。
PCR 反应体系的构建需要注意反应物的浓度、pH值、离子强度等因素,以保证PCR反应的稳定性和可靠性。
4. PCR反应的条件PCR反应的条件包括PCR反应的温度、时间和循环次数等。
PCR 反应的温度一般分为三个阶段:变性、退火和延伸。
简述PCR技术的原理和步骤及特点
简述PCR技术的原理和步骤及特点前言PCR(Polymerase Chain Reaction),即聚合酶链反应,是一种用于在体外大规模扩增DNA片段的核酸技术,也是分子生物学、遗传学和生物医学研究中最重要和常用的实验技术之一。
它具有高效、快速、敏感、特异性强等特点,广泛应用于基因重排、突变检测、基因表达分析、遗传疾病诊断等领域。
PCR技术的原理PCR技术的原理基于DNA的双链结构及DNA聚合酶的酶活性。
其中,PCR反应体系主要包含模板DNA、引物、dNTPs(脱氧核苷酸三磷酸盐)、DNA聚合酶和缓冲液。
具体步骤如下:1.变性:将PCR反应体系中的DNA在高温下(95℃)变性,使DNA双链解开成两个单链。
2.引物结合:将PCR反应体系温度降低(通常为50-55℃),使两个引物与模板DNA结合。
3.延伸:将PCR反应体系温度升高至DNA聚合酶的最适工作温度(通常为72℃),DNA聚合酶按照引物的序列导向,从引物的3’端开始延伸,合成新的DNA链。
4.重复步骤:重复以上步骤,不断进行DNA的变性、引物结合和延伸,形成指数级增加的DNA复制产物。
PCR技术的原理就是通过不断的循环变性、引物结合和延伸,使目标DNA片段在体外被扩增。
PCR技术的步骤PCR技术的具体步骤由一系列温度变化的PCR循环组成。
标准PCR循环通常包含以下几个温度阶段:1.变性:将PCR反应混合溶液加热至95℃,使DNA变性。
此步骤通常持续15-30秒。
2.引物结合:将PCR反应体系温度降至50-60℃,使引物与目标DNA片段结合。
此步骤通常持续20-30秒。
3.延伸:将PCR反应体系温度升至72℃,DNA聚合酶在此温度下最活跃,开始合成新的DNA链。
此步骤的时间由目标DNA片段的长度决定,通常为1分钟/千碱基。
重复以上循环,每个PCR循环会使目标DNA片段的数量翻倍,最终达到指数级的扩增。
PCR技术的特点PCR技术具有以下几个显著的特点:1.高效快速:PCR技术能在几个小时内扩增目标DNA片段,远远快于传统的DNA复制方法。
PCR的原理和方法有哪些
PCR的原理和方法有哪些1. PCR(聚合酶链式反应)的原理PCR是一种在分子生物学中广泛应用的技术,它可以在体外重复扩增一小段特定DNA序列,使得其数量呈指数倍增加。
PCR主要包括三个步骤:变性、退火和延伸。
1.1 变性(Denaturation):PCR反应开始时,将待扩增的DNA样品与一对特异性的引物(primers)和DNA聚合酶(DNA polymerase)一起放入反应管中。
然后,将反应温度升至94-98°C,在高温下使DNA的双链结构解开,分离成两条单链DNA模板。
1.2 退火(Annealing):反应温度被降低至50-65°C,使得引物能够与DNA模板上的互补序列准确结合。
引物被设计成与待扩增片段的两端序列互补,确保特异性的结合。
1.3 延伸(Extension):反应温度被升至72°C,最适合DNA聚合酶的工作温度。
聚合酶能够以引物为模板依次加上相应的脱氧核苷酸(dNTPs),从而完成新的DNA链的合成。
延伸的速率是约为1kb/min。
2. PCR的方法2.1 传统PCR传统PCR是最常见和常用的PCR方法,需要精确的温度控制和反应条件。
主要用于体外扩增DNA,并用于许多应用中,如基因测序和基因突变分析。
传统PCR在实验室中广泛使用,已成为分子生物学领域的基本技术。
2.2 实时荧光PCR实时荧光PCR是在传统PCR的基础上发展起来的一种新技术。
