2018年全国初中数学联合竞赛
2018年全国初中数学联合竞赛试题(含解答)
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018全国初中数学竞赛试题及参考答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)
6.设 M A.60. 【答】B. 因为 M
1 1 1 1 1 ,则 的整数部分是 2018 2019 2020 2050 M
二、填空题: (本题满分 28 分,每小题 7 分) CE AB 于 E ,F 为 AD 的中点, 1. 如图, 在平行四边形 ABCD 中,BC 2 AB , 若 AEF 48 , 则 B _______. 【答】 84 . F A 设 BC 的中点为 G ,连结 FG 交 CE 于 H ,由题设条件知 FGCD 为菱形. 由 AB // FG // DC 及 F 为 AD 的中点,知 H 为 CE 的中点. 又 CE AB ,所以 CE FG ,所以 FH 垂直平分 CE ,故 E H DFC GFC EFG AEF 48 . B G 所以 B FGC 180 2 48 84 . 2.若实数 x, y 满足 x 3 y 3 【答】3.
2 2
即 (a b) 2[(a b) 4ab] (a b)[(a b) 3ab] 0 , 又 a b 2 ,所以 2 2[4 4ab] 2[4 3ab] 0 ,解得 ab 1.所以 a b (a b) 2ab 6 ,
a2 ) .设 B( x1 ,0) , C ( x2 ,0) ,二次函数的图象的对称轴与 x 轴的交点为 D ,则 2
BC | x1 x2 | ( x1 x2 ) 2 4 x1 x2 4a 2 4
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年全国初中数学竞赛(初一组)初赛试题及答案
2018年全国初中数学竞赛(初一组)初赛试题参考答案和评分标准一、1. A 2. C 3. B 4. D 5. B 6. D10. 221二、7. -1 9 × 11 = 2 8. 30° ⎭ 9. 3 或-15三、11. () 1 1 ⎛ 1 1 ⎫; 厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖 分 () n 1 n ) ;1 ⎛ 1 1 ⎫;2 ( )( 2 2n - 1 ⎭2 - 1 2 + 1 10 ………………………………………………………………………………………………………… 分(3)a 1 + a 2 + a 3 + … + a 100 1 1 ⎛ 1 1 1 ⎛ 1 1 1 ⎛ 1 1= 1 × ⎛ 1 ⎫ 1 ⎛ 1 ⎫ ⎫ + ⎫ ⎫2 ⎝1 -3 ⎭ + 2 × ⎝ 3 - 5 ⎭ + 2 × ⎝ 5 - 7 ⎭ 2 × ⎝ 7 - 9 ⎭ + ⋯ + 2 × ⎝ 199 - 201 ⎭ 153 + ⎭1 ⎛ 1 1 1 1 1 1 1 1 1 ⎫ …………………………………………… 分= 1 × ⎛ 1 ⎫2 ⎝1 - 201 ⎭= 1 × 200 2 201= 100201. 20 分 四、12. (1)130? . 厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖? 5 分(2)∠APC = ∠? + ∠β. 10理由:过点P 作PE ∥AB ,交AC 于点E . 厖厖厖厖厖厖厖厖厖厖厖? 分因为 AB ∥CD ,所以 AB ∥PE ∥CD .所以∠?=∠APE,∠?=∠CPE.15所以∠APC=∠APE+∠CPE=∠?+∠?.…………………………………………………………分(3)当点P在BD延长线上时,∠APC=∠?-∠?;厖厖厖厖厖厖厖厖厖厖20分当点P在DB延长线上时,∠APC=∠?-∠?.厖厖厖厖厖厖厖厖厖厖25分⎛120⎫五、13.()根据题意,得t⎝120 -50× 5⎭120( )=50 + 5× 2 +150≈ 6.3 h .答:三人都到达B地所需时间约为6.3h.……………………………………………………………… 5 分(2)有,设甲从A地出发将乙载到点D行驶x千米,放下乙后骑摩托车返回,此时丙已经从A地出发步行至点E,继续前行后与甲在点F处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.10…………………………………………………………………………………………………………分2∙x+50=5.1550 + 5根据题意,得x -50∙5120 - x120 - x…………………………………………………………20分解得x≈ 101.5.厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖分则所用总时间为t=101.5120 - 101.5≈ 5.7( ) 50+5h .答:有,方案如下:甲从A地出发载乙,同时丙步行前往B地,甲载乙行驶101.5千米后放下乙,乙步行前往B地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B地,恰好与步行的乙同时到达,所需时间为5.7 h.………………………………………………………………………25分第1页(共1页)。
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年全国初中数学联赛试题-含详细解析
