大数据技术原理与应用——概念、存储、处理、分析与应用-教学大纲
大数据技术 教学大纲
大数据技术教学大纲大数据技术教学大纲随着信息时代的到来,大数据技术成为了当今社会发展的重要驱动力。
大数据技术的应用涵盖了各个领域,如商业、医疗、金融等,对于提高效率、优化决策和创新发展起到了重要作用。
因此,大数据技术的教学也变得尤为重要,以培养学生对大数据技术的理解和应用能力。
一、概述大数据技术教学的概述部分主要介绍大数据技术的基本概念和发展背景。
包括大数据的定义、特征、应用领域以及对社会经济发展的影响等内容。
通过概述部分的学习,学生可以了解大数据技术的重要性和广泛应用的现状,为后续的学习打下基础。
二、数据处理与分析数据处理与分析是大数据技术的核心内容之一。
在这一部分,学生将学习到大数据的采集、存储和处理等基本技术。
包括数据采集的方法与技术、大数据存储的架构与技术、数据清洗与预处理等内容。
同时,还需要学习数据分析的基本方法和工具,如数据挖掘、机器学习等。
通过这一部分的学习,学生可以掌握大数据处理与分析的基本技能,为后续的应用打下基础。
三、大数据应用大数据技术的应用广泛,本部分将重点介绍大数据在不同领域的应用案例。
如大数据在商业领域的应用、大数据在医疗领域的应用、大数据在金融领域的应用等。
通过学习这些应用案例,学生可以了解到大数据技术在实际场景中的应用方式和效果,培养学生的创新思维和解决问题的能力。
四、大数据安全与隐私保护大数据技术的应用不可避免地涉及到数据安全和隐私保护的问题。
本部分将介绍大数据安全与隐私保护的基本概念和技术。
包括数据安全的威胁与防护、隐私保护的方法与技术等内容。
通过学习这一部分,学生可以了解到大数据安全与隐私保护的重要性,并学习到相应的技术手段和方法。
五、大数据伦理与法律大数据技术的应用也带来了一系列的伦理和法律问题。
本部分将介绍大数据伦理和法律的基本原则和规范。
包括数据伦理的基本原则、大数据的道德问题、大数据法律法规等内容。
通过学习这一部分,学生可以了解到大数据应用中的伦理和法律问题,并培养学生的伦理意识和法律素养。
48-大数据技术教学大纲-大数据技术基础-宋旭东-清华大学出版社
《大数据技术》课程教学大纲课程编号:适用专业:数据科学与大数据技术及相关专业执笔:适用年级:本科四年级一、课程性质和教学目的(-)课程性质《大数据技术》是数据科学与大数据技术专业以及讣算机科学与技术、软件工程、网络工程及物联网等相关专业的专业基础课。
(二)教学目的通过本课程的学习,要求学生达到:1.掌握大数据的基本概念和相关技术。
2.掌握大数据分布式存储和并行讣算的思想,能够构建大数据Hadoop平台。
3.理解HDFS、HBase. Hive、Spark的工作原理、掌握其基本操作。
4.能够编写简单的大数据MapReduce程序。
5.培养学生大数据思维和讣算思维的能力。
二、课程教学内容1.大数据基础。
着重介绍大数据基本概念,大数据的4V特征及在其应用,大数据框架体系,大数据采集与预处理技术、数据存储和管理技术、数据分析与挖掘技术、数据可视化等技术;大数据并行计算框架Hadoop平台及其核心组件。
2.大数据存储与管理。
着重介绍大数据存储与管理的基本概念和技术,大数据数据类型, 大数分布式系统基础理论,NoSQL数据库,分布式存储技术、虚拟化技术和云存储技术;大数据分布式文件系统HDFS,包括HDFS的设计特点,体系结构和工作组件;大数据分布式数据库系统HBase,包括HBase列式数据库的逻辑模型和物理模型,HBase体系结构及其工作原理;大数据分布式数据仓库系统Hive,包括Hive的工作原理和执行流程、Hive的数据类型与数据模型,以及Hive 主要访问接口等。
3.大数据釆集与预处理。
着重介绍大数据采集与预处理相关技术,包括数据抽取、转换和加载技术,数据爬虫技术、数据清理、数据集成、数据变换和数据归约的方法和技术;大数据采集工具,包括Sqoop关系型大数据采集工具,Flume日志大数据采集工具和分布式大数据Nutch爬虫系统。
4.大数据分析与挖掘。
着重介绍大数据计算模式,包括大数据批处理、大数据查询分析计算、大数据流计算、大数据迭代计算、大数据图讣算;大数据MapReduce计算模型、模型框架和数据处理过程,以及MapReduce主要编程接口;大数据Spark II'算模型,包括Spark 的工作流程与运行模式;大数据MapReduce基础算法和挖掘算法(这部分内容可选讲)。
