信号与系统第5章-习题答案

合集下载

信号与系统第五章习题答案

信号与系统第五章习题答案
i = −∞ i= 0

n− 6
1 − a n− 5 ε [n − 6 ] 1− a
故系统的零状态响应为
y zs [n ] = f [n] ∗ h[n] = a n ε [n] ∗ (ε [n] − ε [n − 6]) = a n ε [n] ∗ ε [n ] − a nε [n] ∗ ε [n − 6]
联立以上两式可解得: A1 = 1 , A2 = 2 于是齐次解为
275
y h [n] = (− 3) + 2 n+1
n
5.10
如有齐次差分方程为 y[n] + 4 y[n − 1] + 4 y[n − 2] = 0 , 已知 y[0] = y[1] = −2 , 试求其齐次解。 【知识点窍】主要考察系统的齐次解的概念及其求解方法。 【逻辑推理】首先通过差分方程得特征方程,由特征方程求得特征根,代入条件即可求得齐次
λ2 + 3λ + 2 = 0
y zi [n ] = A1 (− 1) + A2 (− 2)
n
n
将初始状态 y[− 1] = −
1 , 2
y[− 2] =
5 代入上式,有: 4
−1 −1
y[− 1] = y zi [− 1] = A1 (− 1) + A2 (− 2 ) = − y[− 2] = y zi [− 2 ] = A1 (− 1) + A2 (− 2 )
−2 −2
1 2 5 = 4
271
联立以上两式可解得: A1 = 2 , A2 = −3 则系统的零输入响应为
y zi [n ] = 2(− 1) − 3(− 2)
n
n
5.4 设有离散系统的差分方程为 y[n] + 4 y[n − 1] + 3 y[n − 2] = 4 f [n] + f [n − 1] ,试画出其时域模拟 图。 【知识点窍】主要考察由系统的差分方程画出系统的直接模拟图,掌握直接模拟图的意义。 【逻辑推理】将差分方程各个环节分别用加法器及延时器来表示。 解:时域模拟图如图 5.1

信号与系统习题答案作者王瑞兰第5章

信号与系统习题答案作者王瑞兰第5章

习题五5-1 求下列齐次差分方程的解。

(1)()3(1)0,(0)1y k y k y +-== (2)()2(1)0,(0)3y k y k y --== 5-2 求下列齐次差分方程的解。

(1)()3(1)2(2)0,(1)2,(2)1y k y k y k y y +-+-=-=-= (2)()2(1)(2)0,(1)1,(2)3y k y k y k y y +-+-=-=-=- 5-3 求下列差分方程的零输入响应。

(1)()2(1)(2)()2(2),(0)(1)1y k y k y k f k f k y y +-+-=+-=-= (2)15()3(1)2(2)(),(1),(2)24y k y k y k f k y y +-+-=-=--= 5-4 用经典法求下列差分方程所描述因果离散系统的全响应。

(1)()3(1)2(2)6()y k y k y k f k +-+-=,()(),(1)1,(2)0f k k y y ε=-=-= (2)()4(1)4(2)()y k y k y k f k +-+-=,()2(),(0)0,(1)1k f k k y y ε===- 5-5 求下列差分方程所描述的LTI 离散系统的零输入响应、零状态响应和全响应。

(1) ()4(1)4(2)()(1)y k y k y k f k f k +-+-=+-()(),(0)1,(1)2f k k y y ε=== (2)()3(1)2(2)(),y k y k y k f k +-+-=()(),(1)1,(2)0f k k y y ε=-=--=(3)()2(1)(2)(),y k y k y k f k +-+-=1()3(),(1)3,(2)52kf k k y y ε⎛⎫=-=-=- ⎪⎝⎭5-6 下列差分方程所描述的系统,若激励()2cos 3k f k π⎛⎫= ⎪⎝⎭,k ≥。

求各系统的稳态响应。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S R S L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

