人教版 2019-2020学年初三上学期期末考试数学试题及答案

合集下载

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分 答题时间:120分钟)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在题后括号内. 1. 在平面直角坐标系中,点A )7,6(-关于原点对称的点的坐标为( ) A.)7,6(-- B.)7,6( C.)7,6(- D.)7,6(- 2. 一元二次方程02=x 的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 3. 已知抛物线82++=bx ax y 经过点)2,3(,则代数式83++b a 的值为( ) A.6 B.6- C.10 D.10- 4. 如图,在半径为5的⊙O 中,AB,CD 是互相垂直的两条弦,垂足为P,若AB=CD=4,则OP 的长为( ) A.1 B.2 C.2 D.225. 若双曲线xk y 1-=位于第二、四象限,则k 的取值范围是( )A.1<kB.1≥kC.1>kD.1≠k6. 从6,722,,0,2π这五个数中随机抽取一个数,抽到有理数的概率是( )A.51B.52C.53D.54 7. 如图,在△ABC 中,DE ∥BC,分别交AB,AC 于点D,E.若AD=1,DB=2,则△ADE 的面积与△ABC 的面积的比等于( )A.21B.41C.81D.918.在平面直角坐标系中,二次函数)0()(2≠-=a h x a y 的图象可能是( )A. B. C. D.9.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是( ) A.3 B.32 C.23D.1 10. 如图,已知△ABC,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形; ③△ABC 与△DEF 的周长比为1:2;④若△ABC 的面积为4,则△DEF 的面积为1. A.个1 B.个2 C.个3 D.个4 二、填空题:(本大题共6个小题,每小题3分,共18分) 11. 都相同,如果摸到红球的概率是41,那么口袋中有白球__________个.12. 在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余用配方法把二次函数1322+-=x x y 写成k h x a y +-=2)(的形式为_____________.13. 关于x 的一元二次方程0)9()3(22=-++-m x x m 的一个根是0,则m 的值是______.14.如图,已知点O 是△ABC 的内切圆的圆心.若∠BAC=58°,则∠BOC=__________. 15.如图所示,点A 在双曲线x ky =上,点A的坐标为)3,31(,点B 在双曲线x y 3=上,且AB ∥x 轴,C,D 在x 轴上,若四边形ABCD 为矩形,则它的面积是_______. 16. 如图,在△ABC 中,∠ACB=90°,BC=16cm,AC=12cm,点P 从点B 出发,以2cm/秒的速度向点C 移动,同时点Q 从点C 出发,以1cm/秒的速度向点A 移动,设运动时间为t 秒,当t =__________秒时,△CPQ 与△ABC 相似. 三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)某服装店现有A,B,C 三种品牌的衣服和D,E 两种品牌的裤子,小明家现要从该服装店选购一种品牌的衣服与一种品牌的裤子.(1) 写出所有选购方案(利用树状图或列表法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 品牌衣服被选中的概率是多少?18. 先化简,再求值:21)11(y xy y x y x +÷-++,其中25,25-=+=y x . 19. (本小题满分6分)(本小题满分8分)如图, 在△ABC 中,∠ABC=80°, ∠BAC=40°,AB 的垂直平分线分别与AC,AB 相交于点D,E,连接BD.求证:△ABC ∽△BDC.第19题图 第20题图 第21题图20. (本小题满分8分) 如图,已知A )2,(-n ,B )4,1(是一次函数b kx y +=的图象与反比例函数xm y =的图象的两个交点,直线AB 与y 轴交于点C.(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.21. (本小题满分6分)如图,要设计一副宽20cm,长30cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度之比为2:3.如果彩条所占面积是图案面积的19%,求横,竖彩条的宽度各为多少cm?22. (本小题满分8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.莫小贝按照政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件120元,出厂价为每件165元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:9003+-=x y .(1)莫小贝在开始创业的第1个月将销售单价定为180元,那么政府这个月为他承担的总差价是多少元?(2)设莫小贝获得的利润为w (元),当销售单价为多少元时,每月可获得最大利润?(3)物价部门规定,这种品牌衬衫的销售单价不得高于250元.如果莫小贝想要每月获得的利润不低于19500元,那么政府每个月为他承担的总差价最少为多少元?23. (本小题满分10分)如图,在Rt△ABC中,∠BAC=90°, BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.24.(本小题满分10分)如图,已知:抛物线42-+=bxaxy与x轴交于A)0,1(-、B)0,4(两点,过点A的直线1-=kxy与该抛物线交于点C.点P是该抛物线上不与A,B 重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)当PE=2DE时,求点P坐标;(3)是否存在点P使得△BEC为等腰三角形,若存在请直接写出点P的坐标,若不存在,请说明你的理由.25.(本小题满分10分)如图,在△ABC中,AB=AC=5,BC=6,点D是BC边上的动点(不与B,C重合),点E是AC上的某点并且满足∠ADE=∠C.(1)求证:△ABD∽△DCE;(2)若BD的长为x,请用含x的代数式表示AE的长;(3)当(2)中的AE最短时,求△ADE的面积. 2019-2020学年度上学期期末测试九年级数学试题参考答案一.选择题二.填空题11. 2312()48y x=-- 12. 3- 13. 12 14.119° 15. 2 16.1164524或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题17. 解:(1)根据题意,可以画出如下树状图:.....…………………3分(2)由树状图可以看出,所有可能出现的情况共有6种,它们被选中的可能性相同,其中A品牌衣服被选中的情况有2种,所以......……………...............................................……4分3162)(==A P......................................................…………………6分18. 解:原式=)())((yxyyxyxyxyx+⋅-+++-……….........................…………………1分=yxxy-2………........................................................3分∵25,25-=+=yx∴1452)5()25)(25(22=-=-=-+=xy………....…..……4分42525)25()25(=+-+=--+=-yx……….............5分∴原式=21412=⨯………..................................6分裤子衣服EDD EEDCBA19. 解: (1)将B )4,1(代入xmy =得4=m ......................................……1分 ∴反比例函数的解析式为: xy 4=..............................……2分将A )2,(-n 代入上式得2-=n 将A )2,2(--,B )4,1(代入b kx y +=得⎩⎨⎧+=+-=-b k b k 422 解得⎩⎨⎧==22b k .....................................……3分∴一次函数的解析式为:22+=x y .............................……4分(2)在22+=x y 中当0=x 时,2=y 即点C 的坐标为)2,0(........……5分∴OC=2......................................................……6分∴22221||21=⨯⨯=⋅⋅=∆A AOC x OC S ...................……8分20.证明:∵DE 垂直平分AB∴DA=DB..…………..............................................……1分 ∴∠DBA =∠BAC =40º ..…………..........................……2分 ∴︒=︒-︒=∠-∠=∠404080DBA ABC DBC ..……...……5分 ∴BAC DBC ∠=∠..…………......................……6分又∵C C ∠=∠..…………...........................................……7分∴ABC ∆∽BDC ∆..…………..........................................……8分 21. 解:设横彩条的宽度为x 2cm,则竖彩条的宽度为x 3cm,那么………...............……1分 %)191(3020)330)(220(-⨯⨯=--x x ……..................…..……3分 解得:1=x 或19=x (不合题意,舍去)……….........................……4分∴33,22==x x ………....................……5分答:横,竖彩条的宽度分别为2cm 与3cm.…….........……6分 22. (1)在9003+-=x y 中,当180=x 时,360=y ……1分16200360)120165(=⨯-............................……2分 答:政府这个月为他承担的总差价是16200元................……3分(2)由题意得)9003)(120(+--=x x W ...............……4分108000126032-+-=x x24300)210(32+--=x∵03<-=a ,抛物线开口向下∴当210=x 时,W 有最大值24300.............……5分 即当销售单价为210元时,每月可获得最大利润. (3)当19500=W ,即19500)9003)(120(=+--x x 时解得170=x 或250=x ..........................……6分 ∵ 在9003+-=x y 中,y 随x 的增大而减小 即销售量随着销售单价的提高而减少∴当250=x 时,销售量最低,此时1509002503=+⨯-=y6750150)120165(=⨯-...................................……7分答:政府每个月为他承担的总差价最少为6750........................……8分元23.解: (1)证明:过点D 作DF ⊥BC 于F ∵∠BAC=90°∴DA分 又 ∵BD 是角平分线,DF ∴DA=DF,DA 是⊙D ∴BC 是⊙D (2)由(1)知BA,BC 均是⊙D 的切线 ∴BF=BA=5∴8513=-=-=BA BC CF 125132222=-=-=BA BC CA ...........................……7分 ∵ DF ⊥BC∴∠DFC=∠BAC=90°又∵∠C=∠C∴CFD ∆∽CAB ∆.........................……8分∴ABCA FD CF =即......................................……9分∴3202==FD AE ..............……10分24. 解:(1)将A )0,1(-,B )0,4(代入42-+=bx ax y 得⎩⎨⎧=-+=--0441604b a b a ..........................................…1分解得⎩⎨⎧-==31b a ...........................…2分所以抛物线的解析式为432--=x x y .......................…3分 (2)将A )0,1(-代入1-=kx y 得1-=k 即AC 所在直线为1--=x y设点P 坐标为)43,(2--m m m 则点E 坐标为)1,(--m m ..............…4分 ①当点P 在点E 的下方时32)43(122++-=-----=m m m m m PE 1)1(0+=---=m m DE当DE PE 2=,即)1(2322+=++-m m m 时 解得11-==m m 或(不合题意舍去)此时点P 的坐标为)6,1(-.......................…5分 ②当点P 在点D 的上方时32)1()43(22--=-----=m m m m m PE 1)1(0+=---=m m DE当DE PE 2=,即)1(2322+=--m m m 时 解得15-==m m 或(不合题意舍去)此时点P 的坐标为)6,5(........................................…6分 综上所述当DE PE 2=时,点P 的坐标为)6,1(-或)6,5(................…7分(3)当BE BC =时,点P 坐标为)4,0(-;..........................…8分 当CE CB =时,点P 坐标为)2349,2346(±±;................…9分 当BE BC =时,点P 坐标为)36161,61(-.......................…10分25. (1)证明: ∵AB=AC ∴C B ∠=∠..............................................................……1分又∵C ADE ∠=∠ ∴B ADE ∠=∠∵DAB B EDC ADE ADC ∠+∠=∠+∠=∠∴EDC DAB ∠=∠..................................................……2分 ∴△ABD ∽△DCE.....................................................……3分(2)解:∵△ABD ∽△DCE∴CE CDBD AB =...........................................……4分 即CExx -=65∴x x x x CE 56515)6(2+-=-=..................……5分∴55651)5651(522+-=+--=-=x x x x CE AC AE ............…6分(3) ∵516)3(515565122+-=+-=x x x AE∴当3=x 时,AE 最短为516即BD=3时,AE分又∵BD=3=21BC ∴此时点D 恰好为BC 中点 ∴AD ⊥BC∴︒=∠90ADB ..................................................……8分 ∵△ABD ∽△DCE∴︒=∠=∠90ADB DEC∴︒=︒-︒=∠-︒=∠9090180180DEC AED∴当AE 最短时,ADE ∆是直角三角形.........................….…9分∵595)36(35)6(=-⨯=-=x x CE∴51222=-=CE CD DE∴25965125162121=⨯⨯=⋅=∆DE AE S ADE .....................…10分。