《大数据》课程教学大纲(本科)
《大数据》课程教学大纲课程编号:04224课程名称:大数据英文名称:Big Data课程类型:学科选修课课程要求:选修学时/学分:32/2 (讲课学时:28上机学时:4)适用专业:智能科学与技术一、课程性质与任务大数据分析是智能科学与技术、计算机科学技术等专业的一门学科选修课,该课程涉及各类常用的挖掘与分析方法,提供了从数据准备到统计分析、关联规则建立及集成学习等整个数据分析过程的内容。
本课程全面地介绍了大数据处理相关的基本概念和原理,着重讲述了介绍数据挖掘、分析相关的理论、方法及实现工具。
本课程在教学内容方面着重基本知识、基本理论和基本设计方法的讲解;在培养实践能力方面着重数据分析的基本训练,为学生今后从事大数据的研究与预测打下坚实的基础。
(本课程可支撑毕业要求中的3.3, 7.2, 10.1, 12.2)二、课程与其他课程的联系本课程的先修课程为人工智能基础、机器学习等专业基础课程。
通过对人工智能基础的学习能够掌握智能的算法和搜索技术,通过对机器学习能够了解数据的分类、过滤等方法。
这些先修课程为本课程的讲授打下了基础。
本课程的后续课程包括智能机器人、模式识别等。
通过本课程可为后续课程提供理论与方法实践基础。
三、课程教学目标1.考虑社会、健康、安全、法律、文化以及环境等因素,设计一个能实现预期功能的硬件或软件系统,进行仿真研究或开发出系统原型或实物(支撑毕业要求中的3.3);2.能够评价智能系统工程实践对环境、社会可持续发展的影响(支撑毕业要求中的7.2);3.将大数据技术作为重点,以应用为目的,全面介绍大数据的数据挖掘与预测方法。
使学生既能对大数据处理技术有一个全景的把握,又能深入理解和使用大数据进行决策。
4.有不断学习和适应智能科学与技术发展的能力(支撑毕业要求中的12.2)5.了解大数据挖掘与预测分析学科的前沿和最新发展动向,具有跟踪学科发展前沿的意识和文献检索基本技能。
(支撑毕业要求中的10.1)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)大作业:1.对数据挖掘的认识。
大数据教学大纲
大数据教学大纲随着科技的快速发展和互联网的普及,大数据已经成为当今社会中一个重要的领域。
大数据的涌现对企业、政府和个人都带来了许多机遇和挑战。
为了适应这个时代变化的需求,大数据教育应该成为教育体系的一部分。
本文将就大数据教学大纲进行详细介绍,以期给相关教育机构提供一些建议和灵感。
第一部分:导论1.1 大数据的定义和概念- 介绍大数据的基本概念,包括数据类型、数据来源和数据特征等。
1.2 大数据的应用领域- 介绍大数据在商业、医疗、金融等领域的应用案例。
1.3 大数据的价值和意义- 探讨大数据对决策制定、资源规划和业务发展的重要性。
第二部分:技术基础2.1 数据采集和处理技术- 介绍数据采集的方法,如传感器、网络爬虫和人工采集等,并讨论数据清洗和预处理的技术。
2.2 大数据存储与管理- 探讨分布式文件系统、NoSQL数据库和云存储等技术,以及其在大数据存储与管理方面的应用。
2.3 大数据分析与挖掘- 介绍大数据分析的基本方法,如数据挖掘、机器学习和统计分析等,并重点讨论大数据分析的挑战和解决方案。
第三部分:应用案例3.1 商业智能- 分析大数据在市场营销、销售预测和客户关系管理等方面的应用案例。
3.2 医疗健康- 探讨大数据在疾病预测、个性化治疗和医疗资源分配等方面的应用案例。
3.3 城市规划- 介绍大数据在交通流量控制、垃圾处理和资源配置等方面的应用案例。
第四部分:教学方法与评估4.1 教学方法- 探讨大数据教学的教学方法,如案例研究、实践项目和小组合作等,以培养学生的实际应用能力。
4.2 评估方法- 提出大数据教学评估的准则和标准,包括理论考试、实验报告和项目评估等。
第五部分:资源支持5.1 教材和参考书籍- 推荐一些经典的大数据教材和参考书籍,以供教师和学生备用。
5.2 实验室和设备支持- 提供一些必要的实验室设备和软件工具,以支持学生的大数据实践操作。
结语通过本大纲,希望大数据教学能够引导学生了解大数据的基本概念、技术和应用。
《大数据技术及应用》教学大纲[3页]
教学难点:利用pyhdfs实现HDFS文件系统的操作
4+2
第5章HBase基础与应用
教学内容:
(1)HBase的体系结构、核心组件和工作原理
