纯电动汽车的结构和驱动系统性能比较资料
简述纯电动汽车的定义及组成

简述纯电动汽车的定义及组成纯电动汽车(Battery Electric Vehicle,BEV)是指完全依靠电池储存电能驱动的汽车,不使用任何燃油。
相对于传统的内燃机汽车,纯电动汽车具有环保、低噪音和低能耗的特点。
在当前全球对环境保护和能源危机的关注下,纯电动汽车成为了可持续发展的重要选择。
纯电动汽车的组成主要包括电动机、电池组、电子控制系统和辅助系统等几个主要部分。
首先,电动机是纯电动汽车的核心动力部件。
电动机根据控制信号将电能转化为机械能,从而驱动车辆前进。
电动机具有高效率、低噪音和高扭矩等优点,相对于传统的内燃机,电动机的效能更高,同时也减少了能源浪费和环境污染。
其次,电池组是纯电动汽车储存电能的部分,是纯电动汽车的“能源之源”。
电池组是由多个电池单体组成的,通常采用锂离子电池。
电池组的电能储存能力直接影响纯电动汽车的续航里程。
随着科技的进步和电池技术的改进,纯电动汽车的续航里程不断提高,解决了过去纯电动汽车的短续航里程的问题。
再次,电子控制系统是纯电动汽车的“大脑”,负责电能的转换和控制。
电子控制系统包括电控单元、电池管理系统、充电管理系统和动力总成控制系统等。
电子控制系统通过精确的控制和调节,实现电能的高效转换和利用,提升纯电动汽车的性能和安全性。
此外,纯电动汽车还包括辅助系统,如制动系统、转向系统和底盘系统等,这些系统和传统的内燃机汽车相似,用于提供车辆的基本功能和安全性。
纯电动汽车的发展面临着一些挑战。
首先是续航里程的限制,虽然电池技术不断提高,但纯电动汽车的续航里程仍然相对较短,这限制了它在长途出行方面的应用。
其次是充电设施的建设和充电时间的长,充电设施的不足和充电时间的长是使用纯电动汽车的一大障碍。
此外,电池的成本也是纯电动汽车发展的一个问题,电池的高成本限制了纯电动汽车的市场竞争力。
尽管存在一些挑战,纯电动汽车的发展势头依然强劲。
随着技术的不断进步和政府对电动汽车的支持,纯电动汽车的销量和市场份额都在不断增长。
简述纯电动汽车驱动系统的组成

简述纯电动汽车驱动系统的组成纯电动汽车驱动系统是指由电动机、电池组、电控系统和传动装置等组成的系统,用于提供动力和驱动纯电动汽车行驶。
1. 电动机电动机是纯电动汽车驱动系统的核心部件,负责将电能转化为机械能,驱动车辆前进。
电动汽车常用的电动机有直流电动机和交流电动机两种。
直流电动机具有结构简单、转速范围广、起动扭矩大等特点,而交流电动机则具有效率高、控制方便等优势。
2. 电池组电池组是纯电动汽车的能量存储装置,负责储存电能以供电动机使用。
电池组的类型多样,常见的有锂离子电池、镍氢电池和钠离子电池等。
锂离子电池具有能量密度高、重量轻、寿命长等优点,因此被广泛应用于纯电动汽车。
3. 电控系统电控系统是纯电动汽车驱动系统的控制中枢,负责对电动机和电池组进行控制和调节。
电控系统包括电控器、传感器、控制算法等组成。
电控系统可以根据车辆的需求,控制电动机的转速、扭矩和能量输出等参数,以实现车辆的动力和能耗控制。
4. 传动装置传动装置是将电动机的动力传输到车轮上的装置。
传动装置通常由减速器和差速器组成。
减速器用于降低电动机的转速,并提供足够的扭矩输出;差速器则用于实现车轮的差速调节,使车辆在转弯时能够平稳行驶。
除了以上基本组成部件外,纯电动汽车驱动系统还包括辅助设备,如充电设备、电池管理系统和辅助电器等。
充电设备用于将外部电源的交流电能转化为电池组所需的直流电能;电池管理系统用于对电池组进行监控和管理,以确保电池组的安全和性能;辅助电器则提供车辆的辅助功能,如空调、音响等。
纯电动汽车驱动系统的组成部件之间相互协调配合,共同实现车辆的动力输出和行驶控制。
电动机将电能转化为机械能,通过传动装置将动力传递到车轮上,从而实现车辆的行驶。
电池组提供所需的电能,电控系统对电动机和电池组进行精确控制,以满足车辆在不同工况下的动力需求。
通过不断的技术创新和研发,纯电动汽车驱动系统的性能和效率得到了不断提升,使得纯电动汽车逐渐成为了可行的替代传统燃油车的选择。
简述纯电动汽车的结构组成及工作原理

