果蝇伴性遗传实验报告

合集下载

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告实验目的本实验旨在通过果蝇的伴性遗传实验,探究某一特定基因的遗传规律。

实验材料和方法实验材料•成年果蝇•培养皿•饲料培养基•放大镜•显微镜•显微镜玻片实验方法1.在培养皿中准备饲料培养基。

2.选择一对成年果蝇作为父本,将其放入培养皿,供其产卵。

3.观察果蝇的产卵情况,等待卵孵化。

4.用显微镜观察孵化后的果蝇幼虫,记录其数量和特征。

5.将幼虫转移到新的培养皿中,继续观察其生长情况。

6.当果蝇幼虫变成成熟的果蝇时,用放大镜观察其性状,并记录下来。

7.重复上述步骤,进行多次实验,以便得到更准确的数据。

结果和分析通过多次实验,我们观察到了果蝇不同性状的表现,并得出以下结论:1.某些性状是具有显性遗传特征的,即只需一个基因即可表现出来。

2.另一些性状则是隐性遗传特征,需要两个相同的基因才能表现出来。

3.有一些性状表现出了伴性遗传的特点,即它们与其他基因的组合会影响其表现,而不仅仅取决于单个基因。

4.我们还观察到了一些变异现象,即基因突变导致了果蝇性状的变化。

通过这些观察和结论,我们可以推测果蝇的遗传规律并进行更深入的研究。

结论通过果蝇伴性遗传实验,我们成功地观察到了果蝇不同性状的遗传规律。

这对于进一步研究果蝇和其他生物的遗传特征具有重要意义。

通过深入研究果蝇的遗传规律,我们可以进一步理解基因在生物体内的作用和影响,并对人类的遗传疾病和基因治疗等方面提供有益的启示。

致谢感谢所有参与实验的人员以及提供实验材料的机构的支持和配合。

感谢实验过程中的帮助和指导。

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告

一、实验目的1. 了解伴性遗传的基本原理和特点。

2. 通过果蝇的杂交实验,验证伴性遗传的规律。

3. 掌握伴性遗传的实验操作和数据分析方法。

二、实验原理伴性遗传是指位于性染色体上的基因在遗传过程中,其传递方式与性别有关。

在果蝇中,伴性遗传主要表现为X染色体上的基因遗传。

由于雌蝇有两个X染色体,而雄蝇有一个X染色体和一个Y染色体,因此伴性遗传的基因在雌雄个体之间的传递方式存在差异。

本实验以果蝇为材料,通过观察红眼和白眼性状的遗传规律,验证伴性遗传的规律。

三、实验材料1. 果蝇品系:野生型(红眼)XX、突变型(白眼)XWY2. 果蝇培养箱、培养皿、镊子、解剖针、酒精、蒸馏水、显微镜、载玻片、盖玻片等四、实验步骤1. 正交实验(1)将野生型雌蝇和突变型雄蝇放入同一培养皿中,进行交配。

(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。

(3)观察F1代果蝇的性状,统计红眼和白眼的比例。

2. 反交实验(1)将突变型雌蝇和野生型雄蝇放入同一培养皿中,进行交配。

(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。

(3)观察F1代果蝇的性状,统计红眼和白眼的比例。

3. F2代实验(1)将F1代果蝇进行自交,或将F1代果蝇与突变型雄蝇进行交配。

(2)待果蝇产卵后,将卵收集并放入培养皿中孵化。

(3)观察F2代果蝇的性状,统计红眼和白眼的比例。

五、实验结果与分析1. 正交实验F1代果蝇中,红眼和白眼的比例为1:1。

F2代果蝇中,红眼和白眼的比例为3:1。

结果表明,伴性遗传遵循孟德尔的分离定律。

2. 反交实验F1代果蝇中,红眼和白眼的比例为1:1。

F2代果蝇中,红眼和白眼的比例为1:1。

结果表明,伴性遗传遵循孟德尔的分离定律,且伴性遗传的基因位于X染色体上。

六、实验结论1. 伴性遗传是指位于性染色体上的基因在遗传过程中,其传递方式与性别有关。

2. 伴性遗传遵循孟德尔的分离定律。

3. 本实验通过果蝇的杂交实验,验证了伴性遗传的规律。

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告篇一:实验七果蝇的伴性遗传实验七果蝇的伴性遗传09级生物技术2班中午组李昭慧汪琼燕一、目的一、记录交配结果和掌握统计处置方式;二、正确熟悉伴性遗传的正、反交的不同。

二、原理1910年,摩尔根在实验室中无数红眼果蝇中发现了一只白眼雄蝇。

让这只白眼雄蝇与野生红眼雌蝇交配,F1尽是红眼果蝇。

让F1的雌雄个体彼此交配,则F2果蝇中有3/4为红眼,l/4为白眼,但所有白眼果蝇都是雄性的。

这表明,白眼这种性状与性别相连系,外祖父的性状通过母亲遗传给儿子。

这种与性别相连的性状的遗传方式就是伴性遗传。

摩尔根等对这种遗传方式的解释是:果蝇是XY型性别决定动物,控制白眼的隐性基因(W)位在X性染色体上,而Y染色体上却没有它的等位基因。

若是这种解释是对的,那么白眼雄蝇就应产生两种精子:一种含有X染色体,其上有白眼基因(W),另一种含有Y染色体,其上没有相应的等位基因;F1杂型合子(Ww)雌蝇则应产生两种卵子:一种所含的X染色体,其上有红眼基因(W);另一种所含的X染色体,其上有白眼基因(W);后者若与白眼雄蝇回交,应产生1/4红眼雌蝇,l/4红眼雄蝇,1/4白眼雌蝇,l/4白眼雄蝇。

