人教版八年级数学上册《第11章三角形》单元测试题含答案
人教版八年级数学上册第十一章三角形单元测试卷-(含答案)
人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
第11章 三角形 人教版数学八年级上册单元测试卷(含答案)
第十一章 三角形时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·广东阳江期末)如图,△ABC中AB边上的高是( )A.线段CDB.线段ACC.线段ADD.线段BC(第1题) (第2题)2.如图,要使一个六边形木架在同一平面内不变形,至少还要钉上木条( )A.1根B.2根C.4根D.3根3.(2022·安徽淮南期中)如图,为估计池塘两岸A,B两点之间的距离,在池塘的一侧选取一点O,测得OA=5,OB=11,则A,B两点间的距离可能是( ) A.5B.10 C.16D.17(第3题) (第4题)4.(2022·四川自贡贡井区期中改编)如图,CE是△ABC的外角∠ACD的平分线,CE 交BA的延长线于点E,若∠B=35°,∠E=25°,则∠ACD的度数为( )A.100°B.110°C.120°D.130°5.(2022·天津武清区期中改编)如图,在△ABC中,∠A=90°,若沿图中虚线截去∠A,则∠1+∠2的度数为( ) A.90° B.180° C.270° D.300°(第5题) (第6题)6.如图,将一副直角三角板按如图所示的方式叠放在一起,则∠α的度数为( )A.15°B.30°C.65°D.75°7.(2022·山东临沂期中)在探究证明三角形的内角和定理时,综合实践小组的同学们作了如下四种辅助线,其中不能证明“三角形的内角和是180°”的是( ) A.过点C作EF∥AB B.作CD⊥AB于点DC.过AB上一点D作DF∥AC,DE∥BCD.延长AC到点F, 过点C作CE∥AB8.(2022·山西吕梁孝义期中)如图,△ABC中,点D是边AB的中点,点E是边AC的中点,点F是CD的中点.若△DEF的面积是3,则△ABC的面积为( ) A.24 B.12 C.36 D.48(第8题) (第10题)9.(2021·河北唐山路北区期末)若一个多边形截去一个角后,形成的新多边形的内角和是1 620°,则原来多边形的边数可能是( )A.10或11B.11C.11或12D.10或11或1210.(2022·河南焦作期中)如图,已知P是△ABC内一点,∠BPC=120°,∠A=50°,BD 是∠ABP的平分线,CE是∠ACP的平分线,BD与CE交于点F,则∠BFC的度数为( )A.100°B.90°C.85°D.95°二、填空题(共6小题,每小题3分,共18分)11.(2022·北京延庆区期末)如图,△ABC中,∠B=20°,D是BC延长线上一点,若∠ACD=60°,则∠A的度数为 .(第11题) (第14题)12.(2021·上海长宁区期末)在△ABC中,∠C=90°,若∠A比∠B小24°,则∠A= .13.(2022·云南昭通昭阳区期中)已知a,b,c是△ABC的三条边长,则|a+b-c|+|b-a-c|= .14.(2022·北京海淀区期中)如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD.若∠DBC=54°,则∠A= .15.新风向新定义试题(2022·湖南益阳赫山区期末)定义:若三角形中一个内角α是另一个内角β的一半时,则这样的三角形为“半角三角形”,其中α为“半角”.若一个“半角三角形”的“半角”为15°,则这个“半角三角形”的最大内角的度数为 .16.已知BD,CE分别是△ABC的高,直线BD,CE相交所成的角中有一个角为65°,则∠BAC= .题号12345678910答案11. 12. 13. 填空14. 15. 16. 三、解答题(共6小题,共52分)17.(7分)(2022·陕西榆林期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点E 是AD上一点,连接BE.求证:∠BED>∠C.18.(7分)(2021·河南巩义期末)一个零件的形状如图所示,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,请你运用三角形的有关知识说出零件不合格的理由.19.(7分)(2021·广东东莞期末)如图,在△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于点E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.(9分)(2022·安徽六安金安区期中)如图,AD 是△ABC 的边BC 上的中线,已知AB=5,AC=3.(1)边BC 的取值范围是 ; (2)求△ABD 与△ACD 的周长之差;(3)若AB 边上的高为2,求AC 边上的高.21.