HWJ TWJ控制回路断线
发电机开关控制回路断线故障
某年某月某日,某电站上位机报“#2机组第二控制回路断线”;恰好本屌值班保电,随即查看#2机组保护屏上操作箱,发现第二合闸位置灯未亮(此时开关在合位)。
和运行协商后,运行随即开动#1机组,将#2机组停机。
分析:如图一所示,跳闸位置继电器TWJ和合闸位置继电器1HWJ、2HWJ的TWJ-2和1HWJ-6、2HWJ-6均为常闭接点,在它们相应的继电器不带电时,它们是接通的。
当出口开关在合位时,TWJ继电器不带电,因此TWJ-2接通;1HWJ、2HWJ继电器带电,那么1HWJ-6、2HWJ-6应该断开。
此时“第二控制回路断线”发信,说明2HWJ-6是闭合的,即2HWJ没有带电;按照此思路,我们查找相应的2HWJ所在的回路,如图二所示。
R2HWJ为限流电阻,2TBJ为跳闸保持继电器,F6为SF6闭锁接点,S3为储能闭锁接点,S0为出口开关辅助接点(开关合位时接通),Y3为第二跳闸线圈。
最先怀疑可能是哪里线松动了,就把该回路端子上的所有接线紧固了一下,故障依旧;这下只有逐步排查故障了。
用万用变测量各接线端子,2HWJ左——+110V;2HWJ 右——+110V;F6左——+110V;F6右——+110V;S3左——+110V;S3右——+110V;S0左——+110V;S0右——+110V;Y3左——+110V;Y3右——-110V;测到这里已经可以看出问题了。
Y3两侧有220V,不应该啊;220V会导致Y3动作,发生跳闸;但实际情况是没有跳闸。
对比了第一跳闸回路的相应端子电压,1HWJ左—+110V;1HWJ右— -110V;F6左— -110V;F6右— -110V;S3左— -110V;S3右— -110V;S0左— -110V;S0右— -110V;Y2左— -110V;Y2右— -110V;由此可以判断,Y3线圈发生了断线。
难道烧了?怀着忐忑的心情,重新办票,让运行开网门,挂接地线。
我们打开了出口开关的接线箱。
继电保护--控制回路断线原理及查找方法
继电保护--控制回路断线原理及查找方法一、控制回路断线信号原理断路器控制回路,即是控制断路器分合的回路,电源为直流,一般为±110V 多见,本文均以此电源为例。
控制回路断线信号一般是有断路器分合闸回路合闸位置继电器和分闸位置继电器常闭接点串联组成,如图1所示:4XD5控制回路断线0453TWJB 3TWJA 11HWJA 11HWJB 4XD10443TWJC11HWJC图1 控制回路信号回路路断线;若断路器在分位,表明合闸回路断线。
二、控制回路断线查找方法1、控制回路断线常见原因分析:(1)控制回路电源失电(电源空开跳闸或电源接线松动);(2)保护屏、端子箱或断路器机构内有关接线松动;(3)断路器内辅助接点松动或损坏;(4)断路器内SF6闭锁或分合闸低油压闭锁;(5)断路器未储能或储能接点存在问题;(6)断路器分合闸线圈烧损等。
以上(3)(4)(5)(6)为断路器内控制回路,会在专门文章里介绍。
2、控制回路断线查找步骤方法(1)当控制回路断线时,首先确认断路器控制电源是否正常;查看操作箱及机构箱是否有明显烧损痕迹或焦糊味(2)若电源正常及无其他明显异常,再确认断路器在什么位置,当断路器在合位时,肯定是分闸回路断线;若在分位,肯定是合闸回路断线;(3)分段查找,确认是保护屏内问题还是机构箱内问题,使用万用表直流档测量合闸回路4CD12或分闸回路4CD2电位。
断路器分位时,若测量图2中4CD12为无电位或为+110V(部分设计回路4CD11、4CD12是短接的,因分位监视回路设计串有存在分压电阻,若回路正常时,4CD12一般都是-110V),则表明合闸回路自点4CD12后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);断路器合位时,若测量图3中4CD2为+110V(因分位监视回路设计时存在分压电阻,若回路正常,4CD2一般都是-110V),则表明分闸回路自点4CD2后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);综上反之是保护屏内操作箱有问题(确认屏内接线无松动)。
开关控制回路断线及其处理
开关控制回路断线及其处理本文论述了开关控制回路断线信号的构成方法、音响信号装置的运行特点及检查处理控制回路断线的基本方法;一、控制回路断线信号的构成1.应用跳闸、合闸位置继电器的常闭接点串联,构成控制回路断线信号;典型结线简图如图一;送出控制回路断线信号脉冲的唯一条件是,合闸位置继电器HWJ和跳闸位置继电器TWJ同时失压,致使两者常闭接点同时闭合;显然,惟当开关跳闸或合闸回路的完整性被破坏时,才会出现这种异常情况;处于分闸状态的开关,若出现控制回路断线时,则表明合闸回路的完整性被破坏,不能电动合闸:处于合闸状态的开关,若出现控制回路断线时,则表明跳闸回路的完整性被破坏,不能实现电动分闸及保护装置自动跳闸;在开头跳闸和合闸回路熔断器分开的情况下,一般都采用上述方法构成控制回路断线信号;其优点在于:可以同时监视跳闸回路和合闸回路的完整性;必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号;2.