纯电动汽车是一种以电动机为动力源的汽车,它不同于传统汽车所使用的内燃机。
其结构组成及工作原理是现代汽车科技领域一个备受瞩目的话题。
在本文中,我们将从深度和广度的角度全面评估纯电动汽车的结构组成及工作原理,以便读者能更加全面、深刻地了解这一主题。
一、电池系统1. 锂电池组成:锂电池是纯电动汽车的动力源,它由正极、负极、隔膜和电解液组成。
正极一般是由氧化物制成,负极是由石墨制成,隔膜是防止正负极直接接触的薄膜,电解液则是锂离子的传导介质。
2. 充放电原理:电池的充放电原理是纯电动汽车实现能量转换的基础。
在充电时,电池会吸收外部电能将电子转移到正极,使正极富集锂离子;在放电时,电池会释放储存的电能,电子从负极流向正极,使正极的锂离子逐渐流失。
二、电动机系统1. 电动机类型:纯电动汽车的电动机多采用交流异步电动机或永磁同步电动机,其中永磁同步电动机因其高效、可靠性强等特点而被广泛应用。
2. 工作原理:电动机通过电池提供的直流电能,将电能转化为机械能驱动汽车前进。
在工作时,电动机会根据车辆行驶需求,通过控制电流大小和方向来调节转矩和转速,从而实现汽车的加速、减速和行驶控制。
三、能量管理系统1. 控制单元:纯电动汽车的能量管理系统包含控制单元,它负责监控和控制电池、电动机和其它配套设备的工作状态,以保证整车的安全、高效运行。
2. 能量回收:在行驶中,纯电动汽车通过电动机的反向工作,将制动能量转化为电能储存在电池中,实现了能量的回收和再利用。
结语通过上述对纯电动汽车的结构组成及工作原理的全面评估,我们可以更加深入地了解纯电动汽车的核心技术和原理。
纯电动汽车以其环保、经济等优势逐渐成为汽车行业的发展趋势,而对其结构和工作原理的深入理解则对我们更好地把握汽车科技发展方向具有重要意义。
个人观点作为一名汽车科技爱好者,我深信纯电动汽车必将成为未来汽车发展的主流,而对其结构组成及工作原理的深入理解将帮助我们更好地应对环保和能源危机的挑战。
简述纯电动汽车的组成结构

简述纯电动汽车的组成结构
纯电动汽车的组成结构主要包括以下几个方面:
1. 电池系统:纯电动汽车的核心就是电池系统,它提供电能给电动机驱动车辆运行。
电池系统主要由电池组、电池管理系统和电池冷却系统组成。
2. 电动机系统:电动机是纯电动汽车的动力源,它将电能转化为机械能驱动车辆。
电动机系统主要包括电动机、变速器和驱动轮等部分。
3. 控制系统:控制系统是纯电动汽车的智能核心,它负责监测和控制电池、电动机等系统的运行。
控制系统可以实现电池的充放电管理、电动机的控制和整车的动力分配等功能。
4. 辅助系统:纯电动汽车还需要一些辅助系统来保证正常运行,如制动系统、悬挂系统、转向系统、空调系统等。
此外,纯电动汽车还包括一些其他的部件,如充电系统、能量回收系统、车身结构等。
充电系统用于给电池充电,能量回收系统可以将制动能量转化为电能储存到电池中,车身结构则是为了保证车辆的安全性和舒适性。
总的来说,纯电动汽车的组成结构相对于传统燃油汽车来说更加简单,同时也更加环保和高效。
纯电动汽车结构与原理介绍

纯电动汽车结构与原理介绍纯电动汽车是一种通过电池供电驱动电动机来实现汽车运行的新型车辆。
相比传统内燃机车辆,纯电动汽车具有零排放、低噪音、低维护成本等优势,受到越来越多消费者的青睐。
纯电动汽车的结构和原理是怎样的呢?本文将介绍纯电动汽车的结构和工作原理。
一、电池系统纯电动汽车的核心是电池系统,电池是储存电能的设备。
电池通常分为锂电池、镍氢电池等不同种类。
电池通过充电桩充电,将电能储存在电池中。
在行驶过程中,电池释放电能供给电动机驱动汽车运行。
二、电动机驱动系统电动机是纯电动汽车的动力来源,电池释放的电能经过控制器控制电动机的速度和扭矩,从而驱动汽车行驶。
电动机具有高效率、低噪音、响应快等优点,是纯电动汽车的关键组成部分。
三、动力传动系统动力传动系统将电动机产生的动力传递给汽车的驱动轮,使汽车运行。
在一般纯电动汽车中,常见的传动方式包括单速变速箱、双速变速箱等。
四、车身结构纯电动汽车的车身结构和传统汽车基本相同,包括车身框架、车身乘员舱、悬挂系统、制动系统、轮胎等部分。
但由于电池的安装需要考虑重量平衡和碰撞安全等问题,纯电动汽车在车身结构上可能会有所不同。
五、能量回收系统纯电动汽车在行驶过程中会通过电动机的反向工作将制动能量转化为电能,将其储存到电池中,实现能量的回收再利用。
这不仅可以提高车辆的能效,还能延长电池的寿命。
六、辅助系统在纯电动汽车中,还包括了辅助系统,如空调系统、暖风系统、座椅加热系统等。
这些系统同样通过电能供给,使纯电动汽车具备舒适的驾乘体验。
综上所述,纯电动汽车的结构包括电池系统、电动机驱动系统、动力传动系统、车身结构、能量回收系统以及辅助系统,其工作原理是基于电池储能、电动机驱动、能量回收等关键技术的实现。
随着技术的进步和应用范围的扩大,纯电动汽车将在未来成为主流,推动汽车产业向清洁、智能的方向发展。
电动汽车主要驱动方式对比