(11分)(2021·山西晋城期末)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456…18∠α的度数 … (2)根据发现的规律,是否存在一个正n 边形,使其中的∠α=20°?若存在,求出n 的值;若不存在,请说明理由.(3)根据发现的规律,是否存在一个正a边形,使其中的∠α=21°?若存在,求出a的值;若不存在,请说明理由.22.(11分)新风向探究性试题(2022·江苏连云港海州区期末)某数学兴趣小组对“三角形内(外)角平分线形成的夹角与第三个内角之间的数量关系”进行了探究. (1)如图(1),在△ABC中,∠ABC与∠ACB的平分线交于点P,若∠A=66°,则∠BPC= ;(2)如图(2),△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.若∠A=α,则∠E= (用含α的式子表示);(3)如图(3),△ABC的两外角∠CBM与∠BCN的平分线交于点Q.请写出∠BQC与∠A之间的数量关系,并说明理由. 图(1) 图(2) 图(3)第十一章 三角形选择填空题答案速查12345678910A DBC CD B A D C11.40°12.33°13.2a14.27°15.135°16.65°或115°1.A2.D图示速解根据三角形的稳定性,简易示意图如下(方式不唯一).3.B 设A,B两点间的距离为x.根据三角形的三边关系,得11-5<x<11+5,解得6<x<16,故A,B两点间的距离可能是10.4.C ∵∠ECD=∠B+∠E=35°+25°=60°,CE平分∠ACD,∴∠ACD=2∠ECD=120°.一题多解∵∠B=35°,∠E=25°,∴∠BCE=180°-∠B-∠E=120°,∴∠ECD=180°-120°=60°.∵CE平分∠ACD,∴∠ACD=2∠ECD=120°.5.C ∵在△ABC中,∠A=90°,且∠A+∠B+∠C=180°,∴∠B+∠C=180°-90°= 90°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°-90°=270°.【题眼】四边形的内角和=(4-2)×180°=360°一题多解∵在△AEF中,∠A=90°,∴∠AEF+∠AFE=90°.∵∠1=∠A+∠AFE,∠2=∠A+∠AEF,∴∠1+∠2=2∠A+90°=270°.6.D 如图,∵∠2=45°,∴∠1=∠2-30°=45°-30°=15°,∴∠α=90°-∠1=90°-15°=75°.7.B (排除法)由EF∥AB,得∠ECA=∠A,∠FCB=∠B.由∠ECA+∠ACB+∠FCB=180°,得∠A+∠ACB+∠B=180°.由DF∥AC,得∠EDF=∠AED,∠A=∠FDB.由DE∥BC,得∠EDA=∠B,∠C=∠AED,即∠C=∠EDF.由∠ADE+∠EDF+∠FDB=180°,得∠B+∠C+∠A=180°.由CE∥AB,得∠A=∠FCE,∠B=∠BCE.由∠FCE+∠ECB+∠ACB=180°,得∠A+∠B+∠ACB=180°.故选B.8.A ∵点F是CD的中点,∴S△DCE=2S△DEF=2×3=6.∵点E是边AC的中点,∴S△ACD=2S△DCE=2×6=12.∵点D是边AB的中点,∴S△ABC=2S△ACD=2×12=24.【题眼】两三角形高相等,面积比=底边长之比9.D 设新多边形的边数为n,则(n-2)·180°=1 620°,解得n=11.∵多边形截去一个角后,边数可以增加1、不变或减少1,∴原来多边形的边数可能是10或11或12.故选D.【注意】多边形截去一个角后,边数有增加1、不变和减少1三种情况,易漏解10.C (整体思想)∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠BPC=120°,∴∠PBC+∠PCB=180°-120°=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=130°-60°=70°.∵BD是∠ABP的平分线,CE是∠ACP的平分线,∴∠FBP+∠FCP=(∠ABP+∠ACP)=35°,∴∠FBC+∠FCB=(∠PBC+∠PCB)+(∠FBP+∠FCP)=60°+35°=95°,∴∠BFC=180°-(∠FBC+∠FCB)=180°-95°=85°.11.40° ∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°.【注意】三角形的外角等于与它不相邻的两个内角的和12.33° 设∠A=x,则∠B=24°+x.∵90°+x+x+24°=180°,解得x=33°,∴∠A=33°.13.2a ∵a,b,c为△ABC的三条边长,∴a+b-c>0,b-a-c<0,∴原式=a+b-c-(b-a-c)= a+b-c-b+a+c=2a.