(完整word版)信号与系统练习题——第5章

(完整word版)信号与系统练习题——第5章

信号与系统练习题 第5章一、选择题1、系统函数()H s 与激励信号()f t 之间的关系是(B)A 、反比关系B 、没有关系C 、线性关系D 、不确定2、信号)()(2t e t f t ε-=的单边拉普拉斯变换=)(s F (D ) A 、2)2(1+s B 、 2)2(+s sC 、 2+s sD 、21+s3、已知某系统的框图如下,则此系统的系统函数表示为(C)A 、21()23H s s s =++ B 、2()23s H s s s =++C 、243()23s H s s s +=++ D 、241()23s H s s s +=-+4、已知某LTI 系统的系统函数()H s ,唯一决定该系统的冲激响应()h t 函数形式的是(B )A 、()H s 的零点B 、()H s 的极点C 、系统的激励D 、激励与()H s 的极点 5、2(2)()(1)(2)s s H s s s +=+-,属于其零点的是(C)A 、—1B 、2C 、-2D 、1 6、2(2)()(1)(2)s s H s s s +=+-,属于其极点的是(C )A 、0B 、—2C 、2D 、1 7、已知22()22sF s s s =++,则(0)f +=(C )8、已知2()22F s s s =++,则()f ∞=(A) A 、0 B 、—2 C 、2 D 、不确定 9、信号2(1)()()t f t e t ε--=的单边拉普拉斯变换=)(s F (A )A 、2()2e F s s =+B 、2()2s F s s =+ C 、1()2F s s =+ D 、()2s F s s =+10、信号2(1)()(1)t f t e t ε--=-的单边拉普拉斯变换=)(s F (A )A 、()2s e F s s -=+B 、2()2e F s s =+ C 、1()2F s s =+ D 、()2s F s s =+11、已知信号()cos(2)f t t =的单边拉普拉斯变换2()4s F s s =+,则()[cos(2)]dy t t dt=的单边拉普拉斯变换()Y s =(B )A 、2se s -+ B 、244s -+ C 、224s s + D 、24s s +12、已知信号()cos(2)f t t =的单边拉普拉斯变换2()4s F s s =+,则()[cos(2)()]dy t t t dtε=的单边拉普拉斯变换()Y s =(C )A 、2se s -+ B 、244s -+ C 、224s s + D 、24s s +13、已知信号()f t 的单边拉普拉斯变换为()F s ,则()[()]dy t f t dt=的单边拉普拉斯变换()Y s =(A ) A 、()(0)sF s f -- B 、()(0)sF s f -+ C 、()sF s D 、()F s s14、已知信号()f t 的单边拉普拉斯变换为()F s ,则()[()()]dy t f t t dtε=的单边拉普拉斯变换()Y s =(C )A 、()(0)sF s f --B 、()(0)sF s f -+C 、()sF sD 、()F s s15、已知223()21s F s s s +=++,则(0)f +=(C )A 、0B 、-2C 、2D 、不确定 16、已知223()21s F s s s +=++,则()f ∞=(A )A 、0B 、—2C 、2D 、不确定 17、已知1()1F s s =+,则(0)f +=(C )18、已知()1F s s =+,则()f ∞=(A ) A 、0 B 、—1 C 、3 D 、不确定 19、信号5(1)()t f t e --=的单边拉普拉斯变换=)(s F (A)A 、5()5e F s s =+B 、5()5s F s s =+ C 、1()5F s s =+ D 、()5s F s s =+二、填空题1、某LTI 连续系统的系统函数为235)(2+++=s s s s H ,描述该系统的微分方程为)(5)()(2)(3)(''''t f t f t y t y t y +=++。

第5章 北邮信号与系统课后习题解答

第5章  北邮信号与系统课后习题解答


1 s2
e s 1
(4)
2
(t)

3e 2 t u (t )

2

s
3
2
(5)L
[
1 2a
3
(sin
at

at
cos at)]

1 2a3
(s2
a
a2

a
d ds
( s2
s
a2
))

1 2a2
( s2
1 a2

s2 a2 (s2 a2)2
)
1 (s2 a2)2
1)]

e(s2) s2
其波形题 5-3 解图所示。
f1 (t ) 1
f2 (t) 1
t
1
t
f3 (t) e2
t
f4 (t)
e-2
1
t
5-4 解:
题 5-3 解图
(a)L [ f1(t)] L [E[u(t t1) u(t t1 )] E[u(t t2) u(t t2 )]]
1[ (s2
s 1)2
]

1 2
t
sin
t
由拉氏变换的积分性质
L
1[
(
s
2
2
1)2
]

t

sin d
sin t
t cos t
,t
0
0
或:
s
1 2
1

sin
t

(s2
2 1)2
sin t *sin t
sin t t cos t

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
全响应:
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析

信号与系统郑君里版第五章

信号与系统郑君里版第五章
系统的H(jw)为低通滤波器,不允许高频分 量通过,输出电压不能迅速变化,于是不再表现为 举行脉冲,而是以指数规律逐渐上升和下降。
二、无失真传输 1、信号失真
(1)幅度失真. 系统对信号中各频率分量幅度产生不同程度的衰减, 使响应各频率分量的相对幅度产生变化, 即引入幅度失真.
(2)相位失真. 系统对信号中各频率分量产生相移不与频率成正比, 使响应各频率分量在时间轴上的相对相对位置产生变化, 即引入相位失真.
求响应
V2 (
j)
gE jw jw
(1
e
jw
)
E(
1 jw
1
)(1 jw
e
jw
)
E 1 (1 e jw ) E (1 e jw )
jw
jw
又Q E (1 e j ) F1 E u(t) u(t )
j
E F1 Eetu(t)
j
u2 (t) Eu(t) u(t ) E etu(t) e(t )u(t )
φ(t)=Kpm(t) 其中Kp是常数。于是,调相信号可表示为
sPM(t)=Acos[ωct+Kpm(t)]
(2)频率调制,是指瞬时频率偏移随调制信号m(t)而
线性变化,即
d(t)
dt
k
f
t
m( )d
其中Kf是一个常数
相位偏移为: 可得调频信号为:
FM和PM非常相似, 如果预先不知道调制信号 m(t)的具体形式,则无法判断已调信号是调相信号 还是调频信号。
如果将调制信号先微分,而后进行调频,则得到的是调相波, 这种方式叫间接调相;
如果将调制信号先积分,而后进行调相, 则得到的是调频 波,这种方式叫间接调频。