导读:电动汽车可分为两种:单电机集中驱动型式电动汽车(简称集中驱动式电动汽车)和多电机分布驱动型式电动汽车(简称分布式驱动电动汽车)。
电动汽车作为一种工业产品,以电池为主要能量源,动力源全部或部分由电动机提供,涉及机械、电力电子、通信、嵌入式控制等多个学科领域。
电动汽车与传统汽车相比,能量源、驱动系统结构都发生了极大的改变。
根据驱动系统结构布置的不同,电动汽车可分为两种:单电机集中驱动型式电动汽车(简称集中驱动式电动汽车)和多电机分布驱动型式电动汽车(简称分布式驱动电动汽车)。
1、传统集中式驱动结构类型集中驱动式电动汽车与传统内燃机汽车的驱动结构布置方式相似,用电动机及相关部件替换内燃机,通过变速器、减速器等机械传动装置,将电动机输出力矩,传递到左右车轮驱动汽车行驶。
集中驱动式电动汽车操作实现技术成熟、安全可靠,但存在体积较重,效率相对不高等不足。
随着纯电动汽车技术研究的深入,纯电动汽车的驱动系统的布置结构也逐渐由单一动力源的集中式驱动系统向多动力源的分布式驱动系统发展。
图1.1为电动汽车不同驱动系统的结构示意图。
图1.1(a)为单电动机集中驱动型式,由电动机、减速器和差速器等构成,由于没有离合器和变速器,可以减少传动装置的体积及质量。
图1.1(b)也为单集中驱动型式,与发动机横向前置前驱的内燃机汽车结构布置方式相似,将电动机、减速器和差速器集成一体,通过左右半轴分别驱动两侧车轮,该布置型式结构紧凑,多用于小型电动汽车上。
图1.1(c)为双电机分布驱动型式,两个驱动电机通过减速器分别驱动左右两侧车轮,可通过电子差速控制实现转向行驶,以取代机械差速器,该驱动方式为目前研究的热点。
图1.1(d)为轮毂电机分布式驱动型式,电动机和固定速比的行星齿轮减速器安装在车轮里面,省去传动轴和差速器,从而使传动系统得到简化。
该驱动方式对驱动电机的要求较高,同时控制算法也比较复杂。
2、分布式驱动电动汽车结构类型分布式驱动电动汽车按照动力系统的组织构型不同可分为两种:电机与减速器组合驱动型式,轮边电机或轮毂电机驱动型式。
纯电动汽车结构组成

纯电动汽车结构组成
1、纯电动汽车主要由电力驱动控制系统、汽车底盘、车身以及各种辅助装置等部分组成。
除了电力驱动控制系统外,其他部分的功能及其结构组成基本与传统汽车类同,只是有些部件根据所选的驱动方式不同,已被简化或省去。
2、传统内燃机汽车主要由发动机、底盘、车身、电气设备四大部分组成。
纯电动汽车与传统汽车相比,取消了发动机,传动机构发生了改变,根据驱动方式不同,部分部件已经简化或者取消,增加了电源系统和驱动电机等新机构。
由于以上系统功能的改变,纯电动汽车改由新的四大部分组成:电力驱动控制系统、底盘、车身、辅助系统。
3、电力驱动控制系统既决定了整个纯电动汽车的结构组成及其性能特征,也是纯电动汽车的核心,它相当于传统汽车中的发动机与其他功能以机电一体化方式相结合,这也是区别于传统内燃机汽车的最大不同点。
纯电动汽车的基本机构及优缺点分析

纯电动汽车的基本机构及优缺点分析摘要: 汽车保有量的持续增加促使石油资源的消耗量逐日增多,传统汽车在消耗大量自然资源的同时,还造成了严重的环境污染,环境污染程度已经远超过大自然的自我净化能力,致使空气质量指数持续下降危及人们的身屯、健康。
大力发展环保清洁的新能源汽车是目前缓解石油紧缺、解决环境污染问题的有效措施。
各国纷纷倡导绿色出行,环保、高效、零排放的纯电动汽车始终是我国新能源汽车发展的布局中心。
纯电动汽车与传统内燃机汽车动力源存在明显差异,内部结构极大简化,大幅提升了电动汽车内部布局的灵活性和造型的自由度,然而现有纯电动汽车尚未形成独有的设计特征。
文章对新能源纯电动车的相关技术要点进行分析。
关键词:新能源汽车;双电机;电动汽车;驱动系统1新能源纯电动车定义与原理纯电动汽车顾名思义,是利用单一蓄电池作为储能动力源,通过电动机、电力驱动及控制系统、传动系统等来驱动行驶并符合道路交通、安全法规各项要求的车辆。
传统汽车的驱动模式是内燃机对在油箱中储存的化石燃料做功产生动力,通过离合器、变速箱等传动系统到达车轮驱驶汽车运动;纯电动汽车则是集成式驱动模式,直接利用电池储存的电能,通过控制系统来驱动电动机产生动力,再通过传动系统驱动车轮行驶。
2新能源纯电动车优缺点2.1优点新能源汽车与传统的汽车相比较而言,其能耗更低,新能源纯电动汽车消耗的能源主要是电能,传统汽车消耗的是汽油、柴油,相比之下,新能源纯电动车具有更多优点,具体如下。
(1)零排放。
电动汽车以电能为动力源,不是油类,所以在行驶的时候不会排放出二氧化碳等污染物。
(2)能源利用率高。
电动汽车动力源的来源有很多,比如风力发电、水力发电、太阳能发电等,这些都可以产生电能,而且科技快速发展,还会不断拓展纯电动汽车能源的范围,使得纯电动汽车的能源更多样化。
另外,有研究显示,传统汽车所消耗的原油,必须要经过提炼之后才可以用于汽车,原油经过提炼之后送到加油站,燃油在燃烧过程中的能量效率大约为13%,但是纯电动汽车所消耗的电能,只需要经过电力传输驱使汽车行驶,其能量效率大约为18%左右,由此可见,纯电动汽车的能源利用率更高。
简述纯电动汽车结构及工作原理