2018年初中数学联赛试题(北京)2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D .【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-=又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A .C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH因为BF=BH+HF ,所以12x=,解得1BE x ==. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况:111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y+++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++= 令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=> 又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=() A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t a n ABF ∠=() A .12B .35C .D解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.方程()A .0B .1C .2D .3解析:令y 0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得, 201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,, 由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =- (2)当 abc =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k < 而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等.当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故 2q =.于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即 3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是 10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥,90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=②①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结 因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥C ,E ,G 三点共线时等号成立2CE DE +故的最小值为.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z ⎛⎫++++==⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒==解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC === 因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆==三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x .( ,.) 2x abcd m n m n =解设,由题设知与的最大公约数为大于的素数 91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能88999799.x =于是可得或。
2018年全国初中数学联赛(初三组)初赛试卷
2018年九年级数学竞赛试卷含答案(本试卷共三道大题,满分120分)班级:_____________ 姓名: ________________ 分数:一、选择(本题共8个小题,每小题5分,共40分)1、篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( )2、已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关 系是( ) A .外离 B . 外切 C .相交 D .内切3、已知:4x =9y =6,则y 1x 1+等于( )A 、2 B 、1 C 、21D 、23 4、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A .b=2,c=0 B. b=2, c=2 C . b= -2,c=-1 D. b= -3, c=25、若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )A 、29≤mB 、5≤mC 、29=m D 、5=m6、已知0221≠+=+b a b a ,则ba的值为( )A 、-1 B 、1 C 、2 D 、不能确定7、任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解:q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F ,则在以下结论: ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F ④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=。
2018年全国初中数学联赛试题(A卷)
2018年全国初中数学联赛试题(A 卷)第一试一、选择题(每小题7分,共42分)1、设二次函数2222a ax x y ++=的图像的顶点为A,与x 轴的交点为B、C,当ΔABC 为等边三角形时,其边长为().A、6B、22C、32D、232、如图,在矩形ABCD 中,∠BAD 的平分线交BD 与点E,AB=1,∠CAE=。
