2011年全国初中数学竞赛试题及答案
2011年全国初中数学联赛决赛试卷及其答案

2011年全国初中数学联赛决赛试卷(4月10日 上午8:45——11:15)考生注意:1.本试卷共三大题(13个小题),全卷满分140分.2.用圆珠笔、签字笔或钢笔作答. 3.解题书写不要超出装订线. 4.不能使用计算器.一、选择题(本题满分42分,每小题7分)1.一个凸多边形的每一个内角都等于150°,则这个凸多边形所有对角线的条数总共有( ) A .42条 B .54条 C .66条 D .78条2.如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E .若∠CAE=15°,则∠BOE =( )A .30°B .45°C .60°D .75°3.设方程()()0x a x b x ---=的两根是c ,d ,则方程()()0x c x d x --+=的分根 是( )A .a ,bB .-a ,-bC .c ,dD .-c ,-d 4.若不等式2133x x a -+-≤有解,则实数a 的最小值是( )A .1B .2C .4D .65.若一个三角形的任意两条边都不相等,则称它为“不规则三角形”.用一个正方体上的任意三个顶点构成的所有三角形中,“不规则三角形”的个数是( ) A .18 B .24 C .30 D .36 6.不定方程2225x y -=的正整数解(x ,y )的组数是( ) A .0组 B .2组 C .4组 D .无穷多组. 二、填空题(本大题满分28分,每小题7分) 本题共有4小题,要求直接将答案写在横线上.1.二次函数22y x ax =-+的图象关于直线x =1对称,则y 的最小值是__________. 2.已知1a ,则20122011201022a a a +-的值为_____________.3.已知△ABC 中,ABBC =6,CAM 是BC 的中点,过点B 作AM 延长线的垂线,垂足为D ,则线段BD 的长度是_______________.4.一次棋赛,有n 个女选手和9n 个男选手参赛,每位选手都与其余10n -1个选手各对局一次.计分方式为:胜者得2分,负者得0分,平局各得1分.比赛结束后统计发现,所有男选手的得分总和是所有女选手得分总和的4倍.则n 的所有可能值是__________. 三、解答题(本题共三小题,第1题20分,第2、3题各25分) 1.(本题满分20分)已知x 1,x 2是关于x 的一元二次方程22(31)210x a x a +-+-=的两个实数根,使得1212(3)(3)80x x x x --=-成立.求实数a 的所有可能值.O EDB A2.(本题满分25分)抛物线2y ax bx c =++的图象与x 轴有两个交点M (x 1,0),N (x 2,0),且经过点A (0,1),其中0<x 1<x 2.过点A 的直线l 与x 轴交于点C ,与抛物线交于点B (异于点A ),满足△CAN 是等腰直角三角形, 且S △BMN =52S △AMN .求该抛物线的解析式. 3.(本题满分25分)如图,AD 、AH 分别是△ABC (其中AB >AC )的角平分线、高线,M 是AD 的中点.△MDH 的外接圆交CM 于E .求证:∠AEB =90°.EH MD C B A2011年全国初中数学联合竞赛试题参考答案说明:评阅试卷时,请依据本评分标准:选择题和填空题只设7分和0分两档;其余各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、B2、D3、A4、C5、B6、A 二、填空题(本题满分28分,每小题7分) 1、1 2、0 3、234、1 三、解答题(本题共三小题,第1题20分,第2、3题各25分) 1、(本题满分20分)已知21,x x 是关于x 的一元二次方程012)13(22=-+-+a x a x 的两个实数根,使得80)3)(3(2121-=--x x x x 成立。
2011年全国初中数学联赛试题及答案(修正版)

G A B CDE F2011年全国初中数学联合数学竞赛试题第一试一.选择题1.已知a +b =2,(1-a )2b +(1-b )2a =-4,则ab 的值为( )(A) 1 (B) -1 (C) -1 2(D)1 22. 已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( )(A) 5 (B) 6 (C) 7 (D) 83. 方程│x 2-1│=(4-23) (x +2)的解的个数为( )(A) 1个 (B) 2个 (C) 3个 (D) 4个4. 今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有( ) (A) 5组 (B) 7组 (C) 9组 (D) 11组5. 如图,菱形ABCD 中,AB =3, DF =1,∠DAB =60°,∠EFG =15°,FG ⊥BC ,则AE =( )(A) 1+2 (B) 6 (C) 23-1 (D) 1+36. 已知1x +1y +z =12, 1y +1x +z =13,1z +1x +y =14,则 2x +3y +4z 的值为( )(A) 1 (B)3 2(C) 2 (D)52二.填空题1. 在△ABC 中,已知∠B =2∠A ,BC =2,AB =2+23,则∠A = .2. 二次函数y =x 2+bx +c 的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则 b +2c = .3. 能使2n +256是完全平方数的正整数n 的值为 .OA BCDEF4. 如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果DE =34CE ,AC =85,D 为EF 的中点,则AB = .第二试1. 已知三个不同的实数a ,b ,c 满足a -b +c =3,方程x 2+ax +1=0和x 2+bx +c =0有一个相同的实根,方程x 2+x +a =0和x 2+cx +b =0也有一个相同的实根.求a ,b ,c 的值.PABCDS2. 如图,在四边形ABCD 中,已知∠BAD =60°,∠ABC =90°,∠BCD =120°,对角线AC ,BD 交于点S ,且DS =2SB ,P 为AC 的中点. 求证:(1)∠PBD =30°;(2)AD =DC .3. 已知m ,n ,p 为正整数,m <n .设A (-m ,0),B (n ,0),C (0,p ),O 为坐标原点.若∠ACB =90°,且OA 2+OB 2+OC 2=3(OA +OB +OC ) (1)证明: m +n =p +3;(2)求图象经过A ,B ,C 三点的二次函数的解析式.参考答案一.选择题1.B2.B3.C4.C5.D6.C二.填空题1. 15°2. 23.114. 24第二试1.解 依次将题设中所给的四个方程编号为①,②,③,④.设1x 是方程①和方程②的一个相同的实根,则⎩⎨⎧=++=++,0,01121121c bx x ax x 两式相减,可解得ba c x --=11. 设2x 是方程③和方程④的一个相同的实根,则⎩⎨⎧=++=++,0,0222222b cx x a x x 两式相减,可解得12--=c ba x 。
2011年全国初中数学竞赛试题参考答案及解析