【关键】三角形的三边关系14.27° ∵BD⊥CD,∴∠D=90°.∵∠DBC=54°,∴∠DCB=90°-54°=36°.∵CD平分∠ACB,∠ACB=72°.∵∠A=∠ABD,∠A+∠ABC+∠ACB=180°,∴∠A+∠A+54°+72°=180°,∴∠A=27°.15.135° 令α=15°,则β=2α=30°,∴最大内角的度数为180°-15°-30°=135°.16.65°或115° (分类讨论思想)分两种情况,①当∠A为锐角时,如图(1),设BD,CE 交于点O,∵∠DOC=65°,∴∠EOD=115°.∵BD,CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠BAC=360°-90°-90°-115°=65°.②当∠BAC为钝角时,如图(2),设BD,CE交于点F,∵∠F=65°,∠ADF=∠AEF=90°,∴∠DAE=360°-90°-90°-65°=115°,∴∠BAC=∠DAE=115°.综上,∠BAC=65°或115°. 图(1) 图(2)17.【参考答案】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°.∵AD⊥BC,∴∠C+∠DAC=90°,∴∠BAD=∠C.(5分)【注意】等量代换∵∠BED=∠BAD+∠ABE,∴∠BED>∠BAD,∴∠BED>∠C.(7分)18.【参考答案】如图,延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°.(3分)同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,∴这个零件不合格.(7分) 19.【参考答案】在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°-∠ACB-∠B=76°.∵AD平分∠BAC,∴∠CAD=1∠BAC=38°.(3分)2在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°-∠ACD-∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC,∴∠PED=90°,∴∠P=90°-∠PDE=28°.(7分) 20.【参考答案】(1)2<BC<8(3分)解法提示:∵AB=5,AC=3.∴2<BC<8.【关键】三角形的三边关系(2)∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 与△ACD 的周长之差=(AB+BD+AD )-(AC+CD+AD )=AB+BD-AC-CD =AB-AC =5-3=2.(6分)(3)设AC 边上的高为h ,则S △ABC =12AB ·2=12AC ·h ,【技巧】等面积法解得h=103,∴AC 边上的高为103.(9分)21.【参考答案】(1)补充表格如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°…10°(5分)(2)存在.(6分)根据发现的规律得180°n=20°,解得n=9,∴存在一个正九边形,能使其中的∠α=20°.(8分)(3)不存在.理由如下:假设存在正a 边形使得∠α=21°,则180°a=21°,解得a=847.∵a 是正整数,∴不存在正a 边形使得∠α=21°.(11分)22.【参考答案】(1)123°(3分)解法提示:∵BP ,CP 分别平分∠ABC ,∠ACB ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB ,∴∠BPC=180°-(∠PBC+∠PCB )=180°-12(∠ABC+∠ACB )=180°-12(180°-∠A )=90°+12∠A.∵∠A=66°,∴∠BPC=90°+12×66°=123°.(2)α2(6分)解法提示:∵CE ,BE 分别是∠ACB ,∠ABD 的平分线,∴∠BCE=12∠ACB ,∠DBE=12∠ABD.又∠ABD 是△ABC 的外角,∴∠ABD=α+∠ACB ,∴∠DBE=12(α+∠ACB )=12α+∠BCE.∵∠DBE 是△BEC 的外角,∴∠DBE=∠E+∠BCE ,∴∠E+∠BCE=12α+∠BCE ,∴∠E=α2.(3)∠BQC=90°-12∠A.理由如下:由题意得∠QBC=12(∠A+∠ACB ),∠QCB=12(∠A+∠ABC ),∴∠BQC=180°-∠QBC-∠QCB=180°-12(∠A+∠ACB )-12(∠A+∠ABC )=180°-12∠A-12(∠A+∠ABC+∠ACB )=180°-12∠A-90°=90°-1∠A,(10分) 2∴∠BQC=90°-1∠A.(11分)2。
人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)