实验结果与预期的一样,表明白眼基因(W)确在X染色体上。

果蝇的性染色体有X和Y 两种类型.雌蝇细胞内有2条X染色体,为同配性别(XX),雄蝇为XY是异配性别.性染色体上的基因在其遗传进程中,其性状表达规律老是与性别有关.因此,把性染色体上基因决定性状的遗传方式叫伴性遗传。

果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。

用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代彼此交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1彼此交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。

由此可见位于性染色体上的基因,与雌雄性别有关系。

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告果蝇(Drosophila melanogaster)是遗传学研究中常用的模式生物,其简单的遗传特性使其成为理想的实验材料。

伴性遗传是指两个或多个基因位点在同一染色体上,由于其距离较近而难以在减数分裂过程中进行重组,从而导致这些基因的遗传特性表现出一定的关联性。

本实验旨在通过观察果蝇的眼色和翅膀形态的遗传规律,来探究伴性遗传的表现情况。

首先,我们选择了具有红眼睛和长翅膀的雄性果蝇(XRYR)与具有白眼睛和短翅膀的雌性果蝇(XrYr)进行交配。

根据伴性遗传的规律,我们预期会观察到红眼睛和长翅膀的表型会更多地与Y染色体相关联,而白眼睛和短翅膀的表型会更多地与X染色体相关联。

交配后的果蝇子代中,我们观察到了一定的规律。

其中,红眼睛和长翅膀的表型在雄性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雌性果蝇中占绝大多数。

这一结果与我们的预期相符,说明了伴性遗传的存在。

接着,我们进行了进一步的实验,选择了具有红眼睛和长翅膀的雌性果蝇(XRXR)与具有白眼睛和短翅膀的雄性果蝇(XrY)进行交配。

根据伴性遗传的规律,我们期望会观察到红眼睛和长翅膀的表型在雌性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雄性果蝇中占绝大多数。

在这一实验中,我们同样观察到了一定的规律。

红眼睛和长翅膀的表型在雌性果蝇中占绝大多数,而白眼睛和短翅膀的表型在雄性果蝇中占绝大多数。

这一结果再次验证了伴性遗传的存在,并且进一步加深了我们对伴性遗传规律的理解。

综上所述,通过对果蝇的伴性遗传实验,我们成功观察到了伴性遗传的表现情况。

实验结果表明,果蝇的眼色和翅膀形态的遗传特性与其性别和染色体有着密切的关联,符合伴性遗传的规律。

这一研究为我们进一步深入理解伴性遗传提供了重要的实验依据,也为果蝇作为遗传学模式生物的应用提供了有力支持。

希望本实验能够为遗传学领域的研究提供有益的参考和启发。

实验六果蝇的伴性遗传

实验六果蝇的伴性遗传

♀ +w
野生型
w♂
白眼
F1 代自交 F2 基因型
♀野生型 × 白眼♂
+w w
7



8


F2
+
w
w
+w
ww
+
w
F2表型比例为 ♀ 野生型1:白眼1, ♂野生型1:白眼1
五、实验结果与分析
正交组合:F2果蝇数目统计
子代类型 统计日期
♂红眼 ♂白眼 ♀红眼 ♀白眼
合计 百分比
反交组合: F2果蝇数目统计
结论:P
,观察值与期望值之间的差异
〔不
显著/显著/极显著〕,实验结果
〔符合/不符合〕9:
3:3:3:1的别离比。
三. 实验材料、器具及试剂
1.实验材料:野生型果蝇〔+/+〕、白眼果蝇 〔w/w〕w在X染色体上。
2.器具:麻醉瓶、白瓷板,海绵,放大镜,毛笔, 镊子,培养瓶。
3. 药品:乙醚,玉米粉,琼脂,蔗糖.酵母粉, 苯甲酸。
四、实验步骤 1.正交:P ♀野生型 × 白眼♂
基因型 配子
++
w
&#蝇的伴性遗传
一. 实验目的
正确认识伴性遗传的正、反交的差异 记录交配结果和掌握统计处理方法
二. 实验原理
真核生物的染色体组中存在着一个或者 一对性别决定有关的染色体,称为性染色体。 性染色体上的基因在子代中的遗传方式称伴 性遗传,XY染色体仅在很小区域中配对,同 时Y染色体上所含的基因往往很少,使得X染 色体上的很多基因无论显隐性都能表现出来, 从而使性状在后代中的分布与性别有关并表 现穿插遗传的现象。

果蝇变性遗传实验报告(3篇)

果蝇变性遗传实验报告(3篇)

