MATLAB的图像分割算法研究

合集下载

基于MATLAB的图像分割技术

基于MATLAB的图像分割技术

利用阀值法对图像进行分割:>> f=imread('peppers.png');>> f=rgb2gray(f);>> f=im2double(f);>> t=0.5*(min(f(:))+max(f(:)));>> done=false;>> while ~doneg=f>=t;tn=0.5*(mean(f(g))+mean(f(~g)));done=abs(t-tn)<0.1;t=tn;end;>> display('Threshold(t)-Iterative'); Threshold(t)-Iterative>> tt =0.4691>> r=im2bw(f,t);>> subplot(2,2,1);imshow(f);>> subplot(2,2,2);imshow(r);>> xlabel('迭代法全局阀值分割');>> th=graythresh(f);>> thth =0.3961>> s=im2bw(f,th);>> subplot(2,2,3);imshow(s);>> xlabel('全局阀值Otsu分割');>> se=strel('disk',10);>> ft=imtophat(f,se);>> thr=graythresh(ft);>> thrthr =0.1098>> lt=im2bw(ft,thr);>> subplot(2,2,4);imshow(lt);>> xlabel('局部阀值分割');用迭代法对图像进行分割:>> i=imread('eight.tif');>> zmax=max(max(i));>> zmin=min(min(i));>> tk=(zmax+zmin)/2;>> bcal=1;>> isize=size(i);>> while (bcal)ifg=0;ibg=0;fg=0;bg=0;for j=1:isize(1)for k=1:isize(2)tmp=i(j,k);if(tmp>=tk)ifg=ifg+1;fg=fg+double(tmp);elseibg=ibg+1;bg=bg+double(tmp);end;end;end;zo=fg/ifg;zb=bg/ibg;tktmp=uint8((zo+zb)/2);if(tktmp==tk)bcal=0;elsetk=tktmp;end;end;>> disp(strcat('迭代后阀值',num2str(tk))); 迭代后阀值165>> newi=im2bw(i,double(tk)/255);>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(newi);>> xlabel('迭代法');用Otsu法进行阀值选择:>> i=imread('coins.png');>> subplot(1,2,1);imshow(i);>> bw=im2bw(i,graythresh(getimage)); >> subplot(1,2,2);imshow(bw);使用分水岭算法对图像进行分割:>> c1=-10;>> c2=-c1;>> dist=sqrt(2*(2*c1)^2);>> rad=dist/2*1.4;>> li=[floor(c1-1.2*rad) ceil(c2+1.2*rad)];>> [x,y]=meshgrid(li(1):li(2));>> bw1=sqrt((x-c1).^2+(y-c1).^2)<=rad;>> bw2=sqrt((x-c2).^2+(y-c2).^2)<=rad;>> bw=bw1|bw2;>> subplot(1,3,1);imshow(bw);>> d=bwdist(~bw);>> subplot(1,3,2);imshow(d,[]);>> d=-d;>> d(~bw)=-Inf;>> l=watershed(d);>> rgb=label2rgb(l,'jet',[.5 .5 .5]);>> subplot(1,3,3);imshow(rgb);使用分水岭算法:>> c1=-10;>> c2=-c1;>> dist=sqrt(3*(2*c1)^2);>> rad=dist/2*1.4;>> li=[floor(c1-1.2*rad) ceil(c2+1.2*rad)];>> [x,y,z]=meshgrid(li(1):li(2));>> bw1=sqrt((x-c1).^2+(y-c1).^2+(z-c1).^2)<=rad; >> bw2=sqrt((x-c2).^2+(y-c2).^2+(z-c2).^2)<=rad; >> bw=bw1|bw2;>> figure;isosurface(x,y,z,bw,0.5);axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;>> d=bwdist(~bw);>> figure;isosurface(x,y,z,d,rad/2);axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;>> d=-d;>> d(~bw)=-Inf;>> l=watershed(d);>> figure;>> isosurface(x,y,z,l==2,0.5);>> isosurface(x,y,z,l==3,0.5);>> axis equal;>> set(gcf,'color','w');>> xlim(li);ylim(li);zlim(li);>> view(3);camlight;lighting gouraud;改进的Watershed算法分割图像:>> i=imread('cameraman.tif'); >> subplot(2,3,1);imshow(i);>> i=double(i);>> hv=fspecial('prewitt');>> hh=hv.';>> gv=abs(imfilter(i,hv,'replicate')); >> gh=abs(imfilter(i,hh,'replicate'));>> g=sqrt(gv.^2+gh.^2);>> subplot(2,3,2);df=bwdist(i); >> imshow(uint8(df*8));>> l=watershed(df);>> em=l==0;>> subplot(2,3,3);imshow(em); >> im=imextendedmax(i,20);>> subplot(2,3,4);imshow(im);>> g2=imimposemin(g,im|em); >> subplot(2,3,5);imshow(g2);>> l2=watershed(g2);>> wr2=l2==0;>> i(wr2)=255;>> subplot(2,3,6);imshow(uint8(i));使用区域生长法对图像进行分割:>> i=imread('peppers.png'); >> i=rgb2gray(i);>> i1=double(i);>> s=255;>> t=55;>> if numel(s)==1si=i1==s;s1=s;elsesi=bwnorph(s,'shrink',Inf);j=find(si);s1=i1(j);end;>> ti=false(size(i1));>> for k=1:length(s1)sv=s1(k);s=abs(i1-sv)<=t;ti=ti|s;end;>> [g,nr]=bwlabel(imreconstruct(si,ti));>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(g);>> nrnr =2对给定图像进行四叉树分解:>> i=imread('liftingbody.png');>> s=qtdecomp(i,.27);>> blocks=repmat(uint8(0),size(s));>> for dim=[512 256 128 64 32 16 8 4 2];numblocks=length(find(s==dim));if(numblocks>0)values=repmat(uint8(1),[dim dim numblocks]);values(2:dim,2:dim,:)=0;blocks=qtsetblk(blocks,s,dim,values);end;end;>> blocks(end,1:end)=1;>> blocks(1:end,end)=1;>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(blocks,[]);提取四叉树分解的子块信息:>> i=[1 1 1 1 2 3 6 61 12 1 4 5 6 81 1 1 1 10 15 7 71 1 1 1 20 25 7 720 22 20 22 1 2 3 420 22 22 20 5 6 7 820 22 20 20 9 10 11 1222 22 20 20 13 14 15 16]; >> s=qtdecomp(i,5);>> [vals,r,c]=qtgetblk(i,s,4)vals(:,:,1) =1 1 1 11 12 11 1 1 11 1 1 1 vals(:,:,2) =20 22 20 2220 22 22 2020 22 20 2022 22 20 20r =15c =11>> i=[1 1 1 1 2 3 6 61 12 1 4 5 6 81 1 1 1 10 15 7 71 1 1 1 20 25 7 720 22 20 22 1 2 3 420 22 22 20 5 6 7 820 22 20 20 9 10 11 1222 22 20 20 13 14 15 16];>> s=qtdecomp(i,5);>> newvals=cat(3,zeros(4),ones(4));>> j=qtsetblk(i,s,4,newvals)j =0 0 0 0 2 3 6 60 0 0 0 4 5 6 80 0 0 0 10 15 7 70 0 0 0 20 25 7 71 1 1 1 123 41 1 1 1 5 6 7 81 1 1 1 9 10 11 121 1 1 1 13 14 15 16 使用Roberts边缘检测算子对图像进行边缘检测:>> i=imread('circuit.tif');>> bw1=edge(i,'roberts');>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(bw1);使用Sobel进行边缘检测:>> i=imread('circuit.tif');>> bw1=edge(i,'roberts');>> subplot(1,2,1);imshow(i); >> subplot(1,2,2);imshow(bw1); >> clear;>> image=imread('circuit.tif'); >> i0=edge(image,'sobel');>> i1=edge(image,'sobel',0.06); >> i2=edge(image,'sobel',0.04); >> i3=edge(image,'sobel',0.02); >> subplot(2,3,1);imshow(image); >> subplot(2,3,2);imshow(i0); >> subplot(2,3,3);imshow(i1); >> subplot(2,3,4);imshow(i2); >> subplot(2,3,5);imshow(i3);使用Prewitt算子进行边缘检测:>> i=imread('rice.png');>> subplot(2,2,1);imshow(i);>> bw3=edge(i,'prewitt');>> subplot(2,2,2);imshow(bw3);>> [bw3,th3]=edge(i,'prewitt');>> bw3=edge(i,'prewitt',0.05,'horizontal'); >> subplot(2,2,3);imshow(bw3);>> bw3=edge(i,'prewitt',0.05,'vertical'); >> subplot(2,2,4);imshow(bw3);使用Log算子进行边缘检测:>> i=imread('circuit.tif');>> [bw1,th]=edge(i,'log');>> subplot(2,3,1);imshow(i);>> subplot(2,3,2);imshow(bw1); >> bw2=edge(i,'log',0.0056);>> subplot(2,3,3);imshow(bw2); >> h=fspecial('gaussian',5);>> [bw3,th3]=edge(i,'zerocross',[],h); >> subplot(2,3,4);imshow(bw3); >> bw4=edge(i,'zerocross',0.025,h); >> subplot(2,3,5);imshow(bw4);使用Canny算子进行边缘检测:>> i=imread('circuit.tif');>> subplot(1,3,1);imshow(i);>> [bw,th]=edge(i,'canny');>> subplot(1,3,2);imshow(bw);>> [bw1,th1]=edge(i,'canny',[0.2,0.6]); >> subplot(1,3,3);imshow(bw1);。