2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。
八年级数学上册《第十一章 三角形》单元测试卷附答案-人教版
八年级数学上册《第十一章三角形》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.以下列每组数为长度(单位:)的三根小木棒,其中能搭成三角形的是()A.2,2,4 B.1,2,3 C.3,4,5 D.3,4,82.如图,是的中线,点E为的中点,连接,若的面积为,则的面积为()A.3 B.5 C.4 D.63.在中,AB=2n-5,AC=4,BC=13,则的取值范围是()A.B.C.D.4.如图,在三角形中,为的平分线∠ABC=115°,∠A=25°则的度数为()A.B.C.D.5.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑色皮块的内角和是()A.180°B.360°C.540°D.720°6.如图,已知直线,∠CAB=135°,∠ABD=75°,则等于()A.B.C.D.7.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.180米B.110米C.120米D.100米8.把一块直角三角板和一把直尺如图放置,若,则的度数等于()A.B.C.D.二、填空题9.来修理一条摇晃的凳子的数学原理是利用三角形的.10.如图,AD∥BC,AD=2,BC=3,三角形ABC的面积是4,那三角形ACD的面积是.11.如图,AC⊥BD于点C,已知∠A=40°,∠AEF=70°,则∠D=.12.如图,已知为的中线,为的中线.过点作于.若的面积为40,EF=5,则的长为.13.如图,直线,直线分别交,于点E,F,EG平分,交于点G.已知,则的度数为.14.“花影遮墙,峰峦叠窗”,苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗棂,图②是这种窗棂中的部分图案.若∠1+∠3+∠5=186°,则∠2+∠4+∠6=°.三、解答题15.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=100°,求∠A和∠ACE的度数.16.已知:如图,过AC上一点D,作交BC于点F.求证:.17.如图,在三角形中,AB=10cm,AC=6cm,是的中点,点在边上.若三角形的周长与四边形的周长相等,求线段的长.18.在中,于,是的平分线,∠A=20°,∠B=60°;求:(1)的度数;(2)的度数;(3)的度数.19.已知:如图,四边形中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)(2).参考答案1.C2.A3.B4.D5.C6.B7.D8.B9.稳定性10.11.20°12.413.14.36615.解:∵∠ADB=∠DBC+∠ACB∴∠DBC=∠ADB﹣∠ACB=100°﹣60°=40°.∵BD是角平分线∴∠ABC=80°∴∠A=180°﹣∠ABC﹣∠ACB=40°;∵CE是高∴∠AEC=90°∴∠ACE=90°﹣∠A=50°16.证明:∵∴∵∴∵∴.17.解:由图可知:三角形的周长,四边形的周长又∵三角形的周长与四边形的周长相等,是的中点∴∴又∵∴∴∴cm18.(1)解:由得(2)解:(3)解:是的平分线.19.(1)证明:∵∠A+∠ABC+∠C+∠CDA=360°,∠A=∠C=90°∴∠ABC+∠CDA=180°.∵BE、DF分别是∠ABC、∠ADC的角平分线∴∠1=∠ABC,∠2=∠ADC∴∠1+∠2=(∠ABC+∠ADC)=×180°=90°.(2)证明:∵∠2+∠DFC=90°,∠1+∠2=90°∴∠2=90°-∠1∴90°-∠1+∠DFC=90°∴∠1=∠DFC∴BE∥DF.。
2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)
第11章 三角形 单元测试题一、单选题1.根据下列已知条件,能确定的形状和大小的是( )A .,,B .,,C .,,D .,,2.如图,一只手握住了一个三角形的一部分,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .以上都有可能3.如图,为估计池塘两岸,间的距离,小明在池塘一侧选取了一点,测得,,那么间的距离不可能是( )A .B .C .D .4.如图,人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .三角形具有稳定性B .垂线段最短C .两点之间,线段最短D .两直线平行,内错角相等5.在中,,若,则等于( )A .B .C .D .6.