同底数幂的除法专项练习题

合集下载

初一数学同底数幂的除法试题

初一数学同底数幂的除法试题

初一数学同底数幂的除法试题1.计算:=___________.【答案】【解析】先把底数统一为,再根据同底数幂的除法法则即可得到结果。

【考点】本题考查的是同底数幂的除法点评:解答本题的关键是熟练掌握同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

2.计算:的结果,正确的是()A.B.C.D.【答案】C【解析】根据幂的乘方法则,同底数幂的乘除法法则即可得到结果。

,故选C.【考点】本题考查的是幂的乘方,同底数幂的乘法,同底数幂的除法点评:解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;同底数幂的除法法则:同底数幂相除,底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

3.对于非零实数,下列式子运算正确的是()A.B.C.D.【答案】D【解析】根据幂的乘方法则,同底数幂的乘除法法则依次分析各项即可得到结果。

A.,B.,C.无法合并,故错误;D.,本选项正确。

【考点】本题考查的是幂的乘方,同底数幂的乘法,同底数幂的除法点评:解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;同底数幂的除法法则:同底数幂相除,底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

4.若,,则等于( )A.B.6C.21D.20【答案】A【解析】化,即可得到结果。

,故选A.【考点】本题考查的是逆用同底数幂的除法公式,幂的乘方公式点评:解答本题的关键是由同底数幂的除法公式得到,由幂的乘方公式得到5.计算:;【答案】【解析】根据同底数幂的除法法则,积的乘方法则即可得到结果。

【考点】本题考查的是同底数幂的除法,积的乘方点评:解答本题的关键是熟练掌握积的乘方法则:先把每个因数乘方,再把所得的结果相乘;同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

6.;【答案】【解析】把看作一个整体,根据同底数幂的除法法则即可得到结果。

【考点】本题考查的是同底数幂的除法点评:解答本题的关键是熟练掌握同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)1.计算:$(-2m^2)^3+m^7/m$。

2.计算:$3(x^2)^3x^3-(x^3)^3+(-x)^2x^9/x^2$。

3.已知 $a_m=3$,$a_n=4$,求 $a_{2m-n}$ 的值。

4.已知 $3^m=6$,$3^n=-3$,求 $3^{2m-3n}$ 的值。

5.已知 $2a=3$,$4b=5$,$8c=7$,求 $8a+c-2b$ 的值。

6.如果 $x^m=5$,$x^n=25$,求 $x^{5m-2n}$ 的值。

7.计算:$a^{n+5}/a^7$($n$ 是整数)。

8.计算:(1) $-m^9/m^3$;(2) $(-a)^6/(-a)^3$;(3) $(-8)^6/(-8)^5$;(4) $6^{2m+3}/6^m$。

9.计算:$33\times36/(-3)^8$。

10.把下式化成 $(a-b)^p$ 的形式:$15(a-b)^3[-6(a-b)^p+5](b-a)^2/45(b-a)^5$。

11.计算:(1) $(a^8)^2/a^8$;(2) $(a-b)^2(b-a)^{2n}/(a-b)^{2n-1}$。

12.$(a^2)^3(a^2)^4/(-a^2)^5$。

13.计算:$x^3(2x^3)^2/(x^4)^2$。

14.若 $[(x^m/x^{2n})^3]/x^{m-n}$ 与 $4x^2$ 为同类项,且 $2m+5n=7$,求 $4m^2-25n^2$ 的值。

15.计算:(1) $m^9/m^7$;(2) $(-a)^6/(-a)^2$;(3) $(x-y)^6/(y-x)/(x-y)$。

16.已知 $2^m=8$,$2^n=4$,求:(1) $2^{m-n}$ 的值;(2) $2^{m+2n}$ 的值。

17.(1) 已知 $x^m=8$,$x^n=5$,求 $x^{m-n}$ 的值;(2) 已知 $10^m=3$,$10^n=2$,求 $10^{3m-2n}$ 的值。

同底数幂四则运算练习题

同底数幂四则运算练习题

同底数幂四则运算练习题一、同底数幂的加法运算1. 计算:\(2^3 + 2^3\)2. 计算:\(5^2 + 5^2 + 5^2\)3. 计算:\(3^4 + 3^4 + 3^4 + 3^4\)4. 计算:\(4^5 + 4^5 + 4^5 + 4^5 + 4^5\)5. 计算:\(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2\)二、同底数幂的减法运算1. 计算:\(2^5 2^4\)2. 计算:\(3^6 3^5 3^5\)3. 计算:\(4^7 4^6 4^6 4^6\)4. 计算:\(5^8 5^7 5^7 5^7 5^7\)5. 计算:\(6^9 6^8 6^8 6^8 6^8 6^8\)三、同底数幂的乘法运算1. 计算:\(2^2 \times 2^3\)2. 计算:\(3^3 \times 3^4\)3. 计算:\(4^4 \times 4^5\)4. 计算:\(5^5 \times 5^6\)5. 计算:\(6^6 \times 6^7\)四、同底数幂的除法运算1. 计算:\(2^5 \div 2^3\)2. 计算:\(3^7 \div 3^4\)3. 计算:\(4^9 \div 4^6\)5. 计算:\(6^{13} \div 6^{10}\)五、混合运算1. 计算:\(2^3 + 2^4 2^2\)2. 计算:\(3^4 \times 3^3 \div 3^2\)3. 计算:\(4^5 + 4^6 4^4 \times 4^3\)4. 计算:\(5^7 \div 5^6 + 5^5 5^4\)5. 计算:\(6^8 \times 6^7 \div 6^6 6^5 + 6^4\)六、特殊底数幂的运算1. 计算:\(\left(\frac{1}{2}\right)^4 +\left(\frac{1}{2}\right)^4\)2. 计算:\(\left(\frac{2}{3}\right)^5\left(\frac{2}{3}\right)^5\)3. 计算:\(\left(\frac{3}{4}\right)^6 \times\left(\frac{3}{4}\right)^6\)4. 计算:\(\left(\frac{4}{5}\right)^7 \div\left(\frac{4}{5}\right)^7\)5. 计算:\(\left(\frac{5}{6}\right)^8 +\left(\frac{5}{6}\right)^8 \left(\frac{5}{6}\right)^8\)七、指数比较1. 比较:\(2^7\) 和 \(2^8\)2. 比较:\(3^5\) 和 \(3^6\)3. 比较:\(4^4\) 和 \(4^3\)4. 比较:\(5^9\) 和 \(5^{10}\)八、指数表达式简化1. 简化表达式:\(2^3 \times 2^4 \div 2^2\)2. 简化表达式:\(3^5 + 3^5 3^4\)3. 简化表达式:\(4^6 \div 4^5 \times 4^4\)4. 简化表达式:\(5^7 5^6 + 5^5\)5. 简化表达式:\(6^8 + 6^7 \div 6^6\)九、指数方程求解1. 求解方程:\(2^x = 2^3\)2. 求解方程:\(3^y = 3^4\)3. 求解方程:\(4^z = 4^5\)4. 求解方程:\(5^a = 5^6\)5. 求解方程:\(6^b = 6^7\)十、指数不等式求解1. 解不等式:\(2^x > 2^2\)2. 解不等式:\(3^y < 3^5\)3. 解不等式:\(4^z \geq 4^4\)4. 解不等式:\(5^a \leq 5^7\)5. 解不等式:\(6^b > 6^3\)十一、应用题1. 如果一个数的同底数幂是64,另一个数的同底数幂是16,这两个数相乘后的同底数幂是多少?2. 一个数的同底数幂是81,另一个数的同底数幂是27,这两个数相除后的同底数幂是多少?3. 一个数的同底数幂是125,另一个数的同底数幂是25,这两个数相加后的同底数幂是多少?4. 一个数的同底数幂是256,另一个数的同底数幂是64,这两个数相减后的同底数幂是多少?5. 一个数的同底数幂是8,另一个数的同底数幂是2,这两个数进行混合运算(加、减、乘、除)后的同底数幂是多少?答案一、同底数幂的加法运算1. \(2^3 + 2^3 = 2^4 = 16\)2. \(5^2 + 5^2 + 5^2 = 3 \times 5^2 = 75\)3. \(3^4 + 3^4 + 3^4 + 3^4 = 4 \times 3^4 = 324\)4. \(4^5 + 4^5 + 4^5 + 4^5 + 4^5 = 5 \times 4^5 = 2048\)5. \(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2 = 6 \times 10^2 = 600\)二、同底数幂的减法运算1. \(2^5 2^4 = 2^4(2 1) = 2^4 = 16\)2. \(3^6 3^5 3^5 = 3^5(3 2 1) = 3^5 = 243\)3. \(4^7 4^6 4^6 4^6 = 4^6(4 3 2 1) = 4^6 = 4096\)4. \(5^8 5^7 5^7 5^7 5^7 = 5^7(5 4 3 2 1) = 5^7 = 78125\)5. \(6^9 6^8 6^8 6^8 6^8 6^8 = 6^8(6 5 4 3 2 1) = 6^8 = 1679616\)三、同底数幂的乘法运算1. \(2^2 \times 2^3 = 2^{2+3} = 2^5 = 32\)2. \(3^3 \times 3^4 = 3^{3+4} = 3^7 = 2187\)3. \(4^4 \times 4^5 = 4^{4+5} = 4^9 = 262144\)4. \(5^5 \times 5^6 = 5^{5+6} = 5^{11} = 48828125\)5. \(6^6 \times 6^7 = 6^{6+7} = 6^{13} = 130691232\)四、同底数幂的除法运算1. \(2^5 \div 2^3 = 2^{53} = 2^2 = 4\)2. \(3^7 \div 3^4 = 3^{74} = 3^3 = 27\)3. \(4^9 \div 4^6 = 4^{96} = 4^3 = 64\)4. \(5^{11} \div 5^8 = 5^{118} = 5^3 = 125\)5. \(6^{13} \div 6^{10} = 6^{1310} = 6^3 = 216\)五、混合运算1. \(2^3 + 2^4 2^2 = 2^2(2^2 + 2^2 1) = 2^2 \times 7 = 4 \times 7 = 28\)2. \(3^4 \times 3^3 \div 3^2 = 3^{4+32} = 3^5 = 243\)3. \(4^5 + 4^6 4^4 \times 4^3 = 4^5(1 + 4 4^2) = 4^5\times 9 = 1024 \times 9 = 9216\)4. \(5^7 \div 5^6 + 5^5 5^4 = 5^1 + 5^5 5^4 = 5 + 3125 625 = 3555\)5. \(6^8 \times 6^7 \div 6^6 6^5。