15,则BE=().A、33B、22C、1-2D、1-33、设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对()q p ,的个数为().A、1B、2C、3D、44、若实数b a ,满足()()411,222=+--=-a b b a b a ,则=-55b a ().B、46B、64C、82D、1285、对任意的整数y x ,,定义xy y x y x -+=⊕,则使得()()()0=⊕⊕+⊕⊕+⊕⊕y x z x z y z y x 的整数组()z y x ,,的个数为().A、1B、2C、3D、46、设20501......202012009120081++++=M ,则M 1的整数部分是().A、60B、61C、62D、63二、填空题(每小题7分,共28分)1、如图,在平行四边形ABCD 中,BC=2AB,CE 垂直AB 于E,F 为AD 的中点,若∠AEF=。
48,则∠B=________.2、若实数y x ,满足()2154133=+++y x y x ,则y x +的最大值为_______.3、没有重复数字且不为5的倍数的五位数的个数有_______个.4、已知实数c b a ,,满足1,0222=++=++c b a c b a ,则=++abc c b a 555______.第二试一、(20分)设d c b a ,,,为4个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.二、(25分)如图,在扇形OAB 中,∠AOB=。
2018年初中数学联赛试题(含答案)
12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。
2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品
2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。
2018年度初中数学联赛试题参考内容答案和评分标准word版
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数第一试(A)一、选择题:(本题满分42分,每小题7分)21.设二次函数y x 2ax 22a的图象的顶点为A,与x轴的交点为B, C •当△ ABC为等边三角形时,其边长为A. 6 .%【答】C.由题设知A( a, 弩).设B(x ,0) , C(x ,0),二次函数的图象的对称轴与2 1 2x轴的交点为D,则BC | x1 x21X)224x x1 2又AD _3 BC,则|2所以,△ ABC的边长BC 2a22a2.a2a2(舍去)ABCD2.如图,在矩形中, BAD BD的平分线交于点,AB CAE 15 BE,则CJ ,J2 1. D. 1.3【答】D.延长AE交BC于点F,过点由已知得EBH ACB BAF30 .FADE作BC的垂线,垂足为H .AFB HEF 45 , BF ABE-、—AC设BE x,则2 HF HE x , BH W3x .2因为BF BH HF ,所以3x122x,解得x 3 1.所以BE2 3.设p,q均为大于3的素数,则使p25pq 4q为完全平方数的素数对(p, q)的个数为(【答】B.2 2 2设p 5 pq 4q m ( m为自然数) (m p 2q)(m p 2q) pq.0的整数组(x, y, z)的个数为【答】D.由对称性,同样可得2,则(p 2q)2pq m2, 即由于p, q为素数,且m p 2q p, m p 2q q,所以m p 2q 1 , m p 2q pq,从而pq 2 p 4q 1 0,即(p 4)(q 2) 9,所以(p, q) (5,11)或(7, 5).所以,满足条件的素数对(p, q)的个数为 2.4.若实数a, b满足a(1 b)2【答】C.(1 a)2 由条件b—(1b)2—4得a 2 22a2 2b2 4ab3b30, 2即(a b) 2[(a b)2 4ab] (a2 b)[(a b)2 3ab]又a b 2,所以2 2[4 4ab] 2[4 3ab] 0 ,解得ab 1.所以a2 b2 (a b )2 2ab 6 ,a 3 b3( a b)[( a b)2 3ab] 14,a5b5(a22 3 3 2 2b2 )(a3b3) a2b2 (a b) 82.5.对任意的整数x, y,定义x@y xy, 则使得(x@y) @ z (y@z) @x (z@x) @y(x @ y) @ z (x y xy) @ z (x xy) (x y xy)z z xy yz zx xyz, (y @ z) @ x x y z xy yz zx xyz,(z @ x) @ y z xy yz zx xyz.所以,由已知可得x y z xy yz zx xyz 0,即(x 1)( y 1)(z 1) 1.所以,x, y, z为整数时,只能有以下几种情况:1, x 1 1, x 1 1, 1, 1,z 1 所以,1, z 1 1, z 1 1,(x, y, z) (2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组.1,6•设M1 1 1 1,则1 的整数部分是20182019 20202050M【答】B.因为M1 33, 所以 M1~~201833615 201833 .所以M 1 —^45 , 故M 1的整数部分为61. 二、填空题:(本题满分 28分,每小题7分)1.如图,在平行四边形 ABCD 中,BC 2AB , CE AB 于E , F 为AD 的中点,若 AEF 48 , 则 B . 【答】84 .设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知 FGCD 为菱形• 由AB又CE AB ,所以CE FG ,所以FH 垂直平分CE ,故DFC GFC EFG AEF 48 . 所以 B FGC 180 2 4884 •3 115 k 3孙三3k于是,x, y 可看作关于t 的一元二次方程t 2 ktk 3 1k 坐(k ) 2 4 ——4 ---------- 20 ,3k32化简得 k 3 k 30 0,即(k 3)(k 2 3k 10) 0,所以 0 k 3.