简述纯电动汽车结构及工作原理纯电动汽车是指完全依靠电能驱动的汽车,其结构和工作原理与传统燃油汽车有较大的不同。
本文将以标题“纯电动汽车结构及工作原理”为主题,详细介绍纯电动汽车的构成和运行原理。
一、纯电动汽车的结构1. 电池组:电池组是纯电动汽车的核心组件,它负责储存电能。
多数纯电动汽车采用锂离子电池作为电源,其能量密度高、重量轻、寿命长。
电池组通常由多个电池单体串联而成,以提供足够的电压和容量,满足汽车的动力需求。
2. 电机:电动汽车的驱动力来自电机。
电机将电能转化为机械能,通过传动系统驱动车轮运动。
纯电动汽车一般采用交流电动机,其特点是转速范围广、效率高、响应迅速。
电机通常安装在汽车的前后轴上,通过减速装置与车轮相连接。
3. 控制系统:控制系统是纯电动汽车的大脑,负责监测和控制电池组、电机等各个部件的工作状态,以实现车辆的正常运行。
控制系统包括电池管理系统、电机控制系统、车辆管理系统等。
其中,电池管理系统用于监测电池的电量、温度等信息,确保电池组的安全和性能;电机控制系统则控制电机的启停、转速等参数,实现车辆的加速、减速等操作。
4. 充电系统:纯电动汽车需要通过充电系统为电池组充电。
充电系统包括充电桩、充电线缆和车辆内部的充电控制装置。
用户可以在家中或公共充电站进行充电,充电时间和方式根据电池容量和充电设备的功率而定。
5. 辅助系统:辅助系统包括空调系统、制动系统、电力转向系统等。
这些系统与传统汽车相似,但在纯电动汽车中,它们都由电能驱动,减少了对燃油的依赖。
二、纯电动汽车的工作原理纯电动汽车的工作原理可简要概括为:电池组储存电能,电机将电能转化为机械能驱动车辆,通过控制系统实现对电池组和电机的监测和控制,辅助系统提供额外的功能支持。
1. 充电:纯电动汽车需要通过外部电源对电池组进行充电。
充电桩将交流电转化为直流电,通过充电线缆连接到车辆中的充电控制装置,再将电能存储到电池组中。
2. 行驶:当电池组充满电后,电机可以将电能转化为机械能,驱动车辆行驶。
电动汽车的组成及特点

电动汽车的组成及特点电动汽车是一种以电能为动力的汽车,与传统的燃油汽车相比,它具有许多独特的特点和优势。
本文将从电动汽车的组成和特点两个方面进行阐述,并结合标题中心扩展下的描述进行详细解释。
一、电动汽车的组成电动汽车的组成主要包括电池组、电机、控制器、充电器和车身等部分。
1.电池组电池组是电动汽车的核心部件,它负责储存电能,为电机提供动力。
电池组的种类有很多,常见的有铅酸电池、镍氢电池、锂离子电池等。
其中,锂离子电池是目前电动汽车中使用最广泛的电池类型,它具有能量密度高、寿命长、重量轻等优点。
2.电机电机是电动汽车的动力源,它将电能转化为机械能,驱动车轮运动。
电动汽车中常用的电机类型有直流电机、交流电机和永磁同步电机等。
其中,永磁同步电机具有效率高、噪音小、体积小等优点,是目前电动汽车中使用最广泛的电机类型。
3.控制器控制器是电动汽车的“大脑”,它负责控制电机的转速和转向,实现车辆的加速、减速和转向等功能。
控制器的种类有很多,常见的有直流控制器、交流控制器和电机控制器等。
4.充电器充电器是电动汽车的“加油站”,它负责将外部电源的电能转化为电池组的电能,为电动汽车充电。
充电器的种类有很多,常见的有交流充电器和直流充电器等。
5.车身车身是电动汽车的外壳部分,它包括车轮、底盘、车身结构等部分。
电动汽车的车身结构与传统燃油汽车相似,但由于电池组的重量较大,因此需要在车身结构上进行一定的优化和改进。
二、电动汽车的特点电动汽车相比传统燃油汽车具有以下几个特点:1.环保节能电动汽车使用电能作为动力源,不会产生尾气和噪音污染,具有很好的环保性能。
同时,电动汽车的能源利用效率高,能够节约能源,降低能源消耗。
2.动力强劲电动汽车的电机具有高效率、高转矩的特点,能够提供强劲的动力输出,加速性能优异。
3.维护成本低电动汽车的动力系统相对简单,没有传统燃油汽车中的发动机、变速器等部件,因此维护成本较低。
4.驾驶体验好电动汽车的电机响应速度快,加速平稳,噪音小,驾驶体验非常好。
纯电动汽车结构组成

纯电动汽车结构组成随着环保意识的不断提高,纯电动汽车逐渐成为人们关注的焦点。
那么,纯电动汽车的结构组成是怎样的呢?纯电动汽车的结构组成主要包括电池组、电机、电控系统、车身结构和辅助系统等几个方面。
电池组是纯电动汽车最重要的组成部分之一。
电池组是由多个电池单体组成的,其主要作用是储存电能,为电机提供动力。
电池组的种类有很多,如锂离子电池、镍氢电池等。
其中,锂离子电池是目前应用最广泛的电池类型,因其能量密度高、寿命长、重量轻等优点而备受青睐。
电机是纯电动汽车的动力源,其作用是将电池组储存的电能转化为机械能,驱动车辆行驶。
电机的种类也有很多,如永磁同步电机、异步电机等。
其中,永磁同步电机因其高效率、高功率密度等优点而成为纯电动汽车中最常用的电机类型。
除了电池组和电机,电控系统也是纯电动汽车不可或缺的组成部分。
电控系统主要由控制器、传感器、电缆等组成,其作用是控制电机的转速和转矩,保证车辆的安全性和稳定性。
电控系统的设计和优化对纯电动汽车的性能和续航里程有着至关重要的影响。
车身结构也是纯电动汽车的重要组成部分。
纯电动汽车的车身结构相对于传统汽车来说更加轻量化,采用了更多的高强度材料,如碳纤维、铝合金等。
这不仅可以减轻车身重量,提高车辆的能效,还可以提高车辆的安全性和稳定性。
辅助系统也是纯电动汽车的重要组成部分。
辅助系统包括制动系统、悬挂系统、轮胎等,其作用是保证车辆的行驶安全和舒适性。
纯电动汽车的辅助系统相对于传统汽车来说也有所不同,如采用了电子制动系统、气动悬挂系统等。
纯电动汽车的结构组成包括电池组、电机、电控系统、车身结构和辅助系统等几个方面。
这些组成部分的设计和优化对纯电动汽车的性能和续航里程有着至关重要的影响。
未来,随着技术的不断进步和创新,纯电动汽车的结构组成也将不断完善和优化,为人们带来更加环保、高效、安全的出行体验。
纯电动汽车驱动系统工作原理