2011年全国初中数学竞赛试题参考答案及解析一、选择题 1.A 解:因为1a =,1a += 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2. B3. D 4.C解:由已知得2310x x ++=, 于是 2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-5.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得(x y ,)=(1,0).6.D解:由 25325x y z x y z +-=⎧⎨--=-⎩,,可得 312.x z y z =-⎧⎨=+⎩,于是 22221125x y z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411.7.C解:由题设可知1y y x -=,于是341yy x yxx-==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.8.C解:两式相加,得2358t t +=,解得1t =,或83t =-(舍去).当1t =时,4530A B =︒=︒,满足等式,故1t =. 所以,实数t 的所有可能值的和为1. 9.C解:如图,连接D E ,设1D E F S S ∆'=,则1423S S EF S BFS '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.10.A解:当2 3 2011k = ,,,,因为 ()()()32111112111kk k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦,所以 333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭ , 于是有445S <<,故4S 的整数部分等于4.二、填空题 11.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m=.显然1242x x +=>,所以122x x -<, 164m∆=-≥0,即2,164m∆=-≥0,所以2, 164m∆=-≥0,解之得 3<m ≤4.12.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.13.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2B D A C =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.14.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.15.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以F E A F C BA C=,即1212b a b-=,故12()a b ab +=. ②由①②得2222122524a b a b a b a b+=++=++()(), 解得a +b =49(另一个解-25舍去),所以493584a b c ++=+=.三、解答题16.解:设方程20x a x b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=, 所以 2123αβ+=⎧⎨+=⎩,;或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,;或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.17.证明:如图,延长A P 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为A B 为⊙1O 的直径, 所以∠A D B =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以A H ∥CQ ,A C ∥HQ ,四边形ACQH 为平行四边形.所以点P 为C H 的中点.18.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由 223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Qx x t=-,即 23P Q t x x =-.于是222323P P Q Q x t y tBCBD y tx t++==++22222()333.222()333P P Q P P Q P QQ P QQ Q P x x x x x x x x x x x x x x --===---又因为P Qx PC Q Dx =-,所以BC PC BDQD=.因为∠B C P =∠90BDQ =︒,所以△B C P ∽△BDQ , 故∠A B P =∠ABQ .(2)解法一 设P C a =,DQ b =,不妨设a ≥b >0,由(1)可知∠A B P =∠30ABQ =︒,B C,B D,所以 A C=2-,A D=2-.因为P C ∥DQ ,所以△AC P ∽△ADQ . 于是PC AC D QAD=,即a b=所以a b +=.由(1)中32P Qx x t=-,即32ab -=-,所以322ab a b =+=,于是可求得2a b ==将2b =代入223y x=,得到点Q 2,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解析式为13y =-+.根据对称性知,所求直线PQ 的函数解析式为13y =-+,或13y x =+.解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠A B P =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Qy x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1)得3322P Q x x t =-=-,32PQ x x k+=.若2Q x =代入上式得 P x = 从而 2()33P Q k x x =+=.同理,若Q x = 可得2P x =-从而 2()33P Q k x x =+=.所以,直线PQ 的函数解析式为13y =-+,或13y x =+.19.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP .由于2A B A C =,所以相似比为2. 于是224A Q A P B Q C P ====.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是3PQ ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()28AB PQ AP BQ =++=+.故 213s i n 60282ABC S AB AC AB ∆=⋅︒==.不同见解,敬请海涵。
2011年全国初中数学联合竞赛试题及参考答案_

2.已 知 △ABC 的 两 条 高 线 的 长 分 别 为 5 和 20, 若第三条高线的长也是 整 数,则 第 三 条 高 线 长 的 最 大
值 为 ( ). (A)5 (C)7
(B)6 (D)8
3.方程|x2-1|=(4-2槡3)(x+2)的解的 个 数 为
( ).
(A)1 个
(C)9 组
(D)11 组 .
5.如图,菱 形 ABCD 中,AB=3,DF=1,∠DAB =60°∠EFG=15°,FG⊥BC,则 AE=( )
(A)1+槡2.
(B)槡6.
(C)2槡3-1.
(D)1+槡3.
6.已 知
1 x
+y1+z=
1 ,1 2y
+z+1x =
1 ,1 3z
+
x1+y=
1 4
,则
线交于点 F,如 果 DE= 34CE,
AC=8 槡5,D 为 EF 的 中 点,则
AB=
.
第 二 试 (A)
一、(本题满分20分)已知 三 个 不 同 的 实 数a,b,c
满足a-b+c=3,方程 x2+ax+1=0和 x2+bx+c=
0 有 一 个 相 同 的 实 根 ,方 程x2 +x+a=0 和x2 +cx+b
AE 的延长线于点 H .
由 D 为AC 的中点,知 CH=2FD.
由 分 析 2,BF=4FD.
故 EBCE=CBHF=2.
由 EBCE=SS△△AACBFF =2SS△△AABDFF .
③
由 分 析 2,△ABF∽ △DAF.
得
S△ABF S△ADF
=
(AB AD
)2=4.
④
由③、④得 BE=2EC.
数学周报杯2011年全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2011年全国初中数学竞赛试题及答案一、选择题(每小题7分,共35分,每小题只有一个正确选项)1、设17-=a ,则代数式12612323--+a a a 的值为( )(A )24 (B )25 (C )1074+ (D )1274+2、对于任意实数a ,b ,c ,d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac+bd ,ad+bc )。
如果对于任意实数u ,v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为( )(A )(0,1) (B )(1,0) (C )(-1,0) (D )(0,-1)3、若x>1,y>0,且满足xy=x y ,y x yx 3=,则x+y 的值为( ) (A )1 (B )2 (C )29 (D )211 4、点D ,E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设S 四边形EADF =S 1,S △BDF =S 2, S △BCF =S 3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系为( )(A )S 1S 3< S 2S 4 (B )S 1S 3=S 2S 4 (C )S 1S 3>S 2S 4 (D )不能确定5、设3333991312111+⋅⋅⋅+++=S ,则4S 的整数部分等于( ) (A )4 (B )5 (C )6 (D )7二、填空题(每小题7分,共35分)6、若关于x 的方程(x-2)(x 2-4x+m )=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是___________。
7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8。
2011年全国初中数学竞赛初赛试卷

2011年全国初中数学竞赛(海南赛区)数 学 试 卷一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母1.设xy <0,x >|y |,则x+y 的值是A. 负数B. 0C. 正数D. 非负数 2.若(x +3)(x +n )=x 2+mx -15,则m 等于 A. -2B. 2C. -5D. 53.若0||=+a a ,则化简22)1(a a +-的结果为A .1B .-1C .12-aD .a 21- 4.无论m 为何实数,直线y=x +m 与y=-x -4的交点不可能在A .第一象限B .第二象限C .第三象限D .第四象限 5.从1~9这九个自然数中随机取出一个数,取出的数是2的倍数的概率是A .92B .94 C .95D.32 6.A 地在河的上游,B 地在河的下游,若船从A 地开往B 地速度为v 1,从B 地返回A 地的速度为v 2,则A 、B 两地间往返一次的平均速度为A .221v v +B .21212v v v v + C .212v v + D .21212v v vv +7. 图1是韩老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是B.图1A.C.D.8.如图2,AB是坡角为30°的山坡上铅直的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为A.4米 B.6米 C.8米 D.10米9.如图3,菱形ABCD中,点O是对角线AC上一点,OA=AD,且OB=OC=OD=1,则该菱形的边长为A.51+B.251-C.1 D.210.根据天气预报,某台风中心位于A市正东方向300 km的点O处(如图4),正以20 km/h的速度向北偏西60°方向移动,距离台风中心250 km范围内都会受到影响,若台风移动的方向不变,A市将会受到台风的影响,则A市受影响持续的时间是A.10小时 B.20小时 C.30小时 D.40小时二、填空题(本大题共8小题,每小题5分,满分40分)11.若n(0≠n)是关于x的方程022=++nmxx的根,则nm+的值为 .12.若03=+ba,则22222(1)24b a ab ba b a b++-÷=+-.13.某校为了解初三女学生的体能,随机抽查30名初三女学生,测试1分钟内仰卧起坐的次数,并绘制成(如图5)所示的频数分布直方图,则仰卧起坐次数在25~45次的频率是________.14.如图6,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为________.15.已知二次函数的图象经过原点及点1124⎛⎫--⎪⎝⎭,,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为.16.图7中的两个滑块A、B由一个连杆连接,分别可以在垂直和水平的滑道上滑动.开始时,滑块A 距O点20 cm,滑块B距O点15 cm.则当滑块A向下滑到O点时,滑块B滑动了_________.12953图51ABC图6A BCDO图3 图4图7图217.如图8,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,点C 恰好在AB 上,∠AOD的度数是90°,则∠B 的度数是_________. 18.如图9,将长为4 cm 宽为2 cm 的矩形纸片ABCD 折叠,使点B 落在CD 边上的点E 处 压平后得到折痕MN ,则当点E 是CD 的中点 时,线段AM 的长度为__________. 三、解答题(本大题满分30分,每小题15分)19.如图10,正方形ABCD 的边长为1,对角线AC 与BD 相交于点O ,点P 是AB 边上的一个动点(点P 不与点A 、B 重合),CP 与BD 相交于点Q . (1)若CP 平分∠ACB ,求证:AP =2QO . (2)先按下列要求画出相应图形,然后求解问题.① 把线段PC 绕点P 旋转90°,使点C 落在点E 处,并连接AE .设线段BP 的长度为x ,△APE 的面积为S . 试求S 与x 的函数关系式; ② 求出S 的最大值,判断此时点P 所在的位置.20.文昌某校准备组织学生及学生家长到三亚进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程图9BEACBDO图8C DABCDPOQ 图10火车票至少..需11220元,并且学生家长与教师的人数之比为2∶1.文昌到三亚的火车票价格(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票只能买到x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?。
全国初中数学联赛试题及解答(2011年).doc

