电涡流式传感器转速测量试验
电涡流测转速课程设计
电涡流测转速课程设计一、课程目标知识目标:1. 学生能理解电涡流传感器的工作原理,掌握电涡流测转速的基本概念。
2. 学生能描述电涡流测转速的数学模型,了解影响测量精度的因素。
3. 学生了解电涡流传感器在工业生产中的应用,认识到其重要性。
技能目标:1. 学生能操作电涡流测转速实验装置,完成转速的测量。
2. 学生能运用数据处理软件对测量数据进行处理,分析测量结果。
3. 学生能通过实际操作,提高动手能力,培养实验操作技巧。
情感态度价值观目标:1. 学生在电涡流测转速的学习过程中,培养对物理实验的兴趣和热情。
2. 学生通过小组合作,培养团队协作精神和沟通能力。
3. 学生认识到科学技术在实际应用中的价值,增强对科技创新的认识。
课程性质:本课程为高二年级物理选修课,以实验为基础,注重理论与实践相结合。
学生特点:高二年级学生对物理有一定的基础,具备一定的实验操作能力和逻辑思维能力。
教学要求:结合学生特点,采用启发式教学,引导学生主动探究,提高学生的实践能力和创新意识。
将课程目标分解为具体的学习成果,便于教学设计和评估。
1. 理论知识:- 电涡流传感器工作原理及其特性。
- 电涡流测转速的数学模型及影响精度的因素。
- 电涡流传感器在工业生产中的应用案例分析。
2. 实践操作:- 电涡流测转速实验装置的认识与操作。
- 测量数据的采集、处理与分析。
- 实验报告的撰写。
3. 教学大纲:- 第一课时:导入新课,介绍电涡流传感器及其工作原理。
- 第二课时:讲解电涡流测转速的数学模型,分析影响精度的因素。
- 第三课时:实际操作电涡流测转速实验,进行数据采集。
- 第四课时:数据处理与分析,撰写实验报告。
教学内容安排与进度:- 理论知识与实践操作相结合,每课时分配时间为2学时。
- 第一、二课时:讲解理论知识,结合教材相关章节,为学生提供学习资料。
- 第三课时:实验操作,现场演示并指导学生操作。
- 第四课时:数据处理与分析,指导学生完成实验报告。
传感器与检测技术项目式教程(第2版)第八章-电涡流式传感器
• 电涡流传感器的线圈与被测金属导体间是磁性耦合,电 涡流传感器是利用这种耦合程度的变化来进行测量的。
• (2)低频透射式。 • 由于金属板中产生涡流的大小 • 与金属板的厚度有关,金属板 • 越厚,则板内产生的涡流越大, • 削弱的磁力线越多,接收线圈 • 中产生的电势也越小。因此, • 可根据接收线圈输出电压的大 • 小,确定金属板的厚度。
• (6)用连接导线从主控台接入+15V直流电源到模块上 标有+15V的插孔中,同时主控台的“地”与实训模块的 “地”相连。
• (7)使测微头与传感器线圈端部有机玻璃平面接触,开 启主控箱电源开关(数显表读数能调到零的使接触时数 显表读数为零且刚要开始变化),记下数显表读数,然 后每隔0.2mm(或0.5mm)读一个数,直到输出几乎不 变为止。将结果列入表8-1中
置。下面举几例作以简介。
1.测量转速
假设转轴上开z 个槽(或齿),频率计的读数为f (单位为Hz),则转轴的转速n(单位为r/min)的 计算公式为
• 3.实训步骤 • (1)根据图8-16安装电涡流传感器
• (2)观察传感器结构,这是一个扁平绕线圈。 • (3)将电涡流传感器输出线接入实训模块,作为振荡器
的一个元件。
• (4)在测微头端部装上铁质金属圆片,作为电涡流传感 器的被测体。
• (5)根据图 • 8-17进行接线, • 将实训模块输出 • 端Vo与数显单元 • 输入端Vi相接。 • 数显表量程切换 • 开关选择电压 • 20V挡。
(三)涡流传感器测量电路
• 1.电桥电路 • 静态时,电桥 • 平衡,桥路输 • 出UAB=0。工 • 作时,传感器 • 接近被测体, • 电涡流效应等 • 效电感L发生 • 变化,测量电 • 桥失去平衡,即UAB≠0,经线性放大后送检波器检波后
现代测试技术-电涡流式传感器转速测量实验
