控制回路断线
继电保护--控制回路断线原理及查找方法
继电保护--控制回路断线原理及查找方法一、控制回路断线信号原理断路器控制回路,即是控制断路器分合的回路,电源为直流,一般为±110V 多见,本文均以此电源为例。
控制回路断线信号一般是有断路器分合闸回路合闸位置继电器和分闸位置继电器常闭接点串联组成,如图1所示:4XD5控制回路断线0453TWJB 3TWJA 11HWJA 11HWJB 4XD10443TWJC11HWJC图1 控制回路信号回路路断线;若断路器在分位,表明合闸回路断线。
二、控制回路断线查找方法1、控制回路断线常见原因分析:(1)控制回路电源失电(电源空开跳闸或电源接线松动);(2)保护屏、端子箱或断路器机构内有关接线松动;(3)断路器内辅助接点松动或损坏;(4)断路器内SF6闭锁或分合闸低油压闭锁;(5)断路器未储能或储能接点存在问题;(6)断路器分合闸线圈烧损等。
以上(3)(4)(5)(6)为断路器内控制回路,会在专门文章里介绍。
2、控制回路断线查找步骤方法(1)当控制回路断线时,首先确认断路器控制电源是否正常;查看操作箱及机构箱是否有明显烧损痕迹或焦糊味(2)若电源正常及无其他明显异常,再确认断路器在什么位置,当断路器在合位时,肯定是分闸回路断线;若在分位,肯定是合闸回路断线;(3)分段查找,确认是保护屏内问题还是机构箱内问题,使用万用表直流档测量合闸回路4CD12或分闸回路4CD2电位。
断路器分位时,若测量图2中4CD12为无电位或为+110V(部分设计回路4CD11、4CD12是短接的,因分位监视回路设计串有存在分压电阻,若回路正常时,4CD12一般都是-110V),则表明合闸回路自点4CD12后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);断路器合位时,若测量图3中4CD2为+110V(因分位监视回路设计时存在分压电阻,若回路正常,4CD2一般都是-110V),则表明分闸回路自点4CD2后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);综上反之是保护屏内操作箱有问题(确认屏内接线无松动)。
自动化变电站控制回路断线故障分析与处理
自动化变电站控制回路断线故障分析与处理摘要:自动化变电站开关控制回路断线故障常有发生,本文首先详细介绍了变电站开关控制回路(合闸回路、分闸回路)、控制方式、控制回路断线原理等基本知识。
从故障查找前现场情况确认、故障排除步骤、常见故障点查找等多个角度分析控制回路断线故障,最后简要说明控制回路断线恢复主要注意事项。
关键词:控制回路断线、故障分析与处理一、开关控制回路断线基本知识1、开关控制回路开关控制回路是连接一次设备和二次设备的桥梁,通过控制回路可实现二次设备对一次设备的操控,低压设备对高压设备的控制。
主要分为合闸回路和分闸回路,如图1所示。
图1中,31S是五防锁,31QK远方/就地转换开关,HQ是合闸线圈,TQ是分闸线圈,与线圈前串联的分别是动断、动合触点,合闸回路合闸回路由合闸启动回路、断路器辅助触点(动断)和合闸线圈三部分组成。
手动合闸回路如下:402——31S——31KD4——31QK——31KD13——410——D——408——TBJV——HBJ——418——31KD20——HQ自动合闸回路如下:402——31KD4——31QK——401——YHJ——412——31LP9——31KD13——410——D——408——TBJV——HBJ——418——31KD20——HQ当开关分位时,进行手动合闸或自动合闸时,正电到达410端子,合闸回路导通,合闸线圈HQ带电,开关合闸。
开关合上后,串在合闸回路中的动断触电断开,断开合闸回路。
串在分闸回路中的动合触点合上,跳位监视回(TWJ)路导通,等待跳闸。