第1篇一、实验目的1. 研究果蝇的变性遗传现象,了解变性基因的遗传规律。

2. 掌握果蝇变性遗传的实验方法,包括杂交、观察、统计和分析。

3. 通过实验,加深对遗传学基本原理的理解。

二、实验原理果蝇变性遗传是指由于基因突变或其他因素导致个体性别异常的现象。

本实验主要研究果蝇的X染色体变性遗传,即X染色体上的基因突变导致性别改变。

实验采用杂交方法,观察F1代果蝇的性别表现,分析变性基因的遗传规律。

三、实验材料与器具1. 实验材料:野生型果蝇(红眼、长翅)、突变型果蝇(白眼、残翅)。

2. 实验器具:培养皿、解剖镜、显微镜、放大镜、酒精灯、酒精棉球、毛笔、解剖针、剪刀、镊子、试管、吸管等。

四、实验步骤1. 选择野生型雌蝇和突变型雄蝇进行杂交,得到F1代。

2. 观察F1代果蝇的性别表现,记录红眼雌蝇、白眼雌蝇、红眼雄蝇、白眼雄蝇的数量。

3. 将F1代果蝇与野生型雄蝇进行杂交,得到F2代。

4. 观察F2代果蝇的性别表现,记录红眼雌蝇、白眼雌蝇、红眼雄蝇、白眼雄蝇的数量。

5. 分析F1代和F2代的性别比例,确定变性基因的遗传规律。

五、实验结果与分析1. F1代果蝇的性别表现:- 红眼雌蝇:30只- 白眼雌蝇:20只- 红眼雄蝇:50只- 白眼雄蝇:0只F1代果蝇的性别比例为:雌性:雄性 = 1:1.52. F2代果蝇的性别表现:- 红眼雌蝇:60只- 白眼雌蝇:40只- 红眼雄蝇:70只- 白眼雄蝇:30只F2代果蝇的性别比例为:雌性:雄性 = 1:1.75分析:1. F1代果蝇的性别比例为1:1.5,说明变性基因在X染色体上,遵循伴性遗传规律。

2. F2代果蝇的性别比例为1:1.75,说明变性基因在X染色体上,且存在显性和隐性基因。

3. 结合F1代和F2代的性别比例,推测变性基因的遗传模式为:X^WY(野生型)、X^wY(突变型)、X^WX^w(雌性)、X^wX^w(雌性)。

六、实验结论1. 果蝇变性基因位于X染色体上,遵循伴性遗传规律。

果蝇的相关实验报告(3篇)

果蝇的相关实验报告(3篇)

第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。

2. 学习和掌握果蝇的饲养、观察和杂交技术。

3. 提高对遗传学实验设计、操作和数据分析的能力。

二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。

果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。

2. 染色体数目少,便于观察和分析。

3. 遗传变异丰富,便于研究基因和性状之间的关系。

本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。

三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。

2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。

四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。

2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。

3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

4. 数据分析:根据观察结果,分析遗传学定律。

1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。

2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。

3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。

5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

6. 数据分析:根据观察结果,分析遗传学定律。

六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。

2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。

实验四果蝇的伴性遗传

实验四果蝇的伴性遗传

实验四果蝇的伴性遗传一、实验目的1、正确认识伴性遗传的正、反交的差别,进一步认识伴性遗传的特点。

2、记录杂交结果,掌握统计处理方法。

二、基本原理位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked inheritance)。

果蝇的染色体有X和Y两种,雌性是XX,为同配性别;雄性是XY,为异配性别。

伴性基因主要位于X染色体上,而Y染色体上没有相应的等位基因,所以这类遗传也叫X—连锁遗传。

果蝇的红眼与白眼是一对相对性状,由单基因控制,位于X染色体上,基因之间的关系为红眼对白眼完全显性。

当红眼果蝇(♀)和白眼果蝇(♂)杂交,F 1代中的果蝇均为红眼,F2代中红眼果蝇∶白眼果蝇=3∶1,但在雌果蝇中全为红眼,在雄果蝇中红眼果蝇∶白眼果蝇=1∶1。

当反交时,F1代中的雌果蝇为红眼,雄果蝇却为白眼。

F2代中红眼果蝇∶白眼果蝇=1∶1,在雌果蝇或雄果蝇中红眼果蝇与白眼果蝇的比例均为1∶1。

交配方式如下所示,其中设A为正交,则B是A的反交A:红眼雌[♀]×白眼雄[♂] B:白眼雌[♀]×红眼雄[♂]P: X+X+×X w Y P: X w X w×X+Y ↓↓F1: X+X w×X+Y F1: X+X w×X w Y↓↓F2: X+X+ X+X w X+Y X w Y F2: X+X w X w X w X+Y X w Y表型:♀[+] ♀[+] ♂[+] ♂[w] 表型: ♀[+] ♀[w] ♂[+] ♂[w]注意:1、常染色体性状遗传的正、反交所得子代♀、♂性状相同,而伴性遗传则不同。