(2)HBase的常用命令,使用命令对HBase系统进行操作
(3)利用Jyhdfs实现HBase数据库系统的操作
课程学习目标
学习目标1:掌握大数据的基本原理、主流的大数据处理平台和技术方法。
学习目标2:提高学生应用大数据思维和技术方法解决实际问题的能力。
学习目标3:培养学生运用大数据技术中的科学思维与计算思维,激发学生科技报国、奉献社会的情怀和使命担当。
二、课程教学内容和学时分配
章节
教学内容及其重难点
学时安排
4+2
第8章大数据分析与挖掘
教学内容:
(1)数据的描述性分析
(2)回归、分类与聚类的基本原理与常用算法
(3)分布式大数据挖掘算法典型案例
教学重点:回归、分类与聚类的基本原理与常用算法
教学难点:基于MapReduce的分布式大数据挖掘算法的设计与实现
4+2
第9章数据可视化
教学内容:
(1)数据可视化的常用方法
《大数据技术及应用》课程教学大纲
一、课程基本信息
课程
编号
课程
名称
大数据技术及应用
课 程 基 本 情 况
学时
32(课堂)+18(实验)
课程性质
专业选修
先修课程
高级语言程序设计,数据库原理
考核方式
考试,作业考核,课堂表现考核
教材及
参考书
教材:严宣辉,张仕,赖会霞,韩凤萍.大数据技术及应用—基于Python语言.电子工业出版社.2021.10
大数据技术原理与应用教学大纲
大数据技术原理与应用教学大纲一、课程介绍本课程主要介绍大数据技术的基本原理和常见应用。
学生将通过本课程掌握大数据处理的基本方法与技术,了解大数据在不同领域的应用案例,并能够使用相关工具和技术进行大数据处理和分析。
二、课程目标1.理解大数据的基本概念、背景和发展趋势。
2.掌握大数据处理的基本方法和技术,包括数据获取、存储、处理、分析和可视化等。
3.了解大数据在不同领域的应用案例,包括商业、金融、医疗、社交网络、智能交通等。
4. 学习使用大数据处理和分析的相关工具和技术,如Hadoop、Spark、SQL、Python等。
三、教学内容1.大数据概述1.1大数据定义和特点1.2大数据的发展背景和趋势2.大数据处理方法2.1数据获取与清洗2.2数据存储与管理2.3数据处理与分析2.4数据可视化与展示3.大数据应用案例3.1商业与金融领域的大数据应用3.2医疗与健康领域的大数据应用3.3社交网络与推荐系统的大数据应用3.4智能交通与城市管理的大数据应用4.大数据处理与分析工具与技术4.1 Hadoop与MapReduce4.2 Spark与分布式计算4.3SQL与关系型数据库4.4 Python与数据分析5.大数据安全与隐私保护5.1大数据安全的挑战与问题5.2大数据隐私保护的方法与技术四、教学方法1.理论课讲授:通过课堂讲解,介绍大数据的基本理论知识和相关技术。
2.实验操作:通过实验操作,学生亲自使用大数据处理和分析工具,加深对大数据技术的理解和掌握。
3.案例研究:通过实际的大数据应用案例,引导学生分析和解决实际问题,提高实际应用能力。
五、考核方式1.平时成绩(包括参与讨论、实验报告等)占40%。
2.期末考试占60%。
六、教材与参考资料教材:1.《大数据导论》,王磊著,清华大学出版社。
2. 《Hadoop权威指南》,Tom White著,人民邮电出版社。
参考资料:1. 《Spark快速大数据分析》2. 《Python数据分析实战》3.《数据孤岛》4.《深入理解计算机系统》七、教学进度安排第一周:课程介绍、大数据概述第二周:数据获取与清洗第三周:数据存储与管理第四周:数据处理与分析第五周:数据可视化与展示第六周:商业与金融领域的大数据应用第七周:医疗与健康领域的大数据应用第八周:社交网络与推荐系统的大数据应用第九周:智能交通与城市管理的大数据应用第十周:Hadoop与MapReduce第十一周:Spark与分布式计算第十二周:SQL与关系型数据库第十三周:Python与数据分析第十四周:大数据安全与隐私保护第十五周:复习备考以上为《大数据技术原理与应用教学大纲》的大致内容,主要涵盖了大数据的基本概念、处理方法和应用领域,以及相关工具和技术的学习。
大数据技术原理与应用 课程教学大纲
大数据技术原理与应用课程教学大纲课程名称:大数据技术原理与应用课程类型:专业选修课课程学时:60学时课程教学目标:本课程旨在介绍大数据技术的原理和应用,使学生了解大数据技术的基本概念、关键技术和应用场景,并具备基本的大数据技术分析和应用能力。