2011年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知2=+b a ,4)1()1(22-=-+-ab b a ,则ab 的值为 ( B ) A .1. B .1-. C .21-. D .21. 2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( B )A .5.B .6.C .7.D .8.3.方程)2)(324(|1|2+-=-x x 的解的个数为 ( C )A .1个B .2个C .3个D .4个.4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( C ) A .5组. B .7组. C .9组. D .11组. 5.如图,菱形ABCD 中,3=AB ,1=DF ,︒=∠60DAB ,︒=∠15EFG ,BC FG ⊥,则=AE ( D )A .21+.B .6.C .132-.D .31+. 6.已知2111=++z y x ,3111=++x z y ,4111=++y x z ,则zy x 432++的值为 ( C ) A .1. B .23. C .2. D .25. 二、填空题:(本题满分28分,每小题7分)1.在△ABC 中,已知A B ∠=∠2,322,2+==AB BC ,则=∠A 15︒.2.二次函数c bx x y ++=2的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则=+c b 2 2 .3.能使2562+n是完全平方数的正整数n 的值为 11 . 4.如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果CE DE 43=,58=AC ,D 为EF 的中点,则AB = 24 .CEFBA第二试 (A )一、(本题满分20分)已知三个不同的实数c b a ,,满足3=+-c b a ,方程012=++ax x 和02=++c bx x 有一个相同的实根,方程2x +0x a +=和02=++b cx x 也有一个相同的实根.求c b a ,,的值.解 依次将题设中所给的四个方程编号为①,②,③,④.设1x 是方程①和方程②的一个相同的实根,则⎩⎨⎧=++=++,0,01121121c bx x ax x 两式相减,可解得b a c x --=11.设2x 是方程③和方程④的一个相同的实根,则⎩⎨⎧=++=++,0,0222222b cx x a x x 两式相减,可解得12--=c ba x 。
全国初中数学联赛试题及解答(2011年).doc

2011年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知2=+b a ,4)1()1(22-=-+-ab b a ,则ab 的值为 ( B ) A .1. B .1-. C .21-. D .21. 2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为 ( B )A .5.B .6.C .7.D .8.3.方程)2)(324(|1|2+-=-x x 的解的个数为 ( C )A .1个B .2个C .3个D .4个.4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( C ) A .5组. B .7组. C .9组. D .11组. 5.如图,菱形ABCD 中,3=AB ,1=DF ,︒=∠60DAB ,︒=∠15EFG ,BC FG ⊥,则=AE ( D )A .21+.B .6.C .132-.D .31+. 6.已知2111=++z y x ,3111=++x z y ,4111=++y x z ,则zy x 432++的值为 ( C ) A .1. B .23. C .2. D .25. 二、填空题:(本题满分28分,每小题7分)1.在△ABC 中,已知A B ∠=∠2,322,2+==AB BC ,则=∠A 15︒.2.二次函数c bx x y ++=2的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则=+c b 2 2 .3.能使2562+n是完全平方数的正整数n 的值为 11 . 4.如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果CE DE 43=,58=AC ,D 为EF 的中点,则AB = 24 .CEFBA第二试 (A )一、(本题满分20分)已知三个不同的实数c b a ,,满足3=+-c b a ,方程012=++ax x 和02=++c bx x 有一个相同的实根,方程2x +0x a +=和02=++b cx x 也有一个相同的实根.求c b a ,,的值.解 依次将题设中所给的四个方程编号为①,②,③,④.设1x 是方程①和方程②的一个相同的实根,则⎩⎨⎧=++=++,0,01121121c bx x ax x 两式相减,可解得b a c x --=11.设2x 是方程③和方程④的一个相同的实根,则⎩⎨⎧=++=++,0,0222222b cx x a x x 两式相减,可解得12--=c ba x 。
2011年全国 初中数学联赛(含答案)