应用合闸位置继电器常闭接点和开关常开辅助接点心联,构成控制回路断线信号;典型结线简图如图二;这种结线的特点在于:无跳闸位置继电器,当跳闸、合闸回路熔断器分开时,只可以监视跳闸回路的完整性,而不能监视合闸回路的完整性;在开关无电动合闸装置的情况下,大多采用上述方法构成控制回路断线信号;3.应用经常接入监察回路的中间继电器的常闭接点构成控制回路断线信号;典型结线简图如图三;其特点在于:1预告信号装置光字牌、音响只能监视跳闸、合闸回路中熔断器的良好状态包括直流母线失压与否,而不能监视整个跳闸、合闸回路的完整性;2通过跳闸、合闸位置灯辅以监视跳闸、合闸回路的完整性;例如,开关在合闸状态,且熔断器正常预告信号装置不动作,而开关合闸位置灯红灯熄灭时,则表明跳闸回路的完整性被破坏不包括熔断器熔断;二、控制回路断线的音响信号装置开关控制回路断线时,发出下列信号:“控制回路断线”光字牌亮,中央预告信号系统音响装置所有开关共用一套发出音响;音响装置按复归方式分手动复归和自动延时复归两种;1.手动复归、不重复动作音响装置;这种结线的缺点在于:当某开关控制回路断线导致中央予告信号音响装置动作后,在该失控制回路断线故障末消除前,如果再发生要求预告音响装置动作的其它异状时如掉牌未复归、35千伏系统接地等,音响装置概不启动;反之亦然,即当发生某种异状导致中央予告信号音响装置动作后,在该异状未消除前,如果出现开关控制回路断线时,音响装置不能动作;2.手动复归重复动作音响装置;这种结线的优点在于:当某开关控制回路断线导致中央预告信号音响装置动作后,在该开关控制回路断线故障未消除前,如果再发生要求予合音响装置功作的其它异状时如掉牌未复归、35千伏系统接地等,音响装置再次启动,反之亦然,即当发生某种异状导致未中央预告信号音响装置动作后,在该异状未消除前,如果出现开关控制回路断线时,音响装置再次启动;即实现重复动作的要求;必须指出:这种结线的音响装置,对于控制回路断线本身而言,并不具备“重复动作性”,即当某开关控制回路断线导致中央予合信号音响装置动作后,在该开关控制回路断线故障未消除前,如果其它开关再出现控制回路断线时,音响装置不能动作,这是因为这种情况下,冲击电流并未增加的缘故;三、控制回路断线的检查处理熟悉所在发电厂、变电站诸开关控制回路结线及控制回路断线信号的构成方法,是迅速处理开关控制回路断线故障的重要环节;由中央予告信号光字牌及音响得知开关控制回路断线后,大体可按下列方法进行检查处理;1.先检查哪个开关位置灯熄灭;位置灯熄灭的开关,即是控制回路断线的开关;2.必要情况下,进一步检查跳闸、合闸位置继电器励磁状态,若均已失压,则表明该开关确已发生控制回路断线;3.检查熔断器是否熔断,跳闸或合闸线圈合闭接触器是否烧坏,开关辅助接点是否接触良好或正确,上述诸允许的连接部分是否松脱或断线,直流母线是否失压等;4.当开关有防跳装置及弹簧储能机构时,还应检查有关线圈及接点是否正常;5.跳闸或合闸线圈合闸接触器烧断时,线圈两引线端子电压应为额定直流电压值;其它元件断线时亦然;6.检查跳闸、合闸位置继电器本身电压线圈是否断线;如因故断线时,同样引起控制回路断线信号装置启动,只是这时跳闸、合闸回路的完整件并未真正受到破坏;。
KKJ HWJ TWJ 作用原理
1、KKJ(合后继电器)包括RCS和LFP系列在内几乎所有类型的操作回路都会有KKJ 继电器。
它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。
传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。
该把手有“预分-分-分后、预合-合-合后”6个状态。
其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。
当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。
从“预合”打到头即“合”。
开关合上后,在复位弹簧作用下,KK 把手返回自动进入“合后”位置并固定在这个位置。
分闸操作同此过程类似,只是分闸后,KK把手进入“分后”位置。
KK把手的纵轴上可以加装一节节的接点。
当KK把手处于“合后”位置时,其“合后位置”接点闭合。
KK把手的“合后位置”“分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。
“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置”接点闭合代表开关是人为分开的。
“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。
这两个作用都是通过位置不对应来实现的。
所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ(跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。