六 实验过程中遇到的问题及注意事项 1 注意事项 2 问题及思考
七 实验结论与启示 1 实验结论
2 启示
八 成绩评定
三 实验原理 1 电涡流原理 2 电涡流传感器转速测量原理
3 实验电路
五 实验结果及分析(可以图、表形式显示) 1 数据记录
(1) 确认接线无误后开启主机,开始测量,记录实验数据,并记入下表。
频率 Hz 转速 r/s 2 数据分析
(1) 本实验转速计算方法分析
(2) 按实验所选电机叶片,根据记录实验数据计算测量转速并填入上表。 3 实验曲线观测 (1) 本实验转速信号曲线
《 现代测试技术 》 实验报告
专业 机械设计制造及其自动化 班级 2
班 指导教师
姓名
学号
同组人
实验时间
年
月
日 节 实验地点
K-203
实验名称
电涡流式传感器转速测量实验
一 实验目的
3 电涡流传感器及实验装置的安装及调整: (1) 电涡流传感器的安装 (2) 实验装置的调整
四 实验步骤
二 主要实验仪器设备
基于电涡流原理的转速传感器的设计
2 . 1线圈框架 的选择 转速是指作 圆周运动的物体在单 位时间 内所转 过的圈数 , 多旋 是许 为保证传感器有 比较好 的温 度稳定 眭, 圈框架 应采用 损耗 小 、 线 电性 转机器 的一 个重要运行参数 , 转速测量一直是科学 实验和工业领域 的一 能好 、 胀系数 小的材料 , 高频 陶瓷 、 热膨 常用 聚酰亚胺 、 环氧玻璃纤 维 、 氮 个重要问题 。 化硼和 聚四氟 乙烯 等。 电涡流传感器 动态响应特 陛好 、 敏度高 、 稳定可靠 , 在具有 灵 工作 能 在满足 以上特性 的基础上 , 了高导磁率 的软磁性材料 作为线 圈 选择 粉尘 、 油污等恶劣环境下_ , 属无损检测的重要工具 。利用电涡流 框架 , T作 是金 它的作用是 :) 1由较低 的外部磁 场强度就可 以获得很 大的磁化强度 传感器对金属的探测理论 已经 比较成熟 , 了解决 一般 电涡 流传感器进 及高密度磁通量 ;) 为 2能够有效地 吸收电磁干扰信 号 , 以达至抗电磁干扰 的 U 行转速测量时被测表面积小 、 测试距离受限 的问题 , 本传感器 的设 计主要 目的 ;) 3磁导率特 别高 , 以大大缩小磁 芯的体 积 , 而使探头 体积也 大 可 从 考虑线圈参数对灵敏度 、 线性度和线性范 围的影响规律 。 该结构采用加入 大缩小 , 并且提高 了工作频率 。线 圈框架 的材料 可以选择铁氧体 , 而铁氧 磁芯的方式 , 可以感受较弱的磁场变化 , 磁导率变化增大而扩 大测量范 体可分为两组 : 使 镍锌和锰锌 。镍锌材料有低 的起始磁 导率 , 在低频不会产 同。 生高阻抗 。主要使用在无用 噪声 中大于 1MH 或 2MH 的 占主要成分 0 z 0 z 1 工作原理 的情况 。 但是 , 锰锌材料在低频下 能提供很 高的磁 导率 , 适合 于 1k z 很 0H 1 测量方 法 . 1 5MH 范围 的电磁 干扰 抑制 。基于 以上原 因 , 圈框架 的材 料主要考 0 z 线 转速的测量方法很 多 , 根据脉 冲计数来实 现转速测 量的方法 主要有 虑使用高磁导率锰锌铁 氧体 。 定时汁数法( 测频 法 ) 、 定数计时 法( 测周期法 ) 和同步计数计时法 。 该系统 2 . 取电路 的设 计 2拾 采用 同步计数 计时法进行转速测量 , 即在一定时间间隔 内 , 根据被 钡信号 4 针对信号很微弱及容易受到其他信号干扰的特点, 在对信号进行测 的脉冲数求转速 。 试时 , 要注意采集 、 大 、 噪 3 放 去 个环节 的处理 , 图 3 见 。采集信号时 , 要做 脉冲信 号与转速有以下关系 : 到不失真 、 平稳且 尽可能少地 引入干 扰量 ; 在对信 号进行放大 处理时 , 能 v :0 _ = { 6 , n 否有效地放大 差模信号 、 幅抑制共模 信号是关键 ; 大 在去噪处 理阶段 , 利 式 中 ,— v 被测体 转速 (mn; - 出信 号脉冲频率 ;一 r i)- j / f ̄ q n被测体旋 转一 用 低通滤波电路 , 主要去除高频干扰 。 厂 一 一 一 一 一 一 一 ’ r 一 一 一 一 一 一 1 周 的输 出脉冲数。 该 传感器是频率输 出型传感器 , 以直接通 过示波器 或频率计读 出 可 频率值, 然后根据上式来求出转速值。 l _ 2传感器工作原理
