相似三角形习题训练教学设计

合集下载

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。

二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。

(2)学生掌握相似三角形判定定理1,并了解它的证明。

(3)使学生初步掌握相似三角形的判定定理1的应用。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。

三、教学重难点:重点:掌握相似三角形判定定理1及其应用。

难点:定理1的证明方法。

四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。

(2)、师生共同总结:两角对应相等的两个三角形相似。

2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。

(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。

人教版数学九年级中考复习课《相似三角形》教学设计

人教版数学九年级中考复习课《相似三角形》教学设计
c.探讨相似三角形在建筑、设计等领域的应用。
5.写作任务:结合本节课所学内容,撰写一篇关于相似三角形在实际生活中的应用的小论文,要求不少于500字,以提高学生的写作能力和几何应用意识。
注意事项:
1.作业布置要注意分层设计,使不同层次的学生都能得到适当的锻炼和提高;
2.鼓励学生独立思考,遇到问题时积极寻求解决方法,培养自主学习能力;
2.逻辑思维能力:运用相似三角形的性质和判定方法解决具体问题,培养学生的逻辑思维;
3.团队合作能力:分组讨论,共同探究相似三角形的性质和应用,培养学生的团队协作精神;
4.解决问题能力:将相似三角形的知识应用于解决实际生活中的问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.积极主动:鼓励学生积极参与课堂讨论,主动探究相似三角形的性质和应用;
c.相似三角形在实际问题中如何应用?
2.汇报交流:各小组汇报讨论成果,分享解题思路和方法,教师进行点评和指导。
(四)课堂练习
1.设计具有代表性的习题,让学生当堂完成,巩固所学知识。
2.练习题包括:
a.判断两个三角形是否相似,并说明理由;
b.利用相似三角形的知识解决实际问题;
c.证明相似三角形的性质。
3.相似三角形的判定方法:讲解AA、SAS、SSS等判定方法,结合实例进行解释,使学生理解并掌握。
4.相似三角形的应用:介绍相似三角形在实际问题中的应用,如测量物体的高度、计算图形的面积等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.相似三角形的性质有哪些?
b.如何判断两个三角形是否相似?
(2)终结性评价:通过课后作业、测试等形式,评价学生对相似三角形知识的掌握程度;

相似三角形 复习教学设计

相似三角形 复习教学设计

相似三角形复习教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形的定义、性质和判定定理,并能熟练运用它们解决相关问题。

掌握相似三角形的周长比、面积比与相似比的关系,并能进行简单的计算。

2、过程与方法目标通过对相似三角形知识的系统复习,培养学生的归纳总结能力和逻辑思维能力。

经历运用相似三角形解决实际问题的过程,提高学生的数学应用意识和解决问题的能力。

3、情感态度与价值观目标让学生在学习过程中感受数学的严谨性和实用性,激发学生对数学的兴趣。

培养学生合作交流的意识和勇于探索的精神。

二、教学重难点1、教学重点相似三角形的判定定理和性质的应用。

相似三角形周长比、面积比与相似比的关系。

2、教学难点灵活运用相似三角形的知识解决综合性问题。

在实际问题中构建相似三角形模型。

三、教学方法讲授法、练习法、讨论法、多媒体辅助教学法四、教学过程1、知识回顾相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

相似三角形的判定定理:两角对应相等的两个三角形相似。

两边对应成比例且夹角相等的两个三角形相似。

三边对应成比例的两个三角形相似。

相似三角形的性质:相似三角形对应角相等,对应边成比例。

相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

相似三角形的周长比等于相似比,面积比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

分析:因为 DE∥BC,所以△ADE∽△ABC,根据相似三角形对应边成比例可得:AD/AB = AE/AC,即 3/(3 + 2) = 4/(4 + CE),解得 CE = 20/3。

例 2:已知△ABC∽△A'B'C',相似比为 2∶3,△ABC 的周长为16,求△A'B'C'的周长。

分析:因为相似三角形的周长比等于相似比,所以△ABC 的周长∶△A'B'C'的周长= 2∶3,设△A'B'C'的周长为 x,则 16∶x = 2∶3,解得 x = 24。

九年级数学上册《相似三角形的性质》教案、教学设计

九年级数学上册《相似三角形的性质》教案、教学设计
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。

苏科版数学九年级下册6.7《用相似三角形解决问题》教学设计

苏科版数学九年级下册6.7《用相似三角形解决问题》教学设计

苏科版数学九年级下册6.7《用相似三角形解决问题》教学设计一. 教材分析苏科版数学九年级下册6.7《用相似三角形解决问题》这一节主要让学生掌握相似三角形的性质和应用。