故x y 的最大值为3.k 3 4k15 23k 0的两根,所以又 M (2OT81T0191 2030才(203T 1203220501) ^030〔 13_^Q5O 1204(x y ) 15,则x y 的最大值为2由X 3 y 3(x y)4242(xy )( x 2 xy y 2令xy k ,注意到 又因为x 2xy y 215可得 (x y )( x 215 2 •2丄xy y 2414(x y)2xy(x3xyy 2)11 x y) 1「即2y )2 43y 2 14 0,故由①式可得k 3 _3xyk _14 k152,所以xy2.若实数 x, y 满足 【答】3.1 1 7) x 23. _________________________________________________ 没有重复数字且不为 5的倍数的五位数的个数为 __________________________________________________________ .【答】21504.显然首位数字不能为 0,末位不能为0和5.当首位数字不为5时,则首位只能选 0,5之外的8个数•相应地个位数只能选除 0,5及万位数之外的7 个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的 7个数,十位上只能选剩下的 6个数•所以,此时满足条件的五位数的个数为 8 7 8 7 6 18816个•当首位数字为5时,则个位有8个数可选,依次千位有 8个数可选,百位有 7个数可选,十位有6个 数可选•所以,此时满足条件的五位数的个数为 8 8 7 6 2688个•所以,满足条件的五位数的个数为18816 2688 21504 (个).5.55222a b c4. 已知实数a,b, c 满足a b c 0,a be 1 ,则-abc【答】5 .21 22221 3 3 3由已知条件可得ab bc ca 2[(a b c)2 (a 2 b 2 c 2)] 2,a b 3 c 3abc ,所以a 5b 55,2.2 2、/ 3 .3c (a b c )(a bc 3) [a 2 (b 3 c 3) .2/33、b (ac )2 3 3c (a b )] 3abc [a 2b 2 ( a b) a 2 c 2 ( a c ) b 2 c 2 (bc)]2 23abc (abc2 2 2 2 a c b bc a)3abc1 abc(ab bc ca) 3abc2 abc -5c K2 abc5ab c 5所以 ——abc2第一试(B)一、选择题:(本题满分 42分,每小题7分)2 x 21.满足(x x 1)1的整数x 的个数为【答】C.当x 220且x x 1 0 时,x 2 •当x2x 1 1 时,x 2或x当x2x 1 1且x 2为偶数时,x 0 所以,满足条件的整数x有3个•2.已:知X ,x , x ( x x x )为关于x的方程x x x x 3 X2 ( a 2) x a 0的三个实数根,则(4x【答】A.2方程即(x 1)(x 2x a ) 0,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小于1,另一根大于1,于是x 21, x l x 3 2,故【答】B.令y k/9 x ,则y 0 ,且x y 2 9,原方程变为乜3 y ^y 29,解得y 1或y 6,从 而可得x 8或x 27 . 检验可知:x 8是增根,舍去;x 27是原方程的实数根. 所以,原方程只有1个实数根.5.设a, b, c 为三个实数,它们中任何一个数加上其余两数之积的数组(a, b, c )的个数为【答】B.由已知得,a 2017bc 2018, b 2017ac 2018, c 2017ab 2018,两两作差,可 得(a b)(1 2017c) 0,(bc)(1 2017a) 0,(c a)(1 2017b) 0 .(x 3x )( x 3x ) 2(x x 1 )2( x x )1 5 .313.已知点tan ABFF 分别在正方形 ABCD 的边 CD ,AD 上,CD 4CE , EFBFBC ,贝U()【答】B. B. 3 .5C.J .""2不妨设CD4,贝U CE 1, DE 3.设 DFx ,则 AFx , EF• x 29.作BH EF 于点H .因为 △BAF ^△BHF ,所以 BH由S四边形ABCDSABFEFBBA 4.SBEFFBCSDEFAFB , BAFS 得BCE90BHF , 42(4 x) 解得12AF所以 AF tan ABFAB4.方程3、9 x 3 x 的实数根的个数为2017倍都等于2018,则这样的三元4912 BF 公共,所以ADEC1由(a b)(1 2017c) 0,可得a b 或c~2017 .(1 )当a b c 时,有2017a2 a 2018 0,解得 a 1 或a 20182017(2 )当a b c 时,解得a b ___ L , c 2018 12017 2017(3)当a b时,c 1,此时有:a 1 , b 2018 1,或a 2018 1 , b 12017 2017 2017 2017 2017 故这样的三元数组(a, b, c)共有5个.3 6.已知实数a, b满足a 3a2 5a 彳^31, b3b25b 5,则a b ()【答】A.有已知条件可得(a 1)32(a 1) 2 , (b 1)32(b 1) 2,两式相加得(a 1) 32( a 1) (b 1) 32(b 1) 0因式分解得(a b 2)[( a 1) 2 ( a 1)b 1) (b 1) 22]0 .因为2(a 1)2 (a 1)(b 1)2(b 1)2 2 [(a 1)1 2(b 1)]23 (b 1)2 2 0 ,2 4所以a b 2 0,因此 a b 2.二、填空题:(本题满分28分,每小题7分)1.已知p, q, r为素数,且pqr整除pq qr rp 1,则p q r .【答】10 .设k pq qr rp 1 1 1 1 1 由题意知k是正整数,又p, q, r 2,所以k 3,从pqr p q r pqr 2而k 1 ,即有p q qr rp 1pqr,于F是可知p, q, r互不相等.