开关人为合上后,“合后位置”接点会一直闭合。
保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。
事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。
不对应回路断开,事故音响停止,掉牌复归。
因为传统二次回路主要是考虑就地操作。
当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。
因为当时设备自动化水平的限制,“无人值守”实现的途径是通过在传统二次回路基础上,增加具备“四遥”(遥控/遥调/遥测/遥信)功能的集中式RTU来实现,也即我们常说的老站改造(单纯保护配集中式RTU)模式。
断路器控制回路断线的原因分析及处理方法
16
Dianqi Gongcheng yu Zidonghua◆电气工程与自动化
万用表直流档测量“7”这个点电位,发现该点电位为正,测量 “137”这个点电位,发现该点电位也为正,说明保护装置正常,
故障点在机构箱内。经过查看现场二次图纸,对比现场实际接 线,发现是开关机构内部接线断线造成合闸回路不能正常导 通。由于机构箱内的设备维护管理权限属于检修班,即刻通知 检修班人员进行消缺排障。
2 控制回路断线的原因
HWJ常闭接点和TWJ常闭接点串 联构成控制回路断线的监视回路。只 有当HWJ继电器和TWJ继电器同时失 磁,两个常闭接 点 接通 ,才会 发出 控 制回路断线信号。
引起控制回路断线的原因有: (1)控制 回 路 的 操 作 电源 断 开 。 当断 开 断 路器 操 作 电 源 ,分 合 闸 回 路 均 失 电 ,TWJ 和 HWJ 两 个 继 电 器 同 时 失电,其常闭接点闭合 ,发出控 制 回 路断线信号[3]。
1 断路器控制回路结构
完整的断路器控制回路由保护装置和断路器的分合闸回 路组成,无论是远方、就地分合闸,还是保护分合闸都是先作 用于保护装置,然后再通过断路器分合闸回路实现断路器的 分合。只有当TWJ和HWJ两个常闭接点都闭合,才会发出控制 回路断线的告警信号。当断路器处于分位时,断路器合闸回路 的辅助接点是常闭的,能够导通机构箱的合闸回路,此时断路 器跳位监视回路导 通,TWJ继电器 被 励磁,TWJ常闭 接 点打 开,J常开接点闭合。而跳闸回路的断路器辅助接点常开, 机构箱跳闸回路被断开,合位监视回路没有被导通,HWJ继电 器没有被励磁,HWJ常闭接点闭合,HWJ常开接点打开。断路 器处 于 合 位 也 同 理 。 因 此 ,当 控 制 回 路正常时,无论是分位还是合位, HWJ和TWJ这两个继电器不可能被同 时励磁,也就是说HWJ和TWJ这两个 常闭接点总有一个是断开的[2]。
TWJ_HWJ位置继电器
TWJ/HWJ位置继电器和控制回路断线4.1 TWJ/HWJ(跳闸位置/合闸位置继电器)的作用TWJ/HWJ主要作用是提供开关位置指示。
HWJ并接于跳闸回路,该回路在开关跳圈之前串有断路器常开辅助触点。
当开关在合位时,其常开辅助触点闭合,HWJ 线圈带电,HWJ=1表明开关合位。
TWJ一般并接于合闸回路,该回路在开关合圈之前串有断路器常闭辅助触点。
当开关在分位时,其常闭辅助触点闭合,TWJ线圈带电,TWJ=1表明开关分位。
注意:当开关在分位时,其实合闸线圈是带电的。
TWJ为电压圈,线圈本身电阻就较大,加上回路上串的电阻,整体阻值约40K(测量控制正和TWJ负端)。
因为国内开关跳合闸线圈为电流型,其阻值较小(常见的为50~200Ω)。
虽然整个合闸回路是导通的,但因为控制回路电压大部分加在TWJ上,TWJ部分电阻很大,电流很小,不足以使合圈动作。
TWJ线圈上串联的电阻,也是为了防止TWJ线圈击穿短路,导致合圈误动。
当手动或遥控合闸时,合闸回路接通相当于直接将TWJ短接,电压直接加在合闸线圈上,使线圈动作。
HWJ回路同此基本一致。
断路器位置可以用合位也可以用跳位表示, 保护和监控习惯采用的位置信号略有不同:按照传统习惯,保护程序判断开关位置一般采用TWJ,比如备投装置需接入的开关位置都采用TWJ(断路器常闭触点)。
远动监控方面一般都采用HWJ(断路器常开触点),如果只有TWJ,往往还要在数据库里取反。
4.2 断路器位置和HWJ的区别我们从96XX系列装置里开关量状态显示菜单(/通讯信息表)里可以看到除了有TWJ和HWJ状态外,还有断路器状态。
那么,这个断路器状态跟HWJ是否一样呢?其实并不完全一致。
不论我们是采用TWJ还是HWJ来判断开关位置,都有一个一旦控制回路断线,就会导致位置判断错误的问题。
比如开关在合位,此时HWJ=1;如果这时控制电源掉了,则HWJ失电,HWJ=0,就会错误判断为开关分开。
为了避免这种情况发生,装置提供了“断路器位置”这个经过程序判断处理后的状态量。
TWJ HWJ位置继电器
TWJ/HWJ位置继电器和控制回路断线TWJ/HWJ(跳闸位置/合闸位置继电器)的作用TWJ/HWJ主要作用是提供开关位置指示。
HWJ并接于跳闸回路,该回路在开关跳圈之前串有断路器常开辅助触点。
当开关在合位时,其常开辅助触点闭合,HWJ线圈带电,HWJ=1表明开关合位。