Matlab中的图像分割与边缘检测方法

Matlab中的图像分割与边缘检测方法

Matlab中的图像分割与边缘检测方法引言图像处理是一门研究如何对数字图像进行处理、分析、改进和理解的学科。

图像分割与边缘检测在图像处理中占据着重要的地位。

图像分割是将图像划分为多个具有语义意义的区域或对象的过程,而边缘检测则是找到图像中不连续的区域边界。

Matlab作为一种强大的软件工具,提供了丰富的图像处理函数和工具箱,本文将探讨在Matlab中应用的图像分割与边缘检测方法。

一、图像分割方法1. 基于阈值的分割基于阈值的分割是一种简单但有效的方法。

该方法将图像像素的灰度值与预设的阈值进行比较,根据比较结果将像素分配到不同的区域。

在Matlab中,可以使用imbinarize和graythresh函数来实现基于阈值的分割。

2. 区域增长法区域增长法基于像素之间的相似性来进行分割。

该方法从种子像素开始,通过判断邻域像素与种子像素的相似度来不断扩展区域。

在Matlab中,可以使用imsegf和regiongrowing函数来实现区域增长法。

3. 聚类方法聚类方法将图像像素分为多个类别,每个类别代表一个区域。

该方法通常使用聚类算法,比如k-means算法或者模糊c-均值算法。

在Matlab中,可以使用kmeans和fcm函数来实现聚类方法。

4. 模型驱动法模型驱动法基于数学模型来描述图像中的区域。

该方法通过定义一个能够衡量图像中区域特征的能量函数,并通过优化算法来最小化能量函数,从而得到分割结果。

在Matlab中,可以使用activecontour和chanvese函数来实现模型驱动法。

二、边缘检测方法1. Sobel算子Sobel算子是一种经典的边缘检测算子。

其基本思想是通过计算像素与其周围像素之间的差异来检测边缘。

在Matlab中,可以使用imgradient和imgradientxy函数来实现Sobel算子。

2. Canny算子Canny算子是一种广泛使用的边缘检测算子。

它利用高斯平滑、梯度计算、非极大值抑制和双阈值法来检测边缘。

如何在Matlab中进行图像分割

如何在Matlab中进行图像分割

如何在Matlab中进行图像分割图像分割是图像处理中十分重要的一项技术,它能够将图像划分为多个具有独立意义的区域,有助于进一步的图像分析和处理。

在Matlab中进行图像分割,我们可以利用许多现成的函数和工具箱,使得整个过程更加高效和便捷。

本文将介绍如何在Matlab中进行图像分割,包括基于阈值的分割方法、基于边缘的分割方法以及基于区域的分割方法。

首先,基于阈值的分割方法是最简单和常用的图像分割方法之一。

它基于图像的亮度或颜色信息,将图像分为不同的区域。

在Matlab中,我们可以使用im2bw 函数将彩色图像转换为二值图像,然后使用graythresh函数或multithresh函数确定适当的阈值。

例如,下面的代码演示了如何使用阈值进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);threshold = graythresh(grayImg);binaryImg = im2bw(grayImg, threshold);```其次,基于边缘的分割方法是通过检测图像中的边缘信息来实现图像分割。