当2 p q r 时,pqr pq qr rp 1 3qr,所以q 3,故q 2 .于是2qr qr 2q 2r 1,故(q 2)(r 2) 3,所以q 2 1, r 2 3,即q 3, r 5 ,所以,(p, q, r) (2,3,5).再由p, q, r的对称性知,所有可能的数组(3,5,2),(p, q, r)共有6组,即(2,3,5) , (2,5,3) , (3,2,5),(5,2,3) , (5,3,2).于是p q r 10.2018年初中数学联赛试题参考答案及评分标准第7页(共10页)2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为 ____________ .【答】&2 2 Q Q设这两个数为 m , n (m n),贝U m n mn 1000,即(m 21)( n 1) 1001.又 10011001 1 143 7 91 1177 13,所以(m 21, n 1) = (1001,1)或(143, 7)或(91,11)2 2或(77,13),验证可知只有(m 2 1, n 1) (143,7)满足条件,此时 m 2 144, n 8 .3 .已知D 是厶ABC 内一点,E 是AC 的中点,EDC ABD ,贝U DE _______ .【答】4.整数对(m, n)的个数为【答】16.综合可知:符合条件的正整数对 (m, n)有 8+ 4 + 2+1 + 1 = 16 个.2 2 21)]24(m 2 4n 250) 0 ,整理得因为二次函数的图象在 x 轴的上方,所以 514n 49,即(m 1)(2n 1)2 .因为 m, n 为正整数,所以(m 1)(2n 1)25 .2n 1 彳5?,故 n 5. [2(m 2n 4mn 2m1 2,所以 1时,_53, 故亍223,符合条件的正整数对 (m, n)有8 个;2时, 5,故m4,符合条件的正整数对(m, n)有4个;3时, 257 ,m — 187,符合条件的正整数对(m, n)有2 个; 4时, 25 m —179,符合条件的正整数对(m, n)有1 个;5时,1125,故m 1411 ,符合条件的正整数对 (m, n)有1个.延长CD 至F ,使 DF DC ,贝U DEAB 6, BC 10, BAD BCD ,又 AB 6,故 AF102 628,所以 DE 4.已知二次函数yx 2 2(m 2n 1)x (m 2 4n 250)的图象在x 轴的上方,则满足条件的正m 3 n 3m 2 压第二试 (A )、(本题满分 2 20分)设a, b, c, d 为四个不同的实数,若 a, b 为方程x 10cx 11d 0的根,c, d c d 的值. a b 2 为方程x 10ax 11b 0的根,求 解由韦达定理得 10c , 10a ,两式相加得 abed 10(a c). 2 因为a 是方程x 2 10cx 11d0的根, 2 所以a 2 10ac 11d 0 ,又 d 10a c ,所以 2a 2110a 11c10ac10分 2类似可得c 2110c 11a 10ac 0.15分①一②得(a ©(a c 121) 0 .因为a c ,所以ac 121,所以a10(a c) 1210 .20分二、(本题满分25分)如图,在扇形 OAB 中, AOB 4,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1 )当四边形 (2)求 CE 90,OA 12,点 C 在 OA 上, AC分别过 由ODODEC 的面积S 最大时,求EF ; 2DE 的最小值. O, E 作CD 的垂线,垂足为 M , N .6, OC 8,得 CD 10.所以OCD S ECD-' CD (OM EN )^2 CD OE _12 10 12 60, 当OE DC 时,S 取得最大值60.此时,EFOE OF12 -(2)延长 OB 至点 G , 使BG 因为ODOE 」, DOEOEOG2所以CE 2DECE EG故CE 2DE 的最小值为& 10.OB 6 8 10 CG36 512,连结 GC,GE . E\ M F :” h” NJ !*_G10分EOG ,所以△ ODE OEG ,所以 DE 1,故 EG 2DE . EG 220分242 82 8 10,当C, E, G 三点共线时等号成立.25分三、 (本题满分25分)求所有的正整数m, n ,使得 是非负整数.2 2理,则(m n)2 2 2(m n)[(m n)3mr] m n(m n)竺£ ( mn )2 .因为 因为 所以又由(m n)2m nm nm, n 为正整数,故可令mnm nS (m n)凹 p S 为非负整数,所以n 3m 2n 2p, q 为正整数,且 (p, q) 1- 厘(mp 2n)3 pq q 2 2p2p I q ,又(p, q)mn n 是整数,所以(m n) | 1,故 P 1,n 2, 故n 2(m n) | mn .①10分m 3 m 3n 3 m 2n 2 2 ,即 n mn .所以 由对称性,同理可得m2(n 2故m m) m 2n , n .所以20分n 代入①,得2 | m , 2.n 代入②,得 2m 34m 4 0,即 卩m所以, 满足条件的正整数m, n 为m25分(本题满分(a b c)(l a(a 第二试(B )20分)若实数a, b, c 满足(a bc)(——1a b5c b c 5a c a 5bc x , ab bc cay , abcz ,则b c)(a b 5c2x[3x 212(a b32x 6(a b c)x 36(ab bc ca)x 216abcb c 5a c)x 36(ab bc ca)]c a 5b) x(x 6a x 6bx( 9x 2 36》x 6c )5 x 3 36xy 21仗,10分m 3 n 3 m 2 压2018年初中数学联赛试题参考答案及评分标准 第11页(共10页)2 S —36YL 9,整理得xy 2?z .所以) 2结合已知条件可得 5 x 3 36xy 216z 5(a b c)(l a 1 1) xy be z 27220分 二、(本题满分 角形,AB AC , 25分)如图, DE DC .