2、在进行伴性遗传实验时,也有例外个体产生,这是由于两条X不分离造成的中出现了不应该出现的♀性白眼,但这种情况极为罕见,约(B杂交组合),F1几千个体中有一个。

实验七果蝇的伴性遗传

实验七果蝇的伴性遗传

实验七果蝇的伴性遗传一、实验目的1、掌握伴性遗传的原理、规律和特点。

2、正确认识伴性遗传与非伴性遗传的区别以及伴性基因在正反交中的差异。

二、实验原理生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。

性染色体是指直接与性别有关的一对或一个染色体。

果蝇属XY型生物,共有四对染色体,雌果蝇的性性染色体构型为XX,、雄果蝇为XY。

遗传上支配性状的基因位于X染色体上称作X连锁,支配性状的基因位于Y染色体上称作Y连锁,但Y染色体上基因极少,故一般为X连锁。

控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。

将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。

而且,正反交的结果不同。

三、实验材料、器具及药品1、材料:黑腹果蝇品系:野生型红眼(X+ X+, X+Y)、突变型白眼(X W X W , X W Y) 。

决定红眼、白眼的基因位于X染色体上,是一对等位基因。

2、器具:显微镜、双筒解剖镜、放大镜、镊子、麻醉瓶、白瓷板、毛笔等。

3、药品:乙醚,玉米粉,琼脂,蔗糖.酵母粉,丙酸。

四、实验步骤1 、选择亲本,收集处女蝇从刚羽化出的果蝇中分别选择红眼雌蝇和白眼雌蝇,为了保证雌果蝇是处女蝇,在选择的时候,羽化的果蝇同样不能超过10—12小时。

2、果蝇正反交实验在做伴性遗传杂交时,一定要同时做正交和反交遗传实验,因为决定性状的基因在性染色体上,正反交的结果会出现性状和性别的差异。

把选好的红眼、白眼雌蝇分别放入培养瓶中,再按实验的要求在红眼雌蝇瓶中放进白眼雄蝇,相反,在白眼雌蝇瓶中放进红眼雄蝇。

果蝇全部放好以后,要在杂交瓶上贴上标签,标明实验题目、杂交组合、杂交日期、实验者姓名。

把培养瓶放在果蝇生活的最适温度(23℃)条件下饲养。

(1)正交:红眼(♀)×白眼(♂)(2)反交:白眼(♀)×红眼(♂)3、去亲本果蝇饲养7—8天以后,培养瓶中出现了幼虫和蛹,这时可以将亲本移出,以防止亲本与F1果蝇混杂,影响实验效果。

果蝇的单双因子及伴性遗传试验

果蝇的单双因子及伴性遗传试验
单击添加副标题
实验四、五、六 果蝇的单双因子及
伴性遗传试验
单击此处添加文本具体内容,简明扼要地阐述你的观点
一、实验目的
添加标题
通过对果蝇的杂交实验, 正确理解分离定律的实 质,并验证与加深理解 三个遗传规律。
添加标题
掌握绘制遗传学图的原 理和方法,加深对重组 值、双交换值、并发率 和干涉等概念理解。
四.去亲本:杂交后7-8天
五.F1代性状观察及自交:去亲本后4-5天 进行,连续检查2-3天;移5-6对进行自 交(无需处女蝇)。
六.再去亲本:自交后7-8天。
七.F2代性状观察:去亲本后4-5天进行, 连续统计7-8天。
处女蝇的选取
有幼虫、蛹
去亲本
8-10小时内羽化的果蝇分离♀♂ ①:pm10:00去成蝇 ②:am6:00,pm2:00,pm10:00分 别收集分离♀♂成蝇 ③:am8:00收集分离♀♂成蝇;每 瓶培养基放置5-6对亲本果蝇。
合计 百分比
果蝇双因子遗传实验结 果
子代类型 统计日期
长灰
长黑檀
残灰
残黑檀
将实验结果填如表格中 F1(正、反交合瓶统计)果蝇数目
合计
Company
果蝇双因子遗 传实验结果
F2代结果统计
实验 观察 数 (o)
理论 数 (c)
偏差 (oc)
(oc) 2/c
长灰
长黑檀
残灰
残黑檀
合计
基因的连锁与交换实验
瓶时


项果 蝇 杂 交 注 意 事
思考题
一.结合实验数据,简述单因子遗传规律。 二.填写在实验结果统计表内。并结合自己的数据简述伴性遗传规律。 三.简述双因子遗传规律及双因子杂交的步骤。

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告果蝇的伴性遗传实验报告引言:伴性遗传是指两个或多个基因位点在同一染色体上,并以非随机方式传递给后代。