在Matlab中,我们可以使用一系列边缘检测算法,如Sobel算子、Canny算子等。

这些算法可以提取图像中的边缘信息,并将其转化为二值图像。

下面的代码演示了如何使用Canny算子进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);edgeImg = edge(grayImg, 'canny');```最后,基于区域的分割方法是将图像分为具有相似纹理、颜色或形状特征的区域。

在Matlab中,我们可以使用基于区域的分割算法,如分水岭算法、区域生长算法等。

这些算法可以通过对图像进行区域合并或区域分裂来实现图像分割。

基于MATLAB的医学图像处理算法研究与实现

基于MATLAB的医学图像处理算法研究与实现

基于MATLAB的医学图像处理算法研究与实现一、引言医学图像处理是医学影像学领域的重要组成部分,随着计算机技术的不断发展,基于MATLAB的医学图像处理算法在临床诊断、医学研究等方面发挥着越来越重要的作用。

本文将探讨基于MATLAB的医学图像处理算法的研究与实现。

二、MATLAB在医学图像处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的图像处理工具箱,包括图像滤波、分割、配准、重建等功能。

在医学图像处理中,MATLAB可以用于对医学影像进行预处理、特征提取、分析和诊断等方面。

三、医学图像处理算法研究1. 图像预处理图像预处理是医学图像处理中的重要步骤,旨在去除噪声、增强对比度、平滑图像等。

常用的预处理方法包括均值滤波、中值滤波、高斯滤波等,在MATLAB中可以通过调用相应函数实现。

2. 图像分割图像分割是将医学影像中感兴趣的目标从背景中分离出来的过程,常用方法有阈值分割、区域生长、边缘检测等。

MATLAB提供了各种分割算法的实现,如基于阈值的全局分割函数imbinarize等。

3. 特征提取特征提取是从医学影像中提取出有助于诊断和分析的特征信息,如纹理特征、形状特征等。

在MATLAB中,可以通过灰度共生矩阵(GLCM)、Gabor滤波器等方法进行特征提取。

4. 图像配准图像配准是将不同时间点或不同模态下的医学影像进行对齐和注册,以便进行定量分析和比较。

MATLAB提供了多种配准算法,如互信息配准、归一化互相关配准等。

5. 图像重建图像重建是指根据已有的投影数据或采样数据恢复出高质量的医学影像,常见方法有逆向投影重建、迭代重建等。

MATLAB中可以使用Radon变换和滤波反投影算法进行CT图像重建。

四、基于MATLAB的医学图像处理算法实现1. 实验环境搭建在MATLAB环境下导入医学影像数据,并加载相应的图像处理工具箱。

2. 图像预处理实现利用MATLAB内置函数对医学影像进行去噪、增强等预处理操作。

(完整版)matlab图像分割毕业设计

(完整版)matlab图像分割毕业设计

数字图像的多分辨率分析处理方法研究—基于小波变换的医学图像分割的研究电信学院电子信息工程专业摘要图像分割是一种重要的图像分析技术.对图像分割的研究一直是图像技术研究中的热点和焦点。

医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法.本论文首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值.最后,对这几种算法的分割效果进行了比较。

实验结果表明,本设计能够实时稳定的对目标分割提取,分割效果良好。

医学图像分割是医学图像处理中的一个经典难题.图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。

关键词:小波变换;图像分割;阈值The image segmentation is an important technology of image processing. It is still a hot point and focus of image processing。

Medical image segmentation is an important application in the field of image segmentation, and it is also a classical difficult problem for researchers。

Thousands of methods have been put forward to medical image segmentation. Some use classical methods and others use new methods.In this paper , first introduced the petronas method and maximum between class variance 。

基于MATLAB的图像分割算法研究

基于MATLAB的图像分割算法研究

摘要本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。

对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。

而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。

区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。

与此同时本文还分析了图像分割技术研究的方向。

关键词:图像处理图像分割AbstractThis article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time.Key words: image processing image segmentation operator目录(一般目录要求最多是三级目录,不要出现四级目录)第一章绪论 (1)1.1数字图像处理的基本特点 (1)1.1.1数字图像处理的信息大多是二维信息,处理信息量很大(三级标题有问题)1 1.1.2数字图像处理占用的频带较宽 (2)1.1.3数字图像中各个像素是不独立的,其相关性大 (2)1.1.4作合适的假定或附加新的测量 (2)1.1.5数字图像处理后的图像受人的因素影响较大 (2)1.2数字图像处理的优点 (2)1.2.1再现性好 (2)1.2.2处理精度高 (3)1.2.3适用面宽 (3)1.2.4灵活性高 (3)1.3数字图像处理的应用 (4)1.3.1航天和航空技术方面的应用 (4)1.3.2生物医学工程方面的应用 (5)1.3.3通信工程方面的应用 (5)1.3.4工业和工程方面的应用 (5)1.3.5军事公安方面的应用 (5)1.3.6文化艺术方面的应用 (6)1.4数字图像分割技术的发展概况 (6)1.4.1 基于分形的图像分割技术 (6)1.4.2 基于神经网络的图像分割技术 (7)1.5本文的主要流程图 (8)第二章数字图像处理的处理方式 (9)2.1图像变换 (9)2.2图像编码压缩 (9)2.3图像增强和复原 (9)2.4图像分割 (9)2.5图像描述 (10)2.6图像分类(识别) (10)第三章 MATLAB平台及其开发环境 (11)3.1.MATLAB的组成 (11)3.1.1MATLAB主要有以下几个部分 (11)a.数值计算功能 (12)b.符号计算功能 (12)c.数据分析功能 (12)d.动态仿真功能 (12)e.程序借口功能 (13)f.文字处理功能 (13)3.2MATLAB的特点 (13)3.2.1功能强大,可扩展性强 (13)3.2.2界面友好,编程效率高 (14)3.2.3图像功能,灵活且方便 (14)3.3MATLAB在图像处理中的应用 (14)第四章图像分割概念及算法研究 (16)4.1图像分割的基本概念 (16)4.1.1图像分割定义 (16)4.2边缘检测方法(4.1和4.2之间不是并行关系) (17)4.2.1边缘检测概述 (17)4.2.2边缘检测梯度算法 (19)a.梯度边缘检测算法基本步骤及流程图 (19)b.Robert算子 (20)c.Sobel算子 (21)d.Prewitt算子 (21)4.2.3拉普拉斯(Laplacian)算子 (22)4.2.4LoG(Laplacian-Gauss)算子 (24)4.2.5坎尼(Canny)算子 (25)4.3灰度阈值分割 (27)4.3.1阈值分割介绍 (28)a.阈值化分割原则 (28)b.阈值分割算法分类 (29)4.3.2全局阈值 (30)a.极小值点阈值 (31)b.最优阈值 (31)c.迭代阈值分割 (33)4.3.3动态阈值 (34)a.阈值插值 (35)b.水线阈值算法 (35)4.4区域分割 (37)4.4.1区域生长的基本原理、步骤及流程图 (37)4.4.2生长准则和过程 (40)a.灰度差准则 (40)b.灰度分布统计准则 (41)c.区域形状准则 (42)4.4.3分裂合并 (43)第五章总结 (45)5.1对于图像边缘检测的分析 (45)5.2对于图像阈值分割的分析 (45)5.3对于图像区域分割的分析 (46)5.4改进意见(改进可另外做为一章比如说某某算法等的若干改进等,不要放入总结一章中)(总结是对整篇文章的一个概述,应该是写比如得出些什么结论,一些算法间比较等相关问题。