TWJ一般并接于合闸回路,该回路在开关合圈之前串有断路器常闭辅助触点。
当开关在分位时,其常闭辅助触点闭合,TWJ线圈带电,TWJ=1表明开关分位。
注意:当开关在分位时,其实合闸线圈是带电的。
TWJ为电压圈,线圈本身电阻就较大,加上回路上串的电阻,整体阻值约40K(测量控制正和TWJ负端)。
因为国内开关跳合闸线圈为电流型,其阻值较小(常见的为50~200Ω)。
虽然整个合闸回路是导通的,但因为控制回路电压大部分加在TWJ上,TWJ部分电阻很大,电流很小,不足以使合圈动作。
TWJ线圈上串联的电阻,也是为了防止TWJ 线圈击穿短路,导致合圈误动。
当手动或遥控合闸时,合闸回路接通相当于直接将TWJ短接,电压直接加在合闸线圈上,使线圈动作。
HWJ回路同此基本一致。
断路器位置可以用合位也可以用跳位表示, 保护和监控习惯采用的位置信号略有不同:按照传统习惯,保护程序判断开关位置一般采用TWJ,比如备投装置需接入的开关位置都采用TWJ(断路器常闭触点)。
远动监控方面一般都采用HWJ(断路器常开触点),如果只有TWJ,往往还要在数据库里取反。
断路器位置和HWJ的区别我们从96XX系列装置里开关量状态显示菜单(/通讯信息表)里可以看到除了有TWJ 和HWJ状态外,还有断路器状态。
那么,这个断路器状态跟HWJ是否一样呢?其实并不完全一致。
不论我们是采用TWJ还是HWJ来判断开关位置,都有一个一旦控制回路断线,就会导致位置判断错误的问题。
比如开关在合位,此时HWJ=1;如果这时控制电源掉了,则HWJ失电,HWJ=0,就会错误判断为开关分开。
为了避免这种情况发生,装置提供了“断路器位置”这个经过程序判断处理后的状态量。
TWJHWJ位置继电器和控制回路断线
TWJ/HWJ位置继电器和控制回路断线4.1 TWJ/HWJ(跳闸位置/合闸位置继电器)的作用TWJ/HWJ主要作用是提供开关位置指示。
HWJ并接于跳闸回路,该回路在开关跳圈之前串有断路器常开辅助触点。
当开关在合位时,其常开辅助触点闭合,HWJ线圈带电,HWJ=1表明开关合位。
TWJ一般并接于合闸回路,该回路在开关合圈之前串有断路器常闭辅助触点。
当开关在分位时,其常闭辅助触点闭合,TWJ线圈带电,TWJ=1表明开关分位。
注意:当开关在分位时,其实合闸线圈是带电的。
TWJ为电压圈,线圈本身电阻就较大,加上回路上串的电阻,整体阻值约40K(测量控制正和TWJ负端)。
因为国内开关跳合闸线圈为电流型,其阻值较小(常见的为50~200Ω)。
虽然整个合闸回路是导通的,但因为控制回路电压大部分加在TWJ上,TWJ部分电阻很大,电流很小,不足以使合圈动作。
TWJ线圈上串联的电阻,也是为了防止TWJ线圈击穿短路,导致合圈误动。
当手动或遥控合闸时,合闸回路接通相当于直接将TWJ短接,电压直接加在合闸线圈上,使线圈动作。
HWJ回路同此基本一致。
断路器位置可以用合位也可以用跳位表示, 保护和监控习惯采用的位置信号略有不同:按照传统习惯,保护程序判断开关位置一般采用TWJ,比如备投装置需接入的开关位置都采用TWJ(断路器常闭触点)。
远动监控方面一般都采用HWJ(断路器常开触点),如果只有TWJ,往往还要在数据库里取反。
4.2 断路器位置和HWJ的区别我们从96XX系列装置里开关量状态显示菜单(/通讯信息表)里可以看到除了有TWJ和HWJ状态外,还有断路器状态。
那么,这个断路器状态跟HWJ是否一样呢?其实并不完全一致。
不论我们是采用TWJ还是HWJ来判断开关位置,都有一个一旦控制回路断线,就会导致位置判断错误的问题。
比如开关在合位,此时HWJ=1;如果这时控制电源掉了,则HWJ 失电,HWJ=0,就会错误判断为开关分开。
为了避免这种情况发生,装置提供了“断路器位置”这个经过程序判断处理后的状态量。
控制回路断线、事故总信号原理(KKJ)
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
KKJ(合后继电器)、TWJ及HWJ继电器的应用
KKJ(合后继电器)、TWJ及HWJ继电器的应用1.1、KKJ的由来包括RCS和LFP系列在内几乎所有类型的操作回路都会有KKJ继电器。
它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。
传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。
该把手有“预分-分-分后、预合-合-合后”6个状态。
其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。
当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。
从“预合”打到头即“合”。
开关合上后,在复位弹簧作用下,KK把手返回自动进入“合后”位置并固定在这个位置。
分闸操作同此过程类似,只是分闸后,KK把手进入“分后”位置。
KK把手的纵轴上可以加装一节节的接点。
当KK把手处于“合后”位置时,其“合后位置”接点闭合。