分闸回路合闸回路由分闸启动回路、断路器辅助触点(动合)和分闸线圈三部分组成。
手动合闸回路如下:402——31S——31KD4——31QK——31KD7——411——D——409——TBJ——416——31KD17——TQ自动合闸回路如下:402——31KD4——31QK——401——YTJ——413——31LP8——31KD7——411——D——409——TBJ——416——31KD17——TQ当开关合位时,进行手动跳闸或自动跳闸时,正电到达411端子,分闸回路导通,分闸线圈TQ带电,开关分闸。
开关控制回路断线及其处理
开关控制回路断线及其处理本文论述了开关控制回路断线信号的构成方法、音响信号装置的运行特点及检查处理控制回路断线的基本方法;一、控制回路断线信号的构成1.应用跳闸、合闸位置继电器的常闭接点串联,构成控制回路断线信号;典型结线简图如图一;送出控制回路断线信号脉冲的唯一条件是,合闸位置继电器HWJ和跳闸位置继电器TWJ同时失压,致使两者常闭接点同时闭合;显然,惟当开关跳闸或合闸回路的完整性被破坏时,才会出现这种异常情况;处于分闸状态的开关,若出现控制回路断线时,则表明合闸回路的完整性被破坏,不能电动合闸:处于合闸状态的开关,若出现控制回路断线时,则表明跳闸回路的完整性被破坏,不能实现电动分闸及保护装置自动跳闸;在开头跳闸和合闸回路熔断器分开的情况下,一般都采用上述方法构成控制回路断线信号;其优点在于:可以同时监视跳闸回路和合闸回路的完整性;必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号;2.应用合闸位置继电器常闭接点和开关常开辅助接点心联,构成控制回路断线信号;典型结线简图如图二;这种结线的特点在于:无跳闸位置继电器,当跳闸、合闸回路熔断器分开时,只可以监视跳闸回路的完整性,而不能监视合闸回路的完整性;在开关无电动合闸装置的情况下,大多采用上述方法构成控制回路断线信号;3.应用经常接入监察回路的中间继电器的常闭接点构成控制回路断线信号;典型结线简图如图三;其特点在于:1预告信号装置光字牌、音响只能监视跳闸、合闸回路中熔断器的良好状态包括直流母线失压与否,而不能监视整个跳闸、合闸回路的完整性;2通过跳闸、合闸位置灯辅以监视跳闸、合闸回路的完整性;例如,开关在合闸状态,且熔断器正常预告信号装置不动作,而开关合闸位置灯红灯熄灭时,则表明跳闸回路的完整性被破坏不包括熔断器熔断;二、控制回路断线的音响信号装置开关控制回路断线时,发出下列信号:“控制回路断线”光字牌亮,中央预告信号系统音响装置所有开关共用一套发出音响;音响装置按复归方式分手动复归和自动延时复归两种;1.手动复归、不重复动作音响装置;这种结线的缺点在于:当某开关控制回路断线导致中央予告信号音响装置动作后,在该失控制回路断线故障末消除前,如果再发生要求预告音响装置动作的其它异状时如掉牌未复归、35千伏系统接地等,音响装置概不启动;反之亦然,即当发生某种异状导致中央予告信号音响装置动作后,在该异状未消除前,如果出现开关控制回路断线时,音响装置不能动作;2.手动复归重复动作音响装置;这种结线的优点在于:当某开关控制回路断线导致中央预告信号音响装置动作后,在该开关控制回路断线故障未消除前,如果再发生要求予合音响装置功作的其它异状时如掉牌未复归、35千伏系统接地等,音响装置再次启动,反之亦然,即当发生某种异状导致未中央预告信号音响装置动作后,在该异状未消除前,如果出现开关控制回路断线时,音响装置再次启动;即实现重复动作的要求;必须指出:这种结线的音响装置,对于控制回路断线本身而言,并不具备“重复动作性”,即当某开关控制回路断线导致中央予合信号音响装置动作后,在该开关控制回路断线故障未消除前,如果其它开关再出现控制回路断线时,音响装置不能动作,这是因为这种情况下,冲击电流并未增加的缘故;三、控制回路断线的检查处理熟悉所在发电厂、变电站诸开关控制回路结线及控制回路断线信号的构成方法,是迅速处理开关控制回路断线故障的重要环节;由中央予告信号光字牌及音响得知开关控制回路断线后,大体可按下列方法进行检查处理;1.