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019~2020 学年度第一学期期末考试九年级数学试卷题 号一二17 18 19三 2021 22 23总分得 分一、选择题(本题共 8 小题,每小题 3 分,共 24 分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称的卡 片的概率是【 】A.14B.1 2C.3 4D. 12.已知一个直角三角形的两条直角边的长恰好是方程x 上的中线长是【 】-3x =4(x -3)的两个实数根,则该直角三角形斜边A. 3B. 4C.6D. 2.53.某商品原价每盒 28 元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒 16 元, 设该药品平均每次降价的百分率为 x ,由题意,所列方程正确的是【 】A.28 (1-2x )=16B. 16(1-2x )=28C. 28 (1-x ) =16D. 16(1-x ) =28 4.将二次函数 y =x 的图象向右平移一个单位长度,再向上平衡 3 个单位长度所得的图象解析式为【 】A. y =(x -1)+3 B. y =(x +1) +3 C. y =(x -1) -3 D. y =(x +1) -3 5.如图,PA ,PB 切⊙O 于点 A ,B ,点 C 是⊙O 上一点,且∠P =36°,则∠ACB =【 】 PA. 54°B. 72°C. 108°D. 144°6.在体检中,12 名同学的血型结果为:A 型 3 人,B 型 3 人,AB 型 4 人,AB·OCO 型 2 人,若从这 12 名同学中随机抽出 2 人,这两人的血型均为 O 型的概率为【】A.1 66B.1 33C.15 7 D.22 22︵7.如图,已知 AB 是⊙O 的直径,AD 切⊙O 于 A ,点 C 是E B 的中点,则下列结论不成立的是【 】A. OC ∥AEB. EC =BCC. ∠DAE =∠ABED. AC ⊥OE8.如图,抛物线 y =ax +bx +c (a ≠0)的对称轴为直线 x =1,与 x 轴的一个 交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b ;②方程 ax +bx +c =0 的两个根是 x =-1,x =3;③3a +c >0; 12y3-1 O1 x④当 y >0 时,x 的取值范围是-1≤x <3;⑤当 x <0 时,y 随 x 增大而增大。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分 答题时间:120分钟)一、选择题(本大题每小题3分,满分42分)1.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( ) A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 2.下列运算,正确的是( )A.523a a a =⋅ B.ab b a 532=+ C.326a a a =÷ D.523a a a =+3.2-的相反数是( )A.21 B.21- C.2- D.24. 在实数2、0、1-、2-中,最小的实数是( )A .2B .0C .1-D .2-5. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 6. 函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x7. 下列各图中,是中心对称图形的是( )8.方程042=-x 的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x 9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( )A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 10. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s乙2=0.03,则( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定11. 下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)12.一次函数2+=x y 的图象不经过...( ) A.第一象限 B.第二象限 C.第三象限 D. 第四象限13. 如图1,正方形ABCD的边长为2cm ,以B 点为圆心、AB 长为半径作⋂AC ,则图中阴影部分的面积为( )A BC DA.2)4(cm π-B. 2)8(cm π-C. 2)42(cm -πD. 2)2(cm -π14.如图2,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°二、填空题(本大题满分12分,每小题3分) 15. 在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .16. 计算:=-283 .17. 如图3,∠ABC=90°,O 为射线BC 上一点,以点O 为圆心,21BO 长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 度时与⊙0相切.18. 如图4,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6cm ,则AE = cm . 三、解答题(本大题满分66分) 19.计算(满分8分,每小题4分)(1)化简:(a +1)(a -1)-a (a -1). (2)2314(2)2-⨯+-20.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC ﹣CD ﹣DE ,如图所示,从甲队开始工作时计时. (1)分别求线段BC 、DE 所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.21. (本大题满分8分)如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.AB CO E1D图2A ABC图4EDABC DE FG22. (满分8分)某商场正在热销2008价格各是多少元?23. (11分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长hx 值;若不存在,请说明理由?24.(11分) 某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人? 25.(12分)如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线;(2)若OB=5,OP=,求AC 的长.共计145元共计280元第24题图2019-2020学年第一学期九年级数学期末检测试题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15. 8 16.25 17.60°或120 ° 18.6三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)(1)原式=a2-1-a2+a=a-1= -7(2)原式=3 - 2 +(-8)20.解:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.21、(满分8分)(1) ΔAED≌ΔDFC.∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…AB CDEF图6G∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED≌ΔDFC (AAS ). (2) ∵ ΔAED≌ΔDFC,∴ AE=DF ,ED=FC. … ∵ DF=DE+EF , ∴ AE=FC+EF. )22.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. 23.(1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2. ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2.即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1) =-x 2+3x.… 即h=-x 2+3x (0<x <3). (3)略24. (本题满分11分) 解:(1)∵,∴这次考察中一共调查了60名学生. (2)∵∴∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90° (3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人25. (1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP ∥BC ,∴∠AOP=∠B ,∴∠BAC+∠AOP=90°.∵∠P=∠BAC .∴∠P+∠AOP=90°,60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯图7第24题答案图∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.。

人教版2019-2020学年上册期末考试九年级数学试卷(含答案)

人教版2019-2020学年上册期末考试九年级数学试卷(含答案)

2019-2020学年上学期期末考试九年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. (3分)方程x2+x=0的解为()A. x=0B. x= - 1C. x i=0, X2= - 1 D . x i=1, X2= - 12. (3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .平行四边形B .菱形C.等边三角形D .等腰直角三角形3. (3分)如图,将△ AOB绕点O按逆时针方向旋转45°后得到△ A OB若/ AOB=15,则/ AOB的度数是()A. 25°B. 30°C. 35°D. 40°4. (3分)下列说法正确的是()A. 经过有交通信号的路口遇到红灯”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C. 投掷一枚硬币正面朝上是随机事件D. 明天太阳从东方升起是随机事件5. (3分)已知一元二次方程x2- 4x+m=0有一个根为2,则另一根为()A. - 4 B . - 2 C . 4 D . 26. (3分)若点M在抛物线y(x+3)2-4的对称轴上,则点M的坐标可能是()A. (3,- 4)B. (- 3, 0)C. (3, 0)D. (0,- 4)7. (3分)如图,四边形ABCD内接于。

O,连接OB、OD,若/BOD= / BCD , 则/A的度数为()A. 60°B. 70°C. 120°D. 140°28. (3分)将二次函数y=x+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()2 2 2 2A. y= (x+3)2-2 B . y= (x+3)2+2 C. y= (x - 1)2+2D . y= (x - 1)2-29. (3分)如图,菱形ABCD中,/ B=70o, AB=3,以AD为直径的。

【人教版】2019—2020学年九年级上数学期末试卷及答案解析

【人教版】2019—2020学年九年级上数学期末试卷及答案解析

【人教版】2019—【人教版】2019—2020学年九年级上数学期末试卷及答案解析姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后;得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm;宽50cm的矩形风景画的四周镶一条金色纸边;制成一幅矩形挂图;如果要使整个挂图的面积是5400cm2;设金色纸边的宽为;则满足的方程是()A. B.C. D.3、如图;在Rt△ABC中;∠BAC=90°;∠B=60°;△ADE可以由△ABC绕点 A顺时针旋转900得到;点D 与点B是对应点;点E与点C是对应点);连接CE;则∠CED的度数是( )(A)45°(B)30°(C)25°(D)15°4、下列图形中;是中心对称图形的是()5、如图;A;B;C是⊙O上三个点;∠AOB=2∠BOC;则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中;以点(3;2)为圆心;2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球;其中白球x个;绿球2x个;其余为黑球.甲从袋中任意摸出一个球;若为绿球则甲获胜;甲摸出的球放回袋中;乙从袋中摸出一个球;若为黑球则乙获胜.则当x=________时;游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图;有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图;已知AB=12;点C;D在AB上;且AC=DB=2;点P从点C沿线段CD向点D运动(运动到点D停止);以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF;连接EF;取EF的中点G;下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示;二次函数的图像经过点(-1;2);且与轴交点的横坐标分别为;;其中;;下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根;则a的取值范围是________。

20192020学年人教版初三上期末数学试卷含

20192020学年人教版初三上期末数学试卷含

2019-2020 学年人教版初三上期末数学试卷含答案 九年级数学(人教版)上学期期末考试一试卷一、选择题(本大题共10 小题,每题4 分,共 40 分)1.一个直角三角形的两条直角边分别为a=2 3 , b=36 ,那么这个直角三角形的面积是( C )A .8 2B. 7 21) C . 9 2D. 2,则 m 的值等 2.若对于 x 的一元二次方程 (m x 2 5 x m 2 3 m20 的常数项为于( B )A . 1B . 2C .1 或 2D . 03.三角形的两边长分别为 3 和 6,第三边的长是方程 x 26 x 8 0的一个根,则这个三角形的周长是 ( C)A. 9B. 11C. 13D 、144.过⊙ O 内一点 M 的最长弦长为 10cm,最短弦长为 8cm,那么 OM 的长为 ( A )C.41 cm5.图中∠ BOD 的度数是 ( B )A . 55° B. 110°C.125° D . 150°6.如图,⊙ O 是△ ABC 的内切圆,切点分别是D 、E 、F ,已知∠ A=100°,∠ C=30°,则∠ DFE 的度数是 ( C )A.55 °°°°( 第 5 题 ) ( 第 6 题 )7.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其余完整相同。

小李经过多次摸球试验后发现此中摸到红色、黑色球的频次稳固在 15%和 45%,则口袋中白色球的个数很可能是 ( B )A . 6B . 16C .18D . 248.如图,四边形 ABCD 内接于⊙ O , BC 是直径, AD = DC ,∠ ADB =20o ,则∠ ACB ,∠ DBC 分 别为( B )A . 15o 与 30oB . 20o 与 35oC . 20o 与 40oD . 30o 与 35o9.以下图,小华从一个圆形场所的A 点出发,沿着与半径 OA 夹角为 α 的方向行走,走出席所边沿 B 后,再沿着与半径 OB 夹角为 α 的方向行走。

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。

广州市海珠区2020年新人教版九年级上期末考试数学试题及答案

广州市海珠区2020年新人教版九年级上期末考试数学试题及答案
此时:
②当 点在 上时, ,则 ,得:
此时:
③当 点在 外时, ,则 ,得:
此时:
∴ 三点共线
∵ 点是由 点以 为旋转角度绕 点旋转而得
∴ ∴ 是等腰三角形
又∵ 由等腰三角形三线合一可得
平分 ,即
在 中,
故:
25.(本题14分)
证明:(1)由二次函数 的图象抛物线经过点( , ),可得:
若抛物线经过点( , ),可得:
所以二次函数的解析式为:
(2)若 ,则二次函数解析式为:

则:
17.(本题9分)
(1)原式=
(2)原式=
18.(本题9分)
(1)答案: , ;(2)答案: ,
19.(本题10分)
2020本题10分)
解:(1)
由树形图可得共有12种情况.
(2)摸出的两个小球上的数字和为偶数的有(1,3)、(2、4)、(3,1)、(4、2)
四种情况,则他能如愿的概率是: .
21.(本题12分)
解:(1)解:设捐款增长率为 ,依题意可得:
解得: , (不符合,舍去)
答:捐款增长率为 .(增长率最好写成百分比形式)
(2)第四天该单位能收到的捐款有:
(元).
22.(本题12分)
证明:(1)连接
∵ ,
∴ ,
∵ ∴


∴ 是 的切线.
(2)在 中, ,
∴ ,
∵ ∴
(3)作 交 于点 .在 中, ,



23.(本题12分)
解:(1) ;( , )
(2)新二次函数的解析式为:
(3)由函数图象可知: ,对应 ; ,对应 .
所以: .