通过前面的学习,学生已经掌握了相似三角形的定义和判定方法,本节内容将进一步引导学生利用相似三角形解决实际问题,培养学生的解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们对相似三角形有一定的了解,但可能在应用相似三角形解决实际问题上还存在困难。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生将理论知识与实际问题相结合,提高学生的解题能力。

三. 教学目标1.理解相似三角形的性质,掌握相似三角形的判定方法。

2.能够运用相似三角形解决实际问题,提高解决问题的能力。

3.培养学生的合作交流能力和创新思维能力。

四. 教学重难点1.掌握相似三角形的性质和判定方法。

2.运用相似三角形解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究相似三角形的性质和应用。

2.运用案例分析法,让学生通过分析实际问题,掌握相似三角形的解决方法。

3.采用小组合作交流法,培养学生的团队合作精神和沟通能力。

六. 教学准备1.准备相关的实际问题案例,用于引导学生运用相似三角形解决问题。

2.准备多媒体教学设备,用于展示和分析案例。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何利用相似三角形解决这些问题。

2.呈现(10分钟)介绍相似三角形的性质和判定方法,通过示例让学生理解并掌握这些性质和方法。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用相似三角形的方法进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)选取几组学生的解题过程和答案,进行讲解和分析,让学生巩固所学知识。

5.拓展(5分钟)引导学生思考如何将相似三角形的解决方法应用于其他学科或生活实际,培养学生的创新思维能力。

九年级数学上册《相似三角形判定定理一》教案、教学设计

九年级数学上册《相似三角形判定定理一》教案、教学设计
2.学生在推理和证明过程中的困难,引导他们运用已学的知识和方法,逐步解决问题。
3.学生的个体差异,针对不同学生的需求,提供适当的学习指导和支持。
4.学生在合作学习中的参与度,鼓励他们积极发言,分享自己的想法和观点。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形的判定定理一。
1.判断题:给出几个相似三角形的判定题目,让学生判断其是否符合判定定理一。
2.填空题:给出几个相似三角形的图形,要求学生填写相似比。
3.计算题:运用相似三角形的判定定理一解决实际问题。
学生在完成练习题的过程中,教师巡回指导,针对学生的错误给予及时纠正和解答。
(五)总结归纳
在总结归纳环节,首先让学生回顾本节课所学的相似三角形的判定定理一,然后提问:
-尝试证明相似三角形的另一个判定定理:如果两个三角形的一个角相等,且对应边成比例,那么这两个三角形相似。
3.实践应用题:
-结合所学知识,设计一道与相似三角形判定定理一相关的实际问题,要求至少包含两个已知量和两个未知量。
-将设计的问题及解答过程写下来,与同学们分享,共同讨论。
4.研究性学习题:
-以小组为单位,选择一个研究方向,如相似三角形在实际建筑中的应用、相似三角形在艺术作品中的体现等,进行资料收集和整理。
1.请举例说明相似三角形在实际生活中的应用。
2.如何运用相似三角形的判定定理一解决以下问题:(给出几个具体问题)
3.相似三角形判定定理一的证明过程中,有哪些关键步骤?
要求学生在讨论过程中,充分发表自己的观点,互相学习,共同解决问题。教师在旁边观察学生的讨论情况,适时给予指导。
(四)课堂练习
在课堂练习环节,设计以下练习题:

6.7用相似三角形解决问题教学设计

6.7用相似三角形解决问题教学设计
接着,我会请学生举例说明生活中见到的相似三角形的例子,如地图上的比例尺、放大镜下的图形等。这样,学生可以初步认识到相似三角形在现实生活中的广泛应用,从而激发学生的学习兴趣。
然后,我会给出相似三角形的定义,并引导学生思考相似三角形的特点和性质。通过这一环节,学生将自然地进入新课的学习状态,为后续的学习打下基础。
(三)情感态度与价值观
1.激发学生对几何图形的兴趣,培养学生的审美观念,提高学生对数学美的感知能力。
2.培养学生善于观察、勇于探索的精神,使学生在面对未知问题时,敢于尝试、勇于挑战。
3.通过小组合作、讨论交流等形式,培养学生的团队协作意识和沟通能力,使学生学会倾听、尊重他人,形成积极向上的人际关系。
e)小结反馈:对学生的学习情况进行总结,针对存在的问题进行反馈和指导。
3.教学评价:
a)过程性评价:关注学生在课堂上的参与度、合作交流、实践操作等方面的表现,鼓励学生积极参与。
b)终结性评价:通过课后作业、单元测试等形式,评价学生对相似三角形知识点的掌握程度。
c)差异化评价:根据学生的个体差异,制定合适的评价标准,关注每个学生的成长。
1.理解并掌握相似三角形的定义、性质和应用。
2.学会运用相似三角形的知识解决实际问题,提高解决问题的能力。
3.培养学生的观察能力、分析能力、归纳总结能力和团队协作能力。
(二)教学难点
1.相似三角形的性质及其应用,特别是实际问题的建模和求解。
2.学生在解决相似三角形问题时,对尺规作图、计算等方面的熟练程度。
3.提交作业时,请注意书写工整,保持作业整洁。
4.教学资源:
a)利用多媒体教学资源,如PPT、动画等,直观展示相似三角形的性质和应用。
b)提供丰富的实际案例,帮助学生更好地理解相似三角形在现实生活中的应用。