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

《信号与系统》第五章基本内容示例(含答案)

《信号与系统》第五章基本内容示例(含答案)

e−4t
sin(0t)
(t)
(2)ℒ
(2t

5)
=
1
−5s
e2
s
(3)ℒ-1
1 1− e−s
=
k =0
(t

k)
(4)ℒ
cos(3t − 2) (3t − 2) =
s
2
s +
9

e
2 3
s
(5)ℒ
e−t (t)
− e−(t −3)
(t

3)
=
s
1 (1− +1
e−3s )
(6)ℒ-1
1 2
2. 已知系统的 H (s) = s +1 ,画出系统的零、极点分布图。
(s + 2)2 + 4
六、简单计算下列式子
ℒ 1、
-1
(s
+
0 4)2
+
02
2、ℒ (2t − 5)
ℒ-1
3、
1
1 − e−
s
4、ℒ cos(3t − 2) (3t − 2)
ℒ 5、 e−t (t) − e−(t −3) (t − 3)
系统并联后的复合系统的系统函数为( )。
A . H1(s) + H2 (s)
B . H1(s) H2(s)
C.无法确定
D. H1(s) // H2(s) 14、若 f (t) 1 ,Re[s] −3 ,根据终值定理,原函数 f (t) 的终值为
s+3
( )。
A.无穷小
B.无穷大
C. 1 D. 0
X (s) = F(s) + s X (s) + s2 X (s)

信号与系统奥本海姆中文答案chapter5

信号与系统奥本海姆中文答案chapter5

信号与系统奥本海姆中⽂答案chapter5第五章习题解答【注】:F{}表⽰傅⽴叶变换5.9 对某⼀特殊的[]x n ,其傅⽴叶变化()jw X e ,已知下⾯四个条件 1、[]x n =0,0n > 2、[0]0x > 3、Im{()}sin sin 2jw X e w w =-4、21()32jw x e dw πππ-=?求[]x n 。

解:由条件(1), (2) 和(3)得 A e e j X j j +-=ωωω2)(所以,][]2[]1[][n A n n n x δδδ++-+= 代⼊条件4,则可得][]2[]1[][n n n n x δδδ++-+=5.12 设2sinsin 4[]()*()c nw n y n n nπππ=式中*记为卷积,且c w π≤。

试对c w 确定⼀个较严格的限制,以保证2sin4[]()n y n nππ=。

解:}4sin{*}4sin{}]4sin {[2nn=≤≤≤≤-≤≤-=πωππωπωππωω2,024,240,1所以,≤≤≤≤=πωωωωππc c n n F 001}4sin{易见,πωπ≤≤c 2时,满⾜条件5.14 假设⼀单位脉冲响应为[]h n ,频率响应为()jw H e 的LTI 系统S ,具有下列条件: 1、1 ()[][]4nu n g n →,其中[]0,0,0g n n n =≥< 2、 /2()1j H e π= 3、()()()jw j w H e H e π-= 求[]h n 。

解: ∑∞∞---+==]0[]1[][)(g e g e n g eG j n j j ωωω)(4111)(ωωωj j j e H e e G --=)()411()(ωωωj j j e G e e H --=∴ωωωj j j e g e g g eg -----+=]0[41]1[41]0[]1[2 1)()(22==-πH e H1]0[41]1[41]0[]1[=+++-∴g j g g jg 0]1[]0[411]1[41]0[=-=+∴g g g g可得,g[0]=16/17, g[1]=1/17 所以,]2[17/1][17/16][17/117/16)(2--=∴-=-n n n h e eH j j δδωω5.16 有⼀信号的傅⽴叶变化是3(/2)1()2()114k jwj w k k X e e π--==-∑可以证明 [][][]x n g n q n =,其中[]g n 具有[]na u n 的形式,[]q n 是周期为N 的周期信号。