九年级上册数学期末试题及答案

九年级上册数学期末试题及答案

九年级上册数学期末试题及答案勤奋学习,就是在成果面前永不满足,不断追求更进一步的指示,扩展更广泛的课外积累,不断对自己提出更高的学习目标。

勤奋学习就是面对学习作业,能一丝不苟的完成面对学习中的困难,能主动找出困难的缘由,勇于克服,不解决困难时不罢休。

下面就是我为大家梳理归纳的学问,希望能够关怀到大家。

人教版九年级上册数学期末测试题及答案一、选择题(每题3分,共30分)1.以下关于x的方程中,是一元二次方程的有( ) A.x2?1x2B.ax2?bx?c?0C.?x?1??x?2??1D.3x2?2xy?5y2?0 2.化简12?1?23?1的结果为( )A、3?2B、3?2C、2?23D、3?2223.已知关于x的方程x?kx?6?0的一个根为x?3,则实数k的值为( )A.2B.?1C.1D.?24.要使二次根式x?1有意义,那么x的取值范围是( ) (A)x-1 (B) x1 (C) x≥1 (D)x≤15.有6张写有数字的卡片,它们的反面都相同,现将它们反面朝上(如图2),从中任意一张是数字3的概率是( ) A、16B、C、3112D、232图26.已知x、y是实数,3x+4 +y-6y+9=0,则xy的值是( ) 99A.4 B.-4 C..-447、以下列图形中,既是轴对称图形,又是中心对称图形的是( )图7A B C D8.已知两圆的半径分别是5cm和4cm,圆心距为7cm,那么这两圆的位置关系是( )A.相交B.内切C.外切D.外离9.如图3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM 长的最小值为( )A.2B.3C.4D.510.已知:如图4, ⊙O的两条弦AE、BC相交于点D,连接AC、BE.OMB图3图4若⊙ACB=60°,则以下结论中正确的选项是( )A.⊙AOB=60°B. ⊙ADB=60°C.⊙AEB=60°D.⊙AEB=30° 二、填空题(每题3分,共24分)11.方程x = x 的解是______________________12.如下列图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.12题图213.若实数a、b满足b?a2?1?a?11?a2,则a+b的值为________.14.圆和圆有不同的位置关系.与以下图不同的圆和圆的位置关系是_____.(只填一种)图515.若关于x方程kx2–6x+1=0有两个实数根,则k的取值范围是.16.如图6,在Rt⊙ABC中,⊙C=90°,CA=CB=2。

黑龙江省哈尔滨市南岗区2019-2020学年九年级上学期数学期末考试试卷及参考答案

黑龙江省哈尔滨市南岗区2019-2020学年九年级上学期数学期末考试试卷及参考答案

黑龙江省哈尔滨市南岗区2019-2020学年九年级上学期数学期末考试试卷一、单选题1. ﹣2的相反数是()A . 2B . ﹣2C .D . ±22. 下列计算正确是( )A .B .C .D .3. 下列四个图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线的对称轴是()A . 直线B . 直线C . 直线D . 直线5. 如图是由一个长方体和一个球组成的几何体,它的主视图是( ).A .B .C .D .6. 方程的解为()A .B .C .D .7. 一个扇形的半径为6,圆心角为,则该扇形的面积是()A .B .C .D .8. 如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为()A .B .C .D .9. 如图,,直线、与这三条平行线分别交于点、、和点、、 .则下列结论中一定正确是()A .B .C .D .10. 如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量(千瓦时)关于已行驶路程(千米)的函数图象.下列说法错误的是()A . 该汽车的蓄电池充满电时,电量是60千瓦时B . 蓄电池剩余电量为35千瓦时,汽车已行驶了150千米C . 当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时D . 25千瓦时的电量,汽车能行使二、填空题11. 港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55 000用科学记数法表示为________.12. 函数中,自变量x的取值范围是________.13. 把多项式分解因式的结果是________.14. 如果反比例函数(是常数)的图象在第一、三象限,那么的取值范围是________.15. 不等式组的整数解是________.16. 不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是________.17. 如图,,是的切线,,为切点,连接,,,则 ________度.18.在中,,,连接,若,则线段的长为________.19. 如图,矩形中,点,分别在,上,且,连接,,,且平分,,连接交于点,则线段的长为________.三、解答题20. 先化简,再求代数式的值,其中 .21. 如图,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.(1)在图中画出以为底边的等腰直角三角形,点在小正方形顶点上;(2)在图中画出以为腰的等腰三角形,点在小正方形的顶点上,且的面积为8.连接,请直接写出的长.22. 某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀20良好合格10不合格5请根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生;表中,;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.23. 如图,在中,点,分别是,的中点,连接,,,且,过点作交的延长线于点 .(1)求证:四边形是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与面积相等的所有三角形(不包括).24. 某校为了开展“阳光体育运动”,计划购买篮球和足球.已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?25. 已知:内接于,,直径交弦于点 .(1)如图1,求证:;(2)如图2,连接并延长交于点,弦经过点,交于点,若,求证:;(3)如图3,在(2)的条件下,点为线段上一点,连接,,,交于点,连接,,,求线段的长.26. 如图,抛物线交轴于,两点,交轴于点,过抛物线的顶点作轴的垂线,垂足为点,作直线 .(1)求直线的解析式;(2)点为第一象限内直线上的一点,连接,取的中点,作射线交抛物线于点,设线段的长为,点的横坐标为,求与之间的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,在线段上有一点,连接,,线段交线段于点,若,,求的值.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。