KK把手的“合后位置”“分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。
“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置”接点闭合代表开关是人为分开的。
“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。
这两个作用都是通过位置不对应来实现的。
所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ(跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。
开关人为合上后,“合后位置”接点会一直闭合。
保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。
事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。
不对应回路断开,事故音响停止,掉牌复归。
因为传统二次回路主要是考虑就地操作。
当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。
变电站断路器控制回路断线问题分析与对策
变电站断路器控制回路断线问题分析与对策在变电站中存在断路器控制回路断线故障问题,它属于站内紧急缺陷问题,需要技术工作人员进行立即处理,否则后果不堪设想。
本文结合小型案例对变电站断路器控制回路断线所存在的故障问题进行了分析,并给出相关对策建议以供参考。
标签:断路器控制回路;断线故障问题;变电站;二次回路;对策断路器控制回路是变电站中二次回路的重要组成部分,其回路是否正常对断路器的正常分合闸影响颇大,较为经常出现的控制回路断线问题严重时会导致整个变电站生产运行停止,造成重大不良后果,为此需要技术工作人员立即处理问题,避免断路器因拒动而引发更严重事故。
所以说必须对控制回路断线的相应处理应对方法进行考量与总结,这对缩短故障处理时间是很有帮助的。
一、变电站断路器控制回路断线故障问题的分析变电站中的开关控制回路即为断路器控制回路,它经常会出现信号断线问题,造成这一问题的根源还要从它的跳位继电器与合位继电器中的常闭触点串联展开分析。
一般情况下,开关控制回路是存在合位和分位两种状态的,其中合位为失磁,而分位为励磁,它们多对应的闭触点也分别为闭合与打开状态。
在该状态下常闭触点一般会处于闭合状态,信号回路也会处于接通状态,而后台部分则会显示控制回路断线,导致信号开关无法有效分合闸,这就是变电站断路器控制回路的断线故障问题,就这一问题需要分析两点成因。
(一)高电压导致开关控制回路断线问题变电站中电磁性操作机构所采用的为240V直流电源,但弹簧机构所需要的额定电压为220V,可以看出两种机构所需要的电压是不同的。
变电站中由于采用了240V直流电压,其电压高于弹簧机构所需要的额定电压,所以弹簧机构线路中其内部电流相比于正常电流水平之是始终偏高的,这意味着线圈的温度也会随之升高,如果温度过高就会直接烧损跳合闸线圈部分,导致控制回路无法正常运行。
(二)断路器控制回路微机保护问题目前许多厂家所设计的断路器控制回路是存在缺陷问题的,他们在改进综合系统过程中就涉及到断路器控制回路的设计,其回路中的KK把手一般设置为手动控制,在分合闸未能正常運行之前,厂家的微机保护回路设计存在明显缺陷,比如分合闸继电器在动作后无法延时断开,必须借助DL1开关切断分合闸继电器与电源连接,这容易导致跳闸线圈TQ直接烧毁。
控制回路断线 事故总信号原理
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
TWJ,HWJ,KKJ
KKJ HWJ TWJ 作用原理1、KKJ(合后继电器)包括RCS和LFP系列在内几乎所有类型的操作回路都会有KKJ继电器。
它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。
传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。
该把手有“预分-分-分后、预合-合-合后”6个状态。
其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。
当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。
从“预合”打到头即“合”。
开关合上后,在复位弹簧作用下,KK把手返回自动进入“合后”位置并固定在这个位置。
分闸操作同此过程类似,只是分闸后,KK把手进入“分后” 位置。
KK把手的纵轴上可以加装一节节的接点。
当KK把手处于“合后” 位置时,其“合后位置”接点闭合。
KK把手的“合后位置” “分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。
“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置” 接点闭合代表开关是人为分开的。