同底数幂的除法试题精选(二)附答案

同底数幂的除法试题精选(二)附答案

同底数幂的除法试题精选(二)一.选择题(共16小题)1.已知a m=6,a n=3,则a2m﹣3n的值为()A.9B.C.2D.2.下列计算:①x6÷x2=x3,②(x2)6=x8,③(3xy)3=9x3y3.其中正确的计算有()A.0个B.1个C.2个D.3个3.已知x m=2,x n=3,则x2m﹣3n的值为()A.﹣5B.C.D.﹣234.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.105.(﹣2)2014÷(﹣2)2013等于()A.﹣2B.2C.(﹣2)2012D.﹣220116.下面是某同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.(a5)2=a7C.(ab2)3=a3b6D.(﹣a)10÷(﹣a)7=a37.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12C.D.8.x15÷x3等于()A.x5B.x45C.x12D.x189.已知(2a m b4)÷(4ab n)=,则m、n的值分别为()A.m=1,n=4B.m=2,n=3C.m=3,n=4D.m=4,n=510.若m、n都是正整数,a mn÷a n的结果是()A.a m B.a mn﹣n C.a D.a mn﹣m11.若x﹣2y+1=0,则2x÷4y×8等于()A.1B.4C.8D.﹣1612.如果a m=3,a n=6,则a n﹣m等于()A.18B.12C.9D.213.下列计算正确的是()A.2a﹣a=2B.m6÷m2=m3C.x2014+x2014=2x2014D.t2•t3=t614.已知3m=4,3n=5,3m﹣2n+1的值为()A.B.C.D.15.计算a n+1•a n﹣1÷(a n)2的结果是()A.1B.0C.﹣1D.±116.在①﹣a5•(﹣a),②(﹣a6)÷(﹣a3),③(﹣a2)3•(a3)2,④[﹣(﹣a)2]5中,计算结果为﹣a10的有()A.①②B.③④C.②④D.④二.填空题(共14小题)17.(2014•闸北区二模)计算:x4n÷x n= _________ .18.(2014•红桥区二模)计算(﹣a)10÷(﹣a)3的结果等于_________ .19.已知52x+1=75,则52x﹣3的值= _________ .20.已知a m=2,a n=3,则a2m﹣3n= _________ .21.已知:x a=4,x b=3,则x a﹣2b= _________ .22.计算:(a2)3÷a4•a2= _________ .23.计算:(a4)3÷a8•a4= _________ .24.若2m=4,2n=3,则22m﹣n= _________ .25.计算a2÷a﹣4•a﹣8_________ .26.若5x=18,5y=3,则5x﹣2y的算术平方根是_________ .27.已知x m=6,x n=3,则x m﹣n= _________ ,(﹣x m)2÷x﹣n= _________ .28.已知:162×43=4x+y,9x÷3y=9,则x= _________ ,y= _________ .29.化简:x3÷(﹣x)3×(﹣x)2= _________ .30.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________ .同底数幂的除法试题精选(二)参考答案与试题解析一.选择题(共16小题)1.已知a m=6,a n=3,则a2m﹣3n的值为()A.9B.C.2D.考点:同底数幂的除法.分析:根据同底数幂的除法和幂的乘方的性质的逆用先整理成已知条件的形式,然后代入数据计算即可.解答:解:a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3,∵a m=6,a n=3,∴原式=(a m)2÷(a n)3,=62÷33=.故选D.点评:本题考查了同底数幂的除法,幂的乘方,逆用性质构造成a m、a n的形式是解题的关键.2.下列计算:①x6÷x2=x3,②(x2)6=x8,③(3xy)3=9x3y3.其中正确的计算有()A.0个B.1个C.2个D.3个考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解答:解:①x6÷x2=x4,②(x2)6=x12,③(3xy)3=27x3y3.所以都不正确.故选A.点评:本题考查同底数幂的除法,幂的乘方,积的乘方,熟练掌握运算性质是解题的关键.3.已知x m=2,x n=3,则x2m﹣3n的值为()A.﹣5B.C.D.﹣23考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得x2m,x3n,根据同底数幂的除法,可得答案.解答:解:x2m﹣3n=x2m÷x3n=(x m)2÷(x n)3=22÷33=,故B正确,故选:B.点评:本题考查了同底数幂的除法,先算幂的乘方,再算同底数幂的除法.4.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10考点:同底数幂的除法.分析:根据同底数幂的除法,底数不变,指数相减,可得答案.解答:解:3x﹣y=3x÷3y=15÷5=3,故选:B.点评:本题考查了同底数幂的除法,底数不变,指数相减.5.(﹣2)2014÷(﹣2)2013等于()A.﹣2B.2C.(﹣2)2012D.﹣22011考点:同底数幂的除法.分析:运用同底数幂的除法法则计算即可.解答:解:(﹣2)2014÷(﹣2)2013=(﹣2)2014﹣2013=﹣2,故选:A.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.6.下面是某同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.(a5)2=a7C.(ab2)3=a3b6D.(﹣a)10÷(﹣a)7=a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:(ab2)3=a3b6,故C正确,故选:C.点评:本题考查了同底数幂的除法,注意同底数幂的除法,底数不变指数相减.7.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12C.D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:首先应用含a m、a n的代数式表示a2m﹣n,然后将a m、a n的值代入即可求解.解答:解:∵a m=2,a n=3,∴a2m﹣n=a2m÷a n,=(a m)2÷3,=4÷3,=,故选:D.点评:本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.8.x15÷x3等于()A.x5B.x45C.x12D.x18考点:同底数幂的除法.分析:根据同底数幂相除,底数不变,指数相减解答.解答:解:x15÷x3=x15﹣3=x12.故选C.点评:本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.9.已知(2a m b4)÷(4ab n)=,则m、n的值分别为()A.m=1,n=4B.m=2,n=3C.m=3,n=4D.m=4,n=5考点:同底数幂的除法.专题:计算题.分析:根据同底数幂的除法法则列出关于mn的方程,求出nm的值即可.解答:解:由题意可知,m﹣1=1,解得m=2;4﹣n=1,解得,n=3.故选B.点评:本题考查的是同底数幂的除法法则,能根据题意得出关于mn的方程是解答此题的关键.10.若m、n都是正整数,a mn÷a n的结果是()A.a m B.a mn﹣n C.a D.a mn﹣m考点:同底数幂的除法.分析:运用同底数幂的除法法则计算即可.解答:解:a mn÷a n=a mn﹣n,故选:B.点评:此题考查了同底数幂的除法,解题的关键是熟记法则.11.若x﹣2y+1=0,则2x÷4y×8等于()A.1C.8D.﹣16考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:推理填空题.分析:先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法与除法法则进行计算即可.解答:解:原式=2x÷22y×23,=2x﹣2y+3,=22,=4.故选B.点评:本题考查的是同底数幂的乘法与除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.12.如果a m=3,a n=6,则a n﹣m等于()A.18B.12C.9D.2考点:同底数幂的除法.分析:把a n﹣m化成a n÷a m,代入求出即可.解答:解:∵a m=3,a n=6,∴a n﹣m=a n÷a m6÷3=2,故选D.点评:本题考查了同底数幂的除法的应用,关键是把a n﹣m化成a n÷a m的形式,用了整体代入思想.13.