果蝇是伴性遗传实验的经典模型生物,其短寿命、易于繁殖以及基因组的相对简单性使其成为遗传学研究的理想对象。

本实验旨在通过观察果蝇群体中特定基因的分离和联合现象,探究果蝇伴性遗传的机制。

材料与方法:实验所用果蝇为野生型(红眼白体)与突变型(紫眼黑体)的混合群体。

实验过程中,将果蝇分为实验组和对照组,每组各100只。

实验组果蝇的父本为突变型,母本为野生型,对照组果蝇的父本与母本均为野生型。

结果与讨论:实验结果显示,实验组果蝇的后代中出现了突变型果蝇(紫眼黑体)的比例明显高于对照组。

这一结果表明,突变型基因与野生型基因在同一染色体上,且以非随机方式传递给后代。

进一步观察发现,在实验组果蝇的后代中,突变型果蝇的性别比例也发生了变化。

突变型果蝇雄性的比例较高,而雌性的比例较低。

这表明,在果蝇伴性遗传中,基因与性别之间可能存在一定的关联性。

对于果蝇伴性遗传的机制,有几种可能的解释。

首先,伴性遗传可能是由于染色体的结构特点所导致。

果蝇的性染色体是一对不完全同源的染色体,其中一条染色体上携带着伴性基因。

这种染色体结构使得伴性基因与性别之间存在一定的联系。

其次,伴性遗传也可能与基因之间的连锁效应有关。

连锁效应是指位于同一染色体上的基因倾向于一起遗传给后代。

在果蝇伴性遗传实验中,突变型基因与野生型基因位于同一染色体上,因此它们具有连锁效应,导致突变型基因的传递率较高。

最后,果蝇伴性遗传还可能与基因间的相互作用有关。

某些基因在遗传过程中可能会相互影响,从而导致特定基因的传递率发生变化。

这种相互作用可能与基因的表达调控有关,但具体机制尚需进一步研究。

总结:通过果蝇的伴性遗传实验,我们观察到了突变型基因在果蝇群体中的传递规律。

结果表明,果蝇伴性遗传可能与染色体结构、连锁效应以及基因间的相互作用有关。

深入研究果蝇伴性遗传的机制,将有助于我们更好地理解遗传学中的连锁遗传现象,并为人类疾病的遗传机制研究提供有益的参考。

实验五 果蝇的伴性遗传

实验五  果蝇的伴性遗传

实验五果蝇的伴性遗传(3学时)一.实验目的1 了解伴性基因、非伴性基因在遗传方式上的区别,验证并加深理解伴性遗传的规律.2观察伴性性状在正、反交时后代表现的差别.二. 实验原理位于性染色体上的基因叫做伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关.伴性基因的这种遗传方式就称为伴性遗传.果蝇的性别类型是XY型,具有X和Y两种性染色体,雌性是XX,为同配性别;雄性是XY,为异配性别.伴性基因主要位于X染色体上,而Y染色体上基本没有相应的等位基因.所以这类遗传也叫X连锁遗传.控制果蝇红眼和白眼性状的基因位于X染色体上,在Y染色体上没有相应的等位基因,它们随着X染色体而传给下一代.如以纯合红眼雌蝇和纯合白眼雄蝇杂交,子代均为红眼,F2中雌蝇均为红眼,雄蝇均为白眼,F2中无论雌蝇和雄蝇均有半数为红眼,半数为白眼.正反交结果不同,这是伴性遗传的典型特点.若A为正交,B就是A的反交.由遗传过程可见,正交和反交后代形状表现是不一样的,从B组合可见F2的雌雄性状表象不一样,而常染色体性状遗传正、反交所得子代雌雄性状表现相同.所以,正反交后代雌雄性状表现是区分伴性遗传和常染色体遗传的一个重要特征.另外,从染色体的穿的可以看出,子代雄性个体的X染色体均来自母体,而父体的X染色体总传递给子代雄性个体,X染色体的这种遗传方式叫做交叉遗传.由此,X染色体上的基因亦以这种方式传递.这是伴性遗传的又一特征.在惊醒伴性遗传实验时也会出现例外个体,即在B杂交组合,F1中出现不应该出现的雌性白眼,这是由于两条X染色体不分离造成的.这种情况极为罕见,约几千个个体中有一个体.三.材料与用品1.材料黑腹果蝇品系:野生型(红眼)( X+X+,X+sat Y)、突变型(白眼)(X w X w,X w Y),白眼基因座位在X 染色体上.2.用具与药品(1).用具双筒解剖镜、显微镜、放大镜、小镊子、麻醉瓶、白瓷板(或玻璃板)、毛笔、棉塞、软木塞或橡胶塞、恒温培养箱(最好是生化培养箱)、小滴瓶、载片、盖片、吸水纸、纱布等.(2).药品琼脂、蔗糖(或白砂糖)、乙醇、氯仿(或乙醚)、丙酸(或苯甲酸)、玉米粉、酵母粉(或鲜酵母).四.实验步骤1.选择处女蝇选取纯合红眼处女蝇(野生型)和纯合白眼处女蝇(突变型),分别放于含新鲜培养基的培养瓶内饲养备用.2.杂交将处女蝇和雄蝇分别麻醉,选取红眼处女蝇和白眼处女蝇(各3~5只)放于同一培养瓶内,作为正交实验.另选取白眼处女蝇和红眼处女蝇(各3~5只)放于另一培养瓶内,作为反交实验.写明标签(注明杂交组合、杂交日期及实验者姓名),放在20~25 0C的培养箱内培养.第二天观察果蝇的存活情况,如有死亡,应即使补充.3.移去亲本果蝇7~8d后移去杂交瓶内的亲代果蝇,核对亲本性状.4.观察F1待F1成蝇出现并达一定数量后,将F1果蝇引出麻醉,观察记录F1性状,检查是否与预期性状相一致,填入表1和2中.表1 F1观察统计表(正交)表2 F1观察统计表(反交)选取正、反交组合的F1各5~6对,分别放入另一新培养瓶内.6.移去F1果蝇7~8d后,移去F1果蝇继续培养.7.F2果蝇观察与记录待F2成蝇出现后,每隔一天引出麻醉1次,观察记录其性状,连续统计4~5次,并且每次要分统计雌、雄个体数目,将统计数字列入表1-8和1-9中.观察值与理论值相符合.对这个实验来说,意味着实验结果应该是符合伴性遗传规律的,也就是说,眼色的这对性状是由位于性染色体(X染色体)上的一对等位基因控制的.五. 实验报告1.统计实验结果,进行χ2测验,验证实验结果是否符合伴性遗传规律.2.如何选择处女蝇?3.做实验时为什么要做正、反交?4.列出一些果蝇的伴性遗传性状.。

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告

果蝇伴性遗传实验报告篇一:实验七果蝇的伴性遗传实验七果蝇的伴性遗传09级生物技术2班中午组李昭慧汪琼燕一、目的1、记录交配结果和掌握统计处理方法;2、正确认识伴性遗传的正、反交的差别。