点E 在四边形 ABCD 的边AB 上, △ ABC 和厶CDE 都是等腰直角三 (1)证明:AD由题意知 ACB 所以 DCA ECB EBC 45 ,所以 AC BC DACAE 因为 DCE 45,BC .: 2AC ,ECACE 30,可得 AC 3x ,CECPD ,所以△ APE DPC ,故可得 S APE — 12 S DPC • DC ,所以△ ADC BEC ,故 EC ACB ,所以AD因为 EAP CDP 90 , EPA 15分 EPC S APE S ACE —f x 2 , S EPC S DPC S CDE x 2,于是可得 S DPC DPC A 2S EPC (3 1)x .(2 S 20分 25分 PE SEPC-个四位数,x 的各位数字之和为 m , x 1的各位数字之和为 2的素数.求x .n ,并 解 设x abed , 由题设知 m 与n 若d 9 , 则n m 1 ,所以(m, 若e 9 , 则n m 1 9 m 8 若b 9 , 显然a 9 , 所以 n m 13 , m n 26 39 36 ,矛盾. 若b 9 , 则n m 1 9 9 m 于是可得x 8899 或 9799. 故(m, n) n 的最大公约数 n ) 1,矛盾,1 9 9 三、(本题满分25分)设x 是 且m 与n 的最大公约数是一个大于 (m, n )为大于2的素数.(m,8),它不可能是大于 2的素数,矛盾,故 c 9 . 9 m 26, 17,故 ( m, n) ( m,17) 10分 故(m, n ) ( m, 26) 13,但此时可得 17 ,只可能 n 17, m 34 .15分 20分 25分。
2018年全国初中数学竞赛试题及答案
若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8
4
l (2n 1) 8 l (2n 1) 4
所以
,或
,
l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(
)
( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足
2018年全国初中数学联赛(初三组)初赛试卷含答案
2018年全国初中数学联赛(初三组)初赛试卷含答案2018年全国初中数学联赛(初三组)初赛试卷(考试时间:2018年3月14日下午3:00—5:00)一、选择题(本题满分42分,每小题7分)1、已知实数$a$、$b$满足$|a-3|+|b-2|+1-a+a=3$,则$a+b$等于()A、$-1$B、$2$C、$3$D、$5$2、如图,点$D$、$E$分别在$\triangle ABC$的边$AB$、$AC$上,$BE$、$CD$相交于点$F$,设四边形$EADF$、$\triangle BDF$、$\triangle BCF$、$\triangle CEF$的面积分别为$S_1$、$S_2$、$S_3$、$S_4$,则$\frac{S_1S_3}{S_2S_4}$的大小关系为()A、$S_1S_3>S_2S_4$B、$S_1S_3=S_2S_4$C、$S_1S_3<S_2S_4$ D、不能确定3、对于任意实数$a$,$b$,$c$,$d$,有序实数对$(a,b)$与$(c,d)$之间的运算“$\ast$”定义为:$(a,b)\ast(c,d)=(ac-bd,ad+bc)$。
如果对于任意实数$m$,$n$都有$(m,n)\ast(x,y)=(n,-m)$,那么$(x,y)$为()A、$(1,-1)$B、$(-1,1)$C、$(1,1)$D、$(-1,-1)$4、如图,已知三个等圆$\odot O_1$、$\odot O_2$、$\odot O_3$有公共点$O$,点$A$、$B$、$C$是这些圆的交点,则点$O$一定是$\triangle ABC$的()A、外心B、重心C、内心D、垂心5、已知关于$x$的方程$(x-2)^2-4|x-2|-k=0$有四个根,则$k$的范围为()A、$-1<k<\pi$B、$-\pi<k<\pi$C、$-\frac{\pi}{4}<k<\frac{\pi}{4}$ D、不能确定6、设在一个宽度为$w$的小巷内搭梯子,梯子的脚位于$P$点,小巷两边的墙体垂直于水平的地面。
2018年全国初中数学联赛试题参考答案和评分标准 精品
2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。
$a<b<c$B。
$a<c<b$XXX<a<c$D。
$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。
因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。
2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。
3B。
4C。
5D。
6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。
因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。
$\frac{65}{26}$B。
$\frac{3}{3}$C。
$\frac{2}{5}$D。
$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。
2018年全国初中数学联赛试题