通过本课程的学习,学生将能够掌握大数据技术的基本原理、企业级大数据技术体系结构、大数据分析方法和工具、大数据应用案例等知识,为学生未来从事大数据相关职业提供良好的基础。
授课内容和教学安排:第一章:大数据技术概述1.1 大数据技术的定义和特点1.2 大数据对社会和企业的影响1.3 大数据技术的发展历程1.4 大数据技术体系结构和组成部分第二章:大数据存储和处理技术2.1 大数据存储技术概述2.2 关系型数据库和NoSQL数据库2.3 Hadoop分布式文件系统2.4 大数据处理技术概述2.5 大数据处理框架:Hadoop MapReduce第三章:大数据挖掘和分析技术3.1 数据挖掘概述3.2 数据预处理和特征选择3.3 分类和聚类算法3.4 关联规则挖掘和推荐系统3.5 大数据分析工具概述:Spark、Flink等第四章:大数据应用实践4.1 电商大数据分析实践4.2 社交媒体数据分析实践4.3 金融数据分析实践4.4 健康医疗数据分析实践第五章:大数据技术发展趋势和展望5.1 大数据技术的发展趋势5.2 大数据技术在人工智能和物联网中的应用5.3 大数据伦理和安全问题教学方法:本课程采用多种教学方法,包括理论讲解、实例分析、案例研究和实践操作等。
通过理论讲解,学生将了解大数据技术的基本概念和原理;通过实例分析,学生将掌握大数据技术在实际场景中的应用方法;通过案例研究,学生将学会分析和解决大数据相关问题;通过实践操作,学生将运用所学知识完成大数据分析任务。
同时,教师将引导学生参与小组讨论和项目实践,促进学生的合作能力和创新思维。
评估方式:本课程的评估方式包括平时成绩和期末考试成绩两部分。
大数据技术原理与应用教学大纲
大数据技术原理与应用教学大纲课程概述入门级大数据课程,适合初学者,完备的课程在线服务体系,可以帮助初学者实现“零基础”学习大数据课程。
课程采用厦门大学林子雨老师编著的国内高校第一本系统性介绍大数据知识专业教材《大数据技术原理与应用》。
课程紧紧围绕“构建知识体系、阐明基本原理、引导初级实践、了解相关应用”的指导思想,对大数据知识体系进行系统梳理,做到“有序组织、去粗取精、由浅入深、渐次展开”。
课程由国内高校知名大数据教师厦门大学林子雨副教授主讲。
授课目标课程的定位是入门级课程,本课程的目标是为学生搭建起通向“大数据知识空间”的桥梁和纽带。
本课程将系统梳理总结大数据相关技术,介绍大数据技术的基本原理和大数据主要应用,帮助学生形成对大数据知识体系及其应用领域的轮廓性认识,为学生在大数据领域“深耕细作”奠定基础、指明方向。
课程大纲第1讲大数据概述1.1 大数据时代1.2 大数据概念和影响1.3 大数据的应用1.4 大数据的关键技术1.5 大数据与云计算、物联网本讲配套讲义PPT-第1讲-大数据概述第1讲大数据概述章节单元测验第2讲大数据处理架构Hadoop本讲实验答疑-第2讲-大数据处理架构Hadoop2.1 概述2.2 Hadoop项目结构2.3 Hadoop的安装与使用2.4 Hadoop集群的部署和使用本讲配套讲义PPT-第2讲-大数据处理架构Hadoop 大数据处理架构Hadoop单元测验第3讲分布式文件系统HDFS3.1 分布式文件系统HDFS简介3.2 HDFS相关概念3.3 HDFS体系结构3.4 HDFS存储原理3.5 HDFS数据读写过程3.6 HDFS编程实践本讲配套讲义PPT-第3讲-分布式文件系统HDFS 分布式文件系统HDFS单元测验第4讲分布式数据库HBase4.1 HBase简介4.2 HBase数据模型4.3 HBase的实现原理4.4 HBase运行机制4.5 HBase应用方案4.6 HBase安装配置和常用Shell命令4.7 HBase常用Java API及应用实例本讲配套讲义PPT-第4讲-分布式数据库HBase 分布式数据库HBase单元测验第5讲NoSQL数据库5.1 NoSQL概述5.2 NoSQL与关系数据库的比较5.3 NoSQL的四大类型5.4 NoSQL的三大基石5.5 从NoSQL到NewSQL数据库5.6 文档数据库MongoDB本讲配套讲义PPT-第5讲-NoSQL数据库NoSQL数据库单元测验第6讲云数据库6.1 云数据库概述6.2 云数据库产品6.3 云数据库系统架构6.4 Amazon AWS和云数据库6.5 微软云数据库SQL Azure6.6 云数据库实践本讲配套讲义PPT-第6讲-云数据库云数据库单元测验第7讲MapReduce7.1 