它结合了PCR反应和实时荧光检测系统,可以实时监测PCR反应的进程。
实时荧光PCR通过检测荧光信号的积累来确定样品中所含的DNA数量,因此可以定量分析DNA的含量。
2.3 数字PCR数字PCR是一种高精度的PCR方法,能够进行稀有突变的检测和定量。
数字PCR 通过将DNA模板分散到许多反应井中,使得每个井中只有一个DNA分子,然后通过统计阳性和阴性井的数量来确定初始DNA的数量。
2.4 聚合酶扩增酶链式反应(LA-PCR)聚合酶扩增酶链式反应是一种用于扩增难以扩增的DNA片段的方法。
pcr的原理和步骤
pcr的原理和步骤PCR的全称是聚合酶链式反应(Polymerase Chain Reaction),是一种重要的分子生物学技术,它可以在体外迅速、特异地扩增DNA片段。
PCR技术的发明为分子生物学研究和临床诊断提供了重要工具,被广泛应用于基因克隆、基因突变分析、DNA指纹鉴定、病原体检测等领域。
本文将详细介绍PCR的原理和步骤。
一、PCR的原理。
PCR技术的原理主要包括DNA的变性、引物的结合、DNA的合成三个步骤。
首先是DNA的变性。
PCR反应液中的DNA双链在高温下(一般为94-98℃)会解旋成两条单链,使得引物能够结合到目标序列上。
其次是引物的结合。
在PCR反应中,需要加入两种引物,它们分别结合到目标序列的两端,并指导DNA聚合酶进行DNA合成。
最后是DNA的合成。
在引物的引导下,DNA聚合酶开始合成新的DNA链,生成两条新的双链DNA。
二、PCR的步骤。
PCR反应一般包括变性、引物结合和DNA合成三个步骤,具体步骤如下:1. 变性,将PCR反应管放入热循环仪中,进行变性步骤。
一般的变性温度为94-98℃,时间为1-3分钟。
2. 引物结合,降温至引物的结合温度,一般为50-65℃,使引物与目标序列结合。
这一步是为了让引物与目标序列进行特异性结合,避免非特异性扩增。
3. DNA合成,将温度升至DNA聚合酶的最适工作温度,一般为72℃,进行DNA合成。
DNA聚合酶会在引物的引导下合成新的DNA 链。
以上就是PCR的基本步骤,通过不断重复这三个步骤,可以在短时间内扩增出大量的目标DNA片段。
三、总结。
PCR技术的原理和步骤相对简单,但是需要严格控制反应条件和引物设计,以确保扩增的特异性和准确性。
在实际操作中,还需要注意反应管的材料选择、反应体系的配制、反应条件的优化等方面的问题。
希望本文对PCR技术的原理和步骤有所帮助,能够更好地理解和应用PCR技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCR定义
PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA 为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。
是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。
可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。
PCR技术的基本原理
一.PCR反应成分:
1.模板DNA;
2.引物;
3.四种脱氧核糖核苷酸;
4.DNA聚合酶;
5.反应缓冲液、Mg2 等。
二.PCR反应基本步骤:
1.变性:高温使双链DNA解离形成单链(94℃,30s)。
2.退火:低温下,引物与模板DNA互补区结合(55℃,30s)。
3.延伸:中温延伸。
DNA聚合酶催化以引物为起始点的DNA链延伸反应(70~72℃,30~60s)
1.变性(denaturation):通过加热使模板DNA的双链之间的氢键断裂,双链分开而成单链的过程。
2.退火(annealling):当温度降低时,引物与模板DNA中互补区域结合成杂交分子。