下列计算正确的是()A.2a﹣a=2B.m6÷m2=m3C.x2014+x2014=2x2014D.t2•t3=t6考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、2a﹣a=a,故A选项错误;B、m6÷m2=m4,故B选项错误;C、x2014+x2014=2x2014,故C选项正确;D、t2•t3=t5,故D选项错误.故选:C.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法等知识,解题要注意细心.14.已知3m=4,3n=5,3m﹣2n+1的值为()A.B.C.D.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:先根据同底数幂的乘法与除法,幂的乘方与积的乘方法则把原式化为3m÷(3n)2×3的形式,再把3m=4,3n=5代入进行计算即可.解答:解:原式=3m÷(3n)2×3=4÷52×3=×3=.故选A.点评:本题考查的是同底数幂的乘法与除法,幂的乘方与积的乘方法则,能逆用此法则把原式化为3m÷(3n)2×3的形式是解答此题的关键.15.计算a n+1•a n﹣1÷(a n)2的结果是()A.1B.0C.﹣1D.±1考点:同底数幂的乘法;同底数幂的除法.分析:本题是同底数幂的乘法、除法以与幂的乘方的混合运算,计算时根据各自法则计算即可,特别注意的是运算的顺序.解答:解:a n+1•a n﹣1÷(a n)2,=a2n÷a2n,=1.故选A.点评:做此类混合运算时首先是要记准法则,其次是要注意运算的顺序.16.在①﹣a5•(﹣a),②(﹣a6)÷(﹣a3),③(﹣a2)3•(a3)2,④[﹣(﹣a)2]5中,计算结果为﹣a10的有()A.①②B.③④C.②④D.④考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;对各选项计算后即可选取答案.解答:解:①﹣a5•(﹣a)=﹣a6,②(﹣a6)÷(﹣a3)=﹣a3,③(﹣a2)3•(a3)2=(﹣a6)•(a6)=a12,④[﹣(﹣a)2]5=﹣a10,所以计算结果为﹣a10的有④.故选D.点评:本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,运算时要注意符号的变化.二.填空题(共14小题)17.(2014•闸北区二模)计算:x4n÷x n= x3n.考点:同底数幂的除法.分析:运用同底数幂的除法法则计算.解答:解:x4n÷x n=x3n.故答案为:x3n.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.18.(2014•红桥区二模)计算(﹣a)10÷(﹣a)3的结果等于﹣a7.考点:同底数幂的除法;幂的乘方与积的乘方.分析:运用同底数幂的除法,底数不变,指数相减.解答:解:(﹣a)10÷(﹣a)3=﹣a7故答案为:﹣a7.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.19.已知52x+1=75,则52x﹣3的值= .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把52x﹣3化为52x+1﹣4求解即可.解答:解:∵52x+1=75,∴52x﹣3=52x+1﹣4=52x+1÷54=75÷625=,故答案为:.点评:本题主要考查了同底数幂的除法,同底数幂的乘法,解题的关键是把52x﹣3化为52x+1﹣4求解.20.已知a m=2,a n=3,则a2m﹣3n= .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,逆运用性质计算即可.解答:解:∵a m=2,a n=3,∴a2m﹣3n=a2m÷a3n,=(a m)2÷(a n)3,=22÷33,=.故填.点评:本题考查同底数幂的除法法则的逆运算,幂的乘方的性质的逆运算,熟练掌握性质是解题的关键.21.已知:x a=4,x b=3,则x a﹣2b= .考点:同底数幂的除法;幂的乘方与积的乘方.专题:推理填空题.分析:根据同底数幂的除法与乘法进行计算即可.解答:解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.点评:本题考查的是同底数幂的除法与乘法,解答此题的关键是逆用同底数幂的除法与乘法的运算法则进行计算.22.计算:(a2)3÷a4•a2= a4.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算.解答:解:(a2)3÷a4•a2,=a6÷a4•a2,=a2•a2,=a4.点评:本题考查了同底数幂的除法,幂的乘方的性质,正确运用幂的运算性质,分清运算顺序是解题的关键.23.计算:(a4)3÷a8•a4= a8.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加,计算即可.解答:解:(a4)3÷a8•a4,=a12÷a8•a4,=a4•a4,=a8.点评:本题考查了幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键.24.若2m=4,2n=3,则22m﹣n= .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,幂的乘方的性质的逆运用先表示成已知条件的形式,然后代入数据计算即可.解答:解:∵2m=4,2n=3,∴22m﹣n=(2m)2÷2n,=16÷3,=.故答案为:.点评:本题考查了同底数幂的除法,幂的乘方的性质,逆用运算性质,将22m﹣n化为(2m)2÷2n 是求值的关键,逆用幂的运算法则巧求代数式的值是中考的重要题型,由此可见,我们既要熟练地正向使用法则,又要熟练地逆向使用法则.25.计算a2÷a﹣4•a﹣8a﹣2.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算.解答:解:a2÷a﹣4•a﹣8=a2+4﹣8=a﹣2故答案为:a﹣2.点评:本题考查了同底数幂的除法与乘法的性质,正确运用幂的运算性质是解题的关键.26.若5x=18,5y=3,则5x﹣2y的算术平方根是.考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方.专题:计算题.分析:先根据幂的乘法法则求出52y的值,再根据同底数幂的除法法则进计算出5x﹣2y的值,再根据算术平方根的定义进行解答.解答:解:∵5y=3,∴(5y)2=52y=9,∴5x﹣2y===2,∴5x﹣2y的算术平方根是.故答案为:.点评:本题考查的是同底数幂的除法、算术平方根、幂的乘方与积的乘方法则,熟练掌握以上知识是解答此题的关键.27.已知x m=6,x n=3,则x m﹣n= 2 ,(﹣x m)2÷x﹣n= 108 .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则与幂的乘方法则计算即可.解答:解:x m﹣n=x m÷x n=6÷3=2.(﹣x m)2÷x﹣n=(x m)2÷x﹣n=36÷=108,故答案为:2,108.点评:本题考查了同底数幂的乘法和幂的乘方,属于基础题,解答本题的关键是掌握同底数幂的乘法和幂的乘方法则.28.已知:162×43=4x+y,9x÷3y=9,则x= 3 ,y= 4 .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方得出x+y=7,根据同底数幂的除法得出2x﹣y=2,求出组成的方程组的解即可.解答:解:∵162×43=4x+y,∴(42)2×43=44+3=4x+y,∴x+y=7,∵9x÷3y=9,∴32x÷3y=32,∴2x﹣y=2,即,①+②得:3x=9,x=3,把x=3代入①y=4,故答案为:3,4.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法和除法的应用,题目比较典型,但有一定的难度.29.化简:x3÷(﹣x)3×(﹣x)2= ﹣x2.考点:同底数幂的除法.分析:先转化为同底数幂的运算,再根据同底数幂的除法和同底数幂的乘法的运算性质进行计算.解答:解:x3÷(﹣x)3×(﹣x)2,=﹣x3÷x3×x2,=﹣x2.点评:本题主要考查同底数幂的乘法,同底数幂的除法,先运算符号是利用性质的关键.30.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18 .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法与幂的乘方与积的乘方把原式化为含有4x,3y 的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法与幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.。