MapReduce概述7.2 MapReduce的体系结构7.3 MapReduce工作流程7.4 Shuffle过程原理7.5 MapReduce应用程序执行过程7.6 实例分析:WordCount7.7 MapReduce的具体应用7.8 MapReduce编程实践本讲配套讲义PPT-第7讲-MapReduce MapReduce单元测验第8讲Hadoop再探讨8.1 Hadoop的优化与发展8.2 HDFS2.0的新特性8.3 新一代资源管理调度框架YARN8.4 Hadoop生态系统中具有代表性的功能组件本讲配套讲义PPT-第9讲-Hadoop再探讨Hadoop再探讨单元测验第9讲数据仓库Hive9.1 数据仓库概念9.2 Hive简介9.3 SQL转换成MapReduce作业的原理9.4 Impala9.5 Hive编程实践本讲配套讲义PPT-第9讲-数据仓库Hive数据仓库Hive单元测验第10讲Spark10.1 Spark概述10.2 Spark生态系统10.3 Spark运行架构10.4 Spark SQL10.5 Spark的部署和应用方式10.6 Spark编程实践本讲配套讲义PPT-第10讲-SparkSpark单元测验第11讲流计算11.1 流计算概述11.2 流计算处理流程11.3 流计算的应用11.4 开源流计算框架Storm11.5 Spark Streaming、Samza以及三种流计算框架的比较11.6 Storm编程实践本讲配套讲义PPT-第11讲-流计算流计算单元测验第12讲Flink12.1Flink简介12.2为什么选择Flink12.3Flink应用场景12.4Flink技术栈、体系架构和编程模型12.5 Flink的安装与编程实践本讲配套讲义PPT-第12讲-FlinkFlink单元测验第13讲图计算13.1 图计算简介13.2 Pregel简介13.3 Pregel图计算模型13.4 Pregel的C++ API13.5 Pregel的体系结构13.6 Pregel的应用实例——单源最短路径13.7 Hama的安装和使用本讲配套讲义PPT-第13讲-图计算图计算单元测验第14讲大数据在不同领域的应用14.1 大数据应用概览14.2 推荐系统14.3 大数据在智能医疗和智能物流领域运用本讲配套讲义PPT-第14讲-大数据在不同领域的应用大数据在不同领域的应用单元测验预备知识面向对象编程(比如Java)、数据库、操作系统参考资料林子雨.大数据技术原理与应用(第3版),人民邮电出版社,2020年9月(教材官网)。
《大数据分析》课程教学大纲
《大数据分析》课程教学大纲一、课程基本信息课程名称:大数据分析课程代码:_____课程类别:专业必修课总学时:_____学分:_____适用专业:_____二、课程的性质、目标和任务(一)课程性质《大数据分析》是一门涉及多学科知识交叉融合的课程,它融合了统计学、计算机科学、数学等领域的知识和技术,旨在培养学生具备大数据分析和处理的能力,以应对日益增长的数据驱动的决策需求。
(二)课程目标1、使学生了解大数据分析的基本概念、原理和方法,掌握大数据分析的流程和技术。
2、培养学生运用大数据分析工具和技术解决实际问题的能力,能够对大规模数据进行采集、存储、处理、分析和可视化。
3、提高学生的数据分析思维和创新能力,能够从数据中发现有价值的信息和知识,为企业和社会的决策提供支持。
4、培养学生的团队合作精神和沟通能力,能够在大数据分析项目中与团队成员有效地协作和交流。
(三)课程任务1、讲解大数据分析的基本概念,包括大数据的特点、数据类型、数据来源等。
2、介绍大数据存储和管理技术,如分布式文件系统、NoSQL 数据库等。
3、教授数据预处理的方法,包括数据清洗、数据集成、数据变换等。
4、讲解数据分析的方法和技术,如描述性统计分析、回归分析、聚类分析、分类分析等。
5、介绍大数据可视化的技术和工具,培养学生将分析结果以直观、有效的方式展示出来的能力。
6、通过实际案例和项目实践,让学生掌握大数据分析的全过程,提高学生的实际动手能力和解决问题的能力。
三、课程教学内容和要求(一)大数据分析概述1、大数据的概念、特点和应用领域。
2、大数据分析的流程和方法。
3、大数据分析的工具和技术。
(二)大数据存储与管理1、分布式文件系统(如 HDFS)的原理和应用。
2、 NoSQL 数据库(如 MongoDB、Cassandra)的特点和使用。