先检查哪个开关位置灯熄灭;位置灯熄灭的开关,即是控制回路断线的开关;2.必要情况下,进一步检查跳闸、合闸位置继电器励磁状态,若均已失压,则表明该开关确已发生控制回路断线;3.检查熔断器是否熔断,跳闸或合闸线圈合闭接触器是否烧坏,开关辅助接点是否接触良好或正确,上述诸允许的连接部分是否松脱或断线,直流母线是否失压等;4.当开关有防跳装置及弹簧储能机构时,还应检查有关线圈及接点是否正常;5.跳闸或合闸线圈合闸接触器烧断时,线圈两引线端子电压应为额定直流电压值;其它元件断线时亦然;6.检查跳闸、合闸位置继电器本身电压线圈是否断线;如因故断线时,同样引起控制回路断线信号装置启动,只是这时跳闸、合闸回路的完整件并未真正受到破坏;。
断路器“控制回路断线”故障报警的分析及查找
-发输变电-断路器“控制回路断线"故障报警的分析及查找李传东徐霞周妍何敬国(山东钢铁股份有限公司莱芜分公司能源动力厂,271104,山东莱芜)1现场情况2017年7月31日15:30,设备专业点检发现110kV银山变电站35kV焦化%线3522微机保护测控装置页面显示“控制回路断线”报警,同时保护测控装置上的断路器合位监视红灯未点亮,检查35kV焦化%线负荷电流为160A$35kV焦化%线断路器分合闸电气原理图如图1所示。
2故障分析及处理断路器“控制回路断线”报警信号是由跳位继电器TWJ的常闭触点和合位继电器HWJ的常闭触点串联发出的,也就是说TWJ 和HWJ同时失磁时,才会发出“控制回路断线”的信号。
在正常情况下,这两个位置继电器不会同时失磁,只有在断路器合闸外部条件不具备或者在运的断路器分闸回路出现故障时,才会发出“控制回路断线”的信号。
“控制回路断线”报警信号回路如图2所示。
在运的断路器发生“控制回路断线”报警的信号相对少见,但危害严重,如果发现或查找处理不及时,遇有线路短路故障时,本柜的断路器保护就会拒动,将会越级由上级断路评定标准。
(3)加强焊接工艺检查,检修中主变引线焊接完成后还要进行相应的破坏试验,确保在外力作用下,焊接面不被破坏。
同时,尝试采用X光探伤等新手段检查引线焊接质量。
6结语引线焊接质量的好坏直接影响变压器的安全运行。
应严格按照工艺要求施工,并加强质量检查,防止变压器带病运行,保证供电器跳闸断开故障点,导致大面积失电,损失巨大。
在电力调度的命令下,将35kV焦化%线负荷调整由35k V焦化&线供电,将35kV焦化%线由运行转检修,根据“控制回路断线”报警和合位监视红灯未点亮的信息,分析故障点很可能在合位监视回路上,即分闸回路的外围元件及其接线回路。
检查时,按照先检查断路器QF的辅助常开触点是否相通(此时应闭合)、分闸线圈TQ电阻及各元件之间连接回路是否正常,再检查直流电源回路及微机保护测控装置内部元件HR、HWJ及其之间的连线回路有无异常的顺序进行。
35kV断路器控制回路断线原因分析及处理
35kV断路器控制回路断线原因分析及处理发布时间:2021-11-29T07:33:53.580Z 来源:《新型城镇化》2021年22期作者:黄道祥[导读] 当开关发生控制回路断线的情况,应立即进行排障处理,确保控制回路的完整性。
国网山西省电力公司检修分公司山西省太原市 030031摘要:断路器能够切除故障线路,防止事故进一步扩大,是变电站重要的一次设备,其控制回路完整是保证断路器能够可靠执行跳、合闸操作命令的重要条件。
断路器控制回路的完整性在变电站二次回路中有着举足轻重的地位,因此,监控断路器控制回路的完好性尤为重要。
控制回路断线是用来检测断路器二次控制回路是否完整的预警信息。