电涡流传感器转速测量实验
电涡流传感器转速测量实验
电涡流传感器V-n 曲线图
U/V
转速n /r p m 电涡流传感器转速测量实验报告
⼀、实验⽬的:
了解电涡流传感器测量转速的原理与⽅法。
⼆、实验仪器:
电涡流传感器、转动源、+5V 、+4、±6、±8、±10V 直流电源、电涡流传感器模块
三、实验原理:
根据电涡流传感器对不同材质的被测物输出不同和静态位移特性,选择合适的⼯作点即可测量转速。
四、实验内容与步骤
1、将电涡流传感器安装到转动源传感器⽀架上,引出线接电涡流传感器实验模块。
2、合上主控台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后,记录驱动电压对应的转速,也可⽤⽰波器观测磁电传感器输出的波形。
五、数据分析与记录
1、数据记录表格
2、⽤matlab 绘制的V-n 曲线图如下图所⽰
3、电涡流传感器传感器测量转速原理
传感器线圈由信号激励,使它产⽣⼀个交变磁场,当被测导体靠近线圈时,在磁场作⽤范围的导体表层,产⽣了与此磁场相交链的电涡流,⽽此电涡流⼜将产⽣⼀交变磁场阻碍外磁场
的变化。
因此当被测体与传感器间的距离改变时,传感器的Q值和等效阻抗Z、电感L均发⽣变化,于是把位移量转换成电量。
六、实验报告
1.分析电涡流传感器传感器测量转速原理。
2.根据记录的驱动电压和转速,作V-n曲线。
电涡流传感器转速测量实验
电涡流传感器V-n 曲线图
U/V
转速n /r p m 电涡流传感器转速测量实验报告
一、实验目的:
了解电涡流传感器测量转速的原理与方法。
二、实验仪器:
电涡流传感器、转动源、+5V 、+4、±6、±8、±10V 直流电源、电涡流传感器模块
三、实验原理:
根据电涡流传感器对不同材质的被测物输出不同和静态位移特性,选择合适的工作点即可测量转速。
四、实验内容与步骤
1、将电涡流传感器安装到转动源传感器支架上,引出线接电涡流传感器实验模块。
2、合上主控台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±
10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后,记录驱动电压对应的转速,也可用示波器观测磁电传感器输出的波形。
五、数据分析与记录
1、数据记录表格
2、用matlab 绘制的V -n 曲线图如下图所示
3、电涡流传感器传感器测量转速原理
传感器线圈由信号激励,使它产生一个交变磁场,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流,而此电涡流又将产生一交变磁场阻碍外
磁场的变化。
因此当被测体与传感器间的距离改变时,传感器的Q值和等效阻抗Z、电感L 均发生变化,于是把位移量转换成电量。
六、实验报告
1.分析电涡流传感器传感器测量转速原理。
2.根据记录的驱动电压和转速,作V-n曲线。
实验 电涡流传感器位移特性实验
实验电涡流传感器位移特性实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图17.1.1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图17.1.2的等效电路。
图中R1、L1为传感器线图17.1.1 电涡流传感器原理图图17.1.2 电涡流传感器等效电路图圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q 值为:Q =Q 0{[1-(L2ω2M2)/(L1Z22)]/[1+(R 2ω2M2)/( R 1Z22)]}式中:Q 0 — 无涡流影响下线圈的Q值,Q 0=ωL1/R 1; Z22— 金属导体中产生电涡流部分的阻抗,Z22=R 22+ω2L 22。