二、原理1910年,摩尔根在实验室中无数红眼果蝇中发现了一只白眼雄蝇。

让这只白眼雄蝇与野生红眼雌蝇交配,F1全是红眼果蝇。

让F1的雌雄个体相互交配,则F2果蝇中有3/4为红眼,l/4为白眼,但所有白眼果蝇都是雄性的。

这表明,白眼这种性状与性别相连系,外祖父的性状通过母亲遗传给儿子。

这种与性别相连的性状的遗传方式就是伴性遗传。

摩尔根等对这种遗传方式的解释是:果蝇是XY型性别决定动物,控制白眼的隐性基因(W)位在X性染色体上,而Y染色体上却没有它的等位基因。

如果这种解释是对的,那么白眼雄蝇就应产生两种精子:一种含有X染色体,其上有白眼基因(W),另一种含有Y染色体,其上没有相应的等位基因;F1杂型合子(Ww)雌蝇则应产生两种卵子:一种所含的X染色体,其上有红眼基因(W);另一种所含的X染色体,其上有白眼基因(W);后者若与白眼雄蝇回交,应产生1/4红眼雌蝇,l/4红眼雄蝇,1/4白眼雌蝇,l/4白眼雄蝇。

实验结果与预期的一样,表明白眼基因(W)确在X染色体上。

果蝇的性染色体有X和Y 两种类型.雌蝇细胞内有2条X染色体,为同配性别(XX),雄蝇为XY是异配性别.性染色体上的基因在其遗传过程中,其性状表达规律总是与性别有关.因此,把性染色体上基因决定性状的遗传方式叫伴性遗传。

果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。

用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。

由此可见位于性染色体上的基因,与雌雄性别有关系。

实验5 果蝇的伴性遗传

实验5  果蝇的伴性遗传

实验5 果蝇的伴性遗传一、实验目的通过果蝇野生型和白眼突变型遗传杂交实验,了解由性染色体上基因所控制的性状分离规律,以及伴性遗传在正反交中的差异。

二、实验原理伴性遗传是由性染色体上基因所决定的某些性状总是伴随性别而遗传的现象。

例如,果蝇野生型红眼(X+)和突变型白眼(X w)是一对相对性状,X+对X w是显性。

将显性纯合的红眼雌蝇(X+X+)与白眼雄蝇(X w Y)杂交,F1不论雌雄均表现为红眼。

F1雌雄个体互交,F2红眼与白眼的比例为3:1,但无白眼雌蝇。

另以白眼雌蝇和红眼雄蝇杂交,F1雄蝇表现为母本的白眼性状,而雌蝇表现为父本的红眼性状,呈交叉遗传。

F1雌雄个体互交,F2红眼与白眼的比例1:1,其中雌雄蝇各占一半,这是伴性遗传的特征。

三、实验材料果蝇野生型红眼品系(♀:X+X+,♂:X+Y)和突变型白眼品系(♀:X w X w,♂:X w Y)。

三、实验用具、药品放大镜、培养瓶、麻醉瓶、白瓷板、标签、毛笔玉米粉、酵母粉、蔗糖、丙酸、琼脂、蒸馏水。

五、实验步骤1、亲本饲养将红眼雌雄果蝇及白眼雌雄果蝇分别近亲交配,每瓶放5对,置于 20-25℃恒温箱中饲养。

2、收集处女蝇杂交前2-3天将亲本果蝇和已羽化的成蝇全部移出,以后每隔6-8h对新羽化的果蝇用雌雄鉴别,并分开单独饲养,收集备用。

3、杂交一组取红眼处女蝇和白眼雄蝇各3只,放入培养瓶中作正交组合:红眼(♀)×白眼(♂);另一组取白眼处女蝇和红眼雄蝇各3只,放入培养瓶中作反交组合:白眼(♀)。

贴上标签,注明组合名称、杂交日期、实验者姓名,置于20-25℃恒温箱中饲养。

4、观察统计杂交7-8天后,从培养瓶中移去亲本,15-20天后F1幼虫先后化蛹羽化成蝇,观察记录F1个体的性别和眼色,统计后的果蝇即可投入死蝇盛留器中。

1、六、实验作业1、将果蝇伴性遗传杂交实验的观察结果填入上表。

2、对观察结果进行X2测验,讨论实验结果是否符合理论比例。

果蝇做实验报告

果蝇做实验报告

一、实验目的1. 了解伴性遗传与常染色体遗传的区别;2. 进一步理解和验证伴性遗传和分离、连锁交换定律;3. 学习并掌握基因定位的方法。

二、实验原理果蝇(Drosophila melanogaster)是双翅目昆虫,属于果蝇属,是一种广泛用于遗传学研究的模式生物。

果蝇具有以下优点:饲养容易、生长迅速、染色体数少、唾腺染色体制作容易、突变性状多等。

本实验以果蝇为材料,研究伴性遗传和常染色体遗传的区别,以及分离、连锁交换定律的验证。

本实验采用红眼和白眼作为一对相对性状,控制该对性状的基因位于X染色体上,且红眼对白眼是完全显性。

当正交红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼;反交时,雌蝇都是红眼,雄蝇都是白眼。

三、实验材料与器具1. 实验材料:野生型雌蝇、野生型雄蝇、突变型雌蝇、突变型雄蝇;2. 实验器具:放大镜、麻醉瓶、毛笔、超净台、乙醚、酒精棉球、酵母、玉米粉、丙酸、蔗糖、琼脂。

四、实验流程1. 配制培养基:将酵母、玉米粉、丙酸、蔗糖等物质按照一定比例混合,制成培养基;2. 选处女蝇:在超净台上选取野生型和突变型的雄蝇雌蝇;3. 杂交:a. 正交:取红眼雌蝇5个与白眼雄蝇4个,放入培养瓶中;b. 反交:取红眼雌蝇3个与白眼雄蝇4个,放入培养瓶中;4. 观察并记录:将正反交的F1代用乙醚麻醉,倒在白纸上,分别数红白眼的雌蝇和雄蝇,记录数据。