相似三角形(复习)教学设计

相似三角形(复习)教学设计

相似三角形(复习)【教学内容】复习相似三角形的判定和性质【教学目标】1、知识与技能:进一步掌握相似三角形的判定和性质,能能灵活运用相似三角形的判定和性质进行有关计算或证明,并能进行科学严密的说理论证。

2、过程与方法:立足于"相似三角形的判定与性质"这一理论基点,运用转化、类比等方法探究已知条件与问题之间的关系,寻求解决方法。

3情感态度价值观:、体验学习几何过程中成功的快乐,增强学习几何的信心与热情。

【教学重点】相似三角形判定及性质的灵活运用【教学难点】综合运用相似三角形的判定和性质解决两次以上相似的问题教学过程一、复习知识要点(一)相似三角形的定义:对应角相等,对应边成比例的三角形叫相似三角形.(二)三角形相似判定:1、定义2.平行于三角形一边的直线,和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似。

3.判定定理1:两角分别相等的两个三角形相似。

4.判定定理2:两边成比例且夹角相等的两个三角形相似。

5.判定定理3:三边成比例的两个三角形相似。

教学方式:,学生先回顾,教师结合以上图形指导相似三角形的判定方法、强调易混、易错知识点。

【基础训练】1、如图,∠1= ∠2ADE 相似,你添加的条件:训练点:本题主要是为了训练学生根据题中的已有条件,运用相似三角形的判定方法进行计算或证明时,还需要哪些条件才能得出结论。

旨在训练学生解题思维。

DE F AB C A D E CB∥AD。

求证:△BEF∽△CAD DF训练点:本题主要涉及等腰三角形的“三线合一”及平行线的性质的综合运用,通过该题的练习,让学生在以后的解题中,有意识的运用“三线合一”及平行线的性质证两角相等。

教学方式:学生解答为主,教师适时指导。

(三)相似三角形的性质:1.相似三角形的对应角相等,对应边成比例.2.相似三角形对应边上的高的比,对应边上中线的比,对应角的平分线的比,周长的比都等于相似比.3.相似三角形面积的比等于相似比的平方.相交于训练点:基础训练的第1题,主要是巩固相似三角形的性质;第2题进一步巩固“相似三角形面积之比等于相似比的平方”的逆运用,同时与求两个等高的三角形的面积之比相区别。

相似三角形教学设计

相似三角形教学设计

相似三角形教学设计相似三角形教学设计第1篇教学目标(一)教学知识点1、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

2、能根据相似比进行计算。

(二)能力训练要求1、能根据定义判断两个三角形是否相似,训练学生的判断能力。

2、能根据相似比求长度和角度,培养学生的运用能力。

(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系。

教学重点相似三角形的定义及运用。

教学难点根据定义求线段长或角的度数。

教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法。

现在请大家回忆一下。

[生]对应角相等,对应边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

[师]很好。

请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括。

比如相似三角形,相似五边形等。

[师]由此看来,相似三角形是相似多边形的一种。

今天,我们就来研究相似三角形。

相似三角形教学设计第2篇一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

2.掌握“两角对应相等,两个三角形相似”的判定方法。

3.能够运用三角形相似的条件解决简单的问题。

二、重点、难点1.重点:三角形相似的判定方法12.难点:三角形相似的判定方法1的运用。

三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)ⅠABC中,点D在AB上,如果AC2=ADAB,那么ⅠACD与ⅠABC 相似吗?说说你的理由。