由式Z 、L 和式Q可以看出,线圈与金属导体系统的阻抗Z 、电感L 和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z 、L 、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
各类传感器测速性能比较实验
各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。
二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。
三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。
(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。
(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。
本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。
(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。
四、主要器件及单元霍尔式传感器、磁电式传感器、电涡流传感器、光纤传感器、光电转速传感器、直流源±15V、转速调节2~24V,转动源模块、光纤传感器实验模块、+5V直流电源、转动源单元及转速调节2-24V、数显转速/频率表。
传感器与检测技术技术实验报告
天津广播电视大学武清分校《传感器与测试技术》实验报告姓名:学号:班级: 13春机械本实验一:电涡流式传感器实验一、实验目的1、了解电涡流传感器的实际应用。
2、了解电涡流传感器在静态测量中的应用。
3、了解电涡流传感器的结构、原理、工作特性。
4、通过实验掌握用电涡流传感器测量振幅的原理和方法。
5、通过实验说明不同的涡流感应材料对电涡流传感器特性的影响。
二、实验电路图及原理:图(1)电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。
三、实验所需部件:测微头、示波器、电压表、电涡流线圈、金属涡流片、电涡流变换器、三种金属涡流片。
四、实验步骤:1.按图连线,差动放大器调零,将电涡流传感器对准金属圆盘。
2.旋转测微器旋钮移动振动台,使电涡流传感器与金属片接触,此时涡流变换器的输出电压为零,由此开始向上旋转测微器旋钮,每隔0.5mm用电压表读取变换器的输出电压,将数据填入表1。
3.分别将铜片和铝片代替铁片,重复2的实验结果分别填入表2和表3。
4.将电涡流传感器连支架移到金属转盘上方,调整到其端面距盘面~1.0mm处,注意保持其端面与盘面的平行,不可碰擦。
5.涡流变换器的输出端与数字频率表相连,开启电机,调节转速,则电机转速可由下式得到:电机转速=频率表显示值/金属转盘等分值×2 (本实验中等分值为4)五、实验数据及分析:表1 电涡流传感器对铁片的输出特性表3 电涡流传感器对铝片的输出特性实验二:电阻应变式传感器实验一.实验目的1、熟悉电阻应变式传感器在位移测量中的应用。
2、比较半导体应变式传感器和金属电阻应变式传感器的灵敏度。
电涡流传感器基本原理以及转速测量的完整实例演示含原理图复习过程
电涡流传感器基本原理以及转速测量的完整实例演示含原理图电涡流传感器原理图1、什么是电涡流效应?电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。
注意:电涡流传感器要求被测体必须是导体。
传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。