人教版九年级数学上学期期末考试试题及答案一

人教版九年级数学上学期期末考试试题及答案一

人教版九年级数学上学期期末考试试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.关于抛物线y =-(x +3)2+2,下列说法中错误的是 ( )A .开口向下B .对称轴是直线x =-3C .顶点坐标(-3,2)D .与y 轴交点坐标(0,2)2.下列图形中是中心对称图形的是 ( )3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π4.在△ABC 中,点D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为 ( ) A.12 B.13 C.14 D.165.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC =α,∠ADC =β,则竹竿AB 与AD 的长度之比为 ( )A.tan αtan βB.sin βsin αC.sin αsin βD.cos βcos α6.已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x 的图象上,则下列关系式中一定正确的是 ( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 17.在同一平面直角坐标系中,反比例函数y =b x (b ≠0)与二次函数y=ax 2+bx (a ≠0)的图象大致是 ( )A B C D8.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为 ( )A.34B.13C.12D.149.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是() A.12π+183B.12π+363C.6π+183D.6π+36310.如图,抛物线y=(x-1)2-4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,经过点C作x轴的平行线,与抛物线的另一个交点为点D,M为抛物线的顶点,P(m,n)是抛物线上点A,C之间的一点(不与点A,C重合),有结论:①OC=4;②点D的坐标为(2,-3);③n+3>0;④存在点P,使PM⊥DM.其中正确的是() A.①③B.②③C.②④D.①④二、填空题(本大题共4小题,每小题5分,满分20分)11.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是____.12.如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加____m.13.如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是____.14.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD的最大面积是____平方米.三、(本大题共2小题,每小题8分,满分16分)15.(湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC.(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.16.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.四、(本大题共2小题,每小题8分,满分16分)17.(黔南州中考)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2 000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.18.图①是一辆在平地上滑行的滑板车,图②是其示意图.已知车杆AB长92 cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6 cm,求把手A离地面的高度(结果保留小数点后一位,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75).五、(本大题共2小题,每小题10分,满分20分)19.(白银中考)如图,一次函数y =x +4的图象与反比例函数y =k x (k 为常数且k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.20.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:△AFD ∽△CFE .21.如图,AB是⊙O的弦,点D为半径OA 的中点,过点D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.七、(本题满分12分)22.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知y是x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?23.在平面直角坐标系xOy 中,矩形ABCO 的顶点A ,C 分别在y 轴,x 轴正半轴上,点P 在AB 上,P A =1,AO =2.经过原点的抛物线y =mx 2-x +n 的对称轴是直线x =2.(1)求出该抛物线的表达式;(2)如图甲,将一块两直角边足够长的三角板的直角顶点放在P 点处,两直角边恰好分别经过点O 和C .现在利用图乙进行如下探究: ①将三角板从图甲中的位置开始,绕点P 顺时针旋转,两直角边分别交OA ,OC 于点E ,F ,当点E 和点A 重合时停止旋转.请你观察、猜想,在这个过程中,PE PF 的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PE PF 的值;②设(1)中的抛物线与x 轴的另一个交点为D ,顶点为M ,在①的旋转过程中,是否存在点F ,使△DMF 为等腰三角形?若存在,求出点F 的坐标;若不存在,说明理由.答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.关于抛物线y =-(x +3)2+2,下列说法中错误的是 ( D )A .开口向下B .对称轴是直线x =-3C .顶点坐标(-3,2)D .与y 轴交点坐标(0,2)2.下列图形中是中心对称图形的是 ( B )3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( B )A .10πB .15πC .20πD .30π4.(广东中考)在△ABC 中,点D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为 ( C ) A.12 B.13 C.14 D.165.(金华中考)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC =α,∠ADC =β,则竹竿AB 与AD 的长度之比为 ( B )A.tan αtan βB.sin βsin αC.sin αsin βD.cos βcos α6.(扬州中考)已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x 的图象上,则下列关系式中一定正确的是 ( A )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 17.(永州中考)在同一平面直角坐标系中,反比例函数y =b x (b ≠0)与二次函数y =ax 2+bx (a ≠0)的图象大致是 ( D )A B C D8.(徐州中考)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )A.34B.13C.12D.149.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是 ( C )A .12π+183B .12π+363C .6π+183D .6π+36310.★如图,抛物线y =(x -1)2-4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,经过点C 作x 轴的平行线,与抛物线的另一个交点为点D ,M 为抛物线的顶点,P (m ,n )是抛物线上点A ,C 之间的一点(不与点A ,C 重合),有结论:①OC =4;②点D 的坐标为(2,-3);③n +3>0;④存在点P ,使PM ⊥DM .其中正确的是( B )A .①③B .②③C .②④D .①④二、填空题(本大题共4小题,每小题5分,满分20分)11.(黔南州中考)若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是__150__.12.(绵阳中考)如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加__42-4__m. 13.(安徽中考)如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A (2,m ),AB ⊥x轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是__y =32x -3__.14.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD的最大面积是__18__平方米.三、(本大题共2小题,每小题8分,满分16分)15.(湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC.(1)求证:AE =ED ;证明:∵AB 是⊙O 的直径,∴∠ADB =90°,∵OC ∥BD ,∴∠AEO =∠ADB =90°,即OC ⊥AD ,∴AE =ED.(2)若AB =10,∠CBD =36°,求AC ︵的长.解:∵OC ⊥AD ,∴AC ︵=CD ︵,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°,∴AC ︵=72π×5180=2π.16.(徐州中考)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.解:(1)(2)如图所示.(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段B 1B 2,作它的垂直平分线,或连接A 1C 1,A 2C 2的中点的连线为对称轴.(4)成中心对称,对称中心为线段B 1B 2的中点P ,坐标是⎝ ⎛⎭⎪⎫12,12. 四、(本大题共2小题,每小题8分,满分16分)17.(黔南州中考)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2 000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.解:(1)10035.(2)如图.(3)估算全校2 000名学生中,最认可“微信”这一新生事物的人数为2 000×40%=800人.(4)列表如下:D A ,D B ,D C ,D —共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为1012=56.18.图①是一辆在平地上滑行的滑板车,图②是其示意图.已知车杆AB 长92 cm ,车杆与脚踏板所成的角∠ABC =70°,前后轮子的半径均为6 cm ,求把手A 离地面的高度(结果保留小数点后一位,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75).解:过点A 作AD ⊥BC 于点D ,延长AD 交地面于点E ,∵sin ∠ABD =AD AB ,∴AD =92×0.94≈86.48.∵DE =6,∴AE =AD +DE ≈92.5,∴把手A 离地面的高度约为92.5 cm.五、(本大题共2小题,每小题10分,满分20分)19.(白银中考)如图,一次函数y =x +4的图象与反比例函数y =k x (k 为常数且k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴A(-1,3),把A(-1,3)代入反比例函数y =k x ,∴k =-3,∴反比例函数的表达式为y =-3x .(2) 联立两个函数表达式得⎩⎨⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x =-1,y =3或⎩⎪⎨⎪⎧x =-3,y =1, ∴点B 的坐标为B(-3,1),当y =x +4=0时,得x =-4, ∴点C(-4,0),设点P 的坐标为(x ,0),∵S △ACP =32S △BOC ,∴12×3×|x -(-4)|=32×12×4×1,解得x 1=-6,x 2=-2,(3) ∴点P(-6,0)或(-2,0).20.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:△AFD ∽△CFE .证明:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD∶AC=AC∶AB,∴AC2=AB·AD.(2)∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.六、(本题满分12分)21.如图,AB是⊙O的弦,点D为半径OA 的中点,过点D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.(1)证明:连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O的切线.(2)解:连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理(即同弧所对的圆周角是所对圆心角的一半)即可求出∠ABF 的度数为30°.(3)解:过点C 作CG ⊥BE 于点G ,由CE =CB ,可求出EG =12BE=5,又Rt △ADE ∽Rt △CGE 和三角函数求出DE =2,由Rt △ADE∽Rt △CGE 求出AD 的长为245,进而求出⊙O 的半径为485.七、(本题满分12分)22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:已知y 是x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?解:(1)设y =kx +b ,根据题意可得,⎩⎪⎨⎪⎧20=20k +b ,25=15k +b ,解得⎩⎪⎨⎪⎧k =-1,b =40, ∴日销售量y(件)与每件产品的销售价x(元)之间的函数表达式为y =-x +40.(2)当每件产品的销售价定为35元时,此时每日的销售利润 w =(35-10)(-35+40)=125(元).答:此时每日的销售利润是125元.(3)设总利润为w ,根据题意可得,w =(x -10)(-x +40)=-x 2+50x -400=-(x -25)2+225, ∵a =-1<0,∴销售价定为25元时,每日的销售利润最大,最大利润是225元.八、(本题满分14分)23.在平面直角坐标系xOy 中,矩形ABCO 的顶点A ,C 分别在y 轴,x 轴正半轴上,点P 在AB 上,P A =1,AO =2.经过原点的抛物线y =mx 2-x +n 的对称轴是直线x =2.(1)求出该抛物线的表达式;(2)如图甲,将一块两直角边足够长的三角板的直角顶点放在P 点处,两直角边恰好分别经过点O 和C .现在利用图乙进行如下探究: ①将三角板从图甲中的位置开始,绕点P 顺时针旋转,两直角边分别交OA ,OC 于点E ,F ,当点E 和点A 重合时停止旋转.请你观察、猜想,在这个过程中,PE PF 的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PE PF 的值;②设(1)中的抛物线与x 轴的另一个交点为D ,顶点为M ,在①的旋转过程中,是否存在点F ,使△DMF 为等腰三角形?若存在,求出点F 的坐标;若不存在,说明理由.解:(1)y =14x 2-x.(2)易知△PAO ∽△CBP ,BC =AO =2,PA =1,∴PB =4,故AB =OC =5,①PE PF 的值不发生变化,PE PF =12,根据旋转的性质知,∠EPO =∠FPC ,∵∠POE +∠POC =90°,∠POC +∠PCO =90°,∴∠POE =∠PCO ,故△PEO ∽△PFC ,∴PE PF =PO PC =PA BC =12.②存在.设点F 的横坐标为m ,由(1)得D(4,0),M(2,-1),过点M 作MN ⊥x 轴于点N ,则DM 2=12+22=5.DF 2=(4-m)2,MF 2=12+(m -2)2,下面分三种情况讨论:Ⅰ.当以MD 为底边时.DF =MF.则(4-m)2=12+(m -2)2,解得m =114;Ⅱ.当以DF 为底边时,MF =MD ,则12+(m -2)2=5,解得m 1=0,m 2=4;Ⅲ.当以MF 为底边时,DF =DM ,则(4-m)2=5,解得m 3=4+5,m 4=4-5;由①当点E 与点A 重合时,m =1,1≤m ≤5,所以m =114或m =4或m =4-5,又因为当m =4时,点F 与点D 重合,不符合题意.综上所述,存在点F 1(114,0)和F 2(4-5,0),使△DMF 为等腰三角形.。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分答题时间:120分钟)一、选择题(共8小题,每小题3分,满分24分)1.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底2.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB3.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.4.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)5.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0 C.2 D.36.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm27.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=98.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1二、填空题(本大题共有8小题,每小题3分,共24分)9.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.10.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.11.方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是.12.在某一时刻,测得一根高为 1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.题号一二三总分得分13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).15.一元二次方程x2+px﹣2=0的一个根为2,则p的值.16.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.三、解答题(本大题共有4小题,共24分)17.(6分)解方程:(1)x(x﹣2)+x﹣2=0.(2)x2﹣4x+1=0;18.(6分)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.19.(6分)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.20.(6分)如图,四边形ABCD内接于⊙O,E为AB延长线上一点,若∠AOC=140°.求∠EBC的度数.四、解答题(本大题共有4小题,共28分)21.(7分)如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E 为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= ,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.22.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.23.(7分)如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.24.(7分)如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.五、解答题(本大题共有2小题,共20分)25.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB 翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).26.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P 是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(共8小题,每小题3分,满分24分)1.D.2. A.3.C.4. A.5.B.6.B.7.D.8.C.二、填空题(本大题共有8小题,每小题3分,共24分)9.70.10..11.c<4.12.15.13.∠C=∠BAD.14.y3<y2<y.15.﹣1.16.3 三、解答题(本大题共有4小题,共24分)17.解:(1)(x+1)(x﹣2)=0,(x+1)(x﹣2)=0,解得x1=﹣1,x2=2;(2)方程变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.18.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为.19.解:(1)如图所示:.(2)根据上图可知,B1(2,2),C1(5,﹣1).20.解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.四、解答题(本大题共有4小题,共28分)21.解:①∵AB为⊙O的直径,∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角;②连接OC,则∠CAO=∠ACO,∵AC平分∠BAB,∴∠BAC=∠CAD,∵∠ECB=∠CAD.∴∠BAC=∠ECB.∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴CE2=BE?AE,∵AB=6,CE=4,∴42=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴=,即=,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.22.解:(1)如图1中,作AM⊥BC,PN⊥BC,垂足分别为M,N.由题意AB=AC=8,∠A=120°,∴∠BAM=∠CAM=60°,∠B=∠C=30°,∴AM=AB=4,BM=CM=4,∴BC=8,∴m=BC=8,故答案为8.(2)①当0≤m≤8时,如图1中,在RT△PBN中,∵∠PNB=90°,∠B=30°,PB=x,∴PN=x.s=?BQ?PN=?x??x=x2.②当8<x≤16,如图2中,在RT△PBN中,∵PC=16﹣x,∠PNC=90°,∠C=30°,∴PN=PC=8﹣x,∴s=?BQ?PN=?x?(8﹣x)=﹣x2+4x.③当8<x≤16时,s=?8?(8﹣?x)=﹣2x+32.(3)①当点P在AB上,点Q在BC上时,△PQC不可能是等腰三角形.②当点P在AC上,点Q在BC上时,PQ=QC,∵PC=QC,∴16﹣x=(8﹣x),∴x=4+4.③当点P在AC上,点Q在BC的延长线时,PC=CQ,即16﹣x=x﹣8,∴x=8+4.∴△PCQ为等腰三角形时x的值为4+4或8+4.23.(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.24. 解:(1)由图可得,扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=(30xm+m)(20xm+m)=600x2m2+50xm2+m2,即扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=600x2m2+50xm2+m2;(2)∵扩充后的绿地面积y是原矩形面积的2倍,∴600x2m2+50xm2+m2=2×30xm×20xm,解得(舍去),即扩充后的绿地面积y是原矩形面积的2倍,x的值是.五、解答题(本大题共有2小题,共20分)25.解:(1)把点A(0,m)代入y=,得:2am2﹣m=m,am﹣1=0,∵am>1,∴a=,∴y=,故答案为:y=;(2)DE=BC.理由:又抛物线y=,可得抛物线的顶点坐标P(m,﹣m),由l:x=m,可得:点B(2m,m),∴点C(2m,0).设直线BP的解析式为y=kx+b,点P(m,﹣m)和点B(2m,m)在这条直线上,得:,解得:,∴直线BP的解析式为:y=x﹣3m,令y=0, x﹣3m=0,解得:x=,∴点D(,0);设直线CP的解析式为y=k1x+b1,点P(m,﹣m)和点C(2m,0)在这条直线上,得:,解得:,∴直线CP的解析式为:y=x﹣2m;抛物线与直线CP相交于点E,可得:,解得:,(舍去),∴点E(,﹣);∵x D=x E,∴DE⊥x轴,∴DE=y D﹣y E=,BC=y B﹣y C=m=2DE,即DE=BC;(3)C′(,).连接CC′,交直线BP于点F,∵BC′=BC,∠C′BF=∠CBF,∴CC′⊥BP,CF=C′F,设直线BP的解析式为y=kx+b,点B(2m,m),P(m,﹣m)在直线上,∴,解得:,∴直线BP的解析式为:y=x﹣3m,∵CC′⊥BP,∴设直线CC′的解析式为:y=x+b1,∴,解得:b1=2m,联立①②,得:,解得:,∴点F(,),∴CF==,设点C′的坐标为(a,),∴C′F==,解得:a=,∴,∴C′(,).26.证明:(1)如图(1),在PA上截取PD=PA,∵AB=AC,∠CAB=60°,∴△ABC为等边三角形,∴∠APC=∠CPB=60°,∴△APD为等边三角形,∴AP=AD=PD,∴∠ADC=∠APB=120°,在△ACD和△ABP中,,∴△ACD≌△ABP(AAS),∴CD=PB,∵PC=PD+DC,∴PC=PA+PB;(2)PC=PA+PB,如图(2),作AD⊥AP与PC交于一点D,∵∠BAC=90°,∴∠CAD=∠BAP,在△ACD和△ABP中,,∴△ACD≌△ABP,∴CD=PB,AD=AP,根据勾股定理PD=PA,∴PC=PD+CD=PA+PB.。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:150分答题时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣42.设a=2﹣1,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和53.在﹣2,0,2,﹣3这四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣34.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为()A.30.1×108B.3.01×108C.3.01×109D.0.301×10105.如图为抛物线y=ax2+bx+c的图象,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.ac<0 B.a﹣b=1 C.a+b=﹣1 D.b>2a6.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S27.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个8.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是()A.99.60,99.70 B.99.60,99.60 C.99.60,98.80 D.99.70,99.60 9.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A 作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.10.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.12二、填空题(本大题共4小题,每小题5分,满分20分.)11.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.12.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是.13.的平方根是.14.因式分解:a2b+2ab+b= .三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.16.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.18.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?五、(本大题共2小题,每小题10分,满分20分)19.一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB);(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果;(2)求滨湖湿地公园被选中的概率.六、(本题共2小题,满分24分)21.某省实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价﹣进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?22.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.七、(本题满分14分)23.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从顶点B出发,其中点E从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点A以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG,AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC 的重合部分面积为S.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求S关于t的函数关系式;(4)动点P在点E、F出发的同时从点A出发沿A﹣H﹣A以每秒2单位的速度作循环往复运动,当点E、F到达终点时,点P随之运动,直接写出点P在△EFG 内部时t的取值范围.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1. D.2.B.3. D.4.C.5.D.6.C.7.B.8.B.9.C.10.B.二、填空题(本大题共4小题,每小题5分,满分20分.11..12.①②④.13.±.14.b(a+1)2.三、(本大题共2小题,每小题8分,满分16分)15.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).16.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.18.解:设该飞机在失去联系后能航行x千米,1:30﹣0:00=1.5(小时),由题意得:1.5×400×5+5x≤15000解得:x≤2400.答:该飞机在失去联系后最多能航行2400千米.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.20.解:(1)CQ∥BE,BQ==3dm;故答案为:平行,3;(2)V液=×3×4×4=24(dm3);(3)过点B作BF⊥CQ,垂足为F,∵×3×4=×5×BF,∴BF=,∴液面到桌面的高度;∵在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.六、(本题共2小题,满分24分)21.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x)=100x+24000商场所获利润:W=400x+300x+400(100﹣2x)=﹣100x+40000.(2)根据题意得,解得30≤x≤35,因为x为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000,∵k=﹣100<0,30≤x≤35,∴当x=30时,W有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元.22.(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC ∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O的半径为.七、(本题满分14分)23.解:(1)根据题意得:BF=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CF=BC﹣BF=6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GFE=60°,GE=EF=BF•sin60°=t,∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.。