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)
设 zi 为 F s 的零点,则有 N zi 0 ,从而 N zi 0 。因此, zi 与 zi 均为 F s 的 零点,即 F s 的零点关于原点对称。 同理可证 F s 的极点也关于原点对称。 题 5.10 解: 由拉普拉斯变换对
1 L , 1 f1 t et u (t ) s 1
j t
dt
不存在 使上式积分收敛,故信号 f (t ) e 2t 的拉普拉斯变换不存在。 (f)由拉普拉斯变换的定义式
F s
题 5.3 解: (a)有拉普拉斯变换对


2δ t δ t 2 e
j t
5
s 2
2
25

s 2 j 30 s 2 j 30 s 2 4 s 34 , 2 2 s 4s 29 s 2 j5 s 2 j5
158



第5章
习题解答
信号与系统
何子述
高等教育出版社
零极点图如图 J5.3.2 所示。 (c)有拉普拉斯变换对
零极点图如图 J5.3.1 所示。 (b)有拉普拉斯变换对 L e2t sin 5t u t
L δ t 1,
5
s 2
2
25
, 2

由拉普拉斯变换的线性,信号 f t 的拉普拉斯变换为
L f t 1
F s e2t sin 3t u t e
-

dt
e2t
0

e j3t e j3t t jt e e dt 2j

信号与系统第5章习题答案

信号与系统第5章习题答案

第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。

证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。

可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。

如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。

因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。

5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。

m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。

sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。

sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。

《信号与系统》第五章知识要点+典型例题

《信号与系统》第五章知识要点+典型例题

是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如

《信号与系统》第五章

《信号与系统》第五章
1 l = −∞ − 2π
l) +
... +
c ∑ 2πδ (Ω − ( N − 1)2π / N
l)
例5-9,例5-10
离散时间信号
的傅立叶变换为( )
A.
B.
C.
D.




下面说法中正确的是( ) A. 离散时间信号 x[n]的绝对可和是其离散时 间傅立叶变换存在的充分条件。 B. 非周期离散时间信号 x[n]的偶部:频谱为 的实偶函数。 C. 非周期离散时间信号 x[n]的虚部:频谱为 的虚奇函数。 D. x[n]是实值的,则其频谱X(Ω)的模是Ω的 奇函数。
x[n] =
k =< N >

c k ϕ k [ n] =
k =< N >

ck e jk 2πn / N
(5-29)
¾ 将周期序列表示成式(5-29)的形式,即一组成谐波关系的复指 数序列的加权和,称为离散傅里叶级数(Discrete Time Fourier Series),而系数 k 则称为离散傅里叶系数。
3 时域抽样定理
时域抽样定理:设x(t)是一个有限带宽信号,即在 | ω |> ωm时, X (ω) = 0 ,若 ω > 2ω 或T < 1/ 2 f ,则x(t)可以唯一地由其样 s m m 本x(nT)确定。
最低抽样频率 2ω m 称为奈奎斯特抽样率
练习:信号 x(t) =
sin2π t πt
的奈奎斯特抽样间隔为(
)
时域抽样(采样)定理的具体应用 ¾若已知x(t),可通过以下办法得到x(t) 的样本 x(nT)并重建x(t): 1)将周期冲激串 p(t)与x(t)相乘,得到一冲激串 xp (t) 2) x p (t) 的依次冲激强度得到样本值x(nT) 3)将冲激串通过一个增益为T,截至频率大于 ω m 而小于 ωs −ωm 的 理想低通滤波器,那么该滤波器 的输出就是x(t)

信号与系统(郑君里)课后答案 第五章习题解答

信号与系统(郑君里)课后答案  第五章习题解答

5-6 解题过程: 令 ()()1c e t t πδω=,()()2sin c c t e t tωω= ()()11πωω==⎡⎤⎣⎦cE j e t F()()()()220πωωπωωωωωωω⎧<⎪==+−−=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎩,,其他c c c c c E j e t u u F 理想低通的系统函数的表达式 ()()()j H j H j e ϕωωω=其中 ()10c c H j ωωωωω⎧<⎪=⎨≥⎪⎩,,()0t ϕωω=−因此有()()()0t 110ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他 ()()()0t 220ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他()()12ωω=R j R j 则()()1112ωω−−=⎡⎤⎡⎤⎣⎦⎣⎦R j R j FF5-8 解题过程: 记 ()sin sin ωωωπωπ==⋅c c cc t t f t t t ()()0πωωωωωω⎧<⎪==⎡⎤⎨⎣⎦⎪≥⎩,,ccc F j f t F ()()()()sin 0ωωππωωωωωωωω⎧⎫⎡⎤⎪⎪==⎡⎤⎨⎬⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎧⋅<⎪==⎨⎪≥⎩,,c c cc td H j h t dt t j j F j F F故 ()0ωωωωπωωω⎧⋅<⎪=⎨⎪≥⎩c cc H j ,, ()20πωωϕωωω⎧<⎪=⎨⎪≥⎩c c,,()ωH j 和()ϕω的图形如解图。