如何使用MATLAB进行图像分割与识别

如何使用MATLAB进行图像分割与识别

如何使用MATLAB进行图像分割与识别图像分割与图像识别是计算机视觉领域中的重要研究方向,其中MATLAB作为一种常用的编程工具,在图像处理和机器学习方面有着广泛的应用。

本文将介绍如何使用MATLAB进行图像分割与识别,并分析其中的关键技术和算法。

一、图像分割图像分割是将一副图像分割成多个具有独立语义的区域的过程。

图像分割可以帮助我们理解图像中的目标和背景,并为图像后续处理提供基础。

在MATLAB中,有许多图像分割算法可供选择,其中比较常用的是基于聚类的方法和基于边缘检测的方法。

聚类方法是将像素点根据它们在颜色、纹理或其他特征空间中的相似度进行分组。

在MATLAB中,可以使用k-means聚类算法进行图像分割。

通过设置合适的聚类中心数量,可以将图像分成不同的区域。

边缘检测方法是通过检测图像中的边缘来进行分割。

MATLAB提供了多种边缘检测算法,如Sobel算子和Canny算子。

这些算法可以帮助我们找到图像中的边缘,并将图像分割成不同的区域。

二、图像识别图像识别是通过计算机算法对图像中的目标进行自动识别和分类的过程。

MATLAB中有多种图像识别算法可供选择,其中比较常用的是基于特征提取和机器学习的方法。

特征提取是图像识别的关键步骤之一。

在MATLAB中,可以使用SIFT、SURF和HOG等算法提取图像的特征。

通过提取图像的关键点和描述子,可以将图像转换成一组可用于识别的特征向量。

机器学习是图像识别的核心技术之一。

在MATLAB中,可以使用支持向量机(SVM)、卷积神经网络(CNN)和深度学习等算法进行图像识别。

这些算法可以对提取的特征进行训练和分类,并实现目标的自动识别和分类。

三、MATLAB图像处理工具箱MATLAB提供了丰富的图像处理工具箱,包含了大量处理图像的函数和工具。

使用MATLAB图像处理工具箱,可以很方便地进行图像处理和分析。

例如,可以使用MATLAB图像处理工具箱中的imread函数读取图像,并使用imresize函数修改图像的尺寸。

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法医学图像处理在现代医学中起着重要的作用,它可以帮助医生更好地了解人体的结构和病变情况。

其中,医学图像分割和医学图像配准是两个常用的图像处理任务。

本文将介绍如何使用Matlab实现这两个任务的方法。

一、医学图像分割医学图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程。

这对于病灶的检测和定位非常重要。

在Matlab中,有多种方法可以实现医学图像分割,如基于阈值的分割、基于区域的分割和基于边缘的分割等。

1. 基于阈值的分割基于阈值的分割是医学图像分割中最简单的方法之一。

它将图像中的像素根据亮度和颜色等特征进行分类。

在Matlab中,可以使用imbinarize函数实现阈值分割。

通过调整阈值的大小,可以得到不同的分割结果。

然而,这种方法对于复杂的图像可能效果不佳。

2. 基于区域的分割基于区域的分割是将图像中的像素分成若干区域,并根据相似性准则将它们合并或进一步细分的方法。

在Matlab中,可以使用regionprops函数计算各个区域的特征,并根据这些特征对区域进行分类和合并。

这种方法通常适用于异质性较小的图像。

3. 基于边缘的分割基于边缘的分割是通过检测图像中的边缘信息来实现分割的方法。

在Matlab中,可以使用边缘检测算法(如Canny算子)来提取图像中的边缘信息,并通过边缘连接或边缘跟踪来实现分割。

这种方法对于图像中有明显边缘的情况效果较好。

二、医学图像配准医学图像配准是将多个医学图像的位置和方向相对一致的过程。

它在医学影像的比较、融合和后续处理等方面具有重要的应用。

在Matlab中,有多种方法可以实现医学图像配准,如基于特征的配准、基于互信息的配准和基于形变场的配准等。

1. 基于特征的配准基于特征的配准是通过提取图像中的一些特征点或特征区域,并通过计算它们之间的相似性来实现配准的方法。

在Matlab中,可以使用SURF算法或SIFT算法来提取图像的特征,并通过RANSAC算法等方法来计算配准的变换矩阵。

如何使用MATLAB进行图像分割处理

如何使用MATLAB进行图像分割处理

如何使用MATLAB进行图像分割处理图像分割是计算机视觉领域中的一项重要任务,它可以将图像中的不同区域分割出来,为后续的图像分析和理解提供基础。

MATLAB作为一种强大的数学计算工具和编程语言,提供了丰富的图像处理函数和工具箱,可以方便地进行图像分割处理。

本文将介绍如何使用MATLAB进行图像分割处理。

首先,我们需要加载图像。

MATLAB提供了imread函数用于读取图像文件。

例如,我们可以使用以下代码加载一张名为"image.jpg"的图像:```matlabimage = imread('image.jpg');```加载图像后,我们可以对图像进行预处理。