纯电动汽车驱动系统工作原理纯电动汽车是指完全依靠电池供电的汽车,其驱动系统与传统汽车有很大的不同。
纯电动汽车的驱动系统主要由电机、电池、控制器和传动系统组成。
本文将详细介绍纯电动汽车驱动系统的工作原理。
电机纯电动汽车的驱动系统采用电动机作为动力源。
电动机是将电能转化为机械能的装置,其工作原理是利用电磁感应原理,通过电流在磁场中的作用,产生转矩,从而驱动车轮转动。
电动机的种类有直流电动机、交流异步电动机、交流同步电动机等,其中交流异步电动机和交流同步电动机是目前纯电动汽车中应用最广泛的电动机。
电池电池是纯电动汽车的能量储存装置,其主要作用是将电能储存起来,以供电动机使用。
电池的种类有铅酸电池、镍氢电池、锂离子电池等,其中锂离子电池是目前纯电动汽车中应用最广泛的电池。
锂离子电池具有能量密度高、重量轻、寿命长等优点,但其成本较高。
控制器控制器是纯电动汽车驱动系统的核心部件,其主要作用是控制电动机的转速和转矩,以实现车辆的加速、减速和制动等功能。
控制器还可以监测电池的电量和温度等参数,以保证电池的安全和稳定运行。
控制器的种类有直流控制器、交流控制器等,其中交流控制器是目前纯电动汽车中应用最广泛的控制器。
传动系统传动系统是将电动机的动力传递到车轮上的装置,其主要作用是将电动机的转速和转矩转化为车轮的转速和转矩。
传动系统的种类有单速传动系统、多速传动系统等,其中单速传动系统是目前纯电动汽车中应用最广泛的传动系统。
纯电动汽车驱动系统的工作原理纯电动汽车驱动系统的工作原理可以简单概括为:电池提供电能,控制器控制电动机的转速和转矩,电动机将电能转化为机械能,传动系统将机械能传递到车轮上,从而驱动车辆行驶。
具体来说,当驾驶员踩下油门踏板时,控制器会根据油门踏板的位置和车速等参数,计算出电动机需要的转速和转矩。
然后,控制器会向电动机发送控制信号,控制电动机的转速和转矩。
电动机接收到控制信号后,会根据信号的指令,产生相应的转矩,从而驱动车轮转动。
纯电动汽车动力系统参数匹配及性能分析

• 差速半轴方案和传统汽车的传动方式较为类似。不过由于某些 电动汽车可以做的比较轻巧,以及电机的外特性特征,某些电 动汽车可以取消多挡变速装置。
• 电动轮方案相对于传统汽车来说,是革命性的。电机直接和车 轮耦合,或者通过轮边减速器和车轮耦合。取消了机械差速装 置,而采取电子差速。其可以给电动汽车的动力性、通过性等 表现带来巨大的改变。
传动系匹配思路
获得动力性要 求和部分数据
选择传动系方案
研究思路
计算动力系统参 数,选配电机
制作实车
合格
仿真,并进行 结果分析
不 合 格
建立仿真模型 优化匹配参数
名称 加速性要求 爬坡性要求 最高时速
What do we have?
要求 45km/h加速时间小于10s
20%的爬坡度 不小于50km/h
电机参数计算与电机选配
Pe 1 (G f ua G i ua )
3600 3600
根据最大速度计算最大功率
Ttq
(m
g
sin m g ig i 0
cos )
r
根据最大爬坡度计算最大转矩
T 9554 P n
根据额定功率计算额定转矩
t u ( dt ) du u M du
研究的意义
• 面对人类社会对于汽车的依赖,以及越来越严重的资源和环境 压力,新能源汽车无疑是解决这一矛盾的利器。而电动汽车以 其零排放、零污染、低噪声的特点,将新能源汽车的优势发挥 到了极致。发展电动汽车必然能够为我国汽车工业的崛起起到 深远的影响。
• 笔者认为电动汽车的发展是汽车工业必然需求。对于电动汽车 的研发,计算机的应用必然要起到更重要的作用。计算机仿真 技术是计算机技术在汽车设计领域的重要应用,以及更加广泛 的影响。
新能源汽车概论第三章 纯电动汽车