同底数幂的除法 重难点专项练习【九大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

同底数幂的除法 重难点专项练习【九大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

8.3同底数幂的除法重难点题型专项练习考查题型一利用运算性质直接计算典例1.下列运算正确的是()A .87a a a -=B .842a a a ÷=C .236a a a ⋅=D .2242(2)4a b a b -=【详解】解:A .8a 与7a 不是同类项,所以不能合并,故A 不合题意;B .原式4a =,故B 不合题意;C .原式5a =,故C 不合题意;D .原式424a b =,故D 符合题意.故本题选:D .变式1-1.210x y --=,求:248x y ÷⨯的值.【详解】解:210x y --= ,21x y ∴-=,2248228x y x y ∴÷⨯=÷⨯228x y -=⨯28=⨯16=.变式1-2.计算:982()()()m n n m m n -⋅-÷-.【详解】解:原式98298215()()()()()m n m n m n m n m n +-=-⋅-÷-=-=-.变式1-3.探究应用:用“⋃”、“⋂”定义两种新运算:对于两数a 、b ,规定1010a b a b =⨯ ,1010a b a b =÷ ,例如:32532101010=⨯= ,3232101010=÷= .(1)求:(1039983) 的值;(2)求:(20222020) 的值;(3)当x 为何值时,(5)x 的值与(2317) 的值相等.【详解】解:(1)(1039983) 10399831010=⨯202210=;(2)(20222020) 202220201010=÷210=100=;(3)由题意得:(5)(2317)x = ,则5231710101010x ⨯=÷,561010x +∴=,即56x +=,解得:1x =.考查题型二利用运算性质求解/参典例2.已知262555a b = ,444b c ÷=,则代数式23a ab c ++值是.【详解】解:262555a b = ,444b c ÷=,22655a b +∴=,44b c -=,3a b ∴+=,1b c -=,两式相减,可得:2a c +=,23()333326a ab c a a b c a c ∴++=++=+=⨯=.故本题答案为:6.变式2-1.已知6()x y a a =,23()x y a a a ÷=(1)求xy 和2x y -的值;(2)求224x y +的值.【详解】解:(1)6()x y a a = ,23()x y a a a ÷=6xy a a ∴=,223x y x y a a a a -÷==,6xy ∴=,23x y -=;(2)22224(2)434692433x y x y xy +=-+=+⨯=+=.变式2-2.已知常数a 、b 满足23327a b ⨯=,且2223(5)(5)(5)1a b a b ⨯÷=,求224a b +的值.【详解】解:23327a b ⨯= ,2333a b +∴=,故23a b +=,2223(5)(5)(5)1a b a b ⨯÷= ,243551a b ab +∴÷=,2430a b ab ∴+-=,23a b += ,630ab ∴-=,则2ab =,2224(2)4a b a b ab ∴+=+-2342=-⨯1=.考查题型三运算性质的逆用典例3.已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:(1)求:232m n +的值(2)求:462m n -的值.变式3.已知36=,32=.(1)求3m n +的值.(2)求3m n -的值.(3)求233m n -的值.考查题型四零指数幂使用的条件典例4.等式0(3)1x -=成立的条件是()A .3x ≠-B .3x -C .3x -D .3x ≠【详解】解:等式0(3)1x -=成立的条件是:3x ≠.故本题选:D .变式4.若0(12)1x -=,则()A .0x ≠B .2x ≠C .12x ≠D .x 为任意有理数考查题型五利用零指数幂直接计算典例5.计算:220200(2)1( 3.14)π--+-.【详解】解:原式411=-+4=.变式5.计算:2202130(2)4(1)|2|(5)π-+⨯---+-.【详解】解:原式44(1)81=+⨯--+4481=--+7=-.考查题型六利用零指数幂求解/求参典例6.若2022(23)1x x ++=,则x =.【详解】解:当20200x +=时,2020x ∴=-,230x ∴+≠,符合题意;当231x +=时,20222021x ∴+=,符合题意;当231x +=-时,2x ∴=-,20222020x ∴+=,符合题意.故本题答案为:1-或2-或2022-.变式6-1.若13(1)1x x --=,则满足条件的x 值为.变式6-2.若-=-,求x 的值.【详解】解:①10x +=,且250x -≠,40x -≠,解得:1x =-;②254x x -=-,解得:1x =;③当指数是偶数时,25x -和4x -互为相反数,2540x x -+-=,解得:3x =,指数14x +=,符合题意.综上,1x =或1-或3.考查题型七负整数指数幂的计算与应用典例7-1.若20.3a =-,23b -=-,21(3c -=-,01()5d =-,则()A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b<<<变式7-1-1.已知222011(0.2),2,(),(22a b c d --=-=-=-=-,则比较a 、b 、c 、d 的大小结A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b d a c<<<变式7-1-2.计算:(1)2301()(48)2-÷⨯.(2)201820114((5)3π--⨯+-+-.典例7-2.已知=,=,=,=,则这四个数从小到大排列顺序是()A .a b c d<<<B .d a c b<<<C .a d c b<<<D .b c a d<<<变式7-2.已知-=,-=,-=,请用“<”把它们按从小到大的顺序连接起来,说明理由.考查题型八科学记数法——表示较小的数典例8.飞沫一般认为是直径大于5微米(5微米0.000005=米)的含水颗粒.飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播.因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离.将0.000005用科学记数法表示应为()A .50.510-⨯B .60.510-⨯C .5510-⨯D .6510-⨯【详解】解:60.000005510-=⨯.故本题选:D .变式8-1.中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第一代14纳米FinFET 技术取得了突破性进展,并于2019年第四季度进入量产,代表了中国大陆自主研发集成电路的最先进水平,14纳米0.000000014=米,0.000000014用科学记数法表示为()A .71.410-⨯B .71410-⨯C .81.410-⨯D .91.410-⨯【详解】解:80.000000014 1.410-=⨯.故本题选:C .变式8-2.每到四月,许多地方的杨絮、柳絮如雪花漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000115m ,把0.0000115写成10(110n a a ⨯<,n 为整数)的形式,则n 为()A .7-B .5-C .4-D .5【详解】解:50.0000115 1.1510-=⨯,5n ∴=-,故本题选:B .变式8-3.某种分子的直径约为19000mm ,将19000用科学记数法表示为10n a ⨯的形式,下列说法正确的是()A .a ,n 都是负数B .a 是负数,n 是正数C .a ,n 都是正数D .a 是正数,n 是负数考查题型九科学记数法——原数典例9.已知一种细胞的直径约为42.1310cm -⨯,请问42.1310-⨯这个数原来的数是()A .21300B .2130000C .0.0213D .0.000213【详解】解:42.13100.000213-⨯=.故本题选:D .变式9.将53.0510-⨯用小数表示为.【详解】解:53.05100.0000305-⨯=.故本题答案为:0.0000305.。

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习30题1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5 11.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7=_________;(2)(﹣a)6÷(﹣a)2=_________;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=_________.16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n同底数幂的除法---- 120.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4 (2)(﹣m)8÷(﹣m)3 (3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法--- 2参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b ==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=同底数幂的除法--- 327.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.同底数幂的除法--- 4。

七年级下册第3课同底数幂的除法15道计算题

七年级下册第3课同底数幂的除法15道计算题

同底数幂的除法练习题1. 下列计算不正确的是( )A. 331m m x x -÷=xB.1262x x x ÷=C. ()21035x x x x ÷-÷=D.()33mm x x ÷=1 2. 423287a b a b ÷的结果是 ( )A.24abB.44a bC. 224a bD. 4ab 3. ()232255a b ab ÷的结果是 ( )A.aB.5aC. 25a bD.25a 4. 如果□×3ab =23a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a5.下列计算正确的是( ). A.()13n n x y z +-÷()13n n x y z +- =0B.()()221510532x y xy xy x y -÷-=-C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x x n n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( ) A.3.5×610倍 B.2.9×510倍 C.3.5×510倍 D.2.9×610-倍7. 若35k -=1,则k =________.8. 计算()()34432322396332x y x y x yx y x y xy -+÷=-+-. 9.直接写出结果:(1)()()35aa -÷-=_______; (2)()24a a -÷-=_______; (3)1042x x x ÷÷=_______;(4)10n ÷210n -=_______; (5)()3m m a a ÷=_______; (6)()()21n n y x x y --÷-=_______.10.直接写出结果:(1)()()()32222a a a a ⎡⎤---÷-⎢⎥⎣⎦=____________; (2)(51181153n n n x x x ++--+-)÷(13n x --)=_____________;(3)(____________)·(234x y -)=5445278212x y x y x y --.11. 若()022x -有意义,则x ______________.12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书.13.计算: (1)6334533693().45105a x a x ax ax -+-÷ (2)()()2337353532728217m n m m n m n m n ⎡⎤+-÷-⎢⎥⎣⎦14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5.15.天文学上常用太阳和地球的平均距离1.4960×810千米作为一个天文单位,已知月亮和地球的平均距离约为384401千米,合多少天文单位?(用小数表示,精确到0.0001)。