预处理的目的是为了减少噪声和增强图像的对比度,从而更好地进行分割。

MATLAB提供了丰富的图像预处理函数,如imresize、imadjust、imnoise等。

我们可以根据实际需求选择适当的函数进行预处理。

例如,以下代码使用imadjust函数对图像进行对比度增强:```matlabimage = imadjust(image);```接下来,我们可以选择合适的分割算法对图像进行分割。

MATLAB提供了多种图像分割算法,如阈值分割、区域生长、边缘检测等。

我们可以根据图像的特点和需求选择适合的算法。

以下是一种常用的阈值分割算法的示例代码:```matlabthreshold = graythresh(image);binaryImage = imbinarize(image, threshold);```在上述代码中,graythresh函数计算出一个合适的阈值,然后imbinarize函数将图像转化为二值图像。

通过调整阈值的大小,我们可以控制分割的精度和效果。

除了阈值分割,MATLAB还提供了更复杂的分割算法,如基于区域的分割算法。

这些算法可以根据图像中的区域特征进行分割,例如颜色、纹理、形状等。

以下是一种基于区域的分割算法的示例代码:```matlabsegmented = regiongrowing(image, seed);```在上述代码中,regiongrowing函数根据种子点对图像进行区域生长分割。

基于MATLAB的图像分割的技术研究

基于MATLAB的图像分割的技术研究

3 基 于特 定理 论的 分割方 法
脉 冲耦合神 经网络 (P N C N)被引 入到 图像 分割 中 , 它 是一种不 同 于传 统 人 工 神 经 网络 的新 型 神 经 网 络 , 由 是 Eko ch m为解 释在猫的大脑视觉皮层 中实验所观察到 的与特 征有关的神经元 同步行 为现象而提出的 j 。 PN C N的单个神 经元 由树 突 、 非线 性 连接 调制 、 冲产 脉 生三部分构成 , 如图 1 示。 所
接 收


呻 『— 一 — —— —— —— —_
1 +/

1 基 于 阈值 的 图像 分 割
灰度阅值分割法是一种最常用 的并行 区域技术 , 它是 图 像分 割中应用数量最 多的一类 … 。阈值分割 方法 实际上 是 输入 图像,到输出 图像 g的如下变换 :
, 、
割 , 介 绍 了一 种 基 于特 定 理 论一 并
关键 词 : M
像 仿 真 , 分 析 了仿 真 效 率 与效 果 。 最后 提 出 了多 种 分 割 方 法整 合 的观 点 。 并
A B; 图像 分 割 ;脉 冲 耦 合 神 经 网 络
中 图分 类 号 : 9 1
文献标识码 : A
个环境 中, 用起来非常方便 。同时 , A L B具有很强的 M TA
开放性和适应性 , 在保持 内核不变 的情况 下 , T A MA L B推 出 了适 合不 同学科 的工具箱 , 图像处理工具箱 , 如 小波分析工 具箱 、 号 处理工具 箱 、 信 神经 网络工具箱 等 ,极大地 方便 了 不 同 学 科 的 研 究 工 作 J 。
划分的 区域外再选取 一种 子点 , 同样过 程生成 新 的 区域 ; 按 最终将图像分割成若干个 目标 区域。

基于matlab的苹果树枝图像分割方法研究

基于matlab的苹果树枝图像分割方法研究

第 一作者简介 : 李莹莹( 9 6 )女 , 18 一 , 南京农业 大学工学院硕士研究 生, 研究方 向: 机器视觉与图像处理 。
1 3期
李莹莹 , : 等 基于 m t b的苹果树枝图像分割方法研究 al a
2 颜色空间分析
根据本 研究 的 目的和 要 求 , 把苹 果 树 枝 图像 分
使本研究 的算法具 备适应 不 同 自然环境 的能力 。
如 图 1 示为 不 同地点采 集 的图像 。用数码 相机 在 所 不 同时 间 、 同地 点对 自然 生 长 的苹 果 树枝 进 行 图 不
表 1 苹 果 树 枝 图 像 采 集 情 况
图 1 苹果树枝图像采集环境
( ) 09年 1 , a 20 O月 睢宁县 ;b 2 1 年 9月 , ( )0 1 丰县 ;c 2 1 ( ) 0 1年 1 , O月 丰县

的直方 图所 示 确 定 的 。这种 方 法 认 为枝 干 区
域 就 是 棕 色 部 分 , 色 各 分 量 的 关 系 式 如 公 式 棕 ( ) 所示 。利用 ( ) 1 1 的关系 式进行 分割 。
R > G > B.
R—G—n .

B > 1 2
() 1
3 2 剥离 分 割 .
为三个 部 果树树 叶、 尚未 成 熟 的苹 果 和 细 嫩 的树 枝 ; 是 成 三
( ) H I 彩 空 间下 , 干 区域 的 日、 3在 S色 枝 . 量 s分
值在三部分区域 中都是最小 , 差别 明显 , 以考虑 可
取 障碍物信 息是研 究基础。把树枝 图像 分为枝干区域 、 成熟苹果 区域 、 绿色 区域, m t b 程, 用 aa 编 l 分析三 区域在 R B Y Q、 I G 、 I HS 颜色 空间的分布情况。分别基于 R B和 H I G S 色彩 空间, 用阈值分 割技术 , 采 对树枝 图像进行分割 , 提取枝干 区域 , 并实验 比较 其分 割效果 。找 出适合苹果树枝 图像 的分割方法—— 剥离分 割。 关键词 树枝 图像 图像分割 mtb a a l A 中图法分类号 ¥0 . ; 6 9 1 文献标志码