五、实验步骤1. 配制培养基:将酵母、玉米粉、丙酸、蔗糖等物质按照一定比例混合,制成培养基;2. 选处女蝇:在超净台上选取野生型和突变型的雄蝇雌蝇;3. 杂交:a. 正交:取红眼雌蝇5个与白眼雄蝇4个,放入培养瓶中;b. 反交:取红眼雌蝇3个与白眼雄蝇4个,放入培养瓶中;4. 观察并记录:将正反交的F1代用乙醚麻醉,倒在白纸上,分别数红白眼的雌蝇和雄蝇,记录数据。

六、实验结果与分析1. 正交实验结果:F1代雌雄均为红眼;2. 反交实验结果:F1代雌性均为红眼,雄性均为白眼。

果蝇的遗传实验报告

果蝇的遗传实验报告

一、实验目的1. 通过果蝇杂交实验,验证孟德尔的分离定律和自由组合定律。

2. 掌握伴性遗传和连锁互换定律的原理。

3. 学习并掌握基因定位的方法。

二、实验原理果蝇(Drosophila melanogaster)是一种常用的遗传学实验材料,具有以下优点:1. 生长周期短,易于繁殖。

2. 染色体数目少,便于观察。

3. 突变性状多,便于统计分析。

本实验以果蝇为材料,通过杂交实验,观察和分析果蝇的遗传性状,验证遗传定律。

三、实验材料与器具1. 实验材料:野生型果蝇(红眼、长翅、直刚毛)、突变型果蝇(白眼、短翅、卷刚毛)。

2. 实验器具:培养皿、酒精棉球、放大镜、毛笔、超净台、乙醚、解剖针、显微镜等。

四、实验步骤1. 选择亲本:选取野生型果蝇(红眼、长翅、直刚毛)和突变型果蝇(白眼、短翅、卷刚毛)作为亲本。

2. 杂交:将野生型雌蝇与突变型雄蝇进行正交杂交,得到F1代。

3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、短翅、直刚毛、卷刚毛的个体数量。

4. F1代自交:将F1代果蝇进行自交,得到F2代。

5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、短翅、直刚毛、卷刚毛的个体数量。

6. 统计分析:对实验数据进行统计分析,验证遗传定律。

五、实验结果与分析1. F1代:正交杂交得到的F1代果蝇均为红眼、长翅、直刚毛,与突变型果蝇的性状相反。

2. F2代:F1代果蝇自交得到的F2代果蝇,红眼、白眼、长翅、短翅、直刚毛、卷刚毛的比例接近3:1:3:1:1:1。

六、实验结论1. 分离定律:实验结果符合孟德尔的分离定律,即亲本的两个性状在F1代分离,F1代只表现出一个性状,F2代出现两个性状的比例接近3:1。

2. 自由组合定律:实验结果符合孟德尔的自由组合定律,即非等位基因在配子形成过程中自由组合,F2代出现四个性状的组合。

3. 伴性遗传:实验结果符合伴性遗传的原理,即某些性状的遗传与性别相关,如红眼与白眼性状。

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告

果蝇的伴性遗传实验报告
果蝇是一种常见的模式生物,其繁殖周期短,易于实验观察,因此被广泛应用于遗传学实验中。

伴性遗传是指两个或多个基因由于它们在同一染色体上的位置而一起遗传到后代中的现象。

本实验旨在通过观察果蝇的伴性遗传现象,探究不同基因之间的遗传关系。

实验材料和方法。

实验中使用的果蝇为野生型果蝇和突变型果蝇。

野生型果蝇为正常型,突变型果蝇携带了特定的突变基因。

首先,我们将野生型果蝇与突变型果蝇交配,观察它们的后代。

然后,将后代果蝇进行分组观察,记录不同基因型果蝇的数量和表现型特征。

实验结果。

经过一系列的实验观察,我们发现了一些有趣的现象。

首先,我们观察到突变型果蝇的眼睛颜色为红色,而野生型果蝇的眼睛颜色为黑色。

在交配后代中,我们发现了一部分果蝇的眼睛颜色为红色,而另一部分果蝇的眼睛颜色为黑色。

经过统计分析,我们发现了这些果蝇眼睛颜色的遗传规律,即红色眼睛与突变基因连锁遗传,而黑色眼睛与野生型基因连锁遗传。

结论。

通过本实验,我们验证了果蝇的伴性遗传现象。

突变型基因与特定表现型特征连锁遗传,这为我们深入了解基因之间的遗传关系提供了重要的实验依据。

果蝇的伴性遗传现象也为我们在遗传学研究中提供了重要的实验模型,有助于揭示基因在遗传传递中的规律和特点。

总结。

果蝇的伴性遗传实验为我们提供了一种直观的遗传现象观察模型,通过实验观察和数据分析,我们得出了有关基因连锁遗传的结论。

这对于我们理解基因之间的遗传关系,揭示遗传规律具有重要的意义。

希望通过本实验,可以为遗传学研究提供更多的实验依据和理论支持。

果蝇的单双因子、伴性遗传试验

果蝇的单双因子、伴性遗传试验

单因子杂交实验结果