2018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222ay x ax=++的图象的顶点为A,与x轴的交点为B,C.当ABC△为等边三角形时,其边长为( )A.6 B.22 C.23 D.322.如图,在矩形ABCD中,BAD∠的平分线交BD于点E,115AB CAE=∠=︒,,则BE= ( )A 3B.22C21D313.设p q,均为大于3的素数,则使2254p pq q++为完全平方数的素数对(p,q)的个数为( )A.1 B.2 C.3 D.44.若实数a,b满足2a b−=,()()22114a bb a−+−=,则55a b−=( )A.46 B.64 C.82 D.1285. 对任意的整数x ,y ,定义@x y x y xy =+−,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为( )A .1B .2C .3D .4 6. 设11112018201920202050M =++++,则1M的整数部分是( ) A .60 B .61 C .62 D .63二、填空题:(本题满分28分,每小题7分)7. 如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF∠48=︒,则B ∠= .8. 若实数x y ,满足()3311542x y x y +++=,则x y +的最大值为 .9. 没有重复数字且不为5的倍数的五位数的个数为 .10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++= .第一试(B)一、选择题:(本题满分42分,每小题7分)1. 满足()2211x x x ++−=的整数x 的个数为( )A .1B .2C .3D .42. 已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a −++−=的三个实数根,则22211234x x x x −++=( ) A .5 B .6 C .7 D .83. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则tan ABF ∠= ( )A .12B .35 C .22 D .34. 方程339x x ++=的实数根的个数为( )A .0B .1C .2D .35. 设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A .4B .5C .6D .76. 已知实数a ,b 满足3232351355a a a b b b −+=−+=,,则a b +=( )A .2B .3C .4D .5二、填空题:(本题满分28分,每小题7分)7. 已知p q r ,,为素数,且pqr 整除1pq qr rp ++−,则p q r ++= .8. 已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 .9. 已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE = .10. 已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n )的个数为 .一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d −−=的根,c ,d 为方程2100x ax b −−=的根,求a b c d +++的值.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +−+是非负整数.一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+−+−+−⎝⎭,求()111a b c a b c ⎛⎫++++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国初中数学联合竞赛
笫一试
一、选择题(42分)
1.已知a=2-1,b=22-6,c=6-2,那么a 、b 、c 的大小关系是( )
(A)a<b<c. (B)b<a<c. (C)c<b<a. (D)c<a<b.
2.若m 2=n+2,n 2=m+2(m ≠n),则m 3-2mn+n 3的值为( )
(A)1. (B)0. (C)-1. (D)-2.
3.已知二次函数y=ax 2+bx+c 的图像如图1所示,并设
M=丨a+b+c 丨-丨a-b+c 丨+丨2a+b 丨-丨2a-b 丨,则( )
(A)M>0.(B)M=0.(C)M<0.(D)不能确定M 为正、为负或为0.
4.Rt ΔABC 的面积为120,且∠BAC=900,AD 是斜边上的中线,
过点D 作DE ⊥AB 于点E,连CE,交AD 于点F,则ΔAFE 的面积等于( )
(A)18.(B)20.(C)22.(D)24.
5.如图2,⊙O 1与⊙O 2外切于点A,两圆的一条外公切线与
⊙O 1相切于点B.若AB 与两圆的另一条外公切线平行,
则⊙O 1与⊙O 2的半径之比为( )
(A)2∶5.(B)1∶2.(C)1∶3.(D)2∶3.
6.如果对于不小于8的自然数n,当3n+1是一个完全平方数时,n+1都能表示成k 个完全平方数的和,那么k 的最小值为( )
(A)1.(B)2.(C)3.(D)4.
二.填空题(28分)
1.已知a<0,ab<0,化简:3231
+----a b b a =_________________.
2.如图3,7根圆形筷子的横截面圆半径为r,
则捆扎这7根筷子一周的绳子的长度为________.
3.甲,乙两人到特价商店购买商品,已知两人购买商品的件数相同,
且每件商品的单价只有8元和9元两种.若两人购买商品一共花费
了172元,则其中单价为9元的商品有_______件.
4.设N=23x++92y 为完全平方数,且N 不超过2392,则满足上述条件的一切正整数对(x,y)共有_____对.
笫二试(A)
一.(20分)已知a,b,c 三数满足方程组:
,试求方程bx 2+cx-a=0的根.
二.(25分)如图4,等腰ΔABC中,P为底边BC上任意一点,过P作
两腰的平行线分别与AB,AC相交于Q,R两点,又P‘是P关于
直线RQ的对称点。
求证:(1)ΔP /QB∽ΔP /RC.(2)点P /在ΔABC的外接圆上.
三.(25分)试确定一切有理数r,使得关于x的方程rx2+(r+2)x+3r-2=0有根且只有整数根.
参考答案
一.
1.分子有理化,得a= 282+,b=682
+ ,c=262
+,知b<a<c.
2.两式相减,并分解因式,得(m-n)(m+n+1)=0(m ≠n),所以m+n=-1.