利用Matlab进行图像分割的常用方法与应用案例

利用Matlab进行图像分割的常用方法与应用案例

利用Matlab进行图像分割的常用方法与应用案例引言:图像分割是图像处理领域的一项重要技术,它将图像分割成具有相似特征的区域或像素。

图像分割在许多应用中起着关键作用,如医学图像分析、计算机视觉和机器人视觉等领域。

本文将介绍Matlab中常用的图像分割方法和应用案例。

一、基于阈值的图像分割方法基于阈值的图像分割方法是最简单和最常用的一种方法。

它根据像素的灰度值与预先设定的阈值进行比较,将图像分为前景和背景两个部分。

Matlab中提供了丰富的函数和工具箱来实现基于阈值的图像分割。

例如,可以使用im2bw函数将灰度图像转换为二值图像,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);threshold = graythresh(gray_image);bw_image = im2bw(gray_image, threshold);imshow(bw_image);```二、基于边缘检测的图像分割方法边缘检测是图像分割中常用的一种方法,它基于图像中不同区域之间的边界。

常用的边缘检测算法有Sobel、Prewitt和Canny等。

在Matlab中,可以使用edge函数实现边缘检测,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);edge_image = edge(gray_image, 'sobel');imshow(edge_image);```三、基于聚类分析的图像分割方法聚类分析是图像分割中一种常见的方法,它将图像中的像素分成不同的群集,每个群集代表一个区域或对象。

常用的聚类算法有K-means和Mean-shift等。

在Matlab中,可以使用kmeans函数实现K-means聚类,代码如下:```matlabimage = imread('image.jpg');feature_vector = reshape(image, [], 3);[cluster_index, cluster_center] = kmeans(double(feature_vector), 2);segmented_image = reshape(cluster_index, size(image, 1), size(image, 2));imshow(segmented_image);```四、图像分割的应用案例1. 医学图像分割医学图像分割在临床诊断和研究中具有重要意义。

如何在Matlab中进行图像分割和图像识别

如何在Matlab中进行图像分割和图像识别

如何在Matlab中进行图像分割和图像识别图像分割和图像识别是计算机视觉领域中非常重要的任务。

在许多应用中,如人脸识别、物体检测和医学图像分析等领域,准确的图像分割和图像识别可以为后续的处理和分析提供有价值的信息。

本文将介绍如何使用Matlab来进行图像分割和图像识别。

一、图像分割图像分割是将图像划分为多个子区域的过程,目标是将图像中有意义的对象从背景中提取出来。

常见的图像分割方法有阈值分割、区域生长、边缘检测等。

1. 阈值分割阈值分割是一种简单而有效的图像分割方法。

该方法根据像素灰度值与事先确定的阈值之间的关系将图像分割为目标和背景。

在Matlab中,可以使用im2bw函数实现二值图像分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像T = graythresh(I); % 计算阈值BW = im2bw(I, T); % 进行图像二值分割imshow(BW); % 显示二值图像```2. 区域生长区域生长是一种基于像素之间相似性的图像分割方法。

该方法从种子点开始,通过合并与种子点相似的像素,逐渐生长形成图像的不同区域。

在Matlab中,可以使用regiongrowing函数实现区域生长分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像seed = [x, y]; % 设置种子点坐标region = regiongrowing(I, seed); % 区域生长分割imshow(region); % 显示分割结果```3. 边缘检测边缘检测是一种常用的图像分割方法,通过寻找图像中灰度值变化较为剧烈的区域,将图像分割为目标和背景。

在Matlab中,可以使用edge函数实现边缘检测分割,具体操作如下:```matlabI = imread('image.jpg'); % 读取图像BW = edge(I, 'Canny'); % Canny边缘检测imshow(BW); % 显示边缘图像```二、图像识别图像识别是指通过计算机算法对图像进行分析和处理,从而识别出图像中的对象或特征。

如何进行图像分割的Matlab实现

如何进行图像分割的Matlab实现

如何进行图像分割的Matlab实现引言:图像分割是计算机视觉领域的一项基础技术,它将图像中的像素点分为不同的区域,使得具有相似特征的像素被聚类到一起。

在图像分析、目标检测、图像处理等任务中,图像分割起着至关重要的作用。

本文将介绍如何使用Matlab实现图像分割算法,包括传统的阈值分割、基于区域的分割以及基于深度学习的分割等。

一、传统的阈值分割1.1 简介阈值分割是最简单和常用的图像分割方法之一,它根据像素的灰度值与阈值的比较结果将像素分为两类:前景和背景。

在Matlab中,可以使用函数`im2bw`实现二值化分割任务。

1.2 实现步骤(1)加载图像:使用`imread`函数读取待分割的图像,并将其转换为灰度图像。

(2)确定阈值:根据图像的灰度直方图,可以通过分析波峰和波谷来确定一个适合的阈值。

(3)二值化分割:使用`im2bw`函数将灰度图像二值化,得到分割后的图像。

(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。

二、基于区域的分割2.1 简介基于区域的分割方法将图像划分为具有一定连续性和相似性质的区域,其基本思想是将图像中相似的像素组成区域,并对区域进行合并或分裂,以达到分割的目的。

2.2 实现步骤(1)加载图像:同样使用`imread`函数读取待分割的图像。

(2)图像预处理:可选的预处理步骤包括噪声去除、图像增强等,以提供更好的分割效果。

(3)区域生长:选择一个适当的种子点作为起始点,在附近的像素中根据一定的准则来判断是否属于同一区域,并逐步生长扩展区域,直至满足停止准则。

(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。

三、基于深度学习的分割3.1 简介基于深度学习的分割方法是近年来发展起来的一种高效且准确的分割技术,主要基于深度卷积神经网络(CNN)和全卷积网络(FCN)。

深度学习模型通过学习大量标注的图像,能够学习到图像的高级特征,从而实现更准确的图像分割。

数字图像处理与应用(MATLAB版)第6章 图像的分割

数字图像处理与应用(MATLAB版)第6章 图像的分割

是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰

度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。

本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像

分割技术。

难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py

如何在Matlab中进行图像分割与区域提取

如何在Matlab中进行图像分割与区域提取

如何在Matlab中进行图像分割与区域提取引言图像分割是图像处理中的一个重要任务,在许多领域中都被广泛应用,如医学影像分析、计算机视觉和机器人导航等。

本文将着重介绍如何使用Matlab进行图像分割与区域提取,以及一些常用的方法和技巧。

一、图像分割基础图像分割是将一个图像划分为不同的区域或对象的过程。

通常情况下,图像分割的目标是将图像中的前景和背景分开,以便于进一步的分析和处理。

在Matlab 中,可以使用一些基于阈值、边缘检测或区域生长的方法进行图像分割。

1. 阈值分割阈值分割是最简单的图像分割方法之一。

它基于图像的灰度值,将灰度值高于或低于某个阈值的像素分为不同的区域。

在Matlab中,可以使用imbinarize函数进行阈值分割,示例如下:```matlabI = imread('image.jpg');level = graythresh(I);BW = imbinarize(I, level);```其中,I为待分割的图像,level为自动确定的阈值,BW为分割后的二值图像。