这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。
2、电涡流传感器的工作原理与结构主要由一个安置在框架上的扁平圆形线圈构成。
此线圈可以粘贴于框架上,或在框架上开一条槽沟,将导线绕在槽内。
下图为涡流传感器的结构原理,它采取将导线绕在聚四氟乙烯框架窄槽内,形成线圈的结构方式。
传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。
从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。
能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。
这便是电涡流传感器的基本原理3、电涡流传感器的实际应用n=(f/N)*604、使用电涡流传感器时的注意事项对被测体的要求为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。
对工作的温度的要求一般进口涡流传感器最高温度不大于180℃,而国产的只能达到120℃,并且这些数据来源于生产厂家,其中有很大的不可靠性,据相关的各种资料分析,实际上,工作温度超过70℃时,电涡流传感器的灵敏度会显著降低,甚至会造成传感器的损坏。
电涡流传感器位移特性实验报告分析
电涡流传感器位移特性实验实验报告专业:机械工程班级:机械7班学号: ********** 姓名:***2015年11月20日一.前言长度是测量中最常见的物理量之一,我们经常要通过判断物体的位移量来判断物体的状态变化。
除此之外,不少非位移变化量也是通过传感器内部器件相对位移来测量计算得出的。
位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
这种传感器发展迅速,应用日益广泛。
电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。
作为一种非接触的线性化计量工具,它能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。
在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。
如轴的径向振动、振幅以及轴向位置。
电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。
因此我们需要来了解电涡流传感器的相关特性。
二.实验目的了解电涡流传感器测量位移的工作原理和特性。
三.电涡流传感器的工作原理电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz ~2MHz )I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z 发生变化。
电涡流传感器的转速测量
电涡流传感器的转速测量电涡流传感器的转速测量在生产生活中有很多有旋转功能的仪器,我们都需要对它们的转速进行不间断的测量,这样才能确保这个仪器能够更好的进行工作,这都需要电涡流传感器的协助,下面中国传感器交易网的专家来给大家介绍一下电涡流传感器是如何进行转速测量的。
对于所有旋转机械而言,都需要监测旋转机械轴的转速,转速是衡量机器正常运转的一个重要指标。
旋转测量通常有以下几种传感器可选:电涡流转速传感器、无源磁电转速传感器、有源磁电转速传感器等。
具体需要选择那类传感器,则要根据转速测量的要求转速等,转速发生装置有以下几种:用标准的渐开的线齿数(M1~M5)作转速发生信号,在转轴上开一键槽、在转轴在转轴上开孔眼、在轴转上凸键等转速发生信号装置。
无源磁电式传感器是针对测齿轮而设计的发电型传感器(无源),不适合测零转速和较低转速,因低频时,幅值信号小,抗干扰能力差,它不需要供电。