人教版2019—2020年度九年级数学上学期期末考试试卷及答案

人教版2019—2020年度九年级数学上学期期末考试试卷及答案

人教版2019—人教版2019—2020年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题;每小题3分;共30分) 1.(2013•内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0;﹣3);则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0;则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6;第三边的长是方程2680x x -+=的一个根;则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015•兰州)下列函数解析式中;一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、;且22127x x +=;则212()x x -的值是( )A .1B .12C .13D .256.(2013•荆门)在平面直角坐标系中;线段OP 的两个端点坐标分别是O (0;0);P (4;3);将线段OP 绕点O 逆时针旋转90°到OP ′位置;则点P ′的坐标为( )它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%;则口袋中白色球的个数很可能是( )A .6B .16C .18D .24 8.如图;四边形ABCD 内接于⊙O ;BC 是直径;AD =DC ;∠ADB =20º;则∠ACB ;∠DBC 分别 为( )A .15º与30ºB .20º与35ºC .20º与40ºD .30º与35º9.如图所示;小华从一个圆形场地的A 点出发;沿着与半径OA 夹角为α的方向行走;走到场地边缘B 后;再沿着与半径OB 夹角为α的方向行走。

人教版九年级上期末数学试卷13含答案

人教版九年级上期末数学试卷13含答案

九年级上学期期末考试数学试题及答案一、选择题:本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表中.题号123456789101112答案1.如图是一个三棱柱的立体图形,它的主视图是A.B.C.D.2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是A.摸出的四个球中至少有一个球是黑球B.摸出的四个球中至少有一个球是白球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为A.30° B.40° C.50°D.80°4.已知反比例函数y=的图象经过点P(,),则这个函数的图象位于xk12A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限5.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是A.B.C.D.6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是23A.1 B.1.5C.2 D.3题图第1题图第3题图第57.如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)A .12mB .8mC .6mD .4m8.如图,在Rt △ABC 中,∠BAC =90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于A .80°B .65°C .60°D .55°9.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为A .cmB .cmC .3cmD .cm 383163410.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A .掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率11.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,则11、12月的月平均增长率为A .10%B .31%C .13%D .11%12.如图,在菱形ABCD 中,DE ⊥AB ,cosA =,BE =2,则BD 的值53A .2 B . C . D .5 55213.已知函数y =的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点xm A (,a )、点B (2,b )在图象上,则a <b ;④若点P (m ,n )在图象上,则点P 1(,)1-m -n -也在图象上.其中正确的个数是A .4个B .3个C.2个 D .1个题图第12题图第1014.如图,Rt △OAB 的顶点A (,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,2-得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为A .(,)B .(2,2)C .(,2)D .(2,)2222二、填空题(本题5个小题,每小题3分,共15分;请你将答案填写在题目中的横线上)15.计算:sin 30°+cos 30°•tan 60°= .16.从地面竖直向上抛出一个小球,小球的高度h (米)与运动时间t (秒)之间的关系式为,那么小球抛出 秒后达到最高点.2530t t h -=17.边长为1的正六边形的边心距是 .18.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数y =(x <0)的图象经过点C ,则k 的值为 .x k19.如图,在等边△ABC 中,D 为BC 边上一点,且∠ADE =60°,BD =3,CE =2,则△ABC 的边长为 .三、解答题(本题共7个小题,共63分;请将解答过程写在答题纸每题规定的区域内)20.(本小题满分7分)已知是关于x 的方程的一个根,求a 的值.2-=x 0222=-+a ax x 21.(本小题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.22.(本小题满分8分)如图是一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC =1.5m②小明的影长CE =1.7m③小明的脚到旗杆底部的距离BC=9m④旗杆的影长BF =7.6m⑤从D 点看A 点的仰角为30°请选择你需要的数据,求出旗杆的高度.题图第18题图第19(计算结果保留到0.1,参考数据≈1.414,≈1.732)2323.(本小题满分9分)在平面直角坐标系中,已知反比例函数y =的图象经过点A ,点O 是坐标xk 原点,OA =2且OA 与x 轴的夹角是. 60(1)试确定此反比例函数的解析式;(2)将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.24.(本小题满分8分)如图是某超市地下停车场入口的设计图,请根据图中数据计算CE 的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)25.(本小题满分11分)如图,BD 为⊙O 的直径,AB =AC ,AD 交BC 于点E ,AE =2,ED =4,(1)求证:△ABE ∽△ADB ,并求阴影部分的面积;(2)延长DB 到F ,使得BF =BO ,连接FA ,试判断直线FA 与⊙O 的位置关系,并说明理由.26.(本小题满分12分) 如图,直线与x 轴、y 轴分别交于点3+-=x y B 、点C ,经过B 、C 两点的抛物线与x 轴的另一个交点为A ,顶点为P .c bx x y ++=2(1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.九年级数学试题参考答案题图第26题图第23题图第25题图第24一、选择题(本题14个小题,每小题3分;共42分;每题中只有一个答案符合要求)题号1234567891011121314答案B A B D C C B C A B A C B C二、填空题(本题5个小题,每小题3分,共15分;请你将答案填写在题目中的横线上)15.2 16.3 17. 18. 19.9236-三、解答题(本题共7个小题,共63分;请将解答过程写在每题规定21.(本小题满分8分)解:(1)(5分)两辆汽车所有9种可能的行驶方向如下:甲汽车乙汽车左转右转直行左转(左转,左转)(右转,左转)(直行,左转)右转(左转,右转)(右转,右转)(直行,右转)直行(左转,直行)(右转,直行)(直行,直行)(2)(3分)由上表知:两辆汽车都向左转的概率是:.9122.(本小题满分8分)解:解法一,选用①②④,...............................................................................3分∵AB ⊥FC ,CD ⊥FC ,∴∠ABF =∠DCE =90°,..................................................................................4分又∵AF ∥DE ,∴∠AFB =∠DEC ,.........................................................................................5分∴△ABF ∽△DCE ,........................................................................................6分∴,...............................................................................................7分CEFB DC AB =又∵DC =1.5m ,FB =7.6m ,EC =1.7m ,∴AB =6.7m .即旗杆高度是6.7m .......................................................................................8分解法二,选①③⑤.............................................................................................3分过点D 作DG ⊥AB 于点G .∵AB ⊥FC ,DC ⊥FC ,∴四边形BCDG 是矩形,................................................................................4分∴CD =BG =1.5m ,DG =BC =9m ,.....................................................................5分在直角△AGD 中,∠ADG =30°,∴tan 30°=,................................................................................................6分DGAG ∴AG =,.....................................................................................................7分33又∵AB =AG +GB ,∴AB =≈6.7m .5.133 即旗杆高度是6.7m ..........................................................................................8分23.(本小题满分9分)解:(1)(4分)由题意的点A 的坐标是(1,),....................2分3把A (1,)代入y =,3x k 得k =1×=,.............................................................. ...3分33∴反比例函数的解析式为y =;.......................................4分x3(2)(5分)点B 在此反比例函数的图象上...............................1分理由如下:过点B 作x 轴的垂线交x 轴于点D ,∵线段OA 绕O 点顺时针旋转30°得到线段OB ,∴∠AOB =30°,OB =OA =2,∴∠BOD =30°,.......................2分在Rt △BOD 中,BD =OB =1,OD =BD =,............3分2133∴B 点坐标为(,1),.....................................................4分3∵当x =时,y==1,3x3∴点B (,1)在反比例函数y =的图象上..................5分3x 324.(本小题满分8分)解:由已知有:∠BAE =22°,∠ABC =90°,∠CED =∠AEC =90°∴∠BCE =158°,∴∠DCE =22°,...............................................................2分又∵tan ∠BAE =,ABBD ∴BD =AB •tan ∠BAE ,...............................................................................4分又∵cos ∠BAE =cos ∠DCE =,..........................................................5分CD CE ∴CE =CD •cos ∠BAE=(BD -BC )•cos ∠BAE.................................................................6分=( AB •tan ∠BAE -BC )•cos ∠BAE ...............................................7分=(10×0.4040-0.5)×0.9272≈3.28(m )...................................................................................8分25.(本小题满分11分)。

2019-2020学年四川省南充市九年级上学期期末考试数学试卷及答案解析

2019-2020学年四川省南充市九年级上学期期末考试数学试卷及答案解析

2019-2020学年四川省南充市九年级上学期期末考试数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A,B,C,D四个答案选项,其中只有一个是正确的,请将正确选项的代号填涂答题卡对应位置,涂正确记4分,不涂、涂错或多涂记0分
1.(4分)方程x2﹣6x+5=0的两个根之和为()
A.﹣6B.6C.﹣5D.5
2.(4分)下列事件是随机事件的是()
A.打开电视,正在播放新闻
B.氢气在氧气中燃烧生成水
C.离离原上草,一岁一枯荣
D.钝角三角形的内角和大于180°
3.(4分)如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC =30°,则旋转角度是()
A.10°B.30°C.40°D.70°
4.(4分)在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()
A.6个B.8个C.9个D.12个
5.(4分)如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE 的度数为()
第1 页共24 页。

2019--2020第一学期九年级数学期末考试及答案

2019--2020第一学期九年级数学期末考试及答案

2019-2020学年度第一学期期末调研考试九年级数学试卷注意:本试卷共8页,三道大题,26小题。

总分120分。

时间120分钟。

题号 一 二 20 21 22 23 24 25 26 总分 得分一、 选择题(本题共16小题,总分42分。

1~10小题,每题3分;11~16小题,每题2分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件D .不可能事件2. 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是( ) A .72° B .108° C .144° D .216° 3.反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限4.用配方法将方程0142=--x x 变形为m x =-2)2(,则m 的值是( )A. 4B. 5C. 6D. 75. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.6. 一元二次方程220200x +=的根的情况是( )A .有两个相等的实根B .有两个不等的实根C .只有一个实根D .无实数根 7. 如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )得分 评卷人A .105°B .115°C .125°D .135°8. 已知三角形面积一定,则它的底边a 上的高h 与底边a 之间的函数关系图象是( )9. 下列对二次函数2y x x =-图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 10. 参加一次聚会的每两人都握了一次手,所有人共握手10次。