2. 边缘检测边缘检测是通过检测图像中的灰度值变化来找到图像中的边缘。

在Matlab中,常用的边缘检测算法包括Sobel、Prewitt和Canny等。

下面是使用Canny算法进行边缘检测的示例:```matlabI = imread('image.jpg');BW = edge(I, 'canny');```其中,I为待分割的图像,BW为检测到的边缘图像。

3. 区域生长区域生长是一种基于像素相似度的图像分割算法。

它从种子点开始,将与种子点相似的像素逐步添加到区域中,直到满足某个停止准则。

在Matlab中,可以使用regiongrowing函数进行区域生长,示例如下:```matlabI = imread('image.jpg');seed = [100, 100];tolerance = 10;BW = regiongrowing(I, seed, tolerance);```其中,I为待分割的图像,seed为种子点的坐标,tolerance为容差值,BW为分割后的区域。

matlab 图像 实验报告

matlab 图像 实验报告

matlab 图像实验报告Matlab图像实验报告引言:Matlab是一种强大的计算机编程语言和开发环境,广泛应用于科学计算、数据分析和图像处理等领域。

本实验报告旨在介绍基于Matlab的图像处理实验,包括图像读取、图像处理和图像显示等方面的内容。

一、图像读取图像读取是图像处理的第一步,通过读取图像可以获取图像的像素信息。

在Matlab中,可以使用imread函数来读取图像文件。

例如,通过以下代码可以读取一张名为"image.jpg"的图像:```matlabimage = imread('image.jpg');```二、图像处理1. 灰度化处理灰度化处理是将彩色图像转换为灰度图像的过程。

在Matlab中,可以使用rgb2gray函数来实现灰度化处理。

以下是一个简单的示例:```matlabgray_image = rgb2gray(image);```2. 图像增强图像增强是通过一系列的处理方法来改善图像的质量和视觉效果。

在Matlab中,有多种图像增强方法可供选择,如直方图均衡化、滤波和边缘检测等。

以下是一个直方图均衡化的示例:```matlabenhanced_image = histeq(gray_image);```3. 图像分割图像分割是将图像划分为若干个区域的过程,每个区域具有相似的特征。

在Matlab中,可以使用各种图像分割算法,如阈值分割和基于区域的分割。

以下是一个简单的阈值分割示例:```matlabthreshold = graythresh(enhanced_image);binary_image = imbinarize(enhanced_image, threshold);```三、图像显示图像显示是将处理后的图像展示给用户的过程。

在Matlab中,可以使用imshow函数来显示图像。

以下是一个简单的示例:```matlabimshow(binary_image);```四、实验结果与讨论本次实验中,我们选择了一张名为"image.jpg"的彩色图像进行处理。

Matlab中的图像分割与轮廓提取技巧

Matlab中的图像分割与轮廓提取技巧

Matlab中的图像分割与轮廓提取技巧在数字图像处理中,图像分割是一个基本且关键的任务。

通过将图像划分为不同的区域或对象,图像分割可以帮助我们更好地理解图像中的内容,并提取出我们所需的信息。

而图像分割的一个重要部分就是轮廓提取,它可以帮助我们准确地描述图像中感兴趣对象的形状和边缘。

在本文中,将介绍Matlab中常用的图像分割与轮廓提取技巧。

一、基于阈值的图像分割方法阈值分割是一种常用的简单而有效的图像分割方法。

它基于图像中像素的灰度值,将图像分割成具有不同灰度的区域。

在Matlab中,可以使用im2bw函数将图像转换为二值图像,并提供一个阈值参数。

通过调整阈值值,我们可以得到不同的分割结果。

此外,Matlab还提供了一些自动阈值选择方法,如Otsu方法和基于最大类间方差的方法。

二、基于区域的图像分割方法基于区域的图像分割方法是一种将图像分割为不同区域的方法。

它通常基于一些与像素相关的特征,如颜色、纹理和形状。

在Matlab中,可以使用regionprops函数计算图像的区域属性,如面积、中心位置等。

然后,可以根据这些区域属性将图像分割成不同的区域。

此外,还可以使用图像均值漂移算法和超像素分割算法等进行基于区域的图像分割。

三、基于边缘的图像分割方法基于边缘的图像分割方法是一种通过提取图像中的边缘信息来进行分割的方法。

它通常基于边缘检测算法,如Canny算子和Sobel算子。

在Matlab中,可以使用edge函数实现边缘检测,并提供一些参数来调整边缘检测的结果。

通过检测图像中的边缘,我们可以得到图像的轮廓信息,并将图像分割成不同的部分。

四、轮廓提取技巧在图像分割中,轮廓提取是一个重要且常用的步骤。

它可以帮助我们准确地描述和表示感兴趣对象的形状和边界。

在Matlab中,可以使用一些函数来提取图像的轮廓,如bwboundaries函数和imcontour函数。

这些函数可以将二值图像或灰度图像中的轮廓提取出来,并可视化或保存为具有不同宽度和颜色的图像。

基于matlab的数字图像分割技术研究及实现

基于matlab的数字图像分割技术研究及实现

摘要本文通过对图像分割技术的深入研究,对图像分割的研究现状和国内外研究动态进行了跟踪,针对目前常用的图像分割技术如:阈值分割方法,边缘检测方法,边界法和区域法等作了总结。