5-11 解题过程:由题图5-11有()()()()211=−−∗⎡⎤⎣⎦v t v t T v t h t 据时域卷积定理有()()()()211ωωωωω−⎡⎤=−⎣⎦j TV j V j e V j H j(1)()()1=v t u t()()()()2=−−∗⎡⎤⎣⎦v t u t T u t h t由()()()101ωπ−==−⎡⎤⎣⎦h t H j Sa t t F,()()()λλ−∞∗=∫tf t u t f d ,有 ()()()()()00200''''''1111λλλλππλλλλππ−−∞−∞−−−−∞−∞=−−−=−∫∫∫∫t Ttt t Tt t v t Sa t d Sa t d Sa d Sa d又知()()−∞=∫yi S y Sa x dx ,所有()()()2001π=−−−−⎡⎤⎣⎦i i v t S t t T S t t (2)()12sin 22⎛⎞⎜⎟⎛⎞⎝⎠==⎜⎟⎝⎠t t v t Sa t()()111220πωω⎧<⎪==⎡⎤⎨⎣⎦⎪⎩V j F v t 其他则 ()()()()()021121120ωωωπωωωω−−−⎧−<⎪=−=⎨⎪⎩j t j Tj Te eV j V j H j e其他所以 ()()()()122001122ω−⎡⎤⎡⎤==−−−−⎡⎤⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦v t V j Sa t t T Sa t t F 5-18 解题过程:信号()g t 经过滤波器()ωH j 的频谱为()()()()()1sgn ωωωωω==−G G H j j G信号()g t 经过与()0cos ωt 进行时域相乘后频谱为()()()20012ωωωωω=++−⎡⎤⎣⎦G G G 信号()1g t 经过与()0sin ω−t 进行时域相乘后频谱为()()()()()()()()()()()310100000000021sgn sgn 21sgn sgn 2ωωωωωωωωωωωωωωωωωωωωω=−+−−⎡⎤⎣⎦=−++−−−⎡⎤⎣⎦=−−+++⎡⎤⎣⎦jG G G G G G G()()()()()()()()()()()()(){}23000000000011sgn sgn 2211sgn 1sgn 2ωωωωωωωωωωωωωωωωωωωωωωω=+=++−+−−+++⎡⎤⎡⎤⎣⎦⎣⎦=+−++−++⎡⎤⎡⎤⎣⎦⎣⎦V G G G G G G G G 又由于 ()()()00021sgn 0ωωωωωω>⎧⎪+−=⎨<⎪⎩则 ()()()()()0000ωωωωωωωωω=−−+++V G U G U 其图形如图所示5-20 解题过程:(1)系统输入信号为()δt 时,()()()0cos δωδ=t t t 所以虚框所示系统的冲激响应()h t 就是()i h t 即 ()()()()010sin 2ωπ−Ω−⎡⎤⎣⎦==⎡⎤⎣⎦−i t t h t H j t t F(2)输入信号与()0cos w t 在时域相乘之后()()()()()220200sin sin 1cos 2cos cos 2ωωωΩΩ+⎡⎤⎡⎤==⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t t e t t t t t 又由()ωi H j 的表达式可知0ωΩ 时,载波为02ω的频率成分被滤除 而且 ()0ϕωω=−t故 ()()()200sin 12⎡⎤Ω−=⎢⎥Ω−⎣⎦t t r t t t(3)输入信号()e t 与0cos ωt 在时域相乘之后()()()()220000sin sin 1cos sin cos sin 22ωωωωΩΩ⎡⎤⎡⎤==⋅⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t e t t t t t t t 0ωΩ 时,载波为02ω的频率成分被滤除故 ()0=r t(4)由于理想低通滤波器能够无失真的传输信号,只是时间上的搬移,故理想低通滤波器是线性时变系统;又 ()()=i h t h t 所以该系统是线性时变的。

信号与系统第五章答案

信号与系统第五章答案
5-2.解:(1)
又 , 。
所以 的最大频率是100 , 的最大频率是200 ,所以 的最大频率是300 ,要无失真的恢复 ,则 s。
(2)对于冲击抽样,抽样信号的频谱:
,当 时,此时 rad/s
此时的幅度谱 如下图所示,无重叠发生。
5-3.解:
5-4.解: ,其最大抽样间隔为1/100s。
,其最大抽样间隔为1/750s。
由图可知 ( ),所以 。
5-11.解:A、B、C、D各点的频谱图形如下:
5-12.解:(1)其脉冲幅度调制信号波形图如下:
(2)
所以
其中 。
其频谱图如下所示:
5-13.解:在通过低通滤波器之前令
其中有三角公式 。
所以要是通过低通滤波器之后 。
则可确定 。
5-14解:由图可知
则 所以通过滤波器之后则:
5-15解:输出信号的频谱图如下:
5-16.证明:理想低通滤波器的冲击响应为 ,又 所以 。
若 ,则