两式相加,得(m+n)2-2mn=(m+n)+4,代入m+n=-1,可得mn=-1.
所以原式=(m+n)[(m+n)2-3mn]-2mn= -2.
3.由图知,x=1时,y<0,即a+b+c<0;x=-1时,y>0,即a-b+c>0.
又a>0,0<-a
b 2<1,所以b<0,2a-b>0,-b<2a,2a+b>0. 所以原式=-2(a-b+c)<0.
4.如图,易证DE 是ΔABC 的中位线.
所以S ΔBED =41S ΔABC =30,S 梯形EACD =90,且S ΔEFD =4
1S ΔAFC , S ΔAFE =S ΔCFD .设S ΔAFE =S ΔCFD =x,S ΔEFD =y,S ΔAFC =4y.由S ΔEDF ∶S ΔEAF =DF ∶FA=S ΔCDF ∶S ΔCAF ,得 ,得S ΔAFE =x=20.
5.连结CA,CB,CO 1,DO 2,O 1O 2,作O 1E ⊥DO 2.
由AB ∥CD,易证∠PCB=∠CAB,∠PCB=∠CAB,
AB=AC,ΔABC 是正Δ.
从而∠EO 1O 2=300, EO 2∶O 1O 2=1∶2,
即 (R-r)∶(R+r)=1∶2, r ∶R=1∶3.
6.设3n+1=a 2(a 是整数),则3不能整除a.
(假设3整除a,则a=3m,m 是整数,3n+1=9m 2,n=3m 2+
31,与n 是整数矛盾). 于是可设a=3t ±1(t 是整数),
所以3n+1=9t 2±6t+1,n=3t 2±2t,
所以 n+1=t 2+t 2+(t ±1)2.可见k 最小为3.
例如:n=8时,3n+1=25,n+1=9=12+22+22.
n=23 时,3n+1=64,n+1=24=22+22+42.
二.
1.由题设知,b>0,a-b-32<0,b-a+3>0.易得原式=
15323+. 2.如图,设A 、B 、C 为切点,则BC=2r,∠AOB=3600-1200-900-900=600。
所以 =π3
1
r 。
所以所求长度为 6(BC+)=12r+2πr.
3.设甲,乙都买了n件,其中8元的共x件,9元的共y件(n,x,y均为整数),则
,所以, 9≤n≤10 ,n=10.
所以y=172-16n=12.
4.已知N=23(x+4y)为完全平方数,23为质数.所以可设x+4y=23×m2(m为整数)。
所以N=232×m2≤2392,m≤5,从而m2=1或4.
若m2=1,则x+4y=23,x=23-4y>0,y<5 ,y=1、2、3、4、5.
若m2=4,则x+4y=92,x=92-4y>0,y<23,y=1、2、3、4、5、6、7、8……22.
其中y的前5个值与m=1时y的相同。
所以合条件的正整数对(x,y)共有22对.
笫二试(A)
一.由题设得錒,a+b=8,ab=48+c2-82c
所以a、b是方程y2-8y+c2-82c+48=0的两个实数根.
由Δ≥0可得(c-42)2≤0,可知c=42
所以a+b=8,ab=16,a=b=4.
于是原方程为4x2+42x-4=0,x=
26
2±
-。
二.
证明:(1) ΔABC是等腰三角形,QP∥AC,RP∥AB.
∴∠ABC=∠ACB,∠ABC=∠RPC,∠ACB=∠QPB.
∠ABC=∠QPB,∠ACB=∠RPC.
∴ QB=QP,RP=RC.
P与P /关于RQ对称.
∴ QP=QP /,RC=RP /.
∴ QB=QP=QP /,RC=RP=RP /.
∴点B、P、P /在以点Q为圆心的圆上,
点C、P、P /在以点R为圆心的圆上, ∴∠P /QB=2∠P /PB=∠P /RC.
∴等腰ΔP /QB∽等腰ΔP /RC.
(2)连P /A
由等腰ΔP /QB∽等腰ΔP /RC,得∠ABP /=∠ACP /. ∴点P /,B,C,A四点共圆.
∴点P /在ΔABC的外接圆上.
三、若r=0,则方程为2x-2=0,有正整数根x=1. 若r ≠0,设正整数根x 1≤x 2,则r r x x 221+-=+ ①,r r x x 2321-= ② ②- ①,得 x 1x 2-(x 1+x 2)=4,变为(x 1-1)(x 2-1)=5. 或 , 解得x 1=2,x 2=6 或x 1=-4,x 2=0.代入①,得r=- 或 r=。
综上:r=0,- , .。