3、数据仓库的概念和构建方法。
(三)数据预处理1、数据清洗的方法和技术,包括缺失值处理、异常值处理、重复值处理等。
《大数据处理技术》课程教学大纲(本科)
大数据处理技术Big Data Technology课程代码:08410128学分:3学时:56(其中:课堂教学学时:40 实验学时:0 上机学时:16 课程实践学时:0 )先修课程:计算机基础适用专业:信息管理与信息系统专业,电子商务专业,工业工程专业教材:大数据技术原理与应用(林子雨著,人民邮电出版社)一、课程性质与课程目标(一)课程性质(需说明课程对人才培养方面的贡献)本课程是“信息管理与信息系统”专业的一门专业选修课。
大数据作为继云计算、物联网之后IT行业又一颠覆性的技术,备受关注。
大数据时代的到来,迫切需要高校及时建立大数据技术课程体系,为社会培养和输送一大批具备大数据专业素养的高级人才,满足社会对大数据人才日益旺盛的需求。
本课程定位为大数据技术入门课程,为学习者搭建起通向“大数据知识空间”的桥梁和纽带,帮助学习者形成对大数据知识体系及其应用领域的轮廓性认识,为他们在大数据领域“深耕细作”奠定基础、指明方向。
(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。
应包括知识目标和能力目标。
)1. 把握大数据基本概念和应用领域,大数据处理架构及相关流行技术等。
培养学生熟练运用信息化工程理论、方法和工具,并具有大数据规范、分析和实施的基本技能;2. 对大数据存储相关技术的概念和原理具有一般性认识,并初步培养信息素养和信息处理能力,从而具备在政府、企业信息化过程担任管理信息化咨询,信息系统运维管理和信息化项目评价能力;3. 加强大数据处理和分析的核心技术的理解与学习,培养学习者将大数据与企业和社会实践紧密结合的意识,能系统掌握信息技术和信息管理基本理论、知识和技能,并可承担信息中心的信息处理技术工作与培训机构的教育工作;4. 训练自主学习和探究分析大数据领域的研究内容及发展动向的能力,能承担软件公司的信息系统开发、实施指导与监理工作。
注:工程类专业通识课程的课程目标应覆盖相应的工程教育认证毕业要求通用标准;(三)课程目标与专业毕业要求指标点的对应关系(认证专业专业必修课程填写)注:课程目标与毕业要求指标点对接的单元格中可输入“ ”,也可标注“H、M、L”。
《大数据分析》教学大纲
《大数据分析》教学大纲大数据分析教学大纲一、课程简介大数据分析是指通过对庞大、多样、复杂的数据进行挖掘、整理和分析,以获得有价值的信息和洞察,并支持决策和业务优化的过程。
本课程旨在介绍大数据分析的基本理论、方法和工具,培养学生的数据分析思维、数据处理和挖掘能力,从而为未来的数据驱动型工作提供基础。
二、教学目标1.理解大数据分析的基本概念和应用场景;2.掌握大数据分析的基本方法和技术;3.培养数据处理和挖掘的能力,能够针对实际问题进行数据分析;4.掌握常用的大数据分析工具和平台,能够进行实际数据分析项目。
三、教学内容1.大数据分析概述a.大数据概念和特点b.大数据分析的意义和应用场景c.大数据分析的挑战和问题2.数据预处理a.数据清洗和去噪b.数据集成和转换c.数据规范化和归一化d.数据离散化和分类3.数据挖掘a.数据挖掘的基本任务和流程b.关联规则挖掘c.分类和预测d.聚类分析和异常检测e.时间序列分析和预测4.大数据分析工具与平台a. Hadoop和MapReduceb. Spark和Spark MLlibc. Python数据分析库(NumPy、Pandas、Matplotlib等)d. 数据可视化工具(Tableau、Power BI等)5.实际案例分析a.电商网站用户行为分析b.社交媒体文本情感分析c.金融欺诈检测d.健康数据监测与预测四、教学方法1.理论讲授:教师通过课堂讲解,介绍大数据分析的基本理论和方法,引导学生理解相关概念和原理。
2.实践操作:通过实际案例和数据集,进行数据分析和处理实验,培养学生的实际操作能力。
3.学生互动:通过小组讨论、问题解答等形式,引导学生积极参与到课堂中,促进知识的交流和分享。
4.课堂演示:教师通过实际案例演示和工具使用演示,帮助学生掌握大数据分析工具和平台的使用方法。
5.作业和项目:布置编程作业和实际项目,让学生在实践中巩固所学知识,并培养解决实际问题的能力。
大数据的原理与应用教案