当保护装置和后台发出“控制回路断线”的告警信号时,表明断路器控制回路不完好,断路器可能无法进行正常的分、合闸操作和保护跳闸操作,如果此时有故障发生,会出现断路器拒动保护越级跳闸,引发大面积停电,甚至会造成电力系统瘫痪等事故的发生,需要尽快处理该缺陷。
关键词:35kV断路器;控制回路;断线原因;处理措施1.控制回路断线信号回路原理及原因分析开关控制回路断线的信号回路由合闸位置继电器(HWJ)的常闭触点和跳闸位置继电器(TWJ)的常闭触点串联起来,用以输出控制回路断线报警信号,实现控制回路断线监视。
正常情况下35kV开关要么是合位,要么是分位,HWJ及TWJ中必有一个励磁、一个失磁,对应的闭触点也将一个打开、一个闭合,此时控制回路断线的信号回路不通,代表控制回路工作正常。
当有故障引起跳位继电器与合位继电器同时失磁,常闭触点会同时闭合,信号回路接通,此时后台会报“控制回路断线”信号,开关将不能分合闸。
继电保护装置开关控制回路原理如图1所示。
引起控制回路断线信号的原因主要分为电气原因与机械原因:1)常见电气原因有合闸回路无电压,桥整流器V烧毁,合闸线圈断线、短路,合闸回路储能辅助开关触头接触不良或切换不到位,合闸闭锁线圈触点接触不良,断路器辅助开关触头接触不良或切换不到位,防跳继电器触点接触不良,闭锁回路故障等。
控制回路断线
位置继电器除了提供位置指示外,还有一个重要作用是监视控制回路是否完好。
因为正常情况下,不论开关处于何状态,TWJ和HWJ必有一个带电,状态为1。
如果全为0,则代表控制回路异常,也即我们常说的控制回路断线。
按照部颁技术要求,必须监视跳闸回路(相比而言,跳闸回路断线要比合闸回路断线后果严重的多)。
这也是HWJ线圈负端没有引出装置直接在内部就和跳闸回路并在一起的原因(9661/RCS941的操作回路,HWJ负也单独引出装置,主要是为了配合开关的方便)。
TWJ负端单独引出,主要是为了同不同类型开关控制回路配合(比如防跳),但常规设计上,一般也在端子排上直接同合闸回路并接。
装置产生的控制回路断线信号=TWJ常闭接点+HWJ常闭接点。
无论是通讯还是硬接点输出的该信号,都加了3S的判断延时。
主要是因为断路器常开和常闭触点并不是完全同步的。
比如开关由分到合,常闭触点(TWJ)打开时,常开触点(HWJ)还没有闭合,中间一般会有几十个毫秒两者都为0的情况,如果不加判断延时,则会误报控制回路断线。
注意对主变各侧开关的控制回路断线,同上文所讲事故总信号采集一样,是通过测控装置(出厂设计一般是本侧后备保护的开入2)采集操作回路的硬接点输出。
硬接点信号开出是没有任何时间延时的,为了避免因为TWJ和HWJ不同步误发控制回路断线信号,现场要通过增加该开入采集的遥信去抖时间来躲过这段时间,一般可设为0.3S。
控制回路断线就是TWJ与HWJ两个常闭节点同时闭合就会发。
也就是两个节点与的关系。
主要用于监视控制回路是否完好。
在开关节点转换的过程中也有可能会报出控制回路断线(只是短时报)。
4.双机切换功能测试:1) 双机切换功能测试。
具体根据《NSC 总控双机切换功能测试报告》中的双机切换测试内容进行验证性测试;检查切换过程发生的双机通讯中断信号、网络故障信号是否上送到调度。
2) 固定时间段15 分钟内,发生5 次切换闭锁功能测试。
在15 分钟内,总控切换次数大于5 次时将会发生“双机切换次数达到限制值”告警信号,检查调度是否正确收到该信号。
控制回路断线、事故总信号原理(KKJ)
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
断路器控制回路断线简析
断路器控制回路断线简析摘要:本文主要通过对断路器控制回路断线故障的原理与原因进行有效的分析,并对断路器控制回路断线故障的主要查找方法进行合理总结,从而进一步对断路器控制回路断线故障的有效处理手段进行深入探讨。