因为
所以若 ,对于任意选取的T,总有 。
第五章
5-1.解:由于
(1)故信号 的最大频率 =150,所以最低抽样率= ,奈奎斯特间隔= 。
(2)信号 的最大频率 =100+150=250,所以最低抽样频率= ,奈奎斯特间隔= 。
(3)信号 的最大频率 =100,所以最低抽样频率= ,奈奎斯特间隔= 。
(4) , ;所以故信号 的最大频率 =300,所以最低抽样ቤተ መጻሕፍቲ ባይዱ= ,奈奎斯特间隔= 。
所以以1/400s的周期取样时,信号 在恢复原信号时不出现重叠。其各自抽样信号及其相应频谱如下:
5-5.解:(1)
(2)当 时,为了得到 ,则最大的 ,

《信号与系统》第五章基本内容示例(含答案)

《信号与系统》第五章基本内容示例(含答案)

对比,得 a = −5, b = −6, c = 6 (1 分)
3.
解:设 f (t) F(s), yzs (t) Y (s), g(t) G(s) ,可得
G(s) = 1 − 1 + 2 ,Y(s) = 1 − 2 + 3
s s+2 s+3
s +1 s + 2 s +3
又由 (t) 1 (1 分),因此 s
正确答案的序号填在括号内。)
1、指出下面哪个说法是正确的,__________。
A. 线性时不变系统零状态响应的象函数等于系统函数与激励的象函数的乘积。 B. 在零状态条件下,元件的 s 域模型中,描述动态元件(L、C)初始状态的内部象
电源全为零,这时网络的 s 域模型与原电路形式与电路参数都完全相同。
Z1 ( s )
=
1 sC1

(R2
+
1 sC2
12、______变换是分析线性连续系统的有力工具,它将描述系统的时域微积分 方程变换为 s 域的______方程,便于运算和求解。(____)
A、傅立叶、微分 C、积分、代数 E、拉氏、代数 G、代数、积分
B、代数、微分 D、傅立叶、差分 F、代数、代数 H、拉氏、积
13、已知两个子系统的系统函数分别为 H1(s), H2 (s) ,则由这两个子

A.
B.-10
C. -11
D.1
3.因果系统转移函数 H (s) 的零极图如下图所示,此系统属于( )系统。
A.临界稳定的
B.不稳定的
j
C.无法判断稳定性 D.稳定的
-1 -1/2 0
4. 单边拉氏变换象函数 F(s)的收敛坐标σ< 0,则其收敛坐标在虚轴以左,在 这种情况下,___________________________。(____) A、 F(s)式在虚轴上不收敛,因此不能直接计算其傅里叶变换 B、F(s)式中,令 s=jω,就得到相应的傅里叶变换 C、 F(s)式在虚轴上收敛,但也不能直接计算其傅里叶变换 D、函数 f(t)的傅里叶变换不存在

信号与系统王明泉第五章习题解答

信号与系统王明泉第五章习题解答

第5章 连续时间信号的抽样与量化5.1 学习要求(1)掌握时域抽样过程及时域抽样定理,会求已知信号的奈奎斯特频率; (2)深刻理解连续时间信号的内插恢复过程; (3)理解频域采样定理;(4)了解连续时间信号的离散处理过程。

5.2 本章重点(1)时域抽样定理及信号恢复的条件; (2)连续时间信号的内插恢复过程;5.3 本章的知识结构5.4 本章的内容摘要5.4.1 时域抽样定理所谓“时域抽样”就是利用抽样脉冲序列)(t p 从时域连续信号)(t f 中抽取一系列的离散样值,这种离散信号通常称为抽样信号,以)(t f s 表示。

时域抽样过程可以看作相乘过程,即抽样信号可用连续时间信号)(t f 与一开关函数)(t p (即抽样脉冲序列)相乘来表示,抽样以后的信号(即抽样信号)的表示式为:)()()(t p t f t f s(1)矩形脉冲序列的抽样如果抽样脉冲序列是周期为s T ,幅度为1,宽度为τ的矩形脉冲序列)(t p ,则它的频谱密度)(ωp 为:∑∞-∞=-=n snn a p )(2)(ωωδπω其中)2(22sinτωττωτωτs s s s s n n Sa T n n T a =⋅=,ss T πω2=设原连续时间信号)(t f 的频谱密度为)(ωF ,则根据频域卷积定理得到抽样信号)(t f s 的频谱为:)()2()](*)([21)(s s n ss n F n Sa T p F F ωωτωτωωπω-==∑∞-∞= (2)冲激序列抽样在抽样脉冲序列)(t p 中,当脉冲宽度τ很小时,抽样脉冲序列可以近似看成是周期为sT 的单位冲激序列,通常把这种抽样称为冲激抽样或理想抽样。