(3)ⅠABC中,点D在AB上,如果ⅠACD=ⅠB,那么ⅠACD与ⅠABC 相似吗?——引出课题。

(4)教材P48的探究3。

四、例题讲解例1(教材P48例2)。

分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。

《相似三角形的应用》教学设计-04

《相似三角形的应用》教学设计-04

《相似三角形的应用》教学设计1.了解平行投影的意义.2.知道在平行光线的照射下,不同物体的物高与影长成比例.3.通过测量活动,综合运用判定三角形相似的条件和三角形相似的性质解决问题,增强用数学的意识,加深对判定三角形相似的条件和三【基础训练】一.选择题:1.一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为( )A.7.5米B.8米C.14.7米D.15.75米2.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长3.要测量古塔的高度,下面方法不可取的是( )A.利用同一时刻物体与其影长的比相等来求B.利用直升飞机进行实物测量C.利用镜面反射,借助于三角形相似来求D.利用标杆,借助三角形相似来求4.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()A.路灯的左侧B.路灯的右侧C.路灯的下方D.以上都可以5.雨过天晴,小明在操场上散步,从正前方2米的水影中看见对面的国旗迎风飘扬,测得国旗离小明42米,小明的眼睛离地1.5米,则国旗高米;6.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。

7.小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。

(根据光的反射定律:反射角等于入射角)【综合拓展】E D CB A 8.某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB 。

九年级数学上册《相似三角形的判定定理1》教案、教学设计

九年级数学上册《相似三角形的判定定理1》教案、教学设计
6.教学评价,及时反馈:通过课堂提问、课后作业、阶段测试等多种形式,了解学生的学习情况,及时给予反馈,调整教学策略。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一些生活中的相似图形,如建筑物的立面图、摄影中的景物等,引导学生观察并发现相似图形的美感和应用价值。
2.提问:请学生回顾已学的全等三角形的判定方法,并思考相似三角形是否也有类似的判定方法。
3.实践应用题:设计一道与实际生活相关的相似三角形问题,让学生运用所学知识解决。
要求:学生通过观察、分析、计算,将相似三角形的判定定理1应用于实际问题,感受数学在生活中的价值。
4.小组讨论题:布置一道小组讨论题目,要求学生在课后分组讨论,共同解决问题。
要求:各小组成员积极参与讨论,充分发挥团队协作精神,共同完成解题任务。
3.定期对学生的作业情况进行反馈,帮助学生了解自己的学习进度和存在的问题。
a.引导学生观察已知相似三角形的特征,发现“两边成比例且夹角相等”的条件。
b.通过动态演示,让学生直观感受相似三角形的变化过程,加深对判定定理1的理解。
c.设计典型例题,让学生在解决问题中,学会运用判定定理1。
3.合作探究,化解难点:组织学生进行小组讨论,让学生在合作交流中,共同分析问题、解决问题,化解教学难点。
1.学生对相似三角形概念的理解程度,特别是对“两边成比例且夹角相等”的理解。
2.学生在解决实际问题时,能否灵活运用判定定理1,并注意排除干扰因素。
3.针对不同学生的认知水平,设计有针对性的教学活动,帮助学生在理解的基础上,提高解题技能。
4.关注学生的学习兴趣和动机,激发学生的学习积极性,培养其自主学习能力。
九年级数学上册《相似三角形的判定定理1》教案、教学设计

《相似三角形的性质》 教学设计

《相似三角形的性质》 教学设计

《相似三角形的性质》教学设计一、教学目标1、知识与技能目标(1)理解相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

(2)掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方。

(3)能运用相似三角形的性质解决简单的实际问题。

2、过程与方法目标(1)通过观察、测量、推理等活动,经历相似三角形性质的探究过程,培养学生的动手操作能力和逻辑推理能力。

(2)在探究相似三角形性质的过程中,体会从特殊到一般、转化、类比等数学思想方法。

3、情感态度与价值观目标(1)通过小组合作探究,培养学生的合作意识和团队精神。

(2)让学生在探索相似三角形性质的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点(1)相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比与相似比的关系。

(2)相似三角形面积的比与相似比的关系。

2、教学难点相似三角形性质的证明及应用。

三、教学方法讲授法、探究法、讨论法、练习法四、教学过程1、导入新课(1)回顾相似三角形的定义及相似比的概念。

(2)展示两个相似三角形的图片,提问:相似三角形除了对应角相等、对应边成比例外,还有哪些性质呢?2、探究相似三角形对应高的比与相似比的关系(1)画出两个相似三角形 ABC 和 A'B'C',对应边的比为 k,AD和 A'D'分别是 BC 和 B'C'边上的高。