关键词:断路器;控制回路;断线故障;分析处理现阶段,我国变电站的自动化程度已经取得了有效的提高,且其中大部分的变电站也已经实现了无人值班的目标,其对于220kv以上的各大变电站的控制管理与保护系统的配置也更加的完善与科学。
然而,对于部分老旧的110kv变电站的保护与监控工作仍旧存在一定的缺陷。
由于其后台的控制信号不完善,使得其在发生事故时很难有效的依据其所发出的信号来进行正确的分析与判断,导致事故的处理工作不及时。
一、断路器控制回路断线故障分析(一)断路器控制回路断线故障的原理分析一般来说,处于串联的跳闸与合闸位置中的继电器往往只有一个通电励磁,当断路器处于跳闸状态时,则位于跳闸位置上的继电器进行通电工作,反之,当断路器处于合闸状态时,则只能通过合闸位置上的继电器来进行通电活动,一旦跳闸与合闸双方位置上继电器的常闭接点同时被关闭,那么就会形成一个控制回路的断线问题。
在断路器正常的运营状态中,跳闸位置与合闸位置中的继电器的常闭接点一般不会出现同时关闭的现象,如果其出现同时关闭的情况,则会使得整个保护回路通电,从而,有效的显示出控制回路断线的信号。
(二)断路器控制回路断线故障的原因分析能够导致断路器的控制回路出现断线故障的原因多种多样,当保护测控装置自身出现安全故障时,就会使得控制回路的开关出现失灵现象,从而,引发控制回路的断线故障。
同时,如果断路器中的储能接点发生故障问题,或者是断路器中的分合闸线圈出现烧毁现象来造成其辅助点的接触不良等问题,也都有可能引发断电器的控制回路断线问题,这就要求我们在进行断路器的检修工作时,必须将其中可能引发控制回路断线故障的因素,进行及早的控制与排除。
通常,造成断路器控制回路断线的原因,主要包括以下六个方面:第一种断路器SF6气体压力值降低发闭锁分合闸信号,第二种可能是由于跳闸、合闸位置继电器接点粘死;第三种原因可能是由于断路器控制电源的空气开关出现了故障与问题,或者是由于保险熔断而造成回路的电源异常现象;第四种可能是,因为在含有弹簧机构的断电器中,由于其能量储存不足,或者直接就没有进行能量储存,而导致控制回路的断线故障;再一种可能就是当储能回路中有继电器时,如果没有及时的将储能开关闭合,也会导致断路器的控制回路出现断线情况;而最后一种可能就是,断路器辅助接点切换不良,也会在一定程度上,造成断路器控制回路的断线故障。
PT断线、CT断线和控制回路断线
PT断线、CT断线及控制回路断线TV断线I:如果母线电压为三相四线时,TV监测包括母线电压相序的判断和TV断线的判断。
(1)相序的判据是:TV监测投入,当负序电压U12大于28V,并且负序电压U12大于4倍的正序电压U11,经过延时时间Tdxu,装置报电压回路相序错。
(2)断线的判据是:TV检测投入,在装置检测到负序电压U12大于10V且最小线电压小于70V时,经过延时时间Tdxu判TV断线;当监测到Uab1+Ubc1+Uca1(标量和)小于50V且进线1断路器在合位,或者进线1测量电流大于0.05A,经过延时时间Tdxu判TV三相断线。
II:如果母线电压为三相三线时,装置只进行TV断线的判断。
(3)断线的判据是:TV监测投入,在装置检测到最大线电压和最小线电压之差大于28V 且最小线电压小于70V时,经过延时时间Tdxu判TV断线;当监测到Uab+Ubc+Uca (标量和)小于50V且进线1断路器在合位,或者进线1测量电流大于0.05A,经过延时时间Tdxu判TV三相断线。
TA监测(1)使用到电流判据:保护电流Ip判据:当保护电流量程为100A时,Ip=0.2A当保护电流量程为24A时,Ip=0.1A测量电流Im判据:当测量电流量程为6A时,Im=0.05A当测量电流量程为1.2A时,Im=0.01A(2)动作条件保护电流TA监测判据是:TA监测投入,三相保护电流最小值大于Ip,最大值大于6A,保护电流的正序电流PI1小于Ip,同时负序电流PI2要大于Ip,经过延时时间IdxI,装置保护TA 相序错告警;负序电流PI2大于Ip且至少有一相电流低于Ip同时三相保护电流的最大值小于6A,经过延时时间IdxI,装置报保护TA断线告警。