有源磁电式传感器采用了电源供电,输出波形为矩形波,具有负载驱动能力,适合测量0.03HZ以上转速信号。
而电涡流传感器测量转速的优越性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速。
对于被测体转轴的转速发生装置要求也很低,被测体齿轮数可以很小,被测体也可以是一个很小的孔眼,一个凸键,一个小的凹键。
电涡流传感器测转速,通常选用φ3mm、φ4mm、φ5mm、φ8mm、φ10mm的探头。
转速测量频响为0~10KHZ。
电涡流传感器测转速,传感器输出的信号幅值较高(在低速和高速整个范围内)抗干扰能力强。
作转速测量的电涡流传感器有一体化和分体两种。
一体化电涡流转速传感器取消前置器放大器、安装方便、适用于工作温度在–20℃~100℃的环境下,带前置器放大器的电涡流传感器适合在–50℃~250℃的工作环境中。
以上就是电涡流传感器的转速测量的简单介绍,不知道大家周围是否有需要测量转速的仪器呢?如果有的话可以进行观察这个测量过程。
传感器与检测技术3.4 电涡流式传感器
3.4 电涡流式传感器电涡流的应用——在我们日常生活中经常可以遇到电磁炉内部的励磁线圈电磁炉的工作原理电涡流式传感器3.4.1 高频反射式涡流传感器3.4.2 低频透射式涡流传感器3.4.3 涡流式传感器的应用高频反射式Z =f (i s 、f 、μ、σ、r 、x )a.检测深度与激励源频率有何关系?b.如果控制上式中的i s 、f 、μ、σ、r 不变,电涡流线圈的阻抗Z 就成为哪个非电量的单值函数?属于接触式测量还是非接触式测量?电涡流探头结构CZF-1系列传感器的性能为了充分有效地利用电涡流效应,对于平板型的被测体则要求被测体的半径应大于线圈半径的1.8倍,否则灵敏度要降低。
当被测物体是圆柱体时,被测导体直径必须为线圈直径的3.5倍以上,灵敏度才不受影响。
涡流强度随着线圈与导体间距离x的增大而迅速减小,趋肤效应,贯穿深度与励磁电流的频率成反比关系。
x、i、fσ表面温度、表面裂纹μ材料型号、表面硬度可测量其厚度低频透射式板的电阻率,f f ρ高频反射式低频透射式测量电路之定频测距电路部分常用材料对振荡器振幅的衰减系数测量电路之调频测距电路3.4.3 涡流式传感器的应用x ρμμρ,,x 被测参数变换量特征位移、厚度、振动(1)非接触测量,连续测量(2)受剩磁的影响。
表面温度、电解质浓度材质判别、速度(温度)(1)非接触测量,连续测量;(2)对温度变化进行补偿应力、硬度(1)非接触测量,连续测量;(2)受剩磁和材质影响探伤可以定量测量1.位移测量液位监控系统4~20mA电涡流位移传感器外形齐平式电涡流位移传感器外形电涡流位移传感器的应用电涡流传感器多用于定性测量位移传感器的分类2.振幅测量偏心和振动检测通过间隙测量径向跳动测量弯曲、波动、变形振动测量,须使用多个传感器。
3.厚度测量测量金属薄膜、板材厚度电涡流测厚仪测量尺寸、公差及零件识别测量封口机工作间隙测量注塑机开合模的间隙间距4.温度测量5.转速测量60×=nf N齿轮转速测量6. 涡流探伤zzz用涡流探伤时的测量信号7、通道安全检查门当有金属物体穿越安检门时报警。
电涡流行程传感器及转速测量
中国石油大学 传感器 实验报告 成 绩:班级: 姓名: 同组者: 教师:电涡流行程传感器及转速测量【实验目的】1. 了解电涡流传感器的原理及被测体材料对涡流传感器的影响。
2. 学会用示波器观察激振状态下的调制波形。
3. 学会用频率计、转速表测量转速。
【实验原理】1. 电涡流传感器工作原理如果将一个绕在骨架上的空心线圈与正弦交流电源接通,流过线圈的电流会在线圈周围空间产生交变磁场。
当将导电的金属接近该线圈时,金属导体中会感应出一圈圈自相闭合的电流,这种电流称为“电涡流”,如图2-1(a )所示。
涡流的大小和金属导体的电阻率ρ,磁导率μ、厚度t 、线圈与金属导体的距离X ,以及线圈励磁电流的交变频率ω等参数有关。
如果固定其中某些参数,就可根据涡流的大小来测量出另外一些参数。