人教版2019-2020学年九年级数学上册期末测试卷及答案

人教版2019-2020学年九年级数学上册期末测试卷及答案

2019-2020学年九年级数学上学期期末测试卷一、选择题(每小题4分,共40分)1.二次函数y=(x﹣1)2﹣3的最小值是()A.2 B.1 C.﹣2 D.﹣32.△ABC中,∠A,∠B均为锐角,且有|tan2B﹣3|+(2sinA﹣)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形3.在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k<0 B.k>0 C.k<1 D.k>14.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于()A.a•sinαB.a•cosαC.a•tanαD.5.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.6.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=x2+2 D.y=x2﹣27.将二次函数y=x2+x﹣1化为y=a(x+h)2+k的形式是()A.y=B.y=(x﹣2)2﹣2C.y=(x+2)2﹣2 D.y=(x﹣2)2+28.若A(a1,b1),B(a2,b2)是反比例函数y=(x>0)图象上的两个点,且a1<a2,则b1与b2的大小关系是()A.b1>b2B.b1=b2C.b1<b2D.大小不确定9.如图,某水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.120m C.50m D.100m10.如图,边长为的正方形ABCD的顶点A在y轴上,顶点D在反比例函数的图象上,已知点B的坐标是,则k的值为()A.B.C.4 D.6二、填空题(每小题5分,共20分)11.(5分)如图,若点A的坐标为,则sin∠1=.12.(5分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.13.(5分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是.14.(5分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是.三、简答题(本大题共2小题,每小题8分,满分16分)15.(8分)求值:cos245°﹣sin30°tan60°+sin60°16.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△A 1B1C1,并写出点A1的坐标;(2)以原点O 为位似中心,在原点的另一侧画出△A2B2C2,使=,并写出点A2的坐标.四、简答题(本大题共2小题,每小题8分,满分16分)17.(8分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)18.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.五、简答题(本大题共2小题,每小题10分,满分20分)19.(10分)一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.20.(10分)已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.六、简答题(本题满分12分)21.(12分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.七、(本题满分12分)22.(12分)已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.八、(本题满分14分)23.(14分)如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.(1)求AB长;(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;(3)t为何值时,△APM为直角三角形?参考答案1.D;2.B;3.D;4.D;5.B;6.D;7.C;8.A;9.A;10.C;11.;12.y=﹣;13.x<﹣1或x>5;14.①②③⑤;。

2019-2020学年内蒙古呼和浩特市赛罕区人教版九年级(上)期末数学试卷(解析版)

2019-2020学年内蒙古呼和浩特市赛罕区人教版九年级(上)期末数学试卷(解析版)