二、纯电动汽车类型
2.按驱动结构布局分类
第三章 纯电动汽车
7
(1)传统的驱动方式,如图3.2所示。
二、纯电动汽车类型
2.按驱动结构布局分类
第三章 纯电动汽车
8
(2)电动机-驱动桥组合式驱动方式,如图3.3所示。 (3)电动机-驱动桥整体式驱动方式,如图3.4所示。
二、纯电动汽车类型
2.按驱动结构布局分类
模型
目录导航
第一节 第二节 第三节 纯电动汽车概述 纯电动汽车基本结构与工作原理 典型纯电动汽车分析
一、纯电动汽车电力驱动控制系统组成及功能
第三章 纯电动汽车
15
纯电动汽车动力系统组成如图3.8所示,主要由电力驱动主模块、车载电源模块、和辅助动力供 给模块三部分组成。当汽车行驶时,由蓄电池输出电能通过控制器驱动电动机运转,电动机输出的 转矩经传动系统带动车轮前进或后退。
第三章 纯电动汽车
9
(4)轮毂电机分散驱动方式,如图3.5所示。
二、纯电动汽车类型
3. 按驱动电动机分类
第三章 纯电动汽车
10
纯电动汽车按其驱动电动机类型分四种,直流电动机、交流电动机、永 磁无刷电动机、开关磁阻电动机。
三、增程式电动汽车
1.增程式电动汽车概念
第三章 纯电动汽车
11
增程式电动汽车是指为了解决纯电动 (1)汽车总布置设 汽车续航里程短的问题,在纯电动汽车的 基础上,增加1个增程器(RE)以增加电动 汽车的续航里程。RE通常是一台小排量发 动机带动一个发电机给蓄电池充电的辅助 能量装置,如图3.6所示。在行驶中,仍然 以蓄电池为主要动力,小排量发动机不直 接驱动汽车,而仅用于带动发电机发电, 因此,其结构和动力性能都接近纯电动汽 车。
新能源汽车的驱动及传动系统概述

新能源汽车的驱动及传动系统概述一、概述能源短缺、环境污染、气候变暖是全球汽车产业面临的共同挑战,各国政府及其产业界积极应对,纷纷提出各自发展战略,新能源汽车已经成为21世纪汽车工业的发展热点。
我国是一个能源短缺的国家,尤为重视新能源汽车的研发。
其中,纯电动汽车是新能源汽车的重中之重。
纯电动汽车是以电池为储能单元,以电动机为驱动系统的车辆。
通常地,容量型驱动力电池即可满足实用要求。
纯电动汽车的特点是结构相对简单,生产工艺相对成熟,缺点是充电速度慢,续驶里程短。
因此适合与行驶路线相对固定,有条件进行较长时间充电的车辆。
动力传动系统是电动汽车最主要的系统,电动汽车运行性能的好坏主要是由其动力传动系统的性能决定的。
电动汽车动力传动系统由蓄电池、电机控制器、电动机、变速器、主减速器等组成。
电机控制器接受从加速踏板(相当于内燃机汽车的油门)、刹车踏板和PRND(停车、倒车、空档、前进)控制按键的输出信号,控制电动机的旋转,通过减速器、传动轴、差速器、半轴等机械传动装置驱动车轮旋转。
动力传动系统的构成框图如1.1所示。
图1.1 常用的电动汽车动力传动系统结构示意图在有的情况下,把电机、减速器与传动装置、车轮做成一体,称之为电动轮(轮毂电机),这时的差速器是靠电气方法实现的。
二、蓄电池电池是电动汽车的动力源,是能量的存储装置,也是目前制约电动汽车发展的关键因素。
要使电动汽车能与燃油汽车相竞争,关键是开发出能量比高,功率比大、使用寿命长、成本低的电池。
1铅酸蓄电池1.1铅酸蓄电池的分类和结构铅酸蓄电池的基本结构如图2.1。
铅酸蓄电池是由正负极板、隔板、电解液、溢气阀、外壳等部分组成。
图2.1 铅酸蓄电池的结构1.2铅酸蓄电池的特点铅酸蓄电池主要有一下优点:①电压较高,为2.0V;②价格低廉;③可制成小至1Ah大至几千安时的各种尺寸和结构的蓄电池;④高倍率放电性能良好,可用于引擎起动;⑤高低温性能良好,可在-40o C-60o C条件下工作;⑥电能效率高达60%;⑦易于识别电荷状态。
新能源汽车--纯电动汽车

这是我们国家2016年新国标的充电头,也就是现如今通用的标准交流充电头。
(2)直流充电站
1)充电站配电系统
配电系统为充电站的运行提供电源,它不仅提供充电所需电能,而
且还要满足照明、控制设备的需要,包括变配电所有设备、配电监
控系统等。
2)充电站充电系统
充电系统是整个充电站的核心部分,根据电能补给方式的不同,氛
的这种需要一假设原动机在不同转速时的功率保持不变。
=
9549
式中
n—原动机转速(r/min)
M—原动机转矩(Nm)
PM—原动机的输出功率(kW)
四、纯电动汽车的几个重要指标
1.比功率
比功率(Kw/Kg)是衡量汽车动力性能的一个综合指标,具体是指汽车发
动机最大功率与汽车总质量之比。一般来讲,对同类型汽车而言,比功率
共同工作。对于电动车而言,要达到更高的制动效果则需要耗费
更高的能量,在一定程度上影响了续航里程。
三、纯电动汽车的动力性能
1)纯电动汽车的驱动力
电动汽车的电动机输出转矩M,使驱动轮与地面间产生相互作用,从而
地面给车轮产生一个反向的作用力Ft,Ft汽车前进方向一致,因而Ft即为
驱动力。所以有
式中Ft—驱动力(N);
纯电动汽车
• 第一节纯电动汽车的结构及其行驶性能
• 一、纯电动汽车的基本结构
• 纯电动汽车的定义:纯电动汽车(Blade Electric Vehicles,简称BEV)
是指以车载电源(如铅酸电池、镍镉电池、镍氢电池或锂离子电
池)为动力,用电机驱动车轮行驶,符合道路交通、安全法规各
项要求的车辆。
• 纯电动汽车结构可分为三个子系统
介绍纯电动汽车的电驱动系统结构及原理