大数据的原理与应用教案1. 概述•什么是大数据•大数据的特征和挑战•大数据的应用领域2. 大数据的原理2.1 数据采集•数据来源•数据采集方法•数据清洗和预处理2.2 数据存储与管理•数据存储的需求•大数据存储技术•分布式文件系统•NoSQL数据库2.3 数据处理与分析•大数据处理的挑战•大数据处理框架•批处理与流式处理•分布式计算2.4 数据可视化•数据可视化的重要性•数据可视化技术•可视化工具的选择与使用3. 大数据的应用3.1 商业智能与数据分析•大数据在市场营销中的应用•大数据在销售预测中的应用•大数据在用户行为分析中的应用3.2 金融行业•大数据在风险管理中的应用•大数据在投资决策中的应用•大数据在反欺诈中的应用3.3 医疗保健•大数据在疾病诊断中的应用•大数据在医疗资源调配中的应用•大数据在健康管理中的应用3.4 物流与交通•大数据在供应链管理中的应用•大数据在交通流量预测中的应用•大数据在路线优化中的应用4. 教学活动4.1 活动设计•活动目标•活动内容•活动步骤4.2 活动评估•评估方法•评估指标•评估结果分析4.3 教学资源•教材推荐•参考书目•在线课程链接5. 教学反思•教学目标达成度评估•学生反馈分析•教学改进建议以上就是大数据的原理与应用教案的大纲。
通过这个教案,学生可以了解大数据的基本概念、特征和应用领域,并学习大数据的采集、存储、处理和分析的基本原理与方法。
同时,通过相关实例的介绍,学生可以了解大数据在商业智能、金融、医疗保健、物流与交通等领域的具体应用。
希望通过这个教案的学习,学生能够对大数据有更深入的理解,并能够应用到实际问题的解决中。
大数据处理与分析课程大纲
大数据处理与分析课程大纲一、课程简介大数据处理与分析课程旨在培养学生掌握大数据处理与分析的基本理论与方法,了解相关领域的最新发展动态,具备基本的大数据处理与分析能力。
通过本课程的学习,学生将掌握大数据处理与分析的核心概念、技术工具和应用案例,为未来在大数据领域的研究和实践奠定基础。
二、课程目标1. 掌握大数据处理与分析的基本原理和方法;2. 熟悉大数据技术工具的使用;3. 能够实际应用大数据处理与分析的技术解决实际问题;4. 了解大数据处理与分析的发展趋势与前沿领域。
三、课程大纲第一章:大数据处理与分析概述1.1 大数据处理与分析的定义与特点1.2 大数据处理与分析的应用领域1.3 大数据处理与分析的挑战与机遇第二章:大数据处理与分析基础2.1 大数据处理与分析的基本概念2.2 大数据的获取、存储与管理2.3 大数据的预处理与清洗2.4 大数据的可视化与展示第三章:大数据处理与分析技术3.1 大数据处理与分析的算法与模型3.2 分布式计算与存储技术3.3 大数据处理与分析平台与工具3.4 数据挖掘与机器学习在大数据处理与分析中的应用第四章:大数据处理与分析的应用4.1 电子商务与金融领域的大数据处理与分析4.2 社交网络与媒体分析的大数据处理与分析4.3 医疗与健康领域的大数据处理与分析4.4 其他领域的大数据处理与分析案例第五章:大数据处理与分析的实践案例分析5.1 实际案例一:基于大数据处理与分析的市场营销策略优化 5.2 实际案例二:基于大数据处理与分析的航空客户服务改进5.3 实际案例三:基于大数据处理与分析的智能交通管理四、考核方式本课程的考核方式包括平时作业、实验报告、课堂讨论和期末考试。
平时作业包括对课程内容的理解与总结,实验报告则是对所学知识在实际案例中的应用能力的评估。
课堂讨论旨在促进学生对课程知识的深入理解与思考。
期末考试将对学生对整个课程内容的掌握情况进行综合性评估。
五、参考教材1. 《大数据处理与分析导论》2. 《大数据处理与分析技术与应用》3. 《大数据处理与分析工具与案例》六、教学团队本课程由经验丰富的大数据处理与分析领域专家组成的教学团队承担,他们将结合自己在实践和研究中的经验,为学生提供高质量的教学服务。
大数据技术原理与应用:概念、存储、处理、分析与应用(第3版)
12.1 Flink简介 12.2为什么选择Flink 12.3 Flink应用场景 12.4 Flink技术栈 12.5 Flink体系架构 12.6 Flink编程模型 12.7 Flink编程实践 12.8本章小结 12.9习题
13.1图计算简介 13.2 Pregel简介 13.3 Pregel图计算模型 13.4 Pregel的C++ API 13.5 Pregel的体系结构 13.6 Pregel的应用实例 13.7 Pregel和MapReduce实现PageRank算法的对比 13.8本章小结 13.9习题