2019-2020学年内蒙古呼和浩特市赛罕区九年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)已知点A(a,1)与点B(5,b)是关于原点O的对称点,则()A.a=﹣5,b=﹣1B.a=﹣5,b=1C.a=5,b=﹣1D.a=5,b=1 2.(3分)抛物线y=﹣2(x﹣1)2+2的对称轴是()A.y=1B.x=﹣1C.x=l D.y=﹣13.(3分)向高为10cm的下列容器注水,注满为止,若注水量V(cm3)与水深h(cm)之间的函数关系的图象大致如图,则这个容器是()A.B.C.D.4.(3分)关于对应关系y=,下列说法正确的是()A.不是函数B.是函数C.与函数y=x是同一函数D.以上选项都不对5.(3分)AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD 间的距离为()A.1B.7C.1或7D.3或46.(3分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.从分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率B.掷一枚质地均匀的骰子,向上的点数是偶数的概率C.同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率7.(3分)已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)8.(3分)若关于x的方程mx2﹣2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<﹣B.m≤,且m≠0C.m<,且m≠0D.m>9.(3分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+2=0的两个实数根为x1和x2,设t=,则t的最大值为()A.﹣4B.4C.﹣6D.610.(3分)如图,在△AOB中,∠ABO=90°,=2,反比例函数y=在第一象限的图象分别交OA、AB于点C、D,且S△BOD=2,则C的坐标为()A.(2,4)B.(,2)C.(1,2)D.(,)二、填空(每题3分,共18分)11.(3分)一元二次方程x2+2x﹣3=0的解为.12.(3分)如图,点A、B、C在⊙O上,弦AC与半径OB互相平分,那么∠OAC的度数为度.13.(3分)二次函数y=﹣2x2﹣4x+3(x≤﹣2)的最大值为.14.(3分)圆锥的高为2cm,母线长为8cm,则侧面展开图扇形圆心角为度.15.(3分)对于二次函数y=x2﹣4x+3,当自变量x满足a≤x≤3时,函数值y的取值范围为﹣1≤y<0,则a的取值范围为.16.(3分)下列命题:①试验次数越多频率就越接近概率;②汽车是轴对称图形;③直径是圆中最长的弦;④反比例函数y=(x>0)的图象是中心对称图形.正确的序号是.三、解答题(共72分)17.(8分)解方程:(1)用配方法解一元二次方程:x2+4x﹣2=2x+3;(2)解方程:3x(x﹣1)=2(x﹣1).18.(7分)甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由19.(7分)已知二次函数的解析式是y=2x2﹣4x+3.(1)用配方法将解析式化成y=a(x﹣h)2+k的形式,并写出顶点C的坐标;(2)在直角坐标系中,画出它的大致图象;(3)若点A(1﹣a,y1)和B(2+a,y2)(a>0)在二次函数图象上,请利用图象直接写出y1与y2的大小关系.20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.21.(8分)某市某楼盘准备以每平方米12100元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后(每次降价的百分率相同),决定以每平方米10000元的均价开盘销售.(1)求平均每次下调的百分率(精确到0.01);(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月2元,请问哪种方案更优惠?22.(8分)如图,对角线长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(a,)时,求a的值和反比例函数的解析式;(2)一次函数y=mx+n的图象过D、E两点,连接OD、OE,求△ODE的面积,并利用图象直接写出不等式mx+n﹣<0的解集.23.(9分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.24.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O 于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.25.(9分)如图,已知:直线y=﹣2x+m(m为常数),抛物线y=ax2﹣2ax+3的最大值为4,抛物线的顶点为A.(1)当直线经过A点时,求m的值;(2)当直线和抛物线在x轴上方的部分只有一个公共点时,求m的取值范围.(3)当直线与抛物线只有一个公共点D时,设点P是y轴上一动点,求|P A﹣PD|的最大值,并求取得最大值时P点的坐标.2019-2020学年内蒙古呼和浩特市赛罕区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)已知点A(a,1)与点B(5,b)是关于原点O的对称点,则()A.a=﹣5,b=﹣1B.a=﹣5,b=1C.a=5,b=﹣1D.a=5,b=1【分析】本题比较容易,根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.就可以求出a、b的值.【解答】解:根据题意得a=﹣5,b=﹣1,故选:A.2.(3分)抛物线y=﹣2(x﹣1)2+2的对称轴是()A.y=1B.x=﹣1C.x=l D.y=﹣1【分析】根据二次函数顶点式得出对称轴即可,注意与对点坐标区分.【解答】解:∵抛物线y=﹣2(x﹣1)2+2,∴抛物线y=﹣2(x﹣1)2+2的对称轴是:x=1.故选:C.3.(3分)向高为10cm的下列容器注水,注满为止,若注水量V(cm3)与水深h(cm)之间的函数关系的图象大致如图,则这个容器是()A.B.C.D.【分析】根据函数的图象可知,注水量与水深之间是随着水的深度越大增加的速度越慢的关系进行的.【解答】解:根据函数图象可知,注水量Vcm3与水深hcm之间的关系是注水量Vcm3随着h的增大而增加的速度逐渐减慢,可以得出开始容器由小逐渐变大,即开口越来越大,从图形容器可以看出C符合,故选:C.4.(3分)关于对应关系y=,下列说法正确的是()A.不是函数B.是函数C.与函数y=x是同一函数D.以上选项都不对【分析】利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【解答】解:A、根据函数的定义,y是x的函数,故A错误;B、根据函数的定义,y是x的函数,故B正确;C、与函数y=x不是同一函数,自变量一个不可以取0,一个可以取0,故C错误;D、根据函数的定义,y是x的函数,故D错误;故选:B.5.(3分)AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD 间的距离为()A.1B.7C.1或7D.3或4【分析】过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,由题意可得:OA=OC=5,AF=FB=3,CE=ED=4,E、F、O在一条直线上,EF为AB、CD之间的距离,再分别解Rt△OEC、Rt△OF A,即可得OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.6.(3分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.从分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率B.掷一枚质地均匀的骰子,向上的点数是偶数的概率C.同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率为≈0.33,故此选项符合题意;B、掷一枚质地均匀的骰子,向上的点数是偶数的概率为,故此选项不符合题意;C、同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率,故此选项不符合题意;D、从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率是,故此选项不符合题意.故选:A.7.(3分)已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)【分析】如图,作AH⊥x轴于H,作A′E⊥x轴于E.解直角三角形求出A′E,OE即可.【解答】解:如图,作AH⊥x轴于H,作A′E⊥x轴于E.∵A(﹣1,),∴OH=1,AH=,∴tan∠AOH==,∴∠AOH=60°,∠OAH=30°,∴OA=OA′=2OH=2,∵∠AOA′=30°,∴∠A′OE=30°,∴A′E=OA′=1,OE=A′E=,∴A′(﹣,1),故选:D.8.(3分)若关于x的方程mx2﹣2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<﹣B.m≤,且m≠0C.m<,且m≠0D.m>【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=4﹣12m>0,m<,∵m≠0,∴m<且m≠0,故选:C.9.(3分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+2=0的两个实数根为x1和x2,设t=,则t的最大值为()A.﹣4B.4C.﹣6D.6【分析】根据判别式可求出k的范围,然后将两根之和化简原式即可求出t的最大值.【解答】解:由题意可知:△=4(k﹣1)2﹣4(k2+2)=﹣8k﹣4≥0,∴k≤,由根与系数的关系可知:x1+x2=2(k﹣1),∴t==2﹣,∴t≤6,故选:D.10.(3分)如图,在△AOB中,∠ABO=90°,=2,反比例函数y=在第一象限的图象分别交OA、AB于点C、D,且S△BOD=2,则C的坐标为()A.(2,4)B.(,2)C.(1,2)D.(,)【分析】由=2,可知点A的纵坐标是横坐标的2倍,因此可知点A在直线y=2x上,由S△BOD=2,可以确定反比例函数的关系式,两个函数的关系式联立求出交点坐标即可.【解答】解:∵∠ABO=90°,=2,设OB=a,则AB=2a,∴A(a,2a)∴直线OA的关系式为y=2x,∵S△BOD=2,∴|k|=2,k>0,∴k=4,∴反比例函数的关系式为y=,由题意得,,解得:,(舍去)∴C(,2),故选:B.二、填空(每题3分,共18分)11.(3分)一元二次方程x2+2x﹣3=0的解为x1=﹣3,x2=1.【分析】先把方程左边分解,然后把原方程化为两个一次方程x+3=0或x﹣1=0,再解一次方程即可.【解答】解:(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.12.(3分)如图,点A、B、C在⊙O上,弦AC与半径OB互相平分,那么∠OAC的度数为30度.【分析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数,进而可求出∠OAC的度数.【解答】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=120°,∴∠OAC=∠OCA=30°,故答案为30.13.(3分)二次函数y=﹣2x2﹣4x+3(x≤﹣2)的最大值为3.【分析】直接利用二次函数的性质结合最值求法进而得出答案.【解答】解:y=﹣2x2﹣4x+3=﹣2(x+1)2+5,即x=﹣1时,二次函数最大,∵x≤﹣2,且抛物线开口向下,∴x=﹣2时,二次函数最大为:y=﹣2×(﹣2)2﹣4×(﹣2)+3=3.故答案为:3.14.(3分)圆锥的高为2cm,母线长为8cm,则侧面展开图扇形圆心角为90度.【分析】首先利用勾股定理求得圆锥的母线长,然后利用圆锥的底面周长等于扇形的弧长求得圆心角的度数即可.【解答】解:∵高为2cm,母线长为8cm,∴圆锥的底面周长为=2cm,∴=2×2π,解得:n=90,故答案为:90.15.(3分)对于二次函数y=x2﹣4x+3,当自变量x满足a≤x≤3时,函数值y的取值范围为﹣1≤y<0,则a的取值范围为1<a≤2.【分析】函数的顶点D坐标为:(2,﹣1),则点A、B的坐标分别为:(1,0)、(3,0),从图象可以看出:y的取值范围为﹣1≤y<0时,1<a≤2;即可求解.【解答】解:函数图象如下,函数的对称轴为:x=2,顶点D坐标为:(2,﹣1),则点A、B的坐标分别为:(1,0)、(3,0),从图象可以看出:y的取值范围为﹣1≤y<0时,1<a≤2;故答案为:1<a≤2.16.(3分)下列命题:①试验次数越多频率就越接近概率;②汽车是轴对称图形;③直径是圆中最长的弦;④反比例函数y=(x>0)的图象是中心对称图形.正确的序号是①③④.【分析】根据频率估计概率、轴对称图形的概念、弦的概念、反比例函数的图象判断.【解答】解:①试验次数越多频率就越接近概率,本说法正确;②汽车样式各异,不一定是轴对称图形,本说法错误;③直径是圆中最长的弦,本说法正确;④反比例函数y=(x>0)的图象是中心对称图形,本说法正确;故答案为:①③④.三、解答题(共72分)17.(8分)解方程:(1)用配方法解一元二次方程:x2+4x﹣2=2x+3;(2)解方程:3x(x﹣1)=2(x﹣1).【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)方程整理,得:x2+2x﹣5=0,则x2+2x=5,∴x2+2x+1=5+1,即(x+1)2=6,∴x+1=±,∴x=﹣1±;(2)∵3x(x﹣1)﹣2(x﹣1)=0,∴(x﹣1)(3x﹣2)=0,则x﹣1=0或3x﹣2=0,解得x=1或x=.18.(7分)甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由【分析】(1)画树状图展示所有6种等可能的结果数,找出指针所在区域的数字之积为偶数的结果数,然后根据概率公式计算;(2)利用甲胜的概率=,乙胜的概率=,从而可判断这个游戏规则对甲、乙双方不公平.【解答】解:(1)画树状图为:共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,所以甲胜的概率==;(2)这个游戏规则对甲、乙双方不公平.理由如下:∵甲胜的概率=,乙胜的概率=,而≠,∴这个游戏规则对甲、乙双方不公平.19.(7分)已知二次函数的解析式是y=2x2﹣4x+3.(1)用配方法将解析式化成y=a(x﹣h)2+k的形式,并写出顶点C的坐标;(2)在直角坐标系中,画出它的大致图象;(3)若点A(1﹣a,y1)和B(2+a,y2)(a>0)在二次函数图象上,请利用图象直接写出y1与y2的大小关系.【分析】(1)直接利用配方法求出二次函数定点坐标即可;(2)求出二次函数与y轴交点,进而画出其图象;(3)直接利用二次函数的增减性进而得出答案.【解答】解:(1)y=2x2﹣4x+3=2(x2﹣2x)+3=2(x2﹣2x+1﹣1)+3=2(x﹣1)2+1,顶点C的坐标(1,1);(2)当x=0时,y=3,图象如图所示:(3)由(1)得抛物线的对称轴为x=1,∵1﹣(1﹣a)=a,2+a﹣1=1+a,且a>0,∴2+a距离对称轴x=1的距离远,又∵a>0,∴y2>y1.20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.【分析】(1)由∠AED=∠B、∠DAE=∠CAB利用三角形内角和定理可得出∠ADF=∠C,结合=,即可证出△ADF∽△ACG;(2)根据相似三角形的性质可得出=,由=可得出=,再结合FG=AG﹣AF即可求出的值.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.(2)∵△ADF∽△ACG,∴=.∵=,∴=,∴==1.21.(8分)某市某楼盘准备以每平方米12100元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后(每次降价的百分率相同),决定以每平方米10000元的均价开盘销售.(1)求平均每次下调的百分率(精确到0.01);(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月2元,请问哪种方案更优惠?【分析】(1)设平均每次下调的百分率为x,则12100(1﹣x)2=10000,即可求解;(2)①优惠:10000(1﹣0.98)×100=20000;②优惠:2×100×2×12=4800,即可求解.【解答】解:(1)设平均每次下调的百分率为x,则12100(1﹣x)2=10000,解得:x=9.09%;(2)①优惠:10000(1﹣0.98)×100=20000;②优惠:2×100×2×12=4800,故方案①更优惠.22.(8分)如图,对角线长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(a,)时,求a的值和反比例函数的解析式;(2)一次函数y=mx+n的图象过D、E两点,连接OD、OE,求△ODE的面积,并利用图象直接写出不等式mx+n﹣<0的解集.【分析】(1)根据正方形的性质得到AB=AD=BC=2,则利用点E的坐标为(a,)可表示出点D的坐标为(a﹣2,2),根据反比例函数图象上点的坐标特征得到a=2(a ﹣2),解得a=3,则D(1,2),E(3,),易得k=2,从而得到反比例函数解析式;(2)利用S△ODE=S△OAD+S梯形ABED﹣S△OBE=S梯形ABED进行计算,然后几何函数图象,写出反比例函数在一次函数图象上方所对应的自变量的范围得到不等式的解集.【解答】解:(1)∵四方形ABCD的对角线长为2,∴AB=AD=BC=2,∵点E的坐标为(a,),∴点D的坐标为(a﹣2,2),∵D点和E点都在反比例函数y=上,∴a=2(a﹣2),解得a=3,∴D(1,2),E(3,),∴k=1×2=2,∴反比例函数解析式为y=;(2)S△ODE=S△OAD+S梯形ABED﹣S△OBE=S梯形ABED=×(+2)×2=.当0<x<1或x>3时,反比例函数的函数值比一次函数的函数值大,所以不等式mx+n﹣<0的解集为0<x<1或x>3.23.(9分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.【分析】设每件涨价x元,则每件的利润是(60﹣40+x)元,所售件数是(300﹣10x)件,总利润为y;设每件降价a元,则每件的利润是(60﹣40﹣a)元,所售件数是(300+20a)件,总利润为w;根据利润=每件的利润×所售的件数,即可列出函数解析式,根据函数的性质即可求得如何定价才能使利润最大.【解答】解:设涨价x元,利润为y,则y=(60﹣40+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250因此当x=5时,y有最大值6250.60+5=65元每件定价为65元时利润最大.设每件降价a元,总利润为w,则w=(60﹣40﹣a)(300+20a)=﹣20a2+100a+6000=﹣20(a﹣2.5)2+6125因此当a=2.5时,w有最大值6125.每件定价为57.5元时利润最大.综上所知每件定价为65元时利润最大.24.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O 于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.25.(9分)如图,已知:直线y=﹣2x+m(m为常数),抛物线y=ax2﹣2ax+3的最大值为4,抛物线的顶点为A.(1)当直线经过A点时,求m的值;(2)当直线和抛物线在x轴上方的部分只有一个公共点时,求m的取值范围.(3)当直线与抛物线只有一个公共点D时,设点P是y轴上一动点,求|P A﹣PD|的最大值,并求取得最大值时P点的坐标.【分析】(1)抛物线y=ax2﹣2ax+3的最大值为4,函数的对称轴为:x=1,此时y=a ﹣2a+3=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,即可求解;(2)①当直线过(﹣1,0)时,则0=2+m,解得:m=﹣2;②当直线过(3,0)时,即0=﹣6+m,解得:m=6;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:x2﹣4x+m﹣3=0,△=(﹣4)2﹣4(m﹣3)=0,解得:m=7,此时交点坐标为:(2,3),即可求解;(3)由(2)知,点D(2,3),连接D、A交y轴于点P,则此时|P A﹣PD|有最大值,即点P为所求点,即可求解.