12011年全国初中数学联合竞赛试题参考答案及评分标准第一试一、选择题:(本题满分42分,每小题7分)1.已知2a b +=,()()22114a b ba--+=-,则ab 的值为( )A .1B .-1C .12-D .12【解析】 B由22(1)(1)4a b b a--+=-可得22(1)(1)4a a b b ab -+-=-,即()2233()240a b a b a b ab +-++++=,即()()222222240a b a ab b ab -++-++=,即2240ab ab -+=,所以1ab =-.2.已知ABC △的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为A .5B .6C .7D .8【解析】 B设ABC △的面积为S ,所求的第三条高线的长为h ,则三边长分别为222520S S Sh,,.显然222520S S >,于是由三边关系,得222205222205S S Sh S S S h ⎧+>⎪⎪⎨⎪+>⎪⎩,,解得2043h <<. 所以h 的最大整数值为6,即第三条高线的长的最大值为6.3.方程()21423(2)x x -=-+的解的个数为( )A .1个B .2个C .3个D .4个【解析】 C如图,利用函数图像,发现主要是讨论在11x -≤≤时的交点情况,可用判别式判断(21423(2)x x -=--有两个相同的实数根,所以函数图象上中间部分应该是相切的,所以共有三个交点.4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有()A .5组B .7组C .9组D .11组【解析】 C显然用这些线段去拼接成正方形,至少要7条,当用7条线段去拼接成正方形时,有3条边每边都用2条线段连接,而另一条边只用1条线段,其长度恰好等于其它3条边中每两条线段的长度之和.当用8条线段去拼接成正方形时,则每边用两条线段相接,其长度和相等.yxOy=4-23((x +2)y=x 2-13又因为12945+++=L ,所以正方形的边长不大于45114⎡⎤=⎢⎥⎣⎦.由于7=1+了=2+5=3+4; 8=1+7=2+6=3+5; 9=1+8=2+7=3+6=4+5;1+9=2+8=3+7=4+6 2+9=3+8=4+7=5+6.所以,组成边长为7、8、10、11的正方形,各有一种方法;组成边长为9的正方形,有5种方法.故满足条件的“线段组”的组数为1459⨯+=.5.如图,菱形ABCD 中,3AB =,1DF =,60DAB ∠=︒,15EFG ∠=︒,FG BC ⊥,则AE =( )A .12+B 6C .231D .13【解析】 D过F 作AB 的垂线,垂足为H .60DAB ∠=︒Q ,2AF AD FD =-=,30EFG ∴∠=︒,1AH =,3FH =,又15EFG ∠=︒Q90301545EFH AFG AFH EFG ∴∠=∠-∠-∠=︒-︒-︒=︒,从而FHE △是等腰直角三角形,所以3HE FH ==DCABE HFG413AE AH HE ∴=+=.6.已知111111111234x y z y z x z x y +=+=+=+++,,,则234x y z++的值为( )A .1B .32C .2D .52【解析】 C111122x x x y z y z +=∴+=++,,即22x y z x y zy z x x y z+++=∴=+++, 同理可得:34x z x yy x y z z x y z++==++++, 则()22342x y z x y z x y z++++==++ 二、填空题:(本题满分28分,每小题7分)1.在ABC △中,已知2B A ∠=∠,223BC AB ==+,,则A ∠=______________.【解析】 15︒方法一:延长AB 到D ,使BD BC =,连线段CD ,则12D BCD ABC A ∠=∠=∠=∠,所以CA Cd =.作CD AB ⊥于点E ,则E 为AD 的中点,故()()111223223222AE DE AD AB BD ===+=+=+,((223233BE AB AE =-=+-.在Rt BCE △中,3cos EB EBC BC ∠==,所以30EBC ∠=︒,故1152A ABC ∠=∠=︒. CD5方法二:过点C 点AB 的平行线交B ∠的角平分线与D 点,分别过C 点和D 点作AB 的垂线,垂足分别为E 、F ,易知梯形ABCD 为等腰梯形易知22CD CB EF ==∴=,3Rt AF BE BCE ∴==∴中,3cos EBC ∠=,30CBE ∴∠=︒ 15A ∴∠=︒2.二次函2y x bx c =++的图象的顶点为D ,与x 轴正方向从左至右依次交于A B ,两点,与y 轴正方向交于C 点,若ABD △和OBC △均为等腰直角三角形(O 为坐标原点),则2b c +=____________.【解析】 2.方法一:由已知,得24(0)0b b c C c A ⎫---⎪⎪⎝⎭,,,240b b c B ⎫-+-⎪⎪⎝⎭,2424b b c D ⎛⎫--- ⎪⎝⎭,.过D 作DE AB ⊥于点E ,则2DE AB =,即224244b c b c -⨯-22424b c b c -=-240b c -242b c -.又240b c ->242b c -=.又OC OB =,即24b b cc -+-=,得2242b c b c +-=.方法二:OBC △为等腰直角三角形,OB OC ∴=,B ∴点坐标为()0c ,20c bc c ∴++=,又0c ≠,10c b ∴++=,24AB b c -D 点纵坐标为24b c -,BE F A CD6ABD △为等腰直角三角形,221442b c b c ∴-=-22424b c b c ∴-=-240b c -≠,所以244b c -=2444b c b ∴=+=-,0b ≠,4b ∴=-,3c ∴=3.能使2''256+是完全平方数的正整数n 的值为______________.【解析】 11.当8n <时,()82''2562''12n -+=+,若它是完全平方数,则n 必为偶数.若2n =,则2''2562652+=⨯;若4n =,则42''256217+=⨯;若6n =,则62''25625+=⨯;若8n =,则82''25622+=⨯,所以,当8n ≤时,2''256+都不是完全平方数.当8n >时,()882''256221n -+=+,若它是完全平方数,则821n -+为一奇数的平方.设()282121n k -+=+(k 为自然数),则10(1)n n k k -=+.由于k 和1k +一奇一偶,所以1k =,于是1022n -=,故11n =.4.如图,已知AB 是O e 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果34DE CE =,85AC =,D 为EF 的中点,则AB =______________.【解析】 24.设4CE x AE y ==,,则36DF DE x EF x ===,连AD BC ,.因为AB 为O e 的直径,AF 为O e 的切线,所以90EAF ∠=︒,ACD DAF ∠=∠.7又因为D 为Rt AEF △的斜边EF 的中点,DA DE DF DAF AFD ∴==∴∠=∠,,85ACD AFD AF AC ∴∠=∠∴==,在Rt AEF △中,由勾股定理得222EF AE AF =+,即2236320x y =+.设BE z =,由相交弦定理得CE DE AE BE =g g ,即24312yz x x x ==g, 23203y yz ∴+= ①又AD DE =Q ,DAE AED ∴∠=∠.又DAE BCE ∠=∠,AED BEC ∠=∠,BCE BEC ∴∠=∠,从而BC BE z ==.在Rt ACB △中,由勾股定理得222AB AC BC =+,即22()320y z z +=+,22320y yz ∴+=. ②联立①②,解得816y z ==,.所以24AB AE BE =+=.第二试(A )一、(本题满分20分)已知三个不同的实数a b c ,,满足3a b c -+=,方程210x ax ++=和20x bx c ++=有一个相同的实根,方程20x x a ++=和20x cx b ++=也有一个相同的实根.求a b c,,的值.解 依次将题设中所给的四个方程编号为①,②,③,④.CAE OFDB8设1x 是方程①和方程②的一个相同的实根,则221211100x ax x bx c ⎧++=⎪⎨++=⎪⎩,,两式相减,可解得11c x a b -=-.设1x 是方程③和方程④的一个相同的实根,则22211200x x a x cx b ⎧++=⎪⎨++=⎪⎩,,两式相减,可解得21a b x c -=-.所以121x x =.2011年全国初中数学联合竞赛试题参考答案及评分标准又方程①的两根之积等于1,于是2x 也是方程①的根,则22210x ax ++=. 又2220x x a ++=,两式相减,得2(1)1a x a -=-. 若1a =,则方程①无实根,所以1a ≠,故21x =.于是21a b c =-+=-,.又3a b c -+=,解得32b c =-=,.二、(本题满分25分)如图,在四边形ABCD 中,已知60BAD ∠=︒,90ABC ∠=︒,120BCD ∠=︒,对角线AC BD ,交于点S ,且2DS SB =,P 为AC 的中点.求证:(1)30PBD ∠=︒;(2)AD DC =.直径,P 为该圆的圆心.作PM BD ⊥于点M ,知M 为BD 的中点,所以1602BPM BPD A ∠=∠=∠=︒,从而30PBM ∠=︒.(2)作SN BP ⊥于点N ,则12SN SB =.又122DS SB DM MB BD ===,,DAPM SNB C931222MS DS DM SB SB SB SN ∴=-=-==,Rt PMS Rt PNS ∴≅△△,30MPS NPS ∴∠=∠=︒,又PA PB =,所以1152PAB NPS ∠=∠=︒,故45DAC DCA ∠=︒=∠,所以AD DC =.三、(本题满分25分)已知m n p ,,为正整数,m n <.设(0)A m -,,(0)B n ,,(0)C p ,,O 为坐标原点.若90ACB ∠=︒,且2223()OA OB OC OA OB OC ++=++.⑴证明:3m n p +=+;⑵求图象经过A B C ,,三点的二次函数的解析式.解 ⑴因为90ACB ∠=︒,OC ab ⊥,所以2OA OB OC ⋅=,即2mn p =.由2223()OA OB OC OA OB OC ++=++,得2223()m n p m n p ++=++.又222222()2()()2()m n p m n p mn np mp m n p p np mp ++=++-++=++-++=2()2()()()m n p p m n p m n p m n p ++-++=+++-,从而有3m n p +-=,即3m n p +=+.(2)由2mn p =,3m n p +=+知m n ,是关于x 的一元二次方程22(3)0x p x p -++= ①的两个不相等的正整数根,从而[]22(3)40p p =-+->△,解得13p -<<.又p 为正整数,故1p =或2p =.10当1p =时,方程①为2410x x -+=,没有整数解.当2p =时,方程①为2540x x -+=,两根为14m n ==,.综合知:142m n p ===,,.设图象经过A B C ,,三点的二次函数的解析式为(1)(4)y k x x =+-,将点(02)C ,的坐标代入得21(4)k =⨯⨯-,解得12k =-.所以,图象经过.A B C ,,三点的二次函数的解析式为2113(1)(4)2222y x x x x =-+-=++.第二试(B )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)如图,在四边形ABCD 中,已知60BAD ∠=︒,90ABC ∠=︒,120BCD ∠=︒,对角线AC BD ,交于点S ,且2DS SB =.求证:AD DC =.证明 由已知得90ADC ∠=︒,从而A B C D ,,,四点共圆,AC 为直径.设P 为AC 的中点,则P 为四边形ABCD 的外接圆的圆心.作PM BD ⊥于点M ,则M 为BD 的中点,所以1602BPM BPD A ∠=∠=∠=︒,从而30PBM ∠=︒作SN BP ⊥于点N ,则12SN SB =.又122DS SB DM MB BD ===,,CBNSM PAD11∴31222MS DS DM SB SB SB SN =-=-==,∴Rt PMS Rt PNS ≅△△,∴30MPS NPS ∠=∠=︒,又PA PB =,所以1152PAB NPS ∠=∠=︒,所以45DAC DCA ∠=︒=∠,所以AD DC =.三、(本题满分25分)已知m n p ,,为正整数,m n <.设(0)A m -,,(0)B n ,,(0)C p ,,O 为坐标原点.若90ACB ∠=︒,且2223()OA OB OC OA OB OC ++=++.求图象经过A B C ,,三点的二次函数的解析式.解 因为90ACB ∠=︒,OC AB ⊥,所以2OA OB OC ⋅=,即2mn p =.由2223()OA OB OC OA OB OC ++=++,得2223()m n p m n p ++=++.又222222()2()()2()m n p m n p mn np mp m n p p np mp ++=++-++=++-++=222()2()()2()m n p p m n p m n p p np mp ++-++=++-++,从而有3m n p +-=,即3m n p +=+.又2mn p =,故m n ,是关于x 的一元二次方程22(3)0x p x p -++= ①的两个不相等的正整数根,从而()22340p p =-+->⎡⎤⎣⎦△,解得13p -<<.又p 为正整数,故1p =或2p =.12当1p =时,方程①为2410x x -+=,没有整数解.当2p =时,方程①为2540x x -+=,两根为14m n ==,.综合知:142m n p ===,,.试图象经过A B C ,,三点的二次涵数的解析式为(1)(4)y k x x =+-,将点(02)C ,的坐标代入得21(4)k =⨯⨯-,解得12k =. 所以,图象经过A B C ,,三点的二次函数的解析式为2113(1)(4)2222y x x x x =-+-=-++.第二试(C )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)如图,已知P 为锐角ABC △内一点,过P 分别作BC AC AB ,,的垂线,垂足分别为D E F ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ,如果PD PE PF =+,求证:CN 是ACB ∠的平分线.证明 如图1,作1MM BC ⊥于点1M ,2MM AB ⊥于点2M ,1MN BC ⊥于点1N ,2MN AC ⊥于点2N .MAB CD EPF M 1N 1M 2N 2NP NDHMN 1M 1H 1设NP NM λ=⊥,∵11NN PD MM ∥∥,∴111N D N M λ=.13若11NN MM <,如图2,作1NH MM ⊥,分别交1MM ,于点1H H ,,则1NPH NMH :△△,∴1PH NPMH NMλ==,∴1PH MH λ=, ∴()()111111111PD PH H H MH NN MM NN NN MM NN λλλλ=+=+=-+=+-.若11NN MM =,则()11111PD NN MM MM NN λλ===+-.若11NN MM >,同理可证11(1)PD MM NN λλ=+-.∵2PE NN ∥,∴21PE PMNN NMλ==-,∴2(1)PE NN λ=-. ∵2PF MM ∥,∴2PF NPMM NMλ==,∴2PE MM λ=. 又PD PE PF =+,∴1122(1)(1)MM NN MM NN λλλλ+-=+-.又因为BM 是ABC ∠的平分线,所以12MM MM =,∴()()1211NN NN λλ-=-.显然1λ≠,即10λ-≠,∴12NN NN =,∴CN 是ACB ∠的平分线.三、(本题满分25分)题目和解答与(B )卷第三题相同.。
2011年全国中学生数学竞赛初赛试题答案1-3