图2-1 电涡流传感器作用原理及等效电路为了简化问题,我们把金属导体理解为一个短路线圈,图2-1(b )所示为电涡流传感器与被测体的等效电路。
其中1R 、1L 为空心线圈的电阻和电感;2R 、2L 为短路线圈的电阻和电感;而M 则为两线圈的互感。
根据等效电路可写出两个电压平衡方程式: E MI j I L j I R =-+21111ωω022221=++-I L j I R MI j ωω (2-1)将该方程联立求解可得:⎥⎦⎤⎢⎣⎡+-+++=22222221222222211)()(L L R ML j R L R M R EI ωωωωωω (2-2) 22222121222212L R I MR j I L M L j R MI j I ωωωωω++=+= (2-3) 由(2-2)式可得空心线圈的总阻抗为:⎥⎦⎤⎢⎣⎡+-+++==22222221222222211)()(L L R M L j L R M R R I E Z ωωωωωω (2-4) 根据(2-4)式可进一步求出空心线圈的等效电阻eq R 、等效电感eq L 和等效品质因数eq Q ,即:22222221)(R L R M R R eq ωω++= (2-5)22222221)(L L R M L L eq ωω++= (2-6) 222222122222221)()(L R M R L L R M L Q eq ωωωωω++⎥⎦⎤⎢⎣⎡+-= (2-7) 由此可见,当线圈接近导体时,电器参数Z 、eq R 、eq L 、eq Q 等均为互感M 的函数,即为涡流线圈与金属导体间距离X 的函数。
《现代测试技术》实验
本课程主要使用金属箔式电阻应变片、电容式传感器发、霍尔式传感器、电涡流式传感器四种传感器,以及实验公共电路模块和四种相应的传感器实验模块。
实验公共电路模块:提供所有实验中所需的电桥、差动放大器、低通滤波器、电荷放大器、移项器、相敏检波器等公用电路。
应变式传感器实验模块(包含电阻应变及压力传感器):金属箔式标准商用称重传感器(带加热及温度补偿)、悬臂梁结构金属箔式、半导体应变、MPX扩散硅压阻式传感器、放大电路。
电容式传感器实验模块:同轴式差动电容组成的双T电桥检测电路,精密位移导轨。
霍尔传感器实验模块:霍尔传感器、梯度磁场、变换电路及日本进口高精度位移导轨。
电涡流传感器实验模块:电涡流探头、变换电路及日本进口精密位移导轨。
常用信号的观察实验目的1.了解常用信号的波形和特点。
2.了解相应信号的参数。
3.学习示波器的使用。
实验内容1. 观察常用信号:(1) 正弦波;(2) 方波;(3) 三角波;(4) 锯齿波;(5) y=sin(nx)·sin(mx)。
2. 用THBCC-1实验平台产生波形信号,利用示波器测量信号,读取信号的幅值与频率,绘制信号波形。
实验设备和工具1.THBCC-1型信号与系统、控制理论及计算机控制技术实验平台,如图3所示;2.双踪示波器,或者用已安装的相关软件、串口通信线1根。
图3 THBCC-1型实验平台实验原理波形发生器可以给出希望的标准波形信号,是信号分析与处理实验中不可或缺的实验仪器。
信号的描述可以是数学表达式也可以是函数图形,即信号波形。
示波器是显示信号波形的一种实用仪器,利用示波器可以方便地显示波形的幅值与频率(周期),也可以方便地进行不同波形的比较。
实验要求1. 正确认识实验仪器设备的功能与使用方法。
2. 正确观察、记录实验数据与曲线。
3. 正确进行相关理论分析。
4. 实验报告完整无误。
主要包括:实验仪器设备的使用、实验数据与曲线、理论分析、回答思考题、总结收获。
基于电涡流传感器的转速测量方法研究
基于电涡流传感器的转速测量方法研究一、概述转速是指物体每分钟旋转的圈数,是工程领域中非常重要的一个参数。
对于旋转机械来说,准确测量转速对于确保其安全运行和性能优化至关重要。
研究和开发高精度、高稳定性的转速测量方法具有重要的工程意义。
在转速测量领域,电涡流传感器因其灵敏度高、响应速度快等特点而备受关注。