测量电流TA监测判据是:负序电流I2大于Im且至少有一相电流Im同时两相测量电流的最大值小于6A,经过延时时间IdxI,装置报测量TA断线告警。
测量电流没有相序报警判断功能。
控制回路断线 事故总信号原理
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
控制回路断线的处理过程
#3炉一次风机开关633“控制回路断线”一、故障背景#3炉一次风机开关633在DCS处报警“回路失电”,经确认为“控制回路断线”报警。
二、解决步骤(1)在1Q1D的47和49端子排中,分为两部分:1、K01和K03保护装置812和8132、1DK/2DK/3DK的常闭辅助触点(2)将第二部分给甩开后,还是发现812和813为常闭点。
但K01本身装置上没有报警“控制回路断线”【稍后处理此问题】。
(3)关于K01保护装置报警“控制回路断线”的问题。
1、因为812与813是通的,所以TWJ和HWJ都是常闭点。
所以TWJ和HWJ的线圈都肯定没有得电。
2、因为801是直接接的电源正电。
所以肯定是电源负电那边出了问题。
3、查看814 COM1和815 TWJ1的状态,发现它不通。
查看814 COM1和816 HWJ1的状态,发现它也不通。
(为什么?还是要看说明书814、815、816之间的关系。
)4、且当开关是分闸状态时,52b是常闭点所以TWJ线圈是可以得电的,因此814和815应该是通的。
因为814和815应该是常开点。
所以应该查合闸线圈的负电。
5、因为开关在分位,所以52a是常开点。
所以HWJ线圈是不应该得电的。
综上所述,1、第二天联系南瑞厂家,经验证705和706(开入板上的断路器分闸和断路器合闸信号)。
如果同时断开的话,保护装置会报警“控制回路断线”。
2、在保护装置“状态显示”菜单里,“分闸位置”为1,“合闸位置”为0。
所以不报警“控制回路断线”。
控制回路断线、事故总信号原理
TWJ HWJ控制回路断线控制回路断线原理控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也将一个闭合,一个打开。
当有什么原因引起跳位继电器与合位继电器同时失磁,常闭触点同时闭合时,就会出现“控制回路断线”信号,开关将不能分闸或合闸。
引起控制回路断线信号的原因有:1)控制电源熔丝熔断或空开跳开,TWJ、HWJ继电器同时失磁,控制回路断线信号报出。
2)跳合闸线圈损坏,回路不通。
3)断路器辅助接点DL出问题,同样引起外回路不通。
4)由开关机构箱引至控制回路的各种闭锁信号(如弹簧未储能、气压低闭锁等),引起控制回路断线。
注意:出现控制回路断线信号,若开关处于分闸状态,表明合闸回路有问题,不能合闸;若开关处于合闸状态,表明分闸回路有问题,不能分闸。
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
TWJ KKJ事故总信号事故总信号原理KKJ继电器实际上就是一个双圈磁保持的双位置继电器。
该继电器有一动作线圈和复归线圈,当动作线圈加上一个“触发”动作电压后,接点闭合。
此时如果线圈失电,接点也会维持原闭合状态,直至复归线圈上加上一个动作电压,接点才会返回。
当然这时如果线圈失电,接点也会维持原打开状态。
手动/遥控合闸时启动KKJ的动作线圈,手动/遥控分闸时启动KKJ的复归线圈,而保护跳闸则不启动复归线圈。
断路器控制回路断线分析及运行隔离对策
断路器控制回路断线分析及运行隔离对策摘要:本文主要对对断路器控制回路的简要概述出发,分析了断路器出现控制回路断线信号出现的原因,并根据实际的情况提出处理方法及相应的对策,以供参考。