如图,AE ,AD 分别是的高和角平分线,,,则的度数为( )ABC 30A ∠=︒=60B ∠︒90C ∠=︒40A ∠=︒50B ∠=︒5cm AB =5cm AB =4cm AC =30B ∠=︒6cm AB =4cm BC =30A ∠=︒A B P 14m PA =10m PB =AB 4m 15m 20m 22m Rt ABC 90C ∠=︒50A ∠=︒B ∠55︒50︒45︒40︒ABC 30B ∠=︒70C ∠=︒DAE ∠A .40°B .20°C .10°D .30°7.四边形具有不稳定性,如图,挤压矩形ABCD ,会产生变形,得到四边形EBCF ,则在这个变化过程中,关于矩形ABCD 的周长和面积,下列说法正确的是( )A.周长和面积都不变B.周长不变,面积变小C .周长变小,面积不变D .周长变小,面积变小8.一个多边形每个外角都等于,则从这个多边形的某个顶点画对角线,最多可以画出几条( )A .7条B .8条C .9条D .10条9.正五边形的每个内角度数为( )A .B .C .D .10.一个正多边形的外角等于36°,则这个正多边形的内角和是( )A .1440°B .1080°C .900°D .720°11.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为( )A .5B .5或6C .6或7D .5或6或712.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A 出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A 点时,发现自己走了60米,θ的度数为( )A .28°B .30°C .33°D .36°二、填空题36︒72︒100︒108︒120︒720︒14.如图,在中, .15.如图,在中,上,且,则16.大桥钢架、索道支架、人字梁等为了坚固,学校门口的电动推拉门是利用四边形的17.如图,两条平行线l 1、那么∠2= .ABC A ∠=ABC ∆∠DE BC ∥EDC ∠三、解答题(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm ,AD=7 cm 时,求△ABC 22.已知:在中,,分别是(1)若,.求(2)试求与有何关系?23.如图,在中,(1) ;(2)若是两条外角平分线的交点,则ABC AD AE 30B ∠=︒50C ∠=︒DAE ∠DAE ∠C B ∠-∠ABC 50BAC ∠=︒BIC ∠=︒D(3)在(2)的条件下,若是内角和外角的平分线的交点,试探索与的数量关系,并说明理由.E ABC ∠ACG ∠BEC ∠BAC ∠参考答案:1.B解:A 、∠A =30°,∠B =60°,∠C =90°,△ABC 的形状和大小不能确定,故不符合题意;B 、∠A =40°,∠B =50°,AB =5cm ,则利用“ASA”可判断△ABC 是唯一的,故符合题意;C 、AB =5cm ,AC =4cm ,∠B =30°,△ABC 的形状和大小不能确定,故不符合题意;D 、AB =6cm ,BC =4cm ,∠A =30°,△ABC 的形状和大小不能确定,故不符合题意. 2.D解:A 、当另外两角为44°和100°时,该三角形为钝角三角形,B 、当另外两角为90°和54°时,该三角形为直角三角形,C 、当另外两角为80°和64°时,该三角形为锐角三角形,∴钝角三角形,直角三角形,锐角三角形都有可能,3.A解:,,,即,间的距离不可能是:.4.A解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.5.D解:在中,,,,,6.B解:∵,,AE ⊥BC ,∴∠BAC=80°,∠AEB=90°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=40°,在△AEB 中,∠AEB+∠B+∠BAE=180°,∴∠BAE=60°,14m PA = 10m PB =PA PB AB PA PB ∴-<<+4m 24m AB <<AB ∴4m Rt ABC =90C ∠︒ =50A ∠︒=90A B ∴∠+∠︒=9050=40B ∴∠︒-︒︒30B ∠=︒70C ∠=︒∴∠EAD=∠BAE-∠BAD=60°-40°=20°;7.B解:因为把长方形拉成平行四边形后,每个边的长度不变,所以它的周长就不变;但是平行四边形的高比长方形的宽变小了,所以平行四边形的面积就变小了.8.A解:根据题意可知多边形为正多边形,设边数为则由多边形外角和的性质可得,解得则从一个顶点最多可以画10-3=7条对角线9.C解:,∴正五边形的每个内角度数为 10.A解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,11.D解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为的多边形的边数是n ,∴,解得:.则原多边形的边数为5或6或7.12.Bn36360n ︒⨯=︒10n =()180525=108︒⨯-÷︒108︒720︒()2180720n -⋅︒=︒6n =。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。