“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。
这两个作用都是通过位置不对应来实现的。
所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ(跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。
开关人为合上后,“合后位置”接点会一直闭合。
保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。
事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。
不对应回路断开,事故音响停止,掉牌复归。
因为传统二次回路主要是考虑就地操作。
当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。
控制回路断线的处理过程
#3炉一次风机开关633“控制回路断线”一、故障背景#3炉一次风机开关633在DCS处报警“回路失电”,经确认为“控制回路断线”报警。
二、解决步骤(1)在1Q1D的47和49端子排中,分为两部分:1、K01和K03保护装置812和8132、1DK/2DK/3DK的常闭辅助触点(2)将第二部分给甩开后,还是发现812和813为常闭点。
但K01本身装置上没有报警“控制回路断线”【稍后处理此问题】。
(3)关于K01保护装置报警“控制回路断线”的问题。
1、因为812与813是通的,所以TWJ和HWJ都是常闭点。
所以TWJ和HWJ的线圈都肯定没有得电。
2、因为801是直接接的电源正电。
所以肯定是电源负电那边出了问题。
3、查看814 COM1和815 TWJ1的状态,发现它不通。
查看814 COM1和816 HWJ1的状态,发现它也不通。
(为什么?还是要看说明书814、815、816之间的关系。
)4、且当开关是分闸状态时,52b是常闭点所以TWJ线圈是可以得电的,因此814和815应该是通的。
因为814和815应该是常开点。
所以应该查合闸线圈的负电。
5、因为开关在分位,所以52a是常开点。
所以HWJ线圈是不应该得电的。
综上所述,1、第二天联系南瑞厂家,经验证705和706(开入板上的断路器分闸和断路器合闸信号)。
如果同时断开的话,保护装置会报警“控制回路断线”。
2、在保护装置“状态显示”菜单里,“分闸位置”为1,“合闸位置”为0。
所以不报警“控制回路断线”。
远方就地把手与控制回路断线
远方就地把手与控制回路断线摘要:控制回路是开关的基本回路,控制回路断线信号则是开关控制回路中的基本信号。
在开关正常运行中,经常会出现控制回路断线的异常信号,而其中由于远方就地把手远方触点接触不良而造成的该报警信号占有很大一部分比重,作为从事变电检修的一二次检修人员,我们要熟悉掌握控制回路的各个节点,同时清楚该信号报警成因从而迅速进行消缺及在开关例检时做好相应的维护保养措施。
关键词:远方就地把手、控制回路断线、TWJ、HWJ引言在断路器分合闸控制回路中,有两个重要的继电器,它们起监视分合闸回路完好性的作用,即合闸位置继电器HWJ与跳闸位置继电器TWJ。
HWJ与手跳、三跳、永跳等跳闸触点一起并接于断路器的跳闸回路,该回路在断路器机构箱部分还串接有该开关的动合辅助触点,当开关合闸位置时,其常开接点随之闭合,HWJ回路导通,线圈带电,此时HWJ=1表明开关为合位;TWJ与手合触点、重合闸合闸触点一起并接于开关合闸回路,该回路在断路器机构箱部分在合闸线圈之前还串接有该开关的动断辅助触点,当开关分闸位置时,其常开接点随之闭合,TWJ回路导通,线圈带电,此时TWJ=1表明开关为分位。
值得一提的是当开关分闸时,合闸线圈的上端其实是带微正电的。
而此时的跳位监视回路不仅有TWJ还串有一部分电阻(为防止极端情况TWJ被短路或击穿,合闸线圈误动),TWJ内部为电压型线圈,这种设计的线圈有很大的阻抗,再考虑回路上其他分压电阻,除去合闸线圈整个控制回路阻抗值约为40kΩ,而国产开关跳合闸线圈启动形式大多为电流启动式,这种电流型线圈阻值较TWJ等阻值相比要小的多(常见的为50~200Ω),因此虽然开关跳闸位置同时也使合闸回路导通,但根据基尔霍夫定律,大电阻部分的TWJ分担了大部分的控制回路电压,同时也使得这时电流过小,根本达不到合闸线圈动作电流门槛。
然而当遥合或手合时,与TWJ并联的手合触点闭合,短接了TWJ,使控制回路220V的电压直接加在合闸线圈上,合闸线圈动作,开关合闸。
控制回路断线、事故总信号原理
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
控制回路断线、事故总信号原理
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
KKJ_HWJ_TWJ_作用原理
1、KKJ(合后继电器)包括RCS和LFP系列在内几乎所有类型的操作回路都会有KKJ继电器。
它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。