伊( 12
+
1 3
-
1 4
+
1 6
-
1 8
)
4分
=
1 1001
伊[( 12
+
1 3
+
1 6
)-(
1 4
+
1 8
)]
5分
=
5 8008
.
7分
15. 两种填法均可:
-1-
5
1
3
4 或4
3
1
5
2
2
(填正确一个数给 1.6 分) 16. 令 5x + 4y + 11z = 4020,淤 7x + 12y + 17z = 4024, 于 淤 + 于得,12x + 16y + 28z = 8044, 即 4 伊(3x + 4y + 7z)= 8044, 所以 3x + 4y + 7z = 2011. 四、一鼓作气(本大题共 2 道小题,17 题 12 分,18 题 12 分,总计 24 分) 17. 设尖头有 x 盏灯,根据题意列方程,有 x + 2x + 4x + 8x + 16x + 32x + 64x = 381 (1 + 2 + 4 + 8 + 16 + 32 + 64)x = 381 127x = 381 x=3 答:尖头有 3 盏灯. 18. 由题中的三个图形可知: 第 1 个图形中有:1 + 3 = 4(个)三角形, 第 2 个图形中有:1 + 3 + 3 = 1 + 3 伊 2 = 7(个)三角形, 第 3 个图形中有:1 + 3 + 3 + 3 = 1 + 3 伊 3 = 10(个)三角形, 第 4 个图形中有:1 + 3 + 3 + 3 + 3 = 1 + 3 伊 4 = 13(个)三角形, …… 第 10 个图形中有:1 + 3 + 3 + … + 3 = 1 + 3 伊 10 = 31(个)三角形;
2011年全国初中数学竞赛试题+参考答案