介绍纯电动汽车的电驱动系统结构及原理电驱动系统是纯电动汽车的核心组成部分,它由电机、电池、电控系统和传动装置等多个部件组成。
本文将从电驱动系统的结构和原理两个方面进行介绍。
一、电驱动系统的结构电驱动系统一般由电机、电池、电控系统和传动装置组成。
1. 电机:电驱动系统的关键部件之一,负责将电能转化为机械能,驱动汽车行驶。
电动汽车常用的电机类型包括交流异步电机、永磁同步电机和开关磁阻电机等。
2. 电池:电驱动系统的能量来源,通过储存化学能将其转化为电能供电机使用。
目前常用的电池类型有锂离子电池、镍氢电池和超级电容器等。
3. 电控系统:电驱动系统的控制中枢,负责监测和控制电机的工作状态,实现对电机的启停、转速调节和能量回馈等功能。
电控系统通常由控制器、传感器和通信模块构成。
4. 传动装置:电驱动系统将电机的转动力量传递给车轮,使汽车运动。
传动装置根据不同的车型和性能要求,可以采用单速传动、多速传动或无级变速传动等不同的结构形式。
二、电驱动系统的原理电驱动系统的工作原理可以简单概括为:电池提供电能,电控系统控制电机的工作,电机驱动传动装置将动力传递给车轮,从而使车辆运动。
1. 电能供应:电驱动系统的能量来源是电池,电池通过化学反应将化学能转化为电能。
电池的电能储存可以通过充电桩、太阳能电池板等方式进行。
2. 电机工作:电控系统检测车辆的工作状态,并根据需求控制电机的启停和转速。
电控系统通过控制器对电机进行控制,实现电机的正转、反转和调速等功能。
3. 动力传递:电机通过传动装置将动力传递给车轮,从而推动车辆运动。
传动装置根据不同的车型和性能要求,可以采用不同的传动形式,如齿轮传动、链条传动和无级变速传动等。
4. 能量回馈:在制动和减速时,电驱动系统可以通过电机的反向工作将动能转化为电能,储存在电池中,以实现能量的回收和再利用,提高能源利用效率。
电驱动系统是纯电动汽车实现电能转化为机械能的重要组成部分。
它通过电池提供电能,电机将电能转化为机械能,电控系统控制电机的工作,传动装置将动力传递给车轮,从而实现纯电动汽车的驱动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯电动汽车的结构分析和驱动系统性能比较摘要纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。
结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。
绪论作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。
如今,有多种驱动系统可以使用。
根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。
整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。
在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。
整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。
因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。
分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。
为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。
本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。
结构分析整体式驱动整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。
其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。
图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。
图1 b和直驱系统十分相似,除了扭矩由变速器调节。
因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。
图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。
D RMDTMDRMM(a) (b) (c)图1 整体式驱动系统结构直驱系统因为有最简单的机械结构和控制方法,所以成本最低,并且可能是使用最广泛的纯电动汽车驱动系统。
由于车辆的动力性和经济性完全由驱动电机来确定,因此驱动电机的特性要求较高。
因为装配了多档齿轮传动,图1 b的驱动形式能得到更好的动力性,同时对电动机的性能要求也会降低。
但是,自动变速的问题必须解决;否则,电动车辆容易控制的优点将由操纵不方便而丢失。
由于动力补偿被及时发现,双驱电动机耦合纯电动汽车的经济性显著增加,而动力性仍受到驱动电机限制。
因为大多数的内燃机驱动的车辆用传动的部件还可以继续使用,整体式驱动系统的继承性是很好的。
驱动系统被布置在发动机舱,因此冷却,隔离和电磁干扰等问题容易处理。
但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。
因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制。
分布式驱动分布式驱动系统的几种主要结构在图2中示出,在图2 a中,车辆通过与直接安装在轮毂的外边缘的外转子的多个低速轮毂电机驱动。
由于所有的传动被取消,所述驱动系统具有最高的传动效率,但是驱动电机的性能较差;在图2 b中,该形式是由多个高速内转子轮毂电机通过一些行星齿轮减速器驱动的,其驱动系统的体积小于外转子电动机驱动系统的体积;在图2 c中,驱动系统被安装在车架上,驱动轮与短半轴相连,车辆的行驶平顺性得到提高。
因为电动机安装在车轮的内部,如图2中所示的驱动系统a和b被称为轮毂电机驱动系统。
M M M M R RR RM MM MRMRMMRMR(a) (b) (c)图2 分布式驱动系统结构因为大部分车轮之间的机械传动部件由控制信号所取代,分布式驱动系统具有结构紧凑和传动效率高的优点。