设单位冲激序列)(t T δ为: ∑∞-∞=-=n sT nT t t )()(δδ输入的连续时间信号为)(t f ,则抽样信号为:()()()()()s T s s n f t f t t f nT t nT δδ∞=-∞=⋅=⋅-∑设原输入信号)(t f 的频谱密度为)(ωF ,而单位冲激序列)(t T δ的频谱密度)(ωδT 为:∑∞-∞=-=n s sT n T )(2)(ωωδπωδ 其中ss T πω2=则根据频域卷积定理得抽样信号)(t f s 的频谱为:∑∞-∞=-==n ssT s n F T F F )(1)](*)([21)(ωωωδωπω(3)时域抽样定理从前面可以看出,要想从抽样信号)(t f s 中恢复出被采样信号)(t f ,就要求能够从周期性延拓后的频谱中完整地分离出原信号的频谱,也就要求在频谱周期延拓过程中不发生频谱混迭现象,那么,如果被采样信号)(t f 是一频谱在),(m m ωω-以外为零的带限信号,则只要按照抽样频率m s ωω2≥或m s f f 2≥(其中s s T f 1=)进行等间隔抽样,抽样信号)(t f s 的频谱将不发生频谱混迭,从)(t f s 的频谱中就能完全地恢复原连续时间信号的)(t f 频谱,也可以说)(t f s 包含了原连续时间信号)(t f 的全部信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 连续时间信号的抽样与量化5.1 试证明时域抽样定理。

证明: 设抽样脉冲序列是一个周期性冲激序列,它可以表示为∑∞-∞=-=n sT nT t t )()(δδ由频域卷积定理得到抽样信号的频谱为:[])()(21)(ωδωπωT s F F *=()[]∑∞-∞=-=n ssn F T ωω1式中)(ωF 为原信号)(t f 的频谱,)(ωδT 为单位冲激序列)(t T δ的频谱。

可知抽样后信号的频谱)(ωs F 由)(ωF 以 s ω为周期进行周期延拓后再与s T 1相乘而得到,这意味着如果m s ωω2≥,抽样后的信号)(t f s 就包含了信号)(t f 的全部信息。

如果m s ωω2<,即抽样间隔ms f T 21>,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建原信号。

因此必须要求满足ms f T 21≤,)(t f 才能由)(t f s 完全恢复,这就证明了抽样定理。

5.2 确定下列信号的最低抽样频率和奈奎斯特间隔: (1))50(t Sa(2))100(2t Sa(3) )100()50(t Sa t Sa +(4))60()100(2t Sa t Sa +解:抽样的最大间隔m s f T 21=称为奈奎斯特间隔,最低抽样速率m s f f 2=称为奈奎斯特速率,最低采样频率m s ωω2=称为奈奎斯特频率。

(1))]50()50([50)50(--+↔ωωπu u t Sa ,由此知s rad m /50=ω,则π25=m f ,由抽样定理得:最低抽样频率π502==m s f f ,奈奎斯特间隔501π==s s f T 。

(2))2001(100)100(2ωπ-↔t Sa脉宽为400,由此可得s rad m /200=ω,则π100=m f ,由抽样定理得最低抽样频率π2002==m s f f ,奈奎斯特间隔2001π==s s f T 。

(3))]50()50([50)50(--+↔ωωπu u t Sa ,该信号频谱的s rad m /50=ω)]100()100([100)100(--+↔ωωπu u t Sa ,该信号频谱的s rad m /100=ω)100()50(t Sa t Sa +信号频谱的s rad m /100=ω,则π50=m f ,由抽样定理得最低抽样频率π1002==m s f f ,奈奎斯特间隔1001π==s s f T 。

(4))]100()100([100)100(--+↔ωωπu u t Sa ,该信号频谱的100=m ω)1201(60)60(2ωπ-↔t Sa ,该信号频谱的s rad m /120=ω所以)60()100(2t Sa t Sa +频谱的s rad m /120=ω, 则π60=m f ,由抽样定理得最低抽样频率π1202==m s f f ,奈奎斯特间隔1201π==s s f T 。

5.3 系统如题图 5.3所示,)1000()(1t Sa t f π=,)2000()(2t Sa t f π=,∑∞-∞=-=n nT t t p )()(δ,)()()(21t ft f t f =,)()()(t p t f t f s =。