2023-2024学年第一学期八年级数学第11章《三角形》单元测试卷(含答案)
2023-2024学年第一学期八年级数学第11章《三角形》单元测试卷人教版一、选择题(每小题3分,共30分)1.(3分)下列条件中能组成三角形的是( )A.5cm, 7cm, 13cm B.3cm, 5cm, 9cmC.6cm, 9cm, 14cm D.5cm, 6cm, 11cm2.(3分)三角形的内角和等于( )A.90°B.180°C.300°D.360°3.(3分)一个多边形从一个顶点出发,最多可以作2条对角线,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形4.(3分)如图,虚线部分是小刚作的辅助线,则你认为线段CD为( )A.边AC上的高B.边BC上的高C.边AB上的高D.不是△ABC的高5.(3分)若三角形的三边的长分别是2cm、5cm、acm,则a的长可能为( )cm.A.8B.2C.5D.36.(3分)直角三角形的一锐角是35° ,那么另一锐角是( )A.55°B.50°C.45°D.70°7.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BF B.∠ACE= ∠ACBC.AE=BE D.CD⊥BE8.(3分)一个多边形最少可分割成五个三角形,则它是( )边形。
A.8B.7C.6D.59.(3分)下列正多边形的组合中,能够铺满地面的是( )A.正六边形和正方形B.正六边形和正三角形C.正五边形和正八边形D.正十边形和正三角形10.(3分)在△ABC中,∠A=500,∠ABC的角平分线和∠ACB的角平分线相交所成的∠BOC的度数是( )A.130°B.125°C.115°D.25°二、填空题(共8题;共24分)11.(3分)如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是 .12.(3分)若一个多边形的每个外角都相同且为72°,则这个多边形有 条边.13.(3分)已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为 .14.(3分)如图,AB//CD,∠A+∠E=70°,则∠C为 度.15.(3分)已知△ABC中,AB=2,BC=5,且AC的长为偶数,则AC的长为 . 16.(3分)如图,已知AD为△ABC的中线,BE为△ABD的中线.过点E作EF⊥BC于F.若△ABC的面积为40,EF=5,则CD的长为 .17.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 .18.(3分)如图,直线l1∥l2,∠A=85°,∠B=70°,则∠1-∠2= .三、解答题(一)(共24分)19.(6分)如图,直线a//b,点A、点B在直线a上,点C、点D在直线b上,连接AC、BD交于点E,其中BD平分∠ABC,∠BCD=80°,∠BEC=110°,求∠BAC的度数.20.(6分)如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD21.(6分)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D 在GH上,求∠BDC的度数.22.(6分)如图,AF,AD分别是ΔABC的高和角平分线,且∠B=30°,∠C=56°,求∠DAF的度数.四、解答题(二)(共42分)23.(8分)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)(4分)求这个多边形是几边形;(2)(4分)求这个多边形的内角和24.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)(4分)小明一共走了多少米?(2)(4分)这个多边形的内角和是多少度?25.(8分)如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)(4分)求∠ADB的度数;(2)(4分)若DE⊥AC于点E,求∠ADE的度数.26.(8分)将一副三角尺按如图所示方式放置,然后过点C作CF平分∠DCE,交DE于点F。
2024-2025学年人教新版八年级上册数学《第11章 三角形》单元测试卷(有答案)