“《数学周报》杯”2011年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设71a =-,则代数式32312612a a a +--的值为(A ).(A )24 (B )25 (C )4710+(D )4712+解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为(B ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得(x y,)=(1,0). 3.若1x >,0y >,且满足3y yx xy x xy==,,则x y +的值为(C ).(A )1 (B )2 (C )92(D )112解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=,故12y =,从而4x =.于是92x y +=.4.点D E ,分别在△ABC 的边A B A C ,上,B E C D ,相交于点F ,设1234BD F BC F C EF EAD F S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为(C ).解:如图,连接D E ,设1D E F S S ∆'=,则1423S S EF S BFS '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于(A ).(A )4 (B )5 (C )6 (D )7解:当2 3 99k = ,,,时,因为()()()32111112111kk k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦,所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭ . 于是有445S <<,故4S 的整数部分等于4. 二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m 的取值范围是3<m ≤4.解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m=.显然1242x x +=>,所以122x x -<, 164m∆=-≥0,即 ()2121242x x x x +-<,164m∆=-≥0,所以1642m -<, 164m∆=-≥0,解之得 3<m ≤4.7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是19.解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(第4题)(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2B D A C =,则224OC OD - 的值为6.解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2B D A C =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6. 9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为32.解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+.由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故22b =.所以,2232a b +=.10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于 △ABC ,且其边长为12,则△ABC 的周长为84.解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以F E A F C BA C=,即1212b a b-=,故 12()a b ab +=. ②(第8题)(第10题)由①②得 2222122524a b a b a b a b+=++=++()(), 解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=.三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,, 两式相加得 2210αβαβ+++=,即(2)(2)3αβ++=, 所以 2123αβ+=⎧⎨+=⎩,;或232 1.αβ+=-⎧⎨+=-⎩, 解得 11αβ=-⎧⎨=⎩,;或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.如图,点H 为△ABC 的垂心,以A B 为直径的⊙1O 和△B C H 的外接圆⊙2O 相交于点D,延长A D 交C H 于点P ,求证:点P 为C H 的中点.证明:如图,延长A P 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为A B 为⊙1O 的直径,所以∠A D B =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以A H ∥CQ ,A C ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为C H 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x=于P ,Q 两点.(1)求证:∠A B P =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ).设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Qx x t=-,即 23P Q t x x =-.于是222323P P Q Q x t y tBCBD y tx t++==++22222()333.222()333P P Q P P Q P QQ P QQ Q P x x x x x x x x x x x x x x --===---又因为P Qx PC Q Dx =-,所以BC PC BDQD=.因为∠B C P =∠90BDQ =︒,所以△B C P ∽△BDQ , 故∠A B P =∠ABQ .(2)解法一 设P C a =,DQ b =,不妨设a ≥b >0,由(1)可知∠A B P =∠30ABQ =︒,B C =3a,B D =3b,所以 A C =32a -,A D =23b-.因为P C ∥DQ ,所以△AC P ∽△ADQ . 于是PC AC D QAD=,即3223a a bb-=-,所以3a b ab+=.由(1)中32P Qx x t=-,即32ab -=-,所以33322ab a b =+=,,于是可求得2 3.a b ==将32b =代入223y x=,得到点Q 的坐标(32,12).再将点Q 的坐标代入1y kx =+,求得3.3k =-所以直线PQ 的函数解析式为313y x =-+.根据对称性知,所求直线PQ 的函数解析式为313y x =-+,或313y x =+.解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠A B P =∠30ABQ =︒,所以2BQ DQ =. 故 222(1)Q Q Q x x y =++.将223Q Qy x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 32Q x =或 3.又由 (1)得3322P Q x x t =-=-,32PQ x x k+=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-,从而 23()33P Q k x x =+=.所以,直线PQ 的函数解析式为313y x =-+,或313y x =+.14.如图,△ABC 中,60B A C ∠=︒,2A B A C =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC的面积.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP .由于2A B A C =,所以相似比为2. 于是22324A Q A P B Q C P ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ . 故 213673s i n 60282ABC S AB AC AB ∆+=⋅︒==.。
2011全国初中数学联赛七年级试题与答案

2011年全国初中数学联赛七年级试卷答案及评分细则一、选择题(每小题5分,共40分)本大题共8小题,每小题均给出四个正确选项,其中只有一个正确选项,请将正确选项的代号填在下表的指定位置. 题号 1 2 3 4 5 6 7 8 正确选项DCCABCBD1.若有理数a 、b 满足条件:a+b >a -b ,那么:A.a 、b 同号B.a 、b 异号C.0a >D.0b >2.大于-π并且不是正整数的整数有:A.2个B.3个C.4个D.无数个3.杯子中有大半杯水,第二天较第一天减少了10%,第三天较第二天增加了10%,那么第三天杯中的水量与第一天杯中的水量相比的结果是: A.一样多 B.多了 C.少了 D.多了或少了的可能性都有4.轮船往返于两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将: A.增多 B.减少 C.不变 D.增多或减少都有可能5.如图.A 、B 、C 、D 、E 是数轴上的5个点,且AB =BC =CD =DE ,则与点D 所表示的数最接近的整数是: A.1510 B.1511 C.1512 D.15136.当1x =-时,代数式32-38ax bx +的值为18,这时,代数式9-62b a +的值为:A.28B.-28C.32D.-32 7.如图,1ABCS =△且BDE DEC E S S S ==△△△AC ,则DE S △A 等于:A.15 B.16 C.17 D.188.有一份选择题试卷共6道小题,一道小题答对得8分,答错得0分,不答得2分,某同学共得了20分,那么他答卷情况是:A.至多答对1题B.至少答对3题C.至少有3题没答D.答错2题二、填空题(每小题5分,共40分)本大题共8小题,请将答案直接填在题中横线上.9.现在4点5分,再过11916分钟,分针和时针第一次重合. 10.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的质量是 45 千克.11.在计算一个正数乘以.3.57的运算时,某同学误将.3.57错写成3.57,结果与正确答案相差1.4,则正确的乘积结果是 644 .12.如图,O 为圆心,半径OA =OB =r ,∠AOB =90°,点M 在OB 上,OM =2MB ,用r 表示阴影部分的面积是241()33p r +. 13.如图,给出的乘法竖式中,四个方块盖住的四个数字之和的最大值是 24 .14.若-3x y +与1995x y +-互为相反数,则2-x yx y+的值是 -998 .OMBA5×2011-4E DC B A EDCBA15.计算:2345⨯⨯⨯()·1111+++2345()= 154 16.若a 、b 、c 为整数,且2011--1a b c a+=,则---c a a b b c ++的值是 2 .三、解答题(每小题20分,共60分)本大题共有2个小题,要有科学简洁的表述过程.17.图中有四个面积相同的圆,每个圆的面积都记为S ,∠ABC 的两边分别经过圆心1O 、2O 、3O 和4O ,四个圆盖的面积为5(S -1),∠ABC 内部被圆盖住的面积为8,阴影部分的面积为1S 、2S 、3S 满足关系式:3121133S S S ==. 求S 的值.解:根据题意,有:12312331245(1)1128221133S S S S S S S S S S S S ⎧⎪---=-⎪⎪---=⎨⎪⎪==⎪⎩解之得:8119S =评分说明:列出方程组得10分,算出正确答案得10分.18.A ,B ,C 三支球队进行足球循环比赛,第一阶段的比赛情况有些记录见下表:球队名 比赛场次胜场 平场 负场 进球数 失球数 A 2 2 1 B 2 1 2 4 C237(1)请完成上表;(2)求A ,B 两支球队比赛时,A 队的进球水与B 的进球数之比;(3)求B ,C 两支球队比赛时,B 队的进球数与C 队的进球数之比;A ,C 两支球队比赛时,A 队的进球数与C 队的进球数之比; (4)设计一种表格,反映第一阶段A ,B ,C 三支球队的比分,并排出相应的名次. 解:(1)球队名 比赛场次胜场 平场 负场 进球数 失球数 A 2 2 0 0 7 1 B 2 0 1 1 2 4 C21137(2)设A ,B 两队比赛时,A 队进球数为x 个,B 队进球数为y 个;则A ,C 两队比赛时,C 队进球数为(1-y )个; B ,C 两队比赛时,C 队进球数为(4-x )个;则1-y+4-x=3.∴x+y=2.因为A ,B 两队比赛时,A 队胜,所以x>y ,又x ,y 均为非负数整数,因此x=2,y=0.∴x :y=2:0. (3)C 队的进球数分两种:1-y=1,4-,x=2,B 队的进球数分两种:y=0,'y2=.A 队的进球数分两种:x=2,'5x =∴BC 队比赛时,B 2C 2=队的进球数队的进球数A ,C 两队比赛时,A 55:1C 1==队的进球数队的进球数(4)说明:主队进球数:客队进球数 评分说明:每小题5分,共20分.。
2011年全国初中数学竞赛试题答案