(1)为从)(t f s 中无失真地恢复)(t f ,求最大采样间隔m ax T 。

(2)当max T T =时,画出)(t f s 的幅度谱)(ωs F 。

题图 5.3解:(1)先求)(t f 的频谱)(ωj F 。

)]1000()1000([10001)()1000()(11πωπωωπ--+=⇒=u u j F t Sa t f)]2000()2000([20001)()2000()(22πωπωωπ--+=⇒=u u j F t Sa t f )]}3000()1000()[3000()]1000()1000([2000)]1000()3000()[3000{(1041)]2000()2000((20001))1000()1000((10001[21)()(21)(621πωπωπωπωπωππωπωπωππωπωπωπωπωωπω---+-+--+++-++⨯⨯=--+*--+=*=-u u u u u u u u u u j F j F j F 由此知)(ωj F 的频谱宽度为π6000,且s rad m /3000πω=,则Hz f m 1500=,抽样的最大允许间隔s f T m 3000121max ==(2)∑∞-∞=-=n nT t t p )()(δ,所以为用冲激序列对连续时间信号为)(t f 进行采样,设原输入信号)(t f 的频谱密度为)(ωF ,而单位冲激序列的频谱密度为:∑∞-∞=-=n sn Tp )(2)(ωωδπω 其中Ts πω2=则根据频域卷积定理得抽样信号)(t f s 的频谱为:∑∞-∞=-==n s s n F T p F F )(1)](*)([21)(ωωωωπω而max T T =,则s rad T s /6000230002maxπππω=⨯==,幅度谱如下图所表示。

5.4 对信号)()(t u e t f t-=进行抽样,为什么一定会产生频率混叠效应?画出其抽样信号的频谱。

解: 由第三章知识知,该单边指数信号的频谱为:ωωj j F +=11)(其幅度频谱和相位频谱分别为211)(ωω+=j Fωωϕarctan )(-=单边非因果指数函数的波形)(t f 、 幅度谱)(ωj F 、相位谱)(ωϕ如下图所示,其中1=a 。

单边指数信号的波形和频谱显然该信号的频谱范围为整个频域,故无论如何抽样一定会产生频率混叠效应。

抽样后的频谱是将原信号频谱以抽样频率s ω为周期进行周期延拓,幅度变为原来的sT 1而得到。

图略。

5.5 题图5.5所示的三角形脉冲,若以20Hz 频率间隔对其频率抽样,则抽样后频率对应的时域波形如何?以图解法说明。

题图 5.5解:三角形脉冲的频谱可根据傅里叶变换的时域微分特性得到,具体求解可参考课本第三章。

由此可知,脉宽为τ幅度为E 的三角形脉冲其频谱为2)4(2ωττSa E。

其波形如图所示。

三角函数的频谱在)(t x 中,s ms 1.0100==τ易求得)(t x 的频谱为:2E τ()X j ω4πτ8πτ4πτ-8πτ-ω()ϕω0 50 -50 t /msx (t )2)025.0(05.0)(ωωESa j X =在)(404为整数k k k πτπω⋅==处,)(ωj X 为零,图略。

由频域卷积定理,抽样信号的频谱为:()[]∑∞-∞=-=n sss n j X T j X ωωω1)(其中s Hzf T s s 05.02011===,s rad f s s /402ππω==。

抽样后的频谱是将三角形频谱以s ω为周期做了周期延拓,幅度则变为原来的sT 1,可见发生了频谱混叠现象。

5.6 若连续信号)(t f 的频谱)(ωF 是带状的)(21ωω~,利用卷积定理说明当122ωω=时,最低抽样频率只要等于2ω就可以使抽样信号不产生频谱混叠。

证明:由频域卷积定理的抽样信号的频谱为[])()(21)(ωδωπωT s F F *=()[]∑∑∞-∞=∞-∞=-=-=n ssn ss n F T n w T F ωωωδπωπ1])(2*)([21抽样后的频谱是以抽样频率s ω为周期做了周期延拓,幅度则变为原来的sT 1。

由于频谱)(ωF 是带状的且122ωω=,所以当2ωω=s 时频谱不会混叠。

5.7 如题图5.7所示的系统。

求:(1)求冲激响应函数)(t h 与系统函数)(s H ;(2)求系统频率响应函数)(ωH ,幅频特性)(ωH 和相频特性)(ωϕ,并画出幅频和相频特性曲线;(3)激励[])()()(T t u t u t f --=,求零状态响应)(t y ,画出其波形; (4)激励∑+∞=-=)()()(n s nT t nT f t f δ,其中T 为奈奎斯特抽样间隔,)(nT f 为点上)(t f 的值,求响应)(t y 。

解:(1)由图可知()()()[]()t u T t f t f t y *--=两边求拉氏变换可得()()()se s F s Y Ts--=1所以()()se s H Ts--=1(2)图略(3))(t f 的拉氏变换为()se s F Ts--=1零状态响应得拉氏变换为()()()()221s e s F s H s Y Ts --==求拉氏反变换可得()()()()()()T t u T t T t u T t ut t y 222-++---=(4)由()()se s H Ts--=1可得()()T t u t u t h --=)(而()()()()()()()[]T t u t u nT t nT f t h t f t y sn ss ---==∑+∞=**0δ()()()[]T nTt u nT t u nT f ssn s----=∑+∞=0)t。

相关文档
最新文档