关键词:断路器;控制回路;对策1、断路器控制回路原理断路器的分、合闸是通过保护装置与断路器本身的分、合闸回路构成的,如图1。
断路器手动合闸或远方合闸时,合闸回路接通,合闸线圈励磁,启动断路器操动机构,同时合闸保持继电器励磁,接通合闸保持回路,直到断路器合上后串接于合闸回路的断路器常闭节点打开,断开合闸回路,完成合闸的流程操作。
当手动跳闸亦或保护跳闸时,一样道理,跳闸回路接通,随即跳闸线圈励磁,启动断路器操动机制,同时跳闸保持继电器励磁,接通跳闸保持回路,直到断路器分开后串接于跳闸回路的断路器常闭节点打开后,断开跳闸回路,完成跳闸的系列操作。
2、断路器控制回路断线的原因分析2.1控制电源空开跳开TWJ、HWJ失磁,TWJ和HWJ常闭接点闭合,发信回路接通,控制回路断线信号报出。
控制回路断线信号并不能监视整个控制回路的完好性,在目前的情况下,基于厂家的设计,控制回路断线信号仅仅是监视保护屏外二次回路及开关机构箱内部回路的完好性。
没有控制回路断线信号报出,并不能说明整个回路没有问题。
导致控制电源空开跳开有多方面原因造成的:控制回路绝缘不良;线圈阻值严重偏小,根据处理相关问题的经验,发现有的线圈有匝间短路现象,阻值在10Ω甚至更小值。
2.2分、合闸线圈损坏,回路不通在对高压断路器的操作过程中,跳、合闸线圈烧毁的情况时有发生。
目前的微机保护控制回路大部分都带有分、合闸自保持回路,不论是手动操作,还是自动操作。
只要分闸或合闸命令发出以后,分闸或合闸回路就一直处于自保持状态,直到断路器断开或合上以后,依靠断路器辅助接点的切换,断开分闸或合闸回路合闸电流。
如果断路器由于种种原因没有断开或合上,或者是分开或合上以后断路器辅助接点没有切换到位,则分闸或合闸保持回路将一直处于保持状态,这样一直持续下去,将会把分闸或合闸线圈烧毁,对于电磁机构,将会同时烧毁合闸接触器线圈与合闸线圈。
控制回路断线、事故总信号原理
精心整理
控制回路断线原理
控制回路断线信号是由跳位继电器(TWJ)常闭触点与合位继电器(HWJ)常闭触点串联构成的。
正常情况下,TWJ及HWJ其中一个励磁,一个失磁,故常闭触点也
必须指出:当开关在合闭状态,合闸回路的完整性被破坏时,或开关在跳闸状态,跳闸回路的完整性被破坏时,不能报出控制回路断线信号。
对开关进行分、合闸时,由于位置继电器的触点切换并不是完全同步
精心整理
的,如开关由分到合,TWJ的常闭触点已经闭合,而HWJ的常闭触点还没有打开,中间一般会有几十个毫秒两者都闭合的情况,如果不加判断延时,则会误报控制回路断线,监控人员对开关进行遥控分、合闸时也时常会有控制回路断线发上来,但又马上复归的情况,就是因为位置继电器的触点切换不同步造成的。
KKJ继电器复归,也会发事故总信号。
手合/遥合开关时由于TWJ返回较慢,当KKJ=1后,TWJ还持续几十毫秒,导致会发事故总信号,AVC系统对变电所内电容器进行合闸时,时常有单独的事故总信号发上来。
RCS941控制回路图。
控制回路断线的原理
控制回路断线的原理嘿,朋友们!今天咱来唠唠控制回路断线这档子事儿。
你说这控制回路啊,就好比是一条看不见的线,把各种设备啊、零件啊串在一起,让它们能协调有序地工作。
那要是这线断了,会咋样呢?这就好比是一个乐队在演奏的时候,突然有根琴弦断了,那整个节奏不就乱套啦!比如说吧,在一个工厂里,那些机器设备都靠控制回路来指挥行动呢。
要是回路断线了,机器可能就会“犯迷糊”,不知道该干啥啦。
它可能会突然停下来,让整个生产都卡住;或者呢,它可能会乱动乱跑,搞出一些让人哭笑不得的状况。
你想想看,要是家里的电灯开关的控制回路断了线,你按开关,灯却不亮,那多让人郁闷啊!就好像你满心欢喜地想去开灯,结果灯却跟你“赌气”,就是不亮,你说气不气人!控制回路断线有时候就像个调皮的小孩子,时不时地就来捣乱一下。
它可能隐藏得很深,让你很难一下子就找到它。