在matlab环境下用这些方法对一些具有不同特点的图像进行分割处理,并取得了比较满意的效果,为图像处理的进一步进行奠定了基础。

最后对图像分割技术的研究前景和应用前景作了展望和预见。

关键词:图像分割,直方图,matlab实现IAbstractThe images are passed to the in-depth technical study on the status of research and images are dynamic and a tracking study, with the present images are commonly used technologies such as : thresholds are methods of detection methods, such as border law and regional law summarized.In matlab environment using some of these methods have different characteristics to the images are processed and made more satisfactory results for the image processing laid the foundation for the further.Finally on the images are the prospects for technology research and application prospects of a vision and foresight.Key words: Imagery processing, image Partition, histogram, Mat lab realizationII目录第1章绪论 (1)1.1数字图像处理技术简介 (1)1.2数字图像处理的应用 (2)1.3数字图像处理的优点 (4)1.4数字图像处理方法 (5)1.4.1空域法 (5)1.4.2变换域法 (6)第二章数字图像处理基础 (7)2.1 数字图像处理的主要研究内容 (7)2.1.1图像变换 (7)2.1.3图像增强和复原 (8)2.1.4图像分割 (8)2.1.5.图像描述 (8)2.1.6图像分类(识别) (8)2.2相关概念介绍 (9)2.2.1图像的表示方法 (9)2.2.2图像的数字化 (10)2.2.3灰度 (10)2.2.4灰度图像 (10)2.2.5像素(Pixel) (10)2.2.6图像二值化 (11)2.2.7图像增强 (11)2.2.8直方图 (11)2.2.8.1直方图的基本概念 (11)2.2.8.2直方图的性质 (12)第三章图像分割 (13)3.1 图像分割的研究现状 (13)3.2图像分割在图象处理中的位置 (13)3.3 图像分割的定义 (14)3.4传统图像阈值分割法 (15)III第四章 MATLAB简介 (16)4.1 MATLAB的主要功能 (19)4.2 MATLAB的技术特点 (21)4.3MATLAB的基本知识 (22)4.3.1、基本运算 (22)4.3.2、常用函数: (23)4.3.3MATLAB常用的三角函数 (23)4.3.4适用于向量的常用函数有: (23)4.3.5重复命令 (24)4.3.6逻辑命令 (26)4.3.7基本xy平面绘图命令 (26)第五章基于matlab的算法实现及仿真 (31)5.1基于阈值的分割方法 (31)5.2边缘检测法 (33)5.3边界法 (35)5.4区域法 (38)5.5其他特殊方法 (41)结论 (46)参考文献 (47)致谢 ··········································································································错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清华大学本科生毕业设计
题目:基于MATLAB的图像分割算法研究
作者姓名XXX
学号
指导教师XX教授
学科专业计算机科学与技术
所在学院计算机学院
提交日期
目录:
1 引言
2 图像目标分割与提取技术综述
3 最优割集准则的设计
4 基于等周图割的图像分割
5 编程语言的选择
6 程序运行结果
1.引言
数字图像处理技术是一个跨学科的领域。

随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。

首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。

其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。

基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。

该方法将图像映射为带权无向图,把像素视作节点。

利用最小剪切准则得到图像的最佳分割该方法本质上将图像分割问题转化为最优化问题。

是一种点对聚类方法。

对数据聚类也具有很好的应用前景。

但由于其涉及的理论知识较多,应用也还处在初级阶段。

因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的最新研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。

2.图像目标分割与提取技术综述
图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。

图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。

有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。

例如,可以对图像的灰度级设置门限的方法分割。

值得提出的是,没有唯一的标准的分割方法。

许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。

分割结果的好坏需要根据具体的场合及要求衡量。

图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。

2.1图像分割方法的发展和现状
分割问题的困难在于图像数据的模糊和噪声的干扰。

前面已经提到,到目前为止,还没有一种或者几种完善的分割方法,可以按照人们的意愿准确的分割任
何一种图像。

实际图像中景物情况各异,具体问题具体分析,需要根据实际情况选择适合的方法。

分割结果的好坏或者正确与否,目前还没有一个统一的评价判断准则,分割的好坏必须从分割的效果和实际应用场景来判断。

不过在人类研究图像的历史中,还是积累了许多经典的图像分割方法。

虽然这些分割方法不适合所有类型的图像分割,但是这些方法却是图像分割方法进一步发展的基础。

事实上,现代一些分割算法恰恰是从经典的分割方法衍生出来的。

早期的图像研究中,图像的分割方法主要可以分为两大类。

一类是边界方法,这种方法的假设是图像分割结果的某个子区域在原来的图像中一定会有边缘存在;一类是区域方法,这种方法的假设是图像分割结果的子区域一定会有相同的性质,而不同区域的像素没有共同的性质。

这两种方法都有缺点和优点,有的学者也试图把两者结合起来进行图像分割,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。

所使用的教学工具和实验手段也是不断的扩展,从时域信号到频域信号处理,近来小波变换也应用在图像分割当中。

2.1.1研究背景与意义
数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。

因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。

相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。

图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。

但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。

边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。

需要说明的是:边缘与物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在与物体之间的边界。

有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实中的物体是三维的,而图像只具有二维信息,从三维到
二维的投影成像不可避免的会丢失一部分信息;另外成像的过程中的光照和噪声也是不可避免的重要因素。

正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者们正在试图在边缘提取中加入高层的语义信息。

由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。

相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域。

2.2 基于图论的图像分割
基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点,在此,有必要先介绍一下基于图论分割的一些基本知识。

2.2.1 基本知识
(1)图的最优划分准则
令图G=(V ,E),图G 被划分为两部分A 、B ,且有A B=V ,A B=∅,节点之间的边的连接权为(W(M ,V)),则将图G 划分为A ,B 两部分的代价函数为:
cut(A ,B)=
(),,u A v B w u v ∈∈∑ (1)
使得上述剪切值最小的划分(A ,B)即为图G 的最优二元划分.这一划分准则称为最小割集(Minimum cut)准则。

(2)图像的最佳分割
将一幅图像视为一个带权的无向图G=( V ,E),像素集被看作节点集.边缘集被看作边集E ,像素之间的连接权为W (i,j ),则将图像二值划分为两个集合(区域)A ,B 的代价函数为:
cut(A, B)=
(),,i A j B w i j ∈∈∑ (2)
对于一幅图像,使得上述代价函数最小的划分即为图像的最佳分割。

(3)权函数
权函数一般定义为两个节点之间的相似度。

在基于图论的图像分割方法。

相关文档
最新文档