2024-2025学年人教新版八年级上册数学《第11章三角形》单元测试卷一.选择题(共10小题,满分30分,每题3分)1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.学习了四边形之后,小颖同学用如图所示的方式表示了四边形与特殊四边形的关系,则图中的“M”和“N”分别表示()A.平行四边形,正方形B.正方形,菱形C.正方形,矩形D.矩形,菱形4.一个正n边形的一个外角与它相邻的内角相等,则n的值为()A.4B.5C.6D.75.下面是三根小棒的长度(单位:cm),能围成三角形的是()A.1,2,3B.3,4,8C.5,5,10D.2,8,76.如图,有一个直角三角形纸板破损了一个角,如果把它补成完整的三角形纸板,需要补的角的度数是()A.45°B.35°C.55°D.25°7.将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则∠1=()A.45°B.50°C.60°D.75°8.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短9.如图,点P是△ABC的重心,过点P作AC的平行线,分别交AB,BC于点D,E,若AC=6,则DE 的长为()A.2B.3C.4D.510.如图,将一副三角尺按不同位置摆放,摆放方式中∠α≠∠β的图形有()A.B.C.D.二.填空题(共10小题,满分30分,每题3分)11.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是.12.一个三角形,一个内角的度数是另两个内角度数和的.另两个内角的度数相差18°.这个三角形的最小的内角的度数是.13.如图,在生活中,为了保证儿童的安全,通常儿童座椅主体框架成三角形,这是利用了.14.已知a,b,c是△ABC的三边长,满足|a﹣7|+(b﹣2)2=0,c为奇数,则c=.15.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是12,则平行四边形A'B'C'D'的面积是.16.如图,∠ACB=90°,AC=6,BC=8,点D在AB上,∠A=2∠BCD,则CD的长为.17.如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB =.18.在△ABC中,AD,BE为三角形的高,M为AD,BE所在直线的交点,∠BMD=52°,则∠C的度数是.19.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S=4cm2,则阴影△ABC 部分的面积为cm2.20.如图,点D是△ABC的重心,连接AD并延长交BC于点E,AB=4,△ABE的周长比△ACE的周长大1.8,则AC=.三.解答题(共7小题,满分60分)21.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.22.已知:如图,点P是△ABC的重心,过P作AC的平行线,分别交AB,BC于点D,E,作DF∥EC,交AC于点F,若△ABC的面积为18cm2,求四边形ECFD的面积.23.如图,在△ABC中,∠B=38°,∠C=60°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE 的度数.24.如图,在五边形ABCDE中,AP平分∠EAB,且AP∥DE,交CD于点P.(1)五边形ABCDE的内角和为度;(2)若∠C=100°,∠D=75°,∠E=135°,求∠B的度数.25.如图,AD是△ABC的高,CE是△ABC的角平分线,BF是△ABC的中线.(1)若∠ACB=50°,∠BAD=65°,求∠AEC的度数;(2)若AB=9,△BCF与△BAF的周长差为3,求BC的长.26.如图,在△ABC中,∠ACB=90°,∠CDB=90°,CE是△ABC的角平分线,已知∠CEB=105°,求∠ECB,∠ECD的大小.27.如图,已知每个小正方形格的面积是1平方厘米,求不规则图形的面积是多少平方厘米.参考答案与试题解析一.选择题(共10小题,满分30分,每题3分)1.B2.D3.B4.A5.D6.B7.D8.C9.C10.D二.填空题(共10小题,满分30分,每题3分)11.12.12.45°.13.三角形的稳定性.14.7.15.6.16..17.40°.18.52°或128°.19.见试题解答内容20.2.2.三.解答题(共7小题,满分60分)21.见试题解答内容22.见试题解答内容23.11°.24.(1)540;(2)∠B=140°.25.(1)50°(2)12或15.26.45°,15°.27.不规则图形的面积是19平方厘米.。
八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。
人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.
八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。