同底数幂的除法试题精选(三)附答案

同底数幂的除法试题精选(三)附答案

同底数幂的除法试题精选(三)一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=_________.2.(1)a2•a3=_________;(2)x6÷(﹣x)3=_________.3.若2m=5,2n=6,则2m﹣2n=_________.若3m+2n=6,则8m×4n=_________.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=_________.5.①若m x=4,m y=3,则m x+y=_________;②若,则9x﹣y=_________.6.a5•a÷a2=_________;(x﹣y)(y﹣x)2(x﹣y)3=_________;(a2)m﹣a m=_________.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式_________.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=_________.11.如果2x=5,2y=10,则2x+y﹣1=_________.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n=_________.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_________.14.(2007•仙桃)计算:a2•a3÷a4的结果是_________.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的_________倍.16.(2005•河南)计算:(x2)3÷x5=_________.17.(2001•济南)_________÷a=a3.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.19.(2a+b)4÷(2a+b)2.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.21.已知5x=36,5y=2,求5x﹣2y的值.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.23.利用幂的性质进行计算:.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.同底数幂的除法试题精选(三)附答案参考答案与试题解析一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=1.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:(﹣b2)•b3÷(﹣b)5,=﹣b5÷(﹣b5),=1.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,要注意符号的运算.2.(1)a2•a3=a5;(2)x6÷(﹣x)3=﹣x3.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)是考查同底数幂的乘法,底数不变指数相加.(2)是考查同底数幂相除,底数不变指数相减.解答:解:(1)a2•a3=a5(2)x6÷(﹣x)3=﹣x3故答案为:a5,﹣x3点评:这道题主要考查了同底数幂的乘法和除法,熟记计算法则是解题的关键.3.若2m=5,2n=6,则2m﹣2n=.若3m+2n=6,则8m×4n=64.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把2m﹣2n化为2m÷(2n)2计算,把8m×4n化为23m+2n计算即可.解答:解:∵2m=5,2n=6,∴2m﹣2n=2m÷(2n)2=5÷36=,∵3m+2n=6,∴8m×4n=(2)3m•22n=23m+2n=26=64.故答案为:,64.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是正确运用法则进行变式.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=0.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方、同底数幂的除法,可得答案.解答:解:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=﹣a2×3+a3×2﹣a2+4+a9﹣3=﹣a6+a6﹣a6+a6=0,故答案为:0.点评:本题考查了同底数幂的除法,幂的乘方底数不变指数相乘,同底数幂的乘法,底数不变指数相加,同底数幂的除法,底数不变指数相减.5.①若m x=4,m y=3,则m x+y=12;②若,则9x﹣y=.考点:同底数幂的除法.分析:①把m x+y化为m x•m y求解,②把9x﹣y化为(3x)2÷(3y)2求解.解答:解:①∵m x=4,m y=3,∴m x+y=m x•m y=4×3=12,②∵,∴9x﹣y=(3x)2÷(3y)2=÷=,故答案为:12,.点评:本题主要考查了同底数幂的除法,解题的关键是通过转化,得到含有已知的式子求解.6.a5•a÷a2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)6;(a2)m﹣a m=a m.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减,同底数幂的乘法,底数不变指数相减,可得答案.解答:解:a5•a÷a2=a5+1﹣2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)1+2+3=(x﹣y)6;(a2)m﹣a m=a2m﹣m=a m,故答案为:a4,(x﹣y)6,a.点评:本题考查了同底数幂的除法,根据乘方化成同底数的幂乘法是解题关键.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的8.8×105倍.(结果保留两个有效数字)考点:同底数幂的除法.专题:应用题.分析:首先根据题意可得:光速是声速的(3×108)÷(3.4×102)倍,利用同底数幂的除法法则求解即可求得答案.解答:解:∵光在空气中的传播速度约为3×108米/秒,声音在空气中的传播速度约为3.4×102米/秒,∴(3×108)÷(3.4×102)=(3÷3.4)×(108÷102)≈0.883×106≈8.8×105,∴光速是声速的8.8×105倍.故答案为:8.8×105.点评:本题考查同底数幂的除法.注意将实际问题转化为数学问题是解此题的关键.9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=x3.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先根据有理数乘方的意义计算符号,再利用同底数幂相除,底数不变指数相减进行计算即可得解.解答:解:(﹣x)10÷(﹣x)5÷(﹣x)÷x,=x10÷x5÷x÷x,=x10﹣5﹣1﹣1,=x3.故答案为:x3.点评:本题主要考查了同底数幂相除,底数不变指数相减的性质,计算时要注意符号的处理,这也是本题最容易出错的地方.11.如果2x=5,2y=10,则2x+y﹣1=25.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂的除法底数不变指数相减,可得计算结果.解答:解:2x+y﹣1=2x×2y÷2=5×10÷2=25.故答案为:25.点评:本题考查了同底数幂的除法,底数不变指数相减.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n= 4.5.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,同底数幂的除法,同底数幂的乘法的逆运算整理成已知条件的形式,然后代入数据求解即可.解答:解:∵a m=9,a n=8,a k=4,∴a m﹣2k+n=a m÷a2k•a n,=a m÷(a k)2•a n,=9÷16×8,=4.5.点评:本题主要考查幂的乘方,同底数幂的乘法,同底数幂的除法性质的逆运用,熟练掌握运算性质并灵活运用是解题的关键.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.考点:同底数幂的除法.专题:应用题.分析:首先根据里氏震级的定义,得出9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,然后列式表示9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是109÷107,最后根据同底数幂的除法法则计算即可.解答:解:∵地震所释放的相对能量E与地震级数n的关系为:E=10n,∴9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,∴109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.故答案为100.点评:本题考查了同底数幂的除法在实际生活中的应用.理解里氏震级的定义,正确列式是解题的关键.14.(2007•仙桃)计算:a2•a3÷a4的结果是a.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:a2•a3÷a4=a2+3﹣4=a,故答案为:a.点评:本题考查了同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的106倍.考点:同底数幂的除法.专题:应用题.分析:用摩托车的声音强度除以说话声音强度,再利用同底数幂相除,底数不变指数相减计算.解答:解:1011÷105=1011﹣5=106.答:摩托车的声音强度是说话声音强度的106倍.点评:本题主要考查同底数幂的除法的运算性质,熟练掌握运算性质是解题的关键.16.(2005•河南)计算:(x2)3÷x5=x.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减计算即可.解答:解:(x2)3÷x5=x6÷x5=x.点评:本题考查幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.17.(2001•济南)a4÷a=a3.考点:同底数幂的除法.分析:根据同底数幂的除法法则计算即可.解答:解:a4÷a=a3,故答案为a4.点评:本题考查了同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.考点:同底数幂的除法;同底数幂的乘法.分析:运用同底数幂的除法及同底数幂的乘法法则求解即可.解答:解:(x﹣y)12×(y﹣x)2÷(y﹣x)3,=(x﹣y)14÷(y﹣x)3.=﹣(x﹣y)11.点评:本题主要考查了同底数幂的除法及同底数幂的乘法,解题的关键是注意运算符号.19.(2a+b)4÷(2a+b)2.考点:同底数幂的除法.分析:运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开.解答:解:(2a+b)4÷(2a+b)2=(2a+b)2=4a2+4ab+b2点评:本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把原式化为关于a x,a y式子,再代入求解即可.解答:解:(1)∵a x=2,a y=3,∴a2x+y=(a x)2a y=4×3=12,(2)∵a x=2,a y=3,∴a3x﹣2y=(a x)3÷(a y)2=8÷9=.点评:本题主要考查了同底数幂的除法,同底数幂的乘法和幂的乘方与积的乘方,解题的关键是把原式化为关于a x,a y式子求解.21.已知5x=36,5y=2,求5x﹣2y的值.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法底数不变指数相减,可得答案.解答:解:(5y)2=52y=4,5x﹣2y=5x÷52y=36÷4=9.点评:本题考查了同底数幂的除法,底数不变指数相减.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的乘法与除法以及幂的乘方运算即可.解答:解:(1)∵x m=3,x n=2,∴x m+n=x m•x n=3×2=6,(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=9÷8=,点评:此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则.23.利用幂的性质进行计算:.考点:实数的运算;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.分析:把式子化成指数幂的形式,通过同底数指数相乘,底数不变,指数相加即得.解答:解:原式=×=×=.点评:本题考查了实数运算,把根下化成指数幂,从而很容易解得.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可化已知成要求的形式,根据已知,可得答案.解答:解:4m=22m=y﹣1,9n=32n=x,原式等价于;2×22m÷(32n÷3)=12,2(y﹣1)÷(x÷3)=122y﹣2=12(x÷3)2y﹣2=4xy=2x+1.点评:本题考查了同底数幂的除法,把已知化成要求的形式是解题关键.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)根据同底数幂的乘法、幂的乘方,可算出乘方,根据合并同类项,可得答案;(2)根据先算积的乘方,可得同底数幂的除法,再根据同底数幂的除法,可得答案.解答:解:(1)原式=(﹣x)1+5+x2×3=x6+x6=2x6;(2)原式=﹣a2×3÷a3×2=﹣a6÷a6=﹣1.点评:本题考查了同底数幂的除法,(1)先算同底数幂的乘法幂的乘方,再合并同类项,(2)先算积的乘方,再算算幂的乘方,最后算同底数幂的除法,底数不变指数相减.。