2011年广东数学竞赛试题1.A解:3a3+12a2-6a-12=3a3+3a2+9a2-6a+1-13=3a2(a+1)+(3a-1)2-13原式=37-13=24.2.B解:由定义,知(a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则ax+by=a,①ay+bx=b,②由①+②,得(a+b)x+(a+b)y=a+b,∵a,b是任意实数,∴x+y=1,③由①-②,得(a-b)x-(a-b)y=a-b,∴x-y=1,④由③④解得,x=1,y=0,∴(x,y)为(1,0);3.C解:由题设可知y=x y-1,∴x=yx3y=x4y-1,∴4y-1=1.故y=2/1从而x=4.于是x+y=9/2 4. C解:如图,连接DE,设S△DEF=S′1,则S’₁/S₂=EF/BF=S₃/S₄从而有S1′S3=S2S4.因为S1>S1′,所以S1S3>S2S4.5. AS=1+1/2³+1/3³+1/4³+……+1/2011³<1+(1/2³+1/3³)+(1/4³+…+1/7³)+(1/8³+…+1/15³)+……<1+(1/2³+1/3³)+[4*(1/4³)+8*(1/8³)+……]=1+1/8+1/27+[1/16+1/64+1/256……]=1+1/8+1/27+(1/16)/(1-1/4)=1+1/8+1/27+1/124S=4+1/2+4/27+1/3<4+(1/2+1/6+1/3)=5S>1,4S>4所以4<4S<54S的整数部分为4.6. (3,4)解:(X-2)(X^2-4X+M)=0x1=2x2=2+√(4-M)x3=2-√(4-M)M<=4三角形特征任意两边和大于第三边即x1+x2>x3①x1+x3>x2②x2+x3>x1③解①M<=4解②3<M<=4解③M<=47.1/98.6解:设A(a,a)则C(a,1/a),又设B(b,b)则D(b,1/b),所以AC=a-1/a,BD=b-1/b因为BD=2AC,所以b-1/b=2(a-1/a)即(b-1/b)²=4(a-1/a)²b²+1/b²-2=4(a²+1/a²-2)即4(a²+1/a²)-(b²+1/b²)=6所以4OC²-OD²=4(a²+1/a²)-(b²+1/b²)=6.9.3/2由1-x≥0,且x-1/2≥0,得1/2≤x≤1由于1/2<3/4<1,所以当x=时,y2取到最大值1,故a=1.当x=3/4时,y2取到最大值1,故a=1当x=1/2或1时,y2取到最小值1/2,故b=√2/2所以:a2+b2=3/210.84如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以FE/CB=AF/AC即12/a=(b-12)/b故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.11.29设方程x2+ax+b=0 的两个根是x1,x2x1+x2=-a,x1x2=b方程x2+cx+a=0 的两个根是x1+1,x2+1x1+1+x2+1=-c,x1x2+x1+x2+1=a-a+2=-c,b-a+1=aa-c=2,b-2a=-1二次方程x2+cx+a=0 的两个根为整数所以△=c²-4a是个正数的平方△=c²-4a=(a-4)²-12满足条件的只有(a-4)²-12=4时成立这时a=0或者a=8当a=0时,b=-1,c=-2这时x2+cx+a=0 的两个整数根为2和0x2+ax+b=0 的两个整数根为1和1不合题意当a=8时,b=15,c=11这时x2+cx+a=0 的两个整数根为-2和-4x2+ax+b=0 的两个整数根为-3和-5符合题意a+b+c=8+15+6=29所以a+b+c 的值2912. 证明:延长AP交⊙O2于E点,连接BE、CE,证明AH∥=CE。
2011年全国初中数学竞赛试题及答案

“《数学周报》杯”2011年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C .2解:由题设可知1y y x -=,于是 341y y x yx x -==,所以411y -=.故12y=,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边A BA C ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S SS>. 二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.初中数学竞赛复赛试题答案第3页(共8页)解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=. (8)若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. (9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线42y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标 为b ,所以点E 的坐标为2(,)b b .于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=. 三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得 ()()11a a αβαβ+=-++=,, ………………………………5分初中数学竞赛复赛试题答案第5页(共8页)两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以012a b c ==-=-,,;或者8156a b c ===,,, 故3a b c ++=-,或29. ………………………………………………20分 (12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. 因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. ………………………………………………15分 所以点P 为CH 的中点. ………………………………………………20分6(13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,). 由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Q x t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P QQ Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Qx PC QD x =-,所以BC PCBD QD =. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0,初中数学竞赛复赛试题答案第7页(共8页)由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC,BD, 所以 AC2-,AD=2. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD =,即a b.所以a b +=. 由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=,于是,可求得2==a b将2b =代入223y x =,得到点Q12). …………………15分再将点Q 的坐标代入1y kx =+,求得3=-k 所以直线PQ的函数解析式为1y =+. 根据对称性知,所求直线PQ的函数解析式为1y =+,或1y +. ………………20分 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =. 故2Q x =.将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.8所以2Q x =又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若2Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得2P x =-从而2()3P Q k x x =+=. 所以,直线PQ 的函数解析式为1y =+,或1y x =+. ………………………………………20分 (14)已知0122011i a i >=,, , , ,且12201a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j<,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分 则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2010, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。
全国初中数学竞赛试题及答案(2011年)