本文将就基于电涡流传感器的转速测量方法进行深入研究和探讨。
二、电涡流传感器原理电涡流传感器是一种利用涡流效应来测量金属导体表面缺陷、检测导体材料性能以及测量金属导体表面材料性能的非接触式传感器。
其原理是当导体材料表面有磁场穿过时,会产生涡流,从而改变磁场的感应电动势,通过测量感应电动势的大小来反推导体材料的性能。
三、基于电涡流传感器的转速测量方法1. 传统测量方法的局限性对于传统的转速测量方法来说,例如光电传感器、霍尔传感器等,存在着测量范围窄、受环境光线影响大、易受外界干扰等问题,难以满足工程领域对于高精度、高稳定性转速测量的需求。
2. 基于电涡流传感器的转速测量方法相比之下,基于电涡流传感器的转速测量方法具有灵敏度高、抗干扰性强、响应速度快等优势。
该方法利用了磁场穿过导体产生的涡流效应来间接测量旋转物体的转速,具有在高速、高温、腐蚀等特殊环境下工作的能力。
3. 技术改进与发展近年来,随着电涡流传感器技术的不断改进和发展,基于其的转速测量方法在工业领域得到了广泛的应用。
研究人员对传感器的结构、材料、信号处理算法等方面进行了深入的研究和优化,不断提高了其转速测量的精度和稳定性。
四、个人观点和总结基于电涡流传感器的转速测量方法在工业领域有着广阔的应用前景。
通过综合考虑电涡流传感器的原理特点,我们可以设计出更加精确、可靠的转速测量系统,满足不同工况下对于转速测量的需求。
我对于该方法的研究和发展深表认同,相信随着技术的不断创新,基于电涡流传感器的转速测量方法将会迎来更加广阔的发展空间。
基于电涡流传感器的转速测量方法具有重要的工程价值,对其进行深入研究和探讨有利于推动相关领域的技术进步和应用发展。
传感器试题及答案解析考试必备
传感器试题及答案解析考试必备试题(一)学号:姓名:学校:考生请注意:满分100分,考试时间为120分钟。
一、选择题标准答案题要求:每题只有一个正确标准答案案,选择正确给分,不正确不给分。
)1. 电涡流式速度传感器测量轴的转速,当轴的转速为50r/min 时,输出感应电动势的频率为50Hz,则测量齿轮的齿数为(A)A.60 B.120 C.180 D.2402.利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小( C )A.两个桥臂都应当用大电阻值工作应变片B.两个桥臂都应当用两个工作应变片串联C.两个桥臂应当分别用应变量变化相反的工作应变片D.两个桥臂应当分别用应变量变化相同的工作应变3.压电传感器 B 电容传感器 C 电阻传感器 D 电感传感器13.应变测量中,希望灵敏度高、线性好、有温度自补偿功能,选择( C )的测量转换电路。
A.单臂半桥 B.双臂半桥 C.全桥4.半导体应变片的工作原理是基于(A)A.压阻效应B.热电效应C.压电效应D.压磁效应5. 变气隙型位移传感器的自感L与气隙厚度δ的关系是(A)A.非线性关系B.线性关系C.对称关系D.互补关系6.变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量( A )A.增加B.减小C.不变7.变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量( A )A.增加B.减小C.不变8.电磁炉主要是应用了下面哪种技术?( B )A. 微波;B. 电涡流;C. 热电式;D. 红外9.欲检测金属表面裂纹采用的传感器是(B)A 压磁式B 电涡流式C 气敏式D 光纤式10.下列线位移传感器中,测量范围最大的类型是(B)A 变气隙自感式B 差动变压器式C 电涡流式D 变极距电容式11.电容传感器的输入被测量与输出被测量间的关系,除(B)外是线性的。
A. 变面积型B. 变极距型C. 变介电常数型12. 在下列传感器中,将被测物理量的变换量直接转换为电荷变化量的是(A)A 差动电桥由环境温度变化引起的误差为( A )二、判断对错题,2.半导体应变片缺点是温度系数大。