同底数幂的乘除法典型习题

同底数幂的乘除法典型习题

1、同底数幂的乘法一、知识点检测1、同底数幂相乘,底数 ,指数 ,用公式表示=n m a a (m ,n 都是正整数)2、计算32)(x x ⋅-所得的结果是( ) A.5x B.5x - C.6x D.6x - 3、下列计算正确的是( ) A.822b b b =⨯ B.642x x x =+ C.933a a a =⨯ D.98a a a =4、计算: (1)=⨯461010 (2)=⎪⎭⎫ ⎝⎛-⨯-6231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 5、若53=a ,63=b ,求b a +3的值二、典例若125512=+x ,求()x x +-20092的值三、拓展提高1、下面计算正确的是( )A.4533=-a aB.n m n m +=⋅632C.109222=⨯D.10552a a a =⋅ 2、=-⋅-23)()(a b b a 。

3、()=-⋅-⋅-62)()(a a a 。

4、已知:5 ,3==n m a a ,求2++n m a 的值四、体验中考1、计算:a 2·a 3= ( )A .a 5B .a 6C .a 8D .a 92、数学上一般把n aa a a a 个···…·记为( )A .naB .n a +C .n aD . n2、幂的乘方一、知识点检测1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是正整数)2、计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅4、如果正方体的棱长是2)12(+a ,则它的体积为 。

二、典例分析例题:若52=n ,求n 28的值三、拓展提高1、()=-+-2332)(a a 。

专题02 同底数幂的除法(四大题型,40题)(解析版) 七年级数学下册

专题02 同底数幂的除法(四大题型,40题)(解析版) 七年级数学下册

原创精品资源学科网独家享有版权,侵权必究!1专题02同底数幂的除法(除法、逆运算、混合运算、零指数幂40题)目录一、同底数幂的除法运算,10题,难度三星........................................................................................................1二、同底数幂除法的逆用,10题,难度三星........................................................................................................8三、幂的混合运算,10题,难度三星..................................................................................................................14四、零指数幂,10题,难度三星 (23)一、同底数幂的除法运算,10题,难度三星1.(2023下·四川达州·七年级校考期末)下列计算正确的是()A .5552x x x ⋅=B .325a a a +=C .2383()ab a b =D .4222()()bc bc b c -÷-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ⋅=,所以此选项错误;B 、32a a +,不能运算,所以此选项错误;C 、2363()a b a b =,所以此选项错误;D 、42222()()()bc bc bc b c -÷-=-=,所以此选项正确,故选:D .【点睛】此题考查了同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算,掌握运算法则是解题的关键.2.(2024下·全国·七年级假期作业)下列计算错误的是()A .2571a a a-÷=B .()63123b a ba-=C .232461b a a b -⎛⎫= ⎪⎝⎭D .()()8322228b a b a ba---⋅=【答案】C【分析】根据同底数幂的除法运算,积的乘方运算,负整数指数幂的运算法则,进行运算,即可一一判定.【详解】C解:A.25771a a a a --÷==,正确,故该选项不符合题意;原创精品资源学科网独家享有版权,侵权必究!3原创精品资源学科网独家享有版权,侵权必究!5329444=⨯-⨯512=.【点睛】本题考查同底数幂的乘除法,幂的乘法以及积的乘方,掌握同底数幂的除法法则,幂的乘法以及积的乘方法则是解题的关键.9.(2024下·全国·七年级假期作业)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.【答案】(1)4(2)27(3)1m =-【分析】(1)根据同底数幂相除的运算法则即可得到答案;(2)将27b 变成底数为3的幂,根据同底数幂相乘的法则即可得到答案;(3)将8,16m 变为底数为2的幂,再根据同底数幂相乘及相除的法则即可得到答案.【详解】(1)解:∵1012m =,103n =,∴4101210310m m n n -÷==÷=;(2)解:由题意可得,33327333a b a b a b +⨯=⨯=,∵33a b +=,∴3327327a b ⨯==;(3)解:由题意可得,36344222821622m m m m m m +-=÷=⨯=⨯÷,∴346m m +-=,解得1m =-.【点睛】本题考查同底数幂乘除的法则:同底数幂相乘底数不变指数相加,同底数幂相除底数不变指数相减.10.(2024下·全国·七年级假期作业)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,(3)(3)(3)(3)-÷-÷-÷-写作(3)-④,读作“(3)-的圈4次方”.原创精品资源学科网独家享有版权,侵权必究!74=二、同底数幂除法的逆用,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!922261248n p n p +=⋅=⨯= ,()44422381mm ===,422n p m +∴≠,4n p m ∴+≠,故④错误,不符合题意;∴正确的有:①②③,故答案为:①②③.【点睛】本题主要考查了同底数幂的除法的逆运算、同底数幂的乘法的逆运算及幂的乘方的逆运算,熟练掌握运算法则是解题的关键.13.(2024下·全国·七年级假期作业)对于整数a 、b 定义运算:()()b m a n a b a b =+※(其中m 、n 为常数),如2332(3)(2)m n =+※.(1)填空:当1m =,2023n =时,2)(1=※__________;(2)若1410=※,2215=※,求214m n +-的值.【答案】(1)3(2)81【分析】(1)根据新定义的运算方法计算即可;(2)根据条件结合新定义的运算方法判断出49n =,46m =,可得结论.【详解】(1)解:112202321(2)(1)=+※21=+3=,故答案为:3;(2)1410= ※,2215=※,41(1)(4)10m n +=,225(2)(2)1n m +=,整理得:49n =,4415m n +=,解得:46m =,2124444m n m n +-=⨯÷2(4)44m n =⨯÷2694=⨯÷81=.【点睛】本题考查新定义运算和幂的运算法则,包括幂的乘方,同底数幂相乘的逆用,同底数幂相除的逆用,实数的混合运算,解题的关键是理解题意,灵活运用幂的运算法则解决问题.原创精品资源学科网独家享有版权,侵权必究!11原创精品资源学科网独家享有版权,侵权必究!13(2) 4216y x ==,442162y x ∴===,24x y ∴=±=,,当24x y ==,时,222410x y +=+⨯=,当24x y =-=,时,22246x y +=-+⨯=,∴2x y +的值为10或6;(3) 75p =,57q =,()()()5735353535755735575757p q ∴=⨯=⨯=⨯=.【点睛】本题主要考查了同底数幂的除法的逆用、幂的乘方的逆用、已知字母的值求代数式的值,熟练掌握运算法则是解题的关键.三、幂的混合运算,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!15原创精品资源学科网独家享有版权,侵权必究!17原创精品资源学科网独家享有版权,侵权必究!19原创精品资源学科网独家享有版权,侵权必究!21计算,同时注意计算中需注意的事项是本题的解题关键.四、零指数幂,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!23原创精品资源学科网独家享有版权,侵权必究!252()m n=⋅a a2=⨯28=⨯48=.32【点睛】本题主要考查了实数的运算,有理数的乘方法则,负整数指数幂的意义和零指数幂的意义,幂的乘方与同底数幂的乘法法则,熟练掌握上述法则与性质是解题的关键.原创精品资源学科网独家享有版权,侵权必究!27。