(2)让学生通过测量、计算,得出 AD 和 A'D'的长度,进而发现AD : A'D' = k。

(3)引导学生进行推理证明:因为三角形 ABC 相似于三角形 A'B'C',所以角 B =角 B'。

又因为角 ADB =角 A'D'B' = 90°,所以三角形 ABD 相似于三角形A'B'D'。

《相似三角形专题复习》教学设计

《相似三角形专题复习》教学设计

本课教学流程:设疑导入f合作探究一学以致用(找、选、造)基于基本图形的问题导向式复习课例—以《相似三角形专题复习》为例课题】九年级总复习第二轮专题复习《相似三角形专题复习》教学设计【所需课时】1课时【课标要求及分析】课标要求:了解相似三角形的定义、判定定理、性质定理,并会解决简单的实际问题.课标分析:《标准》的要求定位在“了解”和“简单”的层面,因此在复习过程中要注重对相似三角形相关基础知识和常见题型的把握. 【教材及学情分析】北师大版九年级上册《图形的相似》是在研究“图形的全等”的基础上集中研究“图形的相似”.在前面的学习中,学生已经较为系统的学习了线段的比、成比例线段、平行线分对应线段成比例定理、相似图形、相似多边形、位似图形等,具备了一定的合情推理和演绎推理能力,为该章节中的重点内容《相似三角形专题复习》做好了知识和能力的准备.【学习目标】1.掌握相似三角形的定义、判定定理、性质定理;2.能根据相似三角形的判定定理和性质定理以及已经学习过的其他知识解决简单的实际问题,进一步体会类比、分类、归纳、数形结合的思想方法.【教学重、难点分析】教学重点为相似三角形的判定定理和性质定理,教学难点为相似三角形性质定理的灵活应用.【教学方式与方法的选择】设疑引导、讲练结合教学设计思路】首先通过小组合作把学生的个人课前作业进行讨论、完善和展示,总结出相似三角形的常见基本图形,为本节专题复习做好知识铺垫.接着以问题为导向,以“找”“选”“造”三道低起点、缓坡度的例题,引导学生自主探究相似三角形的相关问题,感受基本图形在相似三角形问题中的应用,并总结归纳出相关的解题方法.课后作业设计了两道有梯度的题目,既加深对知识本质的理解,又强化知识之间的联系,在巩固检测所学知识的同时,激发和提升学生的数学思维能力和创新意识。

【教学资源】学案图表资料、多媒体课件、几何画板合作探究学以致用(找相似型)学以致用(选相似型)学以致用(造相似型)【例1】如图,在\ABC中,DE〃BC,AE:EC=2:3,则BC等于()A.10B.8C.9D.6【设疑】这题用到什么相似基本型?【学生回答】A型.【追问】选D的同学错在哪里?【学生回答】把AE:EC=2:3当作A型相似三角形的相似比了,应该是2:5才对.【例2】如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.独立完成学生说题学生体会找相似基本型是解题的关键,培养学生的表达能力【设疑】这题用到什么相似基本型?【学生回答】A型,X型.【追问】从哪个基本型入手?怎么解决?【学生回答】因为已知的AB和CD在X型中,所以从乂型厶ABEs^DCE入手,知道BE:EC=1:3,所以在人型厶BEFs^BCD中,EF:CD=1:4,从而求3出EF二4【追问】还有别的方法吗?【学生回答】选A型厶DEFs^DAB也可以.【例3】如图,在口ABCD中,对角线AC与BD相交于点0,在DC的延长线上取一点E,连接0E交BC于点F.已知AB=a,BC=b,CE=c,求CF的长.【设疑】这题有相似基本型?能否直接解决问题?【学生回答】有X型,但是与CF无关,不能求CF.【追问】有什么好办法解决这个问题?独立完成后小组讨论学生说题思考分析学生体会有多个相似基本型时,如何进行选择并解题,培养学生的数学思维能力从“找”到“选”到“造”相似基本型,突出重难点,并使学生的探究变得自然,使思维得到有层次的提升△EDG ,所以CF DG ECED'CFc即='b -CFa +c从而解得CFbe a +2 e讨论交流 相互补充 鼓励学生从多角度多方面考虑问题,实现一题多解,增加学生思维的灵活性总结经验归纳方法 【学生回答】利用平行构造相似•在△CEF 中,已知CE二c,求CF,所以应构造一个与ACEF 相似的三角形.从而有OH 二2CD L-iHFOH再证△OFHS ^EFC ,所以FC =EC【师生总结】通过前面三个例题,我们学会了“找”“选”“造”相似基本型,而“造”相似基本型的常用方法是作平行。