3.延伸(extension):在DNA聚合酶、dNTPs、Mg2 存在下,DNA聚合酶催化引物按5’→3’方向延伸,合成出与模板DNA链互补的DNA子链。
以上述三个步骤为一个循环,每一循环的产物均可作为下一个循环的模板,经过n次循环后,目的
DNA以2n的形式增加。
•PCR扩增的基本方法
•PCR反应的成分和作用
总体积:一般为25μl~100 μl
(一)无Mg2 buffer:由纯水、kcl、Tris组成。
Tris用于调节反应体系pH值,使Taq酶在偏碱性环境中反挥活性。
kcl可降低退火温度,但不能超过50 mmol/L,否则会抑制DNA聚合酶活性。
(二)Mg2 :终浓度为1.5~2.0mmol/L,其对应dNTP为200 μmol/L,注意Mg2 与dNTPs之间的浓度关系,由于dNTP与Taq酶竟争Mg2 ,当dNTP浓度达到1 mmol/L时会抑制Taq酶的活性。
M
g2 能影响反应的特异性和产率。
(三)BSA:一般用乙酰化的BSA,起着减少PCR管对Taq酶的吸附作用,对Taq酶有保护作用。
(四)底物(dNTPs):dNTPs具有较强酸性,其储存液用NaOH调pH值至7.0~7.5,一般存储浓度为10 mmol/L,各成份以等当量配制,反应终浓度为20~200μmol/L。
高浓度可加速反应,但同时增加错误掺入和实验成本;低浓度可提高精确性,而反应速度会降低。
(五)Taq酶:能耐95℃高温而不失活,其最适pH值为8.3~8.5,最适温度为75~80℃,一般用7 2℃。
能催化以DNA单链为模板,以碱基互补原则为基础,按5’→3’方向逐个将dNTP分子连接到引物的3’端,合成一条与模板DNA互补的新的DNA子链。
无3’→5’的外切酶活性,没有校正功能。
某种dNTP或Mg2 浓度过高,会增加其错配率。
用量一般为0.5~5个单位/100μl。
(六)模板:PCR对模板DNA的纯度不要求很高,但应尽量不含有对PCR反应有抑制作用的杂质存在,如蛋白酶、核酸酶、TqaDNA聚合酶抑制剂、能与DNA结合的蛋白质。
模板DNA的量不能太高,否则扩增可能不会成功,在此情况下可适当稀释模板。
(七)引物:引物浓度一般为0.1~0.5μmol/L,浓度过高会引起错配和非特异扩增,浓度过低则得不到产物或产量过低。
引物长度一般15~30个碱基,引物过长或过短都会降低特异性。
其3’末端一定要与模板DNA配对,末位碱基最好选用A、C、G(因T错配也能引发链的延伸)。
引物G C约占45~55%,碱基应尽量随机分布,避免嘧啶或嘌呤堆积,两引物之间不应有互补链存在,不能与非目的扩增区有同源性。
•PCR反应条件的选择(影响因素)
•温度参数:
1.变性:模板变性完全与否是PCR成功的关键,一般先于94℃(或95℃)变性3~10min,接着94℃变性30~60s。
2.退火:退火温度一般低于引物本身变性温度5℃。
引物长度在15~25bp可通过公Tm=(G C)×4℃
(A T)×2℃计算退火温度,一般退火温度在40~60℃之间,时间为30~45s。
如果(G C)低于50%,退火温度应低于55℃。
较高的退火温度可提高反应的特异性。
3.延伸:延伸温度应在Taq酶的最适温度范围之内,一般在70~75℃。
延伸时间要根据DNA聚合
酶的延伸速度和目的扩增片段的长度确定,通常对于1kb以内的片段1min是够用的。
循环数:
PCR的循环数主要由模板DNA的量决定,一般20~30次循环数较合适,过多的循环数会增加非特异扩增产物,具体要多少循环数可通过预试验确定。
PCR产物积累规律:
反应初期产物以2n呈指数形式增加,至一定的循环数后,引物、模板、DNA聚合酶形成一种平衡,产物进入一个缓慢增长时期(“停滞效应”),即“平台期”。