电机精确的扭矩响应可以增强现有车辆控制系统,例如防抱死制动系统(ABS),牵引力控制系统(TCS),直接横摆力矩控制系统(DYC),和其他先进的汽车运动/稳定性控制系统[3,4,5,6]。
基于上述优势,分布式驱动形式成为电驱技术的一个重要发展方向。
因为多档变速器很难在现有的分布式驱动系统中匹配,所以车辆动力性完全由驱动电机来确定。
一方面,它很难平衡多种工况的需求,如上坡,加速和高速等;另一方面,在陡峭的斜坡车辆急加速或爬坡时,将有可能发生电机过热和自我保护现象,这将威胁交通安全。
此外,由于在分布式驱动系统电动汽车中,同轴驱动轮之间省去扭矩自动平衡分配机构例如差速器外,每个车轮的所获得的驱动扭矩完全由相应的驱动器系统确定。
为了确保汽车按照预计的轨迹运行的,每个驱动系统的输出转矩必须是根据一个复杂的控制策略控制的动态响应[7]。
为保证车辆直线行进,转速和各驱动电机的驱动扭矩必须大致相等。
所以,在大部分车辆的行驶工况下,电机在相同的低效率区域工作,这将影响到分布式驱动电动汽车的实际驱动效率。
车辆参数及零件性能我们以前驱小型电动汽车搭载不同的驱动系统为例进行了研究,其主要参数见表1。
表1 汽车参数名称数值名称数值整备质量m e(kg)900 满载质量m l(kg)1250半载质量m j(kg)1080 轴距L(m) 2.34空气阻力系数C D0.32 轮辐半径r(m)0.27 爬坡速度u aI(km/h)20 滚动阻力系数f 0.015整体式驱动传动效率η10.92 车头正面面积A(m2)1.9分布式驱动传动效率η20.94 主减速器总传动比i R7.023整体式驱动旋转质量换算系数δ11.08 1档齿轮传动比i g19.021分布式驱动旋转质量换算系数δ21.05 2档齿轮传动比i g2 5.269单电机整体式驱动系统的驱动电机选用一个大的永磁同步电动机,分布式驱动系统的驱动电机或双电机耦合驱动系统的驱动电机是两个有着相同的功率和性能的永磁同步电动机。
在图2 c中该结构被选为分布式驱动模式。
其中驱动电机的技术参数如下:总的额定功率P me为16KW,总的峰值功率为P mmax32KW,额定转速为n me为2940r/min,最大转速n max为7500r/min,总的峰值转矩为T dmax 为78Nm,额定电压U e为144V,工作电压的范围在120~180V。
驱动转矩T di和每个小电机的转速n i和包含控制器ηd总效率之间的对应关系可以用专用测力计进行测定,结果如图3所示。
转速驱动力矩(Nm)峰值扭矩额定扭矩图3 电动机特性曲线动力源是LiFePO4 动态电池组。
它是由45个100Ah 的LiFePO4 电池单元组成的。
它们被串联一起使用,总的电量是14.4Kwh ,电池SOC 可基于电流积分法来计算[8],公式如下:C dt I SOC SOC t L /00⎰=- (1)其中,SOC 0是SOC 的初始值;I L 是瞬时电流,它是在充电过程中是负值,放电过程中是正值;C 是电容;dt 是时间变量,即采样频率的倒数。
根据基尔霍夫电压定律,在任何时间放电电流I L 是电池的内部电流,这应该被写为:RRP U U U P R U U I OC OC L dsg L OC L 24-dsg 2--=== (2) 其中,U OC 是电池组的开路电压;U L 是蓄电池的端电压;R 是电池内部电阻,其和剩余电量(SOC )有一定的关系,还和电池充电和放电功率和电池温度有关;P dsg 是电池放电功率。
开路电压和剩余电量的关系如图4所示,内部电阻和剩余电量的关系如图5所示。
开路电压(V)图4 开路电压和剩余电量关系内部电阻(m Ω)放电装置放电数据充电装置充电数据图5 内部电阻和剩余电量关系由功率计和一个充电 - 放电测试仪测得的电池组放电效率如图6所示。
充电和放电功率(kw)效率(%)图6 电池充电和放电效率动力性比较计算方法汽车的最大速度u amax 由驱动电机额定功率决定,也就是:⎪⎭⎫ ⎝⎛+≥u a D j i a me A C gf m u P 2max max 7614036002η (3)其中,ηi 是驱动系统的传动效率,i=1或2; g 是重力加速度,取g=9.81m/s 2 。
车辆0-100km/h 加速时间t 和最大爬坡度αmax 可以根据驱动电机提供的峰值功率来计算。
公式如下:duu A C gf m u P m t D j i m ij ⎰--=6.3/10002max )6.3(15.216.37200ηδ (4))761403600cos 3600sin (22max 1max 1max aI D i aI m u A C gf m g m u P ++≥ααη (5)其中,δi 是驱动系统的旋转质量换算系数,u 是汽车的瞬时速度。
计算结果结果所获得的汽车动力性曲线如图7所示。
为清楚得表示模拟结果,不同驱动模式用不同颜色和类型的曲线来表示,如表2中所示: 表 2 代表不同驱动方式的曲线整体式单电机直驱 整体式主、副电机耦合驱动 整体式变速驱动分布式驱动 车速(km/h)驱动力和阻力功率(kw)(a )驱动力和阻力功率车速(km/h)时间(s )(b )0~100km/h 加速时间图7 汽车动力性比较因为电动机的总功率和整体式直驱系统的减速比和分布式驱动系统是相同的,所以二者的汽车动力性指标非常接近。
最大爬坡能力为30%,最高车速为108km/h 。
如果只是因为传动效率之间的差异,分布式驱动系统的加速能力和爬坡能力比整体式直驱系统的略强。
两速变速器可显著增加爬坡能力和车辆的最大瞬时速度。
最大爬坡能力增大40%,最大瞬时速度增为140km/h 。
此外,在不考虑换挡延迟,从0km/h 加速时间到50km/ h 只有4.7秒。
这证明引入变速器可大大提高车辆的动力性。
经济性比较汽车能耗分析汽车总是在一定的工况下运行。
因此,能耗分析不仅在驾驶状况,而且在电动机制动情况下能量消耗的再生制动也应该被考虑。
在一个采样点中,汽车瞬时能耗ΔE 是:t u F u a b ∆+∆+∆++=∆36003600mu t )76140Au C 3600u mgfcos 3600u mgsin (E a 3a D a a δαα (6)其中,F b 是刹车系统所产生的路面制动力; u a 是在一个采样点处的实际车速,Δu 是一个速度变量,Δt 为时间单位。