同底数幂的除法

同底数幂的除法
第十三章
整式的乘除
同底数幂的除法
a m a n a mn (m, n为正整数, 其中a 0) a a a
m n m n
(m, n为正整数)
【问题1】
试一试,用你熟悉的方法计算:
(1)25 ÷ 22 =_________________________= 2(
(2)103÷ 10 = ( 3) a 4 ÷ a 2 = = 10( = a(
1 ( ( b) 2
)
【问题2】
在运算过程当中,除数能否为0? 计算(结果以幂的形式表示):
(1)68 ÷ 65 = ______________;
(2)a5 ÷ a5 = _________ ;
(3) (a+b)3 ÷ (a+b) =__________.
结论2:an ÷an=1
(a不为0)
底数可表示非零数,或字母
(3)(x-y)7 ÷(x-y) ÷(x-y)3 = ________________
结论3
am÷an ÷ap =am-n-p
(m、n 、p为正整数,a不为0)
技能训练
计算下列各式(结果以幂的形式表示): 1.(1)109 ÷ 105;
2.(1)76 ÷ 73 ÷ 73
3.(1)104×105 ÷ 105;

4.(1)(a+b)6 ÷(a+b)2;
(2)(x-y)8÷(x-y)5.
=(a+b)4

=(x-y)3
(2)516 ÷ 125.
5.(1)311÷ 27;
=38

=513
)4 ÷(b ) ÷ b.
2
6. (1)( -b
=-b

同底数幂的除法试题精选附答案

同底数幂的除法试题精选附答案

同底数幂的除法试题精选附答案1.已知 $a=6$,$a=3$,则 $a^{2m-3n}$ 的值为()。

A。

9.B。

$6^{2m-3n}$。

C。

2.2.下列计算:①$x÷x=x$,②$(x^m)^n=x^{mn}$,③$(3xy)^2=9x^2y^2$。

其中正确的计算有()。

A。

个。

B。

1个。

C。

2个。

3.已知$x^m=2$,$x^n=3$,则$x^{2m-3n}$ 的值为()。

A。

$-5$。

B。

$\dfrac{1}{6}$。

C。

$-\dfrac{1}{5}$。

4.若 $3x=15$,$3y=5$,则 $3x-y$ 等于()。

A。

5.B。

3.C。

15.5.($-2$)$^{2014}÷$($-2$)$^{2013}$ 等于()。

A。

$-2$。

B。

2.C。

$-2^{2012}$。

6.下面是某同学在一次测验中的计算摘录,其中正确的是()。

A。

$b^3·b^3=b^6$。

B。

$(a^5)^2=a^{10}$。

C。

$(ab^2)^3=a^3b^6$。

7.若 $a^m=2$,$a^n=3$,则 $a^{2m-n}$ 的值是()。

A。

1.B。

12.C。

18.8.$x^{15}÷x^3$ 等于()。

A。

$x^5$。

B。

$x^{45}$。

C。

$x^{12}$。

9.已知 $\dfrac{2amb^4}{4abn}=\dfrac{1}{2}$,则 $m$,$n$ 的值分别为()。

A。

$m=1$,$n=4$。

B。

$m=2$,$n=3$。

C。

$m=3$,$n=4$。

10.若 $m$,$n$ 都是正整数,$a^{mn}÷a^n$ 的结果是()。

A。

$a^m$。

B。

$a^{mn-n}$。

C。

$a^n$。

11.若 $x^{-2y+1}=0$,则 $2x÷4y×8$ 等于()。

A。

1.B。

4.C。

8.12.如果 $a^m=3$,$a^n=6$,则 $a^{n-m}$ 等于()。

同底数幂的除法-练习题(含答案)

同底数幂的除法-练习题(含答案)

同底数幂的除法练习题[课内四基达标]1.选择题(1)下列算式中正确的是( ).A.(0.001)0=0B.(0.1)-2=0.01C.(10-2×5)0=1D.10-4=0.0001(2)下列计算正确的是( ).A.a3m-5÷a5-m=a4m+10B.x4÷x3÷x2=x3C.(-y)5÷(-y)3=-y2D.m a+2b÷m b-a=m2a+b(3)若x2m+n y n÷x2y2=x5y,则m、n的值分别为( ).A.m=3,n=2B.m=2,n=2C.m=2,n=3D.m=3,n=12.填空题(1)(-a2)3÷a3=.(2)108÷104=.(3)y10÷(y8÷)=y4.(4)(5x-2y)4÷(2y-5x)2=.1,则x=.(5)若32x-1=1,则x=;若3x=27(6)用科学记数法表示0.0001234×108=.3.用整数或小数表示下列各数(1)9.932×103(2)7.21×10-5(3)-4.21×107(4)-3.021×10-34.用科学记数法表示下列各数(1)732400 (2)-6643919000(3)0.00000006005 (4)-0.000002175.计算(1)(x 3)2÷x 2÷x +x 3÷(-x )2·(-x )2(2)(-21)8÷[(-21)3×(-21)2](3)(x 2a +3b +4c )m ÷(x a )2m ÷(x 3)bm ÷(x m )4c(4)(x +y -z )5÷(z -x -y )3(5)[12(x +y )3-(-x -y )3+3(-x -y )3]÷(-y -x )[能力素质提高]1.已知252m ÷52m -1=125,求m 的值.2.已知[(2x 2+3y 2)2]3÷(2x 2+3y 2)4=0,求x 、y 的值.3.已知x a =24,x b =16,求x a -b 的值.[渗透拓展创新]填空:∵a m ÷a m =m ma a =1(a ≠0),又∵a m ÷a m =a m -m =a 0(a ≠0), ∴a 0=(a 0).[中考真题演练]已知a =6915681467136612651170156914681367126611⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅+⋅·100,问a 的整数部分是多少?参考答案[课内四基达标]1.选择题(1)D(2)D(3)C2.填空题(1)-a3(2)104=10000(3)y2(4)25x2-20xy+4y21,-3(5)2(6)1.234×1043.用整数或小数表示下列各数(1)9932(2)0.0000721(3)-42100000(4)-0.0030214.用科学记数法表示下列各数(1)7.324×105(2)-6.643919×109(3)6.005×10-8(4)-2.17×10-65.计算(1)2x3.1(2)-8(3)1(4)-x2-y2-z2-2xy+2xz+2yz(5)-10x2-20xy-10y2[能力素质提高]1.m=12.x=0,y=033.2[渗透拓展创新]1,≠[中考真题演练]100,提示:设68=m。

同底数幂的除法专项练习

同底数幂的除法专项练习

. .同底数幂的除法专项练习30题(有答案)1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)511.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7= _________ ;(2)(﹣a)6÷(﹣a)2= _________ ;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)= _________ .16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________ 19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n20.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4(2)(﹣m)8÷(﹣m)3(3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法50题参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=27.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.。

8.3同底数幂的除法(讲+练)(原卷版)

8.3同底数幂的除法(讲+练)(原卷版)

8.3同底数幂的除法同底数幂的除法a m÷a n=a m−n(a≠0, m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减零指数幂符号语言:a0=1(a≠0)文字语言:任何不等于0的数的0次幂等于1强调:零的零次幂无意义幂的运算中值恒为1的三种情况①任何不等于0的数的0次幂等于1②1的任何次幂等于1③-1的偶数次幂等于1负整数指数幂符号语言:a−n=1(a≠0,n是正整数).a n文字语言:任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数.题型1:同底数幂的除法1.已知a m =6,a n =2,则a m ﹣n = . 题型2:零指数幂2. 计算:(12)0+|﹣1|= . 题型3:负整数指数幂3. 计算:3﹣1﹣π0= . 题型4:含负整数指数幂的科学记数法4. 0.000000358用科学记数法可表示为 .题型5:幂的运算的综合运用5.已知10﹣2α=3,10−β=−15,求106α+2β的值.一.选择题(共5小题)1.下列运算错误的是()A.(2ab)4=8a4b B.a8÷a2=a6C.(a2)3=a6D.a2•a3=a52.大型纪录片《厉害了,我的国》上映25天,累计票房约为4.027×108成为中国纪录电影票房冠军,这个用科学记数法表示的数据的原数为()A.0.000000004027B.0.00000004027C.402700000D.40270000003.已知4x=18,8y=3,则52x﹣6y的值为()A.5B.10C.25D.504.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3B.6C.7D.85.纳米(nm)是长度的单位,1nm=10﹣3μm,1μm=10﹣3mm,如果将在2022年底攻克20nm工艺芯片技术的难关,其中20nm等于()A.2.0×10﹣5mm B.2.0×10﹣6mm C.2.0×10﹣7mm D.20×10﹣5mm二.填空题(共5小题)6.某种细菌的直径为0.00000014m,请用科学记数法表示该直径是m.7.已知2m=a,16n=b,m、n为正整数,则24m+8n=.8.若(x−2x+2)0有意义,则x的取值范围是.9.若[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),则a的值为.10.如果(a﹣1)a+4=1成立,那么满足它的所有整数a的值是.三.解答题(共6小题)11.计算:(1)−12030+|−6|−(π−3.14)0+(−13)−2;(2)x3y(12x−1y3)−2.12.若a+b+c=3,求22a﹣1•23b+2•2a+3c的值.13.在一次测验中有这样一道题:“|a|n=12,|b|n=3,求(ab)2n的值.”马小虎是这样解的:解:(ab)2n=(a n b n)2=(12×3)2=94.结果卷子发下来,马小虎这道题没得分,而答案确实是94,你知道这是为什么吗?请你作出正确的解答14.如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.15.规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(3,1)=,(2,18)=;(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),并作出了如下的证明:∵设(3,4)=x,则3x=4,∴(3x)n=4n,即(3n)x=4n,∴(3n,4n)=x∴(3n,4n)=(3,4).试参照小明的证明过程,解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法,写出(7,45),(7,9),(7,5)之间的等量关系.并给予证明.16.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N,比如指数式24=16可转化为4=log216,对数式2=log525互转化为52=25.我们根据对数的定义可得对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0)解决以下问题:(1)将指数43=64转化为对数式;(2)试说明log a MN=log a M−log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log32+log36﹣log34=。