【解答】解:(1)抛物线y=ax2﹣2ax+3的最大值为4,函数的对称轴为:x=1,此时y=a﹣2a+3=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;顶点A的坐标为:(1,4);将点A的坐标代入直线表达式并解得:m=6;(2)抛物线于x轴的交点坐标为:(﹣1,0)和(3,0);①当直线过(﹣1,0)时,则0=2+m,解得:m=﹣2;②当直线过(3,0)时,即0=﹣6+m,解得:m=6;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:x2﹣4x+m﹣3=0,△=(﹣4)2﹣4(m﹣3)=0,解得:m=7,此时交点坐标为:(2,3),当直线过(3,0)时,直线和抛物线在x轴上方的部分有两个公共点,故﹣2≤m<6或6<m≤7;(3)由(2)知,点D(2,3),连接D、A交y轴于点P,则此时|P A﹣PD|有最大值,即点P为所求点,由点A、D的坐标得,直线AD的表达式为:y=﹣x+5,故点P(0,5).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年初三上学期期末考试数学试题一、选择题(每题3分,满分30分)1.下面计算正确的是()A.B.C.D.2.已知△ABC∽△DEF,且相似比为1:△2,则ABC与△DEF的面积比为()A.1:4B.4:1C.1:2D.2:13.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定4.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣165.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米6.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=7.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是()A.8B.16C.8D.168.如图,在△ABC中,∠A=78°,AB=4,AC=△6,将ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.9.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.10.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.二、填空题(每题3分,满分18分)11.如果x:y=1:2,那么=.12.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=.13.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=.14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形,再分别依次从左到右取2个、3个、4个、5个…正方形拼成如上长方形,若按此规律继续作长方形,则序号为⑦的长方形周长是.∠BA C = ,计算 tan ∠BA C =,…按此规律,写出 t an ∠BA C =(用含 n(15.如图,把 n 个边长为 1 的正方形拼接成一排,求得 tan ∠BA C =1,tan ∠BA C = ,tan123 4n的代数式表示).16.如图,在矩形 ABCD 中,∠B 的平分线 BE 与 AD 交于点 E ,∠BED 的平分线 EF 与 DC 交于点 F ,若 AB =9,DF =2FC ,则 BC =.(结果保留根号)三.解答题(本大题共 6 题,满分 72 分)17.(10 分)(1)计算:(2)解分式方程:18.(6 分)如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4 和方块 1,2,3,4,将 它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于 5 的概率是多少?请你用列表法加以分析说明.19. 8 分)已知双曲线 y = 和直线 y =kx +2 相交于点 A (x ,y )和点 B (x ,y ),且 x 2+x 2 112212=10,求 k 的值.20.(8 分)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且距离为0.8米.已知小汽车车门宽A O为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)21.(10分)我市某楼盘准备以每平方米8000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米6480元的均价开盘销售(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元.试问哪种方案更优惠?22.(10分)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AB=5x,AE=2x,AC=3x+2,AD=2x+1,求BC的长.23.(10分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC 于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(10分)如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=△x,DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(△3)当DEF为等腰三角形时,求线段BE的长.参考答案一、选择题1.下面计算正确的是()A.B.C.D.【分析】根据二次根式的混合运算方法,分别进行运算即可.解:A.3+不是同类项无法进行运算,故A选项错误;B.C.=×====3,故B选项正确;,故C选项错误;D.∵==2,故D选项错误;故选:B.【点评】此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2.已知△ABC∽△DEF,且相似比为1:△2,则ABC与△DEF的面积比为()A.1:4B.4:1C.1:2D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:A.【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.3.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.4.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣=﹣1,=﹣2,∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选:C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.5.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在△R t ABC中,设BC=5k,AC=12k,利用勾股定理求出k即可解决问题;解:作BC⊥AC.在△R t ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=【分析】根据方程的系数结合根的判别式,即可得出=△9﹣8m=0,解之即可得出结论.解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴=△32﹣4×2m=9﹣8m=0,解得:m=.故选:C.【点评】本题考查了根的判别式,牢记“当=△0时,方程有两个相等的实数根”是解题的关键.7.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是()A.8B.16C.8D.16【分析】先证明△ADC是等边三角形,根据锐角三角函数得出CE=出CD,即可得出周长.解:∵四边形ABCD是菱形,∴AD=CD,又∵CD=AC,∴AD=CD=AC,CD,由菱形的面积求即△ADC是等边三角形,∴∠D=60°,∴CE=CD•sin60°=CD,∵菱形ABCDABCD的面积=AD•CE=∴CD=2,CD2=4,∴菱形ABCD的周长为2×4=8;故选:A.【点评】本题考查了菱形的性质、翻折变换以及锐角三角函数的运用;证明△ADC是等边三角形,根据面积求出边长是解决问题的关键.8.如图,在△ABC中,∠A=78°,AB=4,AC=△6,将ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况,∴甲、乙同学获得前两名的概率是=;故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.【分析】作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB=故选:D.==.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题(本大题共6题,每题3分,满分18分)个11.如果x:y=1:2,那么=.【分析】根据合比性质,可得答案.解:+1=+1,即=.故答案为:.【点评】本题考查了比例的性质,利用了和比性质:==.12.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=5.【分析】根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把m2+3m+n转化为m2+2m+m+n的形式,结合根与系数的关系以及一元二次方程的解即可解答.13.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=.【分析】直接利用位似图形的性质得出△OEF∽△OAB,△OFG∽△OBC,进而得出答案.解:如图所示:∵四边形ABCD与四边形EFGH位似,∴△OEF∽△OAB,△OFG∽△OBC,∴∴===,=.故答案为:.【点评】此题主要考查了位似变换,正确得出相似比是解题关键.14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形,再分别依次从左到右取2个、3个、4个、5个…正方形拼成如上长方形,若按此规律继续作长方形,则序号为⑦的长方形周长是110.【分析】根据图示规律,依次写出相应序号的矩形的宽与长,便不难发现,下一个矩形的宽是上一个矩形的长,长是上一个矩形的长与宽的和,然后写到序号为⑧的矩形宽与长,再根据矩形的周长公式计算即可得解.解:由图可知,序号为①的矩形的宽为1,长为2,序号为②的矩形的宽为2,长为3,3=1+2,序号为③的矩形的宽为3,长为5,5=2+3,,…按此规律,写出tan∠BA C=(用序号为④的矩形的宽为5,长为8,8=3+5,序号为⑤的矩形的宽为8,长为13,13=5+8,序号为⑥的矩形的宽为13,长为21,21=8+13,序号为⑦的矩形的宽为21,长为34,34=13+21,所以,序号为⑦的矩形周长=2(34+21)=2×55=110.故答案为:110.【点评】考查了图形的变化类问题,要想得到长方形的周长规律,应先找长方形长、宽的变换规律.分析图形中的长和宽,然后结合图表中长方形的周长即可得出长方形周长的变换规律.15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA C=1,tan∠BA C=,tan12∠BA C=,计算tan∠BA C=34含n的代数式表示).n【分析】作CH⊥BA于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A H,44根据正切的概念求出tan∠BA C,总结规律解答.4解:作CH⊥BA于H,4由勾股定理得,BA==,A C=,44△B A C的面积=4﹣2﹣=,4∴××CH=,解得,CH=,则A H=4∴tan∠BA C=41=12﹣1+1,3=22﹣2+1,==,,∴tan∠BA C=7=32﹣3+1,n,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.16.如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=( 由∠G =∠DEF ,∠EFD =∠GFC ,可得△EFD ∽△GFC∴设 CG =x ,DE =2x ,则 AD =9+2x =BC∵BG =BC +CG∴=9+2x +x解得 x =∴BC =9+2(故答案为:﹣3)=【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.三.解答题(本大题共 6 题,满分 72 分)17.(10 分)(1)计算:(2)解分式方程:【分析】 1)根据特殊角的三角函数值、二次根式的乘法和加减法可以解答本题;(2)根据解分式方程的方法可以解答此方程.解:(1)===+2= ;(2)方程两边同乘以x(x+1),得3=x(x+1)﹣3x去括号,得3=x2+x﹣3x移项及合并同类项,得x2﹣2x﹣3=0∴(x﹣3)(x+1)=0,解得,x=3,x=﹣1,12经检验,x=3时原分式方程的根,x=﹣1不是原分式方程的根,∴原分式方程的根是x=3.【点评】本题考查二次根式的混合运算、特殊角的三角函数值、解分式方程,解答本题的关键是明确它们各自的计算方法.18.(6分)如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表法加以分析说明.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:可以用下表列举所有可能得到的牌面数字之和:方块黑桃12341231+1=21+2=31+3=42+1=32+2=42+3=53+1=43+2=53+3=64+1=54+2=64+3=7( 41+4=5 2+4=6 3+4=7 4+4=8由上表可知,共有 16 种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5 的情况共出现 4 次,因此牌面数字之和等于 5 的概率为= .【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.概率=所求情况数与总情况数之比.19. 8 分)已知双曲线 y = 和直线 y =kx +2 相交于点 A (x ,y )和点 B (x ,y ),且 x 2+x 2 112212=10,求 k 的值.【分析】由 ,消去 y 得到:kx 2+2x ﹣2=0,根据 x 2+x 2=10,利用根与系数的关系12构建方程求出 k 即可;解:由,消去 y 得到:kx 2+2x ﹣2=0,由题意:x +x =﹣ ,x x =﹣ ,121 2∵x 2+x 2=10,12∴(x +x )2﹣2x x =10,121 2∴+ =10,解得 k =,经检验 k =是分式方程的解.∴k =.【点评】本题考查反比例函数与一次函数的交点问题,一元二次方程的根与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.20.(8 分)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且距离为 0.8 米.已知小汽车车门宽 A O 为 1.2 米,当车门打开角度∠AOB 为 40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)【分析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.解:过点A作AC⊥OB,垂足为点C,在△R t ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin∠AOC•AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙.【点评】本题主要考查了解直角三角形的应用,解题的关键是正确添加辅助线,此题难度不大.21.(10分)我市某楼盘准备以每平方米8000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米6480元的均价开盘销售(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元.试问哪种方案更优惠?【分析】1)设出平均每次下调的百分率为x,利用准备每平方米销售价格×(1﹣每次下(调的百分率)2=开盘每平方米销售价格,列方程解答即可;(2)分别利用两种销售方式求出房子的优惠价,进而得出答案.解:(1)设平均每次下调的百分比为x,由题意得:8000(1﹣x)2=6480,解得:x=0.1=10%,x=1.9(不合题意,舍去),12所以平均每次下调的百分率为10%;(2)方案①购房优惠:6480×100×(1﹣0.98)=12960(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】此题考查了一元二次方程的应用,基本数量关系:准备每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格.22.(10分)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AB=5x,AE=2x,AC=3x+2,AD=2x+1,求BC的长.【分析】根据相似三角形的判定与性质即可求出答案.解:∵DE⊥AB,∴∠AED=∠C=90°,∵∠A=∠A,∴,∴,∴4x2﹣7x﹣2=0,∴x=2或x=(舍去),∴AB=10,AC=8,∴由勾股定理可知:BC=6.( △S OAD 进行计算.【点评】本题考查相似三角形,涉及一元二次方程的解法,相似三角形的判定与性质,勾股定理,需要学生灵活运用所学知识.23.(10 分)如图,在直角梯形OABC 中,BC ∥AO ,∠AOC =90°,点 A ,B 的坐标分别为(5,0),(2,6),点 D 为 AB 上一点,且 BD =2AD ,双曲线 y = (k >0)经过点 D ,交 BC 于点 E .(1)求双曲线的解析式;(2)求四边形 ODBE 的面积.【分析】 1)作 BM ⊥x 轴于 M ,作 DN ⊥x 轴于 N ,利用点 A ,B 的坐标得到 BC =OM =2,BM =OC =6,AM =△3,再证明 ADN ∽△ABM ,利用相似比可计算出 DN =2,AN =1,则 ON =OA ﹣AN =4,得到 D 点坐标为(4,2),然后把 D 点坐标代入 y = 中求出 k 的值即可得到反比例函数解析式;(2)根据反比例函数 k 的几何意义和 S=S 四边形 ODBE梯形 OABC △S OCE ﹣ ﹣解:(1)作 BM ⊥x 轴于 M ,作 DN ⊥x 轴于 N ,如图,∵点 A ,B 的坐标分别为(5,0),(2,6),∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴= = ,即 = = ,∴DN =2,AN =1,∴ON =OA ﹣AN =4,∴D 点坐标为(4,2),把 D (4,2)代入 y = 得 k =2×4=8,∴反比例函数解析式为 y = ;((2)S=S 四边形 ODBE 梯形 OABC △S OCE △S OAD ﹣ ﹣ = ×(2+5)×6﹣ ×|8|﹣ ×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征 、反比例函数 k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(10 分)如图,已知四边形 ABCD 是矩形,cot ∠ADB = ,AB =16.点 E 在射线 BC 上,点 F 在线段 BD 上,且∠DEF =∠ADB .(1)求线段 BD 的长;(2)设 BE =△x , DEF 的面积为 y ,求 y 关于 x 的函数关系式,并写出函数定义域;(△3)当 DEF 为等腰三角形时,求线段 BE 的长.【分析】 1)由矩形的性质和三角函数定义求出 AD ,由勾股定理求出 BD 即可;(△2)证明 EDF ∽△BDE ,得出,求出 CE =|x ﹣12|,由勾股定理求出 DE ,即可得出结果;(△3)当 DEF 是等腰三角形时,△BDE 也是等腰三角形,分情况讨论:①当 BE =BD 时;②当 DE =DB 时;③当 EB =ED 时;分别求出 BE 即可.解:(1)∵四边形 ABCD 是矩形,∴∠A=90°,在△R t BAD中,,AB=16,;∴AD=12∴(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16,∴在△R t CDE中,∵,∴,∴,定义域为0<x≤24(△3)∵EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,,cos∠HBE=cos∠ADB,作EH⊥BD于H,则BH=即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.。

相关文档
最新文档