2011年全国初中数学竞赛试题考试时间2011年3月20日9︰30-11︰30满分150答题时注意:1、用圆珠笔或钢笔作答2、解答书写时不要超过装订线3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设x =(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .22、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那么(,)x y 为( B )。
A .(0,1)B .(1,0)C .(1,0)-D .(0,1)-3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4A B t +=,则实数t 所有可能值的和为( C ) A .83- B .53- C .1 D .1134、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EA DF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C )A .13S S <24S SB .13S S =24S SC .13S S >24S SD .不能确定 5、设33331111S 1232011=++++,则4S 的整数部分等于( A )A .4B .5C .6D .7二、填空题(共5小题,每小题7分,共35分)AB C E D F6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为__31__。
《数学周报》杯2011年全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2011年全国初中数学竞赛试题参考答案答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)一、选择题(每小题7分,共35分,每小题只有一个正确选项) 1、设17-=a ,则代数式12612323--+a a a 的值为( )(A )24 (B )25 (C )1074+ (D )1274+ 2、对于任意实数a ,b ,c ,d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac+bd ,ad+bc )。
如果对于任意实数u ,v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为( ) (A )(0,1) (B )(1,0) (C )(-1,0) (D )(0,-1)3、若x>1,y>0,且满足xy=x y ,yxyx 3=,则x+y 的值为( )(A )1 (B )2 (C )29(D )2114、点D ,E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设S 四边形EADF =S 1,S △BDF =S 2,S △BCF =S 3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系为( )(A )S 1S 3< S 2S 4 (B )S 1S 3=S 2S 4 (C )S 1S 3>S 2S 4 (D )不能确定 5、设3333991312111+⋅⋅⋅+++=S ,则4S 的整数部分等于( )(A )4 (B )5 (C )6 (D )7二、填空题(每小题7分,共35分) 6、若关于x 的方程(x-2)(x 2-4x+m )=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是___________。
2011年全国初中数学竞赛试题及参考答案

一、选择题(共 5 小题,每小题 6 分,满分 30 分. 以下每道小题均给出了代号为 A,B, C, D 的四个选项, 其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得 0 分) 一、选择题(每小题 7 分,共 35 分,每小题只有一个正确选项) 1、设 a 7 1 ,则代数式 3a 3 12a 2 6a 12 的值为( (A)24 (B)25 (C) 4 7 10 )
1 的最大值为 a,最小值为 b,则 a2+b2 的值为___________。 2
10、如图,在 Rt△ABC 中,斜边 AB 的长为 35,正方形 CDEF 内接 于△ABC,且其边长为 12,则△ABC 的周长为__________。
三、解答题(每题 20 分,共 80 分) 11、 已知关于 x 的一元二次方程 x2+cx+a=0 的两个整数根恰好比方程 x2+ax+b=0 的两个根都大 1,求 a+b+c 的值。
12、如图,点 H 为△ABC 的垂心,以 AB 为直径的⊙O1 和△BCH 的外接圆⊙O2 相交于点 D,延长 AD 交 CH 于点 P,求证:点 P 为 CH 的中点。
13、 如图, 点 A 为 y 轴正半轴上一点, A, B 两点关于 x 轴对称, 过点 A 任作直线交抛物线 y
2 2 x 3
于 P,Q 两点。 (1)求证:∠ABP=∠ABQ (2)若点 A 的坐标为(0,1) ,且∠PBQ=60o,试求所有满足条件的直线 PQ 的函数解析式。
14、如图,△ABC 中,∠BAC=60o,AB=2AC,点 P 在△ABC 内,且 PA= 3 ,PB=5,PC=2,求△ ABC 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年全国初中数学竞赛试题
考试时间2011年3月20日9︰30-11︰30满分150
答题时注意:1、用圆珠笔或钢笔作答
2、解答书写时不要超过装订线
3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、
C 、
D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1
、设x =,则代数式(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .2
2、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有
(,)(,)(,)u v x y u v ∆=,那么(,)x y 为( B )。
A .(0,1) B .(1,0) C .(1,0)- D .(0,1)-
3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4
A B t +=,则实数t 所有可能值的和为( C )
A .83-
B .53-
C .1
D .113
4、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C ) A .13S S <24S S
B .13S S =24S S
C .13S S >24S S
D .不能确定
5、设33331111S 1232011=++++,则4S 的整数部分等于( A ) A .4 B .5 C .6 D .7
二、填空题(共5小题,每小题7分,共35分)
6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为__31__。
7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8。
同时掷这
A
B C E
D F
两枚骰子,则其朝上的面两数字之和为5的概率是____。
91
8、如图,双曲线2(0)y x x =>与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连接EF ,则△OEF 的面积为_____;23 9、⊙O 的三个不同的内接正三角形将⊙O 分成的
区域的个数为_____。
28
10、设四位数abcd 满足3333110a b c d c d ++++=+,则这样的四位数的个数为
___。
5
三、解答题(共4题,每题20分,共80分)
11、已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值。
解:设方程20x ax b ++=的两个根为α、β,其中α、β为整数,且α≤β
则方程20x cx a ++=的两个整数根为α+1、β+1,
由根与系数关系得:α+β=-a ,(α+1)(β+1)=a
两式相加得:αβ+2α+2β+1=0即(α+2)(β+2)=3
∴⎩⎨⎧=+=+3212βα或⎩⎨⎧-=+-=+1232βα 解得:⎩⎨⎧=-=11βα或⎩
⎨⎧-=-=35βα 又∵a =-(α+β),b =αβ,c =-[(α+1)+(β+1)]
∴a =0,b =-1,c =-2或a =8,b =15,c =6
故a b c ++=-3或a b c ++=29
12、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点。
证明:如图,延长AP 交⊙2O 于点Q
连结AH ,BD ,QC ,QH
∵AB 为直径 ∴∠ADB =∠BDQ =900
∴BQ 为⊙2O 的直径
于是CQ ⊥BC ,BH ⊥HQ
∵点H 为△ABC 的垂心 ∴AH ⊥BC ,BH ⊥AC
∴AH ∥CQ ,AC ∥HQ ,四边形ACHQ 为平行四边形
则点P 为CH 的中点。
A
13、若从1,2,3,…,n 中任取5个两两互素的不同的整数1a ,2a ,3a ,4a ,5a ,其中总有一个整数是素数,求n 的最大值。
解:若n ≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整
数,但没有一个整数是素数,∴n ≤48,在1,2,3,┉┉,48中任取5个两两互素的不同的整数1a ,2a ,3a ,4a ,5a ,
若1a ,2a ,3a ,4a ,5a 都不是素数,则1a ,2a ,3a ,4a ,5a 中至少有四个数是合数,不妨假设1a ,2a ,3a ,4a 为合数,
设1a ,2a ,3a ,4a 的最小的素因数分别为p 1,p 2,p 3,p 4
由于1a ,2a ,3a ,4a 两两互素,∴p 1,p 2,p 3,p 4两两不同
设p 是p 1,p 2,p 3,p 4中的最大数,则p ≥7
因为1a ,2a ,3a ,4a 为合数,所以1a ,2a ,3a ,4a 中一定存在一个
a j ≥p 2≥72=49,与n ≥49矛盾,于是1a ,2a ,3a ,4a ,5a 中一定有一个是素数 综上所述,正整数n 的最大值为48。
14、如图,△ABC 中,∠BAC =60°,AB =2AC 。
点P 在△ABC 内,且PA
PB =5,PC =2,求△ABC 的面积。
解:如图,作△ABQ ,使得:∠QAB =∠PAC ,∠ABQ =∠ACP ,
则△ABQ ∽△ ACP ,由于AB =2AC ,∴相似比为2
于是,AQ =2 AP =23,BQ =2CP =4
∠QAP =∠QAB +∠BAP =∠PAC +∠BAP =∠BAC =60°
由AQ :AP =2:1知,∠APQ =900
于是,PQ =3AP =3
∴BP 2=25=BQ 2+PQ 2 从而∠BQP =900
作AM ⊥BQ 于M ,由∠BQA =1200,知
∠AQM =600,QM =3,AM =3,于是,
∴AB 2=BM 2+AM 2 =(4+3) 2+32=28+83 故S △ABC =21AB •ACsin600=
83AB 2=2
376
A C P
B Q M。