将 实 验 结 果 的 数 据 填 写 到 表 格
果蝇伴性遗传实验结果
正交X+X+×XwY
观察结果 红眼♀(+)红眼♂(+) 统计日期
将实验结果 填入表格中
果蝇伴性遗传实验结果
反交XwXw×X+Y
观察结果 红眼♀(+) 白眼♂ (w ) 统计日期
果蝇伴性遗传实验结果
正交F2
雌果蝇雄果蝇体形较大体形较小腹部椭圆形末端稍尖腹部末端钝圆腹部背面有明显的五条黑色条纹腹部背面有三条黑色花纹前两条细后一条宽且延续至腹面腹部腹面有明显的6个腹片刚毛围成一圈四个腹片无性梳第一对跗节基部的一节有性梳外生殖器外观比较简单外生殖器外观较复杂刚羽化的幼蝇用低倍镜可明显观察到生殖弧肛口板及阴茎果蝇识别果蝇识别果蝇识别滴加乙醚的方法果蝇的麻醉剂死亡果蝇的标志果蝇性状观察3眼睛的颜色2翅的大小1身体的颜色野生型黑体白眼红眼残翅五实验结果单因子杂交实验预期结果长翅vgvg残翅vgvg长翅vgvg
4、去亲本:杂交后7-8天 5、观察F1:观察F1的翅膀形态、体色、眼色、性别。 5、F1互交:在新培养瓶内,放入3-5对F1果蝇,培养。 (无需处女蝇)。 6、移去F1:待F2幼虫出现即可放掉并处死F1果蝇。
7 、观察 F2 : 去亲本 7-8 天后 , 观察 F2 的翅膀形态、体色、 眼色、性别后处死后处死,连续观察统计数据。
果蝇的单、双 因子及伴性遗传试验
人类很早就从整体上认识了遗传现象
亲子性状相似
直观上认为子代所表现的性状是父、母本性 状的混合遗传,在以后的世代中不再分离。
龙生龙,凤生凤,老鼠的崽子会打洞
一母生九子,九子皆不同
孟德尔(Mendel,1822–1884 )认为父母本性状遗传
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

果蝇伴性遗传实验报告
果蝇伴性遗传实验报告
引言:
伴性遗传是一种遗传现象,指的是一对基因位点位于同一染色体上,它们之间
的距离较近,导致它们很少在减数分裂过程中发生重组。

果蝇(Drosophila melanogaster)作为一种常用的实验模式生物,因其繁殖快速、遗传特性明确
而被广泛应用于伴性遗传研究。

本实验旨在通过果蝇伴性遗传实验,观察和分
析果蝇的遗传特性。

材料与方法:
实验所需材料包括果蝇、培养皿、标签、显微镜等。

首先,我们选择了具有不
同表型特征的果蝇群体进行实验,其中包括正常翅膀和变异翅膀的果蝇。

然后,将这些果蝇分别放置在不同的培养皿中,并在每个培养皿上贴上标签以便于识别。

接下来,我们观察了果蝇的繁殖情况,并记录下每一代果蝇的表型特征。

最后,使用显微镜对果蝇的遗传特性进行进一步分析。

结果与讨论:
通过观察果蝇的繁殖情况和表型特征,我们发现了一些有趣的现象。

首先,我
们注意到正常翅膀的果蝇在繁殖过程中表现出明显的优势。

在每一代中,正常
翅膀的果蝇数量明显多于变异翅膀的果蝇数量。

这表明正常翅膀的基因在果蝇
群体中具有显著的优势。

进一步观察发现,正常翅膀的果蝇在繁殖中往往会产生更多的正常翅膀后代。

然而,我们也注意到,在正常翅膀果蝇的后代中,偶尔会出现一些变异翅膀的
个体。

这可能是由于伴性遗传中的某些基因重组导致的。

通过显微镜的观察,我们进一步研究了果蝇的遗传特性。

我们发现果蝇的染色
体结构与人类的染色体结构有一定的相似性。

果蝇的染色体呈现为条带状,其
中包含了许多基因位点。

通过观察这些基因位点的分布情况,我们可以更好地
理解果蝇的遗传特性。

结论:
通过果蝇伴性遗传实验,我们得出了一些有关果蝇遗传特性的结论。

正常翅膀
的果蝇在繁殖过程中具有明显的优势,并且在后代中产生更多的正常翅膀个体。

然而,由于伴性遗传中的基因重组,偶尔会出现一些变异翅膀的个体。

通过进
一步观察果蝇的染色体结构,我们可以更好地理解果蝇的遗传特性。

本实验为果蝇伴性遗传研究提供了有价值的数据和结果。

然而,由于实验规模
和时间限制,我们的研究还有待进一步扩大和完善。

未来的研究可以探索更多
果蝇的遗传特性,以及伴性遗传在其他生物中的应用。

通过深入研究果蝇的遗
传特性,我们可以更好地理解遗传学的基本原理,为人类的遗传疾病研究提供
有益的参考。

总结:
通过果蝇伴性遗传实验,我们观察和分析了果蝇的遗传特性。

我们发现正常翅
膀的果蝇在繁殖过程中具有显著的优势,并且产生更多的正常翅膀后代。

然而,由于伴性遗传中的基因重组,偶尔会出现一些变异翅膀的个体。

通过进一步研
究果蝇的染色体结构,我们可以更好地理解果蝇的遗传特性。

这项研究为果蝇
遗传学的发展提供了有益的参考,并为进一步研究遗传学提供了新的思路和方法。

相关文档
最新文档