《同底数幂的除法》同步练习题1

《同底数幂的除法》同步练习题1

1.5 同底数幂的除法1. ÷a 2=a 3.2.若53-k =1,则k= .3.31-+(91)0= .4.用小数表示-3.021×103-= 。

5.(-a 2)5÷(-a )3= ,920÷2710÷37= 。

6.计算(-a )6÷(-a )3的结果是( )A .a 3 B.-a 2 C.-a 3 D. a 27.下列计算正确的是( )A.(-0.2)0=0B.(0.1)3==10001 C.30÷31-=3 D.a 4÷a 4=a(a≠0) 8.如果a m ÷a x =a m 3,那么x 等于( )A .3 B.-2m C.2m D.-39.设a≠0,以下的运算结果:①(a 3)2· a 2=a 7;②a 3÷a 2-=a 5;③(-a )3÷a 0=-a 3;④(-a )2-÷a=a 1-,其中正确的是( )A. ①②B. ①③C. ②④D. ②③10.计算下列各题:(1)(m-1)5÷(m-1)3;(2)(x-y )10÷(y-x )5÷(x-y );(3)(a m )n ×(-a m 3)n 2÷(a mn )5;(4) 21--(-32)2-+(23)0. 14.化简求值:(2x-y )13÷[(2x-y )3]2÷[(y-2x )2]3,其中x=2,y=-1。

1.计算52()()x x -÷-=_______,10234x x x x ÷÷÷ =______.2.水的质量0.000204kg,用科学记数法表示为__________.3.若0(2)x -有意义,则x_________.4.02(3)(0.2)π--+-=________.5.2324[()()]()m n m n m n -⋅-÷- =______6.若5x-3y-2=0,则531010x y ÷=_________.7.如果3,9m n a a ==,则32m n a -=_____8.如果3147927381m m m +++⨯÷=,那么m=_____.9.若整数x 、y 、z 满足91016()()()28915x y x ⨯⨯= 则x=_______,y=_______,z=________. 10.2721(5)(5)248m n a b a b ⨯-÷-=,则m 、n 的关系(m,n 为自然数)是________. 11.下列运算结果正确的是( )①2x 3-x 2=x ②x 3·(x 5)2=x 13 ③(-x)6÷(-x)3=x 3 ④(0.1)-2×10- 1=10A.①②B.②④C.②③D.②③④12.若a=-0.32,b=-3-2,c=21()3--,d=01()3-, 则( ) A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b13.若21025y =,则10y -等于( ) A.15 B.1625 C.-15或15 D.12514.已知9999909911,99Q =,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定15.已知a≠0,下列等式不正确的是( )A.(-7a)0=1B.(a 2+12)0=1C.(│a│-1)0=1D.01()1a= 16.若35,34m n ==,则23m n -等于( ) A.254B.6C.21D.20 (1)03321()(1)()333-+-+÷-; (2)15207(27)(9)(3)---⨯-÷-; (3)33230165321()()()()(3)356233---÷+-÷--+. (4)2421[()]()n n x y x y ++÷-- (n 是正整数).18.若(3x+2y-10)0无意义,且2x+y=5,求x 、y 的值.(6分)19.化简:4122(416)n n n +-+.(6分)20.已知235,310m n ==,求(1)9m n -;(2)29m n -.(6分)22.已知2(1)1x x +-=,求整数x.(1))()(232b a b a ÷;(2)036)103()32()32(⨯-⨯÷-;(3)35532)10(10)10(÷⨯; (4)422423)()()(a a a -÷⋅;(5)422334)()()(x x x ⋅÷(6)()()2242b a b a ÷; (7)()30225555--⨯+⨯; (8)101312323--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛; (9)()2237x x x ÷÷; (10)()()()322334x x x -⋅÷(1)已知:5=m x ,3=n x ,求n m x 32-的值.(2)已知:,632,32==n m 求n m 1032-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.
17.(1)已知xm=8,xn=5,求xm﹣n的值;(2)已知1=4,an=3,ak=2,求am﹣3k+2n的值._________19.计算:(﹣3x2n+2yn)3÷[(﹣x3y)2]n
(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.
12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.
13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.
23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1= =( )2,∴n=2
24.(a2n)2÷a3n+2•a2=a4n÷a3n+2•a2=a4n﹣3n﹣2•a2=an﹣2•a2=an﹣2+2=an.
25.∵am=2,an=7,∴a3m+2n﹣a2n﹣3m=(am)3•(an)2﹣(an)2÷(am)3=8×49﹣49÷8=
12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)2
14.若(xm÷x2n)3÷xm﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.
15.计算:
(1)m9÷m7=_________;
(2)(﹣a)6÷(﹣a)2=_________;
(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=_________.
10. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5
=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]
=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+5
11.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;
7.计算:an•an+5÷a7(n是整数).
8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.
9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:
15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5
11.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.
(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.
16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.
17.(1)∵xm=8,xn=5,∴xm﹣n=xm÷xn,=8÷5= ;
26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.
28.已知ax=4,ay=9,求a3x﹣2y的值.
29.计算
(1)a7÷a4(2)(﹣m)8÷(﹣m)3(3)(xy)7÷(xy)4
(4)x2m+2÷xm+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x
(3)(xy)7÷(xy)4=(xy)3=x3y3;
(4)x2m+2÷xm+2=xm;
(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;
(6)x6÷x2•x=x4•x=x5.
30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.
4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣ .
5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=
6.∵xm=5,xn=25,∴x5m﹣2n=(xm)5÷(xn)2=55÷(25)2=55÷54=5.
20.∵an=2,am=3,ak=4,∴a2n+m﹣2k=a2n•am÷a2k=(an)2•am÷(ak)2=4×3÷16= .
21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.
故1010x÷106y的值是104
22. =102a﹣b= = .
7.an•an+5÷a7=a2n+5﹣7=a2n﹣2
8.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;
(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+3
9.33×36÷(﹣3)8=39÷38=3
(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=
18.∵am=4,an=3,∴am﹣3k+2n=am÷a3k•a2n=am÷(ak)3•(an)2=4÷23×32=
19.(﹣3x2n+2yn)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6ny2n=﹣27x6yn
20.已知:an=2,am=3,ak=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.
22.已知10a=2,10b=9,求: 的值.23.已知 ,求n的值.
24.计算:(a2n)2÷a3n+2•a2.25.已知am=2,an=7,求a3m+2n﹣a2n﹣3m的值.
26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=
27.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.
28.a3x﹣2y=(ax)3÷(ay)2=43÷92=
29.(1)a7÷a4=a3;
(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;
14.(xm÷x2n)3÷xm﹣n=(xm﹣2n)3÷xm﹣n=x3m﹣6n÷xm﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,
所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.
15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;
同底数幂的除法专项练习30题
1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2
3.已知am=3,an=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.
5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果xm=5,xn=25,求x5m﹣2n的值.
30.若32•92a+1÷27a+1=81,求a的值.
参考答案:
1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m6
2.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.
3.∵am=3,an=4,∴a2m﹣n=a2m÷an=(am)2÷an=32÷4= .
相关文档
最新文档