初中数学初三数学上册《相似三角形》教案、教学设计

初中数学初三数学上册《相似三角形》教案、教学设计
-性质的推导需要较强的逻辑推理能力,学生可能在这一过程中感到困难。
-学生在理解相似三角形的动态变化过程中,可能会对对应角、对应边的概念产生混淆。
(二)教学设想
1.对于重点内容的处理:
-利用直观教具和多媒体演示,让学生直观感受相似三角形的形成过程,强化对判定方法的理解。
-设计由易到难的题目,让学生逐步掌握相似三角形性质的应用,通过实际操作和问题解决,加深对知识的理解。
(五)总结归纳
在总结归纳环节,我将带领学生回顾本节课所学的内容,并总结如下:
1.相似三角形的定义、判定方法和性质。
2.相似三角形在实际问题中的应用。
3.本节课的学习方法,如合作探究、交流讨论等。
五、作业布置
为了巩固学生对相似三角形知识的掌握,提高他们的应用能力,我设计了以下作业:
1.基础知识巩固题:完成课本第十章的习题1、2、3,这些题目旨在帮助学生巩固相似三角形的判定方法和性质,确保学生对基本概念的理解。
4.情感态度的培养:
-鼓励学生积极面对挑战,将难点作为提升自我能力的契机,培养学生的坚持精神和自信态度。
-创设积极的学习氛围,通过肯定和鼓励,帮助学生树立正确的学习观念,培养对数学的积极情感。
四、教学内容与过程
(一)导入新课
在导入新课时,我将利用学生已有的知识经验,通过以下方式激发学生的兴趣和好奇心:
-通过对不同判定方法的比较和分析,引导学生理解各种判定方法之间的联系和区别。
-梳理相似三角形的性质和判定方法,归纳总结规律,形成知识结构。
(三)情感态度与价值观
1.培养学生对数学的热爱和兴趣,增强学生的自信心和自主学习意识。
-创设有趣的问题情境,激发学生的学习兴趣,让学生在解决问题的过程中体验到数学的乐趣。

初中数学初三数学上册《相似三角形的判定》教案、教学设计

初中数学初三数学上册《相似三角形的判定》教案、教学设计
(五)总结归纳
1.引导学生回顾本节课所学内容,总结相似三角形的判定方法和性质。
2.教师进行补充和强调,帮助学生构建完整的知识体系。
3.提醒学生课后进行复习,布置适量的课后作业,巩固课堂所学知识。
五、作业布置
1.基础作业:完成课本相应练习题,巩固相似三角形的判定方法和性质。要求学生在完成作业时,注意理解题目要求,规范解题过程,提高解题效率。
作业布置注意事项:
1.作业量要适中,避免过多增加学生的负担。
2.作业难度要适中,既要保证基础知识的巩固,又要激发学生的学习兴趣。
3.作业形式要多样化,注重培养学生的自主学习、合作交流和创新思维能力。
4.教师要及时批改作业,给予反馈,指导学生改进学习方法,提高学习效果。
2.提问:“同学们,你们在生活中还见到过哪些相似的三角形?它们之间有什么共同特征?”通过这个问题,激发学生的好奇心,为学习相似三角形的判定方法做好铺垫。
3.引导学生回顾全等三角形的判定方法,为新课的学习打下基础。
(二)讲授新知
1.结合课本,讲解相似三角形的定义,让学生理解相似三角形的含义。
2.通过几何画板演示,让学生直观地观察相似三角形的性质,如对应角相等、对应边成比例等。
3.讲解相似三角形的判定方法,如AA、SAS、SSS等,结合具体例子进行分析,让学生理解并掌握这些方法。
4.针对不同判定方法,设计相应的例题,引导学生运用所学知识解决问题。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论一个相似三角形的判定方法,并给出实际例子。
2.各小组派代表进行汇报,分享本组讨论成果,其他小组可进行补充和提问。
6.作业:布置适量的课后作业,巩固课堂所学知识。
7.课后反思:教师对课堂教学效果进行反思,针对学生的掌握情况,调整教学方法,提高教学质量。

相似三角形教学设计(共8篇)

相似三角形教学设计(共8篇)

相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。

六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。

解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。

〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

华师大版九年级数学上23.3.3《相似三角形的性质》教学设计

华师大版九年级数学上23.3.3《相似三角形的性质》教学设计
2.生活实例导入:展示一些生活中的相似三角形实例,如建筑物的立面图、摄影中的构图等,让学生观察并思考这些相似三角形可能具有的性质。通过生活实例,激发学生的好奇心,为新课的学习做好铺垫。
(二)讲授新知
1.性质一:相似三角形的对应角相等,对应边成比例。
-通过几何画板动态展示相似三角形的性质一,让学生直观感知。
-设想一:设计具有启发性的问题,如“相似三角形的对应角有什么关系?”“对应边长是否成比例?”等,引导学生进行探究。
-设想二:组织学生分组讨论,鼓励他们提出自己的猜想,并运用已有知识进行验证。
3.创设互动式课堂,让学生在合作交流中掌握知识,提高解决问题的能力。
-设想一:开展小组合作学习,让学生在讨论、分享中加深对相似三角形性质的理解。
-提高题:结合其他知识点,综合运用相似三角形的性质解决问题。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
(五)总结归纳
1.让学生回顾本节课所学的内容,总结相似三角形的性质。
-性质一:相似三角形的对应角相等,对应边成比例。
-性质二:相似三角形的周长比等于相似比,面积比等于相似比的平方。
2.教师点评,强调重点,解答学生的疑问。
2.实践应用题:设计一道实际生活中的相似三角形问题,要求学生运用所学性质进行分析和解答。
-例如,测量学校旗杆的高度,通过测量旗杆影子的长度和角度,利用相似三角形的性质求解。
-学生需要将问题解决过程详细记录,包括思路分析、步骤实施和结果验证。
3.拓展思考题:提供一道综合性的相似三角形问题,鼓励学有余力的学生挑战。
华师大版九年级数学上23.3.3《相似三角形的性质》教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,理解并运用这些性质解决实际问题。