14.1可视化概述 14.2可视化工具 14.3可视化典型案例 14.4本章小结 14.5习题
第16章大数据在生 物医学领域的应用
第15章大数据在互 联网领域的应用
第17章大数据的其 他应用
15.1推荐系统概述 15.2协同过滤 15.3协同过滤实践 15.4本章小结 15.5习题
16.1流行病预测 16.2智慧医疗 16.3生物信息学 16.4案例:基于大数据的综合健康服务平台 16.5本章小结 16.6习题
作者介绍
这是《大数据技术原理与应用:概念、存储、处理、分析与应用(第3版)》的读书笔记模板,暂无该书作者 的介绍。
读书笔记
这是《大数据技术原理与应用:概念、存储、处理、分析与应用(第3版)》的读书笔记模板,可以替换为自 己的心得。
精彩摘录
这是《大数据技术原理与应用:概念、存储、处理、分析与应用(第3版)》的读书笔记模板,可以替换为自 己的精彩内容摘录。
4.1概述 4.2 HBase访问接口 4.3 HBase数据模型 4.4 HBase的实现原理 4.5 HBase运行机制 4.6 HBase编程实践 4.7本章小结 4.8习题 实验3熟悉常用的HBase操作
大数据技术原理与应用概念存储处理分析与应用第三版课程设计
大数据技术原理与应用概念存储处理分析与应用第三版课程设计一、课程设计背景随着互联网、物联网、人工智能等技术的快速发展,数据量呈现爆发式增长,人们对海量数据的需求越来越迫切。
而如何高效地存储、处理和分析这些数据,已成为各大企业和组织所面临的重大挑战。
大数据技术的出现,能够有效帮助人们解决数据存储、处理、分析等方面的问题,实现数据价值的最大化。
因此,本课程设计旨在帮助学生掌握大数据技术的原理与应用,熟悉概念存储处理分析与应用方法,培养学生的大数据技术创新能力,提升其对未来信息化社会的适应能力。
二、课程设计目标1.掌握大数据技术的概念、发展历程及发展趋势;2.熟悉大数据存储、处理、分析等方面的基本原理和方法;3.掌握大数据技术的应用领域和应用场景,了解实际应用案例;4.能够使用大数据技术实现数据存储、处理、分析等功能。
三、课程设计内容1. 大数据技术概述1.1 大数据技术的定义、特征及发展历程; 1.2 大数据技术的发展趋势及应用场景; 1.3 大数据技术对社会、经济、政治等方面的影响。
2. 大数据存储技术2.1 大数据存储技术背景及要求; 2.2 大数据存储技术的分类及应用; 2.3 大数据存储技术的原理及具体实现方案; 2.4 大数据存储技术的优缺点及应用案例。
3. 大数据处理技术3.1 大数据处理技术的背景及要求; 3.2 大数据处理技术的分类及应用;3.3 大数据处理技术的原理及具体实现方案; 3.4 大数据处理技术的优缺点及应用案例。
4. 大数据分析技术4.1 大数据分析技术的背景及要求; 4.2 大数据分析技术的分类及应用;4.3 大数据分析技术的原理及具体实现方案; 4.4 大数据分析技术的优缺点及应用案例。
5. 大数据应用案例分析5.1 大数据应用案例概述; 5.2 基于大数据存储、处理、分析技术的应用案例; 5.3 大数据技术的应用前景。
四、课程设计形式本课程设计采用理论讲解和实践操作相结合的方式进行教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生课程大纲(计算机科学系教师)
大纲制定者:林子雨
大纲审定者:林子雨(个人主页:/linziyu)
厦门大学本科课程大纲填写说明:
1.课程中英文名称必须准确、规范。
英文名称每个单词打头字母应用大写。
2.课程类型是指公共基本课程、校通识课程、院系通识课程、学科类通修课程或学科类方向性课程。
3.先修课程是与该课程具有严格的前后逻辑关系,非先修课程则无法学习该课程。
4.选用教材和主要参考书要求注明作者、书目、出版社、出版年限。
例如,“黄叔武、杨一平编:《计算机网络工程教程》,1999年7月。
”
5.开课专业必须明确,不能出现“等”字样,如“经济学、会计学等专业”。
6.课程性质、目的和任务不少于200字。
7.教学基本要求不少于400字。
8.考核方式是指笔试(开卷或闭卷)、口试或其它考查方式。
9.其它信息是指该课程获奖情况,例如“优秀课程”、“名牌课程”、“精品课程”
或者“双语教学课程”等。
获奖情况必须注明获奖等级、级别。