传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。
该把手有“预分-分-分后、预合-合-合后”6个状态。
其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。
当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。
从“预合”打到头即“合”。
开关合上后,在复位弹簧作用下,KK把手返回自动进入“合后”位置并固定在这个位置。
分闸操作同此过程类似,只是分闸后,KK把手进入“分后”位置。
KK把手的纵轴上可以加装一节节的接点。
当KK把手处于“合后” 位置时,其“合后位置”接点闭合。
KK把手的“合后位置” “分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。
“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置” 接点闭合代表开关是人为分开的。
“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。
这两个作用都是通过位置不对应来实现的。
所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ(跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。
开关人为合上后,“合后位置”接点会一直闭合。
保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。
事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。
不对应回路断开,事故音响停止,掉牌复归。
因为传统二次回路主要是考虑就地操作。
当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。
因为当时设备自动化水平的限制,“无人值守”实现的途径是通过在传统二次回路基础上,增加具备“四遥”(遥控/遥调/遥测/遥信)功能的集中式RTU来实现,也即我们常说的老站改造(单纯保护配集中式RTU)模式。
浅谈断路器控制回路断线故障分析及处理方法
浅谈断路器控制回路断线故障分析及处理方法摘要:伴随着时代的快速进步人们生活质量不断提升,同时给电力行业提出更高的要求。
断路器在电力系统中发挥着很大的作用,能够用于开断电力线路,并及时切断电路故障点,对电网和设备起到保护作用。
在供电线路发生故障的时候,断路器跳闸不成功,将对线路造成安全隐患。
本文对断路器的工作原理和故障分析方法进行了介绍,整理出相应的故障分析和处理方法。
关键词:断路器;控制回路;断线;故障分析引言断路器是水电站及变电站的主要电气设备,其控制回路是断路器重要组成部分,控制回路完好与否,直接影响操作和保护命令的正确执行,以及设备的运行安装。
控制回路断线是断路器最常见的故障之一。
在变电站内,断路器控制回路的完整是保证断路器可靠执行跳、合闸操作命令的必要条件:若断路器跳闸回路存在缺陷,则系统有故障时断路器不能跳闸而扩大事故,从而导致大面积停电;若断路器合闸回路存在缺陷,则断路器事故跳闸后不能自动重合,从而影响供电可靠性。
1断路器的控制回路1.1控制回路断线原理控制回路故障一般表现为控制回路断线告警,控制回路断线告警信号回路是利用保护装置内部的合闸位置继电器HWJ常闭触点和跳闸位置继电器TWJ常闭触点的串联。
当断路器在合闸位置时,合闸位置继电器励磁;当断路器在跳闸位置时,跳闸位置继电器励磁。
当控制回路出现故障导致合闸位置继电器和跳闸位置继电器同时失磁,HWJ和TWJ两常闭接点同时闭合,保护装置会发出“控制回路断线”告警信号。
1.2常见监视方法常见的控制回路完整性的监视方法有如下两种:采用简单直观的红绿灯回路直接监视;采用跳、合闸位置继电器常闭接点串联启动中央信号的间接监视。
2断路器控制回路结构完整的断路器控制回路由保护装置和断路器的分合闸回路组成,无论是远方、就地分合闸,还是保护分合闸都是先作用于保护装置,然后再通过断路器分合闸回路实现断路器的分合。
只有当TWJ和HWJ两个常闭接点都闭合,才会发出控制回路断线的告警信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 TWJ/HWJ(跳闸位置/合闸位置继电器)的作用
TWJ/HWJ主要作用是提供开关位置指示。
HWJ并接于跳闸回路,该回路在开关跳圈之前串有断路器常开辅助触点。
当开关在合位时,其常开辅助触点闭合,HWJ线圈带电,HWJ=1表明开关合位。
TWJ一般并接于合闸回路,该回路在开关合圈之前串有断路器常闭辅助触点。
当开关在分位时,其常闭辅助触点闭合,TWJ线圈带电,TWJ=1表明开关分位。
注意:当开关在分位时,其实合闸线圈是带电的。
TWJ为电压圈,线圈本身电阻就较大,加上回路上串的电阻,整体阻值约40K(测量控制正和TWJ负端)。