九年级数学上册《相似三角形的性质及其应用》教案、教学设计

九年级数学上册《相似三角形的性质及其应用》教案、教学设计
-教师可以通过提问、小组讨论等方式,了解学生的学习情况,针对性地进行教学指导。
6.课后布置综合性、实践性作业,让学生将所学知识应用于实际情境,提高学生的几何建模和解决问题的能力。
-例如,让学生设计一幅利用相似三角形原理的图案,或解决生活中的实际问题。
7.开展课后辅导和个性化教学,关注学生的个体差异,使每个学生都能在原有基础上得到提高。
(2)学生通过观察、分析,总结相似三角形的性质,如对应角相等、对应边成比例等。
(3)教师引导学生运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
(4)教师讲解相似三角形判定方法,如AA、SAS、SSS等,并结合实例进行分析。
(三)学生小组讨论
1.教学内容:相似三角形性质的应用问题。
2.教学活动设计:
-对于学习困难的学生,教师可以提供针对性的辅导,帮助他们克服难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过展示实际生活中含有相似三角形元素的图片,如建筑物的立面图、艺术作品等,引发学生对相似三角形的关注。
教师引导学生观察这些图片,并提出问题:“这些图片中有什么共同特征?它们在几何学中有什么特别之处?”
(1)学生分享本节课的收获,教师点评并补充。
(2)教师强调相似三角形在实际生活中的重要性,激发学生学习兴趣。
(3)教师布置课后作业,巩固所学知识。
(4)教师鼓励学生继续探索相似三角形的相关知识,为后续学习打下基础。
五、作业布置
为了巩固学生对相似三角形性质的理解和应用,以及培养学生的几何思维和问题解决能力,特布置以下作业:
(二)教学难点
1.相似三角形性质的推导和应用,尤其是相似三角形面积比等于相似比的平方这一结论的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(如果内容多,自己另附纸张)
3 .在△ABC中,P为AB边上一点,M为CP的中点,AC=2,AB=3,∠ PBM= ∠ACP ,求BP的长。
学生独立思考后小组讨论交流,指名展示讲解。
教师点拨归纳:两个三角形中,有一个公共角,若再出现一对等角,就要想到用相似来解决问题;利用平行线来构建相似三角形是常用的一种方法。
课堂探究二
(1).如图1,在△ABC中, ∠ACB=90 ° ,AC=BC,CD⊥AB于点D,点E,F分别在边AC,BC上, ∠ EDF=90°,则DE与DF的数量关系为( )。
教师引导:接下来,我们继续围绕相似三角形的概念,性质,判定来综合解决问题。
知识梳理
概念:对应角相等,对应边成比例的两个三角形叫做相似三角形
性质:
1.相似三角形的对应角( ),对应边( )。
2.相似三角形的对应高的比,对应中线的比,对应角平分线的比,都等于( )。
3.相似三角形的周长比等于( ),( )的比等于相似比的平方
2.注意题中隐藏的公共角,公共边等条件的运用。
3.感知数学条件没有那么直接时,怎样挖掘题中的条件,找出突破口的思维方法,并学会做辅助线来化解难点。
1.本题是是从去全等三角形到相似三角形的的变式训练,它们的解题思路大体上是一样的,只不过是有些条件直接,有些条件不那么直接,那么就需要去挖掘题中的已知条件去得出我们需要的全等或相似的条件,有时还需用方程来解决问题,感悟“多题一法”,提升思维,形成数学建模。
(2).如图2,在△ABC中, ∠ ACB=90 °,AC=BC,CD⊥AB于点D,延长BC到点F,沿CA方向平移线段CF到EG,且点G在边BA的延长线上,求证:DE=DF, DE⊥DF;
(3).如图3,在△ABC中, ∠ ACB=90 ° ∠ B=30 °, CD⊥AB于点D,延长BC到点F,沿CA方向平移线段C到EG,且点G在边AB的延长线上,直接写出线段DE与DF的位置关系和数量关系。
通过分析学生的学习现状,找到问题,走进学生的心里,让他们有兴趣跟你一起去探索问题,解决问题。
1.简单的综合运用相似三角形的判定和性质,强调对应边要找准。