到达平台期所需PCR循环数与模板量、PCR扩增效率、聚合酶种类、非特异产物竟争有关。
•PCR扩增仪
PCR常见问题
一.没有扩增产物
1.循环温度:变性温度、退火温度
2.引物设计
3.DNA聚合酶活性
4.抑制性成份(蛋白酶、核酸酶、其它抑制聚合酶活性的成份)
5、DNA样品
二.非特异产物及电泳呈涂布状
1.Mg2 浓度
2.调整引物、模板、聚合酶的用量
3.适当减少循环数
4.适当提高退火温度,缩短退火或延伸时间
•三.引物二聚体的形成
1.检查引物的序列
2.提高退火温度
3.调整引物与模板浓度
4.增加引物长度
• 四.假阳性结果的预防
1、实验器材应一次性使用(吸咀、PCR管)
2、注意操作环境,戴一次性手套
3、严格PCR操作规程
4、多次取样的试剂应分装
5、设置阴性对照和阳性对照
PCR相关技术
一.锚定PCR(anchored PCR):
•引进锚定引物,可以帮助克服序列未知或序列未全知的障碍。
•在DNA3’-末端加上poly(dG)尾,与此相对应的锚定引物poly(dC)一般应在十二聚以上。
二.不对称PCR(asymmetric PCR)
不对称PCR主要是在PCR体系中设计不同的引物浓度,两条引物浓度比为1:50或1:100,前12个循环两条模板等量扩增,之后低浓度引物消耗殆尽,其扩增产物减少以至于无;而高浓度引物介导产生的扩增产物(即单链DNA)逐渐增加,可得到大量单链DNA(ssDNA)用于直接测序。
三.反向PCR(inverse PCR)
四.多重PCR(multiplex PCR)
多重PCR是用多对引物同时对模板DNA上的多个区域进行扩增。
多重PCR技术的难点不是在于其原理和操作的复杂性,而是在于其多对引物的设计,必需保证多对引物之间不形成引物二聚体,引物与目标模板区域具有高度特异性。
应用于基因诊断,对与疾病相关的基因(庞大)进行扩增检测。
五.逆转录PCR(reverse transcription PCR,RT-PCR)
•由mRNA逆转录产生cDNA链作为PCR反应模板。
•逆转录合成cDNA时,引物可选用特异引物、随机六聚体引物或寡聚dT(12-18)。
•设计RT-PCR的引物时最好是分散在不同的外显子上,以免基因组DNA的污染导致假阳性结果
六.差别PCR(differential PCR)
差别PCR是将靶基因与已知拷贝的参照基因置于同一PCR反应体系中,用同一套引物进行扩增,电泳染色后可根据参照基因的扩增产物与待测基因扩增产物的相对丰度对待测基因进行定量。
七.原位PCR(In situ PCR)
原位PCR是指在组织或细胞标本片上直接进行PCR,对细胞中的靶DNA进行扩增,通过掺入标记基团直接显色或结合原位杂交进行检测的方法。
可分为直接法和间接法。
基本步骤:组织切片或细胞固定→蛋白酶消化→原位PCR扩增→冲洗→产物检测
优点:灵敏度高,可进行细胞内定位
八.荧光定量PCR(FQ-PCR)
荧光定量PCR:融汇PCR技术、DNA探针杂交技术(标记有荧光报告基团和荧光淬灭基团),结合先进的光谱检测技术发展起来的一项新技术。
主要原理是在待扩增区域结合上DNA探针,PCR过程中,具有5’→3’外切酶活性的Taq酶延伸引物链到DNA探针时,将DNA探针逐个降解,释放出荧光报告基团,这样PCR体系中荧光的强度
与PCR产物量之间存在正比关系,可通过测定荧光强度而对PCR产物定量。
•荧光定量PCR的优点:
•1.可进行准确的定量检测。
用于基因诊断。
•2.定量范围宽。
•3.特异性更强,克服了假阳性。
•4.操作简单快速,无须后处理和电泳检测。
•5.安全,技术易于学习,易于进行电脑化数据管理。
PCR技术的应用
1.遗传性疾病的基因诊断
2.传染病的诊断(肝炎病毒)
3.癌基因检测
4.法医学(亲子鉴定)上的应用
5.DNA测序
6.基因克隆
7.引入基因点突变,基因融合等。