因为国内开关跳合闸线圈为电流型,其阻值较小(常见的为50~200Ω)。
虽然整个合闸回路是导通的,但因为控制回路电压大部分加在TWJ上,TWJ部分电阻很大,电流很小,不足以使合圈动作。
TWJ线圈上串联的电阻,也是为了防止TWJ线圈击穿短路,导致合圈误动。
当手动或遥控合闸时,合闸回路接通相当于直接将TWJ短接,电压直接加在合闸线圈上,使线圈动作。
HWJ回路同此基本一致。
断路器位置可以用合位也可以用跳位表示, 保护和监控习惯采用的位置信号略有不同:按照传统习惯,保护程序判断开关位置一般采用TWJ,比如备投装置需接入的开关位置都采用TWJ(断路器常闭触点)。
远动监控方面一般都采用HWJ(断路器常开触点),如果只有TWJ,往往还要在数据库里取反。
4.2 断路器位置和HWJ的区别
我们从96XX系列装置里开关量状态显示菜单(/通讯信息表)里可以看到除了有TWJ和HWJ状态外,还有断路器状态。
那么,这个断路器状态跟HWJ是否一样呢?其实并不完全一致。
不论我们是采用TWJ还是HWJ来判断开关位置,都有一个一旦控制回路断线,就会导致位置判断错误的问题。
比如开关在合位,此时HWJ=1;如果这时控制电源掉了,则HWJ失电,HWJ=0,就会错误判断为开关分开。
为了避免这种情况发生,装置提供了“断路器位置”这个经过程序判断处理后的状态量。
正常情况下,TWJ和HWJ状态是相反的,程序会判为状态有效,断路器状态和HWJ状态是一致的;当TWJ和HWJ全部为0或全部为1时,程序认为该状态变位为无效状态,断路器位置还是会保持原状态不变。
大家可以做个试验,先让开关在合位,看开关量状态,HWJ和断路器位置都为1;再拔掉开关控制保险,此时HWJ=0,但断路器状态不变,仍为1。
与这种情况相类似的,
还有开关手车试验位置和运行位置,两种状态必须是相反的,才是有效的状态(构
成一个异或关系),具有这种关系的遥信,我们一般称为双位置遥信。
现场组态时,除非用户有特殊要求,一般都采用“断路器位置”这个开关量来表征开关位置,而不是单独采用HWJ或TWJ。
对手车试验位置,一般通过在后台遥信数据库里设置它的双位置遥信关联属性,同时在画面编辑器里,对开关量图符的属性选择工程值(四态)而不是常规的工程值来实现。
4.3 不同系列操作回路位置指示的区别
LFP900系列操作回路从电气上可以说基本上是独立的,跳合位指示灯也直接带在操作回路上。
比如LFP941操作回路,如果装置电源不上电,只给操作回路控制电源上电。
操作回路板上的跳合位灯依然会亮。
RCS96系列和RCS900系列面板跳合位指示,是装置采集到跳合位后,再驱动面板上的发光二极管,产生相应的灯光位置指示。
96XX系列低压保护用户在设计中一般不特别分开装置电源和控制电源,但对于9661装置,因为它不仅有操作回路还带有非电量保护。
设计上一般把操作回路控制电源和非电量电源(也是装置电源)分开。
如果装置电源不上,只上操作回路控制电源,前面板上是没有开关位置指示的。
这一点在现场调试过程经常有可能发生,比如因非电量开入线尚未接完,所以用户不给非电量(实际上也是装置电源)上电。
但把开关控制电源上电了,面板上开关位置肯定无显示,用户见有可能会以为故障。
这在现场已碰到多次。
(另外注意,9611
等低压线路保护CPU板到液晶板的排线如果不连,面板上所有指示灯都会亮)4.4 控制回路断线
位置继电器除了提供位置指示外,还有一个重要作用是监视控制回路是否完好。
因为正常情况下,不论开关处于何状态,TWJ和HWJ必有一个带电,状态为1。
如果全为0,则代表控制回路异常,也即我们常说的控制回路断线。
按照部颁技术要求,必须监视跳闸回路(相比而言,跳闸回路断线要比合闸回路断线后果严重的多)。
这也是HWJ线圈负端没有引出装置直接在内部就和跳闸回路并在一起的原因(9661/RCS941的操作回路,HWJ负也单独引出装置,主要是为了配合开关的方便)。
TWJ负端单独引出,主要是为了同不同类型开关控制回路配合(比如防跳),但常规设计上,一般也在端子排上直接同合闸回路并接。
装置产生的控制回路断线信号=TWJ常闭接点+HWJ常闭接点。
无论是通讯还是硬接点输出的该信号,都加了3S的判断延时。
主要是因为断路器常开和常闭触点并不是完全同步的。
比如开关由分到合,常闭触点(TWJ)打开时,常开触点(HWJ)还没有闭合,中间一般会有几十个毫秒两者都为0的情况,如果不加判断延时,则会误报控制回路断线。
注意对主变各侧开关的控制回路断线,同上文所讲事故总信号采集一样,是通过测控装置(出厂设计一般是本侧后备保护的开入2)采集操作回路的硬接点输出。
硬接点信号开出是没有任何时间延时的,为了避免因为TWJ和HWJ不同步误发控制回路断线信号,现场要通过增加该开入
采集的遥信去抖时间来躲过这段时间,一般可设为0.3S。
因为现在开关内部接线经常会把弹簧储能或气压闭锁等接点串入合闸回路。
所以在现场时,有时开关分开后,储能电机运转给弹簧储能。
在储完能之前,合闸回路是断开的,TWJ状态上不来,会报控制回路断线。
储能完毕,合闸回路接通,控制回路断线信号复归。
现场调试时这种现象也是经常碰到的。