2.对相似三角形的判定的灵活运用,归纳:当两个三角形中有一个公共角,若想判定相似,则再找一对等角或证明夹这个角的两对边的比相等,利用角角或边角边来证明。
总结提升
通过本节课的学习,你有什么收获?
学生回答。
教师总结归纳:
1.学会相似三角形和全等三角形及直角三角形等有关知识的综合运用。
2.学会去总结归纳一些题型或解题思路相同或相近的题例,提炼方法,形成解决问题的数学模型。(多题一法)
1.整理今天课堂上的习题。
2.找一到两组“多题一法”的习题,下节课共享。
判定:
1.平行线判定相似。
2.两角对应相等。
3.两边对应成比例且( )相等。
4、三条边对应成比例。
5.直角边和斜边对应成比例的两个直角三角形。
课堂探究一
1.如图,△ABC中,AD是中线,BC=8,∠ B= ∠DAC,则线段AC的长为( )。
2.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠ DAC= ∠B,如果△ABD的面积为15,那么△ACD的面积为( )。
实战演练
接下来,就请同学们亲自上阵,实战演练。
1.如图,在△ABC中,点D,E分别在AB,AC上, ∠ AED= ∠ B,如果AE=2, △ABC的面积为4,四边形BCED的面积为21,那么AB的长为( ).
2.如图,在 ABCD中,点E为AD的中点,连接BE,交AC于点F,则CF/CA=( ).
3.如图,直线MN∥EF∥GH,一等腰直角三角形ABC的三个顶点A,B,C分别在MN,EF,GH上,∠ ACB=90° ,AC交EF于点D,已知MN与EF的距离为1,EF与GH的距离为3,则BD/AB=().
2.如图, △ABC中, ∠ C=78,AB=6,AC=4,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是().
3.如图,在平行四边ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF: S△AOB的值为 ( )
A. 1:3 B. 1:5 C. 1:6 D. 1:11
学生回答
教师通过学生的回答引导:希望这节课能对同学们的这点儿困惑有所帮助,学会怎样结合已知和问题去寻找解题的突破口。
揭示本节课课题:今天以“相似三角形”为例来进行综合训练。
首先老师准备了几道小题来测测大家,对于相似三角形你了解了多少。
课前小测:
1.如图,在△ABC中,D,E分别是AB,AC边上的点, DE ∥ BC,BE与CD相交于点F,则下列结论一定正确的是( )。
《相似三角形的综合训练》教学设计表
教 学 设 计 流 程
教学环节
教师及学生活动
设计意图
一 课前小测(导入新课)
二.课堂探究
(典例分析)
三.实战演练
四.总结提升
五.布置作业
教师提问:同学们,是否有这样的困惑:当你上初一初二甚至初三的第一个学期,数学成绩是不是一直很棒,每次考的分数都比较高,可是来到现在初三第二学期的这个复习阶段,成绩出现了波动,甚至下滑,什么原因呢?
学生小组讨论交流,根据情况由学生讲解或师生共同解决。
教师总结:本题是是从去全等三角形到相似三角形的的变式训练,它们的解题思路大体上是一样的,只不过是有些条件直接,有些条件不那么直接,那么就需要去挖掘题中的已知条件去得出我们需要的全等或相似的条件,有时还需用方程来解决问题;同时,全等时边的比值是1,而转化为相似,边的比值只是不为1了,感悟由特殊到一般的数学思考。
3.相似三角形的性质的运用,归纳:对于有关面积的习题,可以通过相似和探究底和高的数量关系来解决。
总之,通过课前小测,让学生对相似三角形进行知识梳理,大体感知利用相似可以解决哪些类型的习题,培养数学反思总结,
对于相似三角形的有关知识进行梳理,为下面探究做好知识储备。
1.总结归纳运用相似三角形的性质可以解决有关求一些边长或面积的数学习题,形成数学建模,感悟“多题一法”,生成数学能力。
2.从全等三角形到相似三角形,感悟从特殊到一般的数学研究。
3.学会用类比的数学思维去解决问题。
1.巩固今天的知识与思考方法。
2.督促学生去探究,总结归纳,最终学会会学数学。
引导学生学会去多思考,多总结。
消化吸收本节课内容,并进一步提升,形成数学能力。
板 书 设 计
相似三角形
概念 综合运用
性质
判定 多题一法
相关文档
最新文档