这就需要我们像侦探一样,细心地去排查,一点一点地找线索。
咱可以从源头开始找起呀,看看那些连接线是不是松了呀,有没有被什么东西给弄断啦。
有时候可能就是一个小小的螺丝没拧紧,就引发了大问题呢。
这就跟盖房子似的,一块砖没放好,可能整面墙都不稳啦。
然后再看看那些传感器啊、继电器啊之类的元件,它们是不是正常工作呢。
它们就像是控制回路的“小兵”,要是有个“小兵”出了问题,那整个队伍不就乱啦。
这控制回路断线啊,可不能小瞧了它。
它虽然看起来是个小问题,但要是不及时处理,可能会引发大麻烦呢。
就好像是身体里的一个小毛病,你不重视它,最后可能会变成大病。
所以啊,我们平时可得多留意,多检查。
一旦发现有啥不对劲的地方,就得赶紧去处理。
别等问题变大了才后悔莫及呀。
总之呢,控制回路断线这事儿可大可小,关键就看我们怎么对待它。
我们要像爱护自己的宝贝一样爱护这些设备,让它们能好好地为我们工作。
这样我们的生活和工作才能顺顺利利的呀,你们说是不是这个理儿?原创不易,请尊重原创,谢谢!。
控制回路断线的处理过程
控制回路断线的处理过程当控制回路发生断线时,需要适时进行修复和处理,以确保系统的正常运行。
以下是一种常见的处理过程:1.检测断线位置:首先,需要确定控制回路的断线位置,以便进行接下来的处理。
可以使用测试仪器或对系统进行视觉检查来定位问题。
2.暂停系统操作:一旦发现断线,操作人员应立即停止系统的运行,以避免不可预测的事故和损坏。
3.制定修复计划:根据断线位置的确定,制定修复计划。
这可能涉及更换损坏或断线的电线、电缆或插头,修复连接点或更换控制装置等。
4.断电与放电:在开始修复前,需要确保系统已经断电,并进行放电。
这是为了避免电流对操作人员的伤害,并确保修复过程能安全进行。
5.更换电线或电缆:如果发现电线或电缆损坏或破裂,应用相同类型的电线或电缆进行更换。
确保正确地连接每个导线端点,并使用绝缘胶带进行包裹,以确保电线之间的绝缘和固定。
6.修复连接点:如果问题出现在连接点处,例如插头或插座等,应检查连接点的接触是否正常。
如果发现氧化或腐蚀,应使用适当的清洁剂或研磨工具进行清理,并确保连接紧固。
7.更换控制装置:如果控制回路的问题出现在控制装置上,例如继电器或开关等,可能需要更换这些部件。
在更换前,操作人员需要确保已经找到适当的替代部件,并且了解正确的安装方法。
8.测试和验收:一旦修复完成,应对整个控制回路进行测试以验证其正常运行。
可以使用测试仪器来检测信号传输和电流流动等。
同时,还需要确保系统的操作人员和维护人员都了解修复的结果和相应的操作流程。
9.文件记录:对于所有的修复过程,应及时记录下来,包括断线位置、修复步骤和测试结果等。
这有助于未来的维护和故障排除,并确保在类似问题发生时能够快速有效地解决。
总之,控制回路断线是一个常见的问题,需要快速而准确地进行处理。
通过按照上述步骤进行处理,可以保证系统正常运行,并及时恢复到正常状态。
同时,定期的维护和检查也是预防断线问题的重要措施。
控制回路断线原理
控制回路断线原理今天咱们来唠唠控制回路断线这个事儿。
这控制回路啊,就像是一个小团队里的联络线一样,要是断了,那可就麻烦啦。
咱们先从控制回路是啥说起吧。
你可以把控制回路想象成一个超级复杂的传声筒链条。
比如说,在一个大工厂里,有各种各样的设备,这些设备就像一群听话的小宠物,但是它们得有人指挥才能好好干活呀。
这个指挥的线路就是控制回路啦。
它从控制中心出发,经过好多好多小零件,像什么继电器啦、开关啦,最后到达设备那里,告诉设备该怎么动,是启动呢,还是停止呢。
那为啥会断线呢?这原因可就像调皮的小鬼一样多。
有时候啊,是那些连接的电线太脆弱啦。
就像咱们平时用的小细绳,要是老是被拉来拉去,或者被什么尖锐的东西划到,那就很容易断啦。
在控制回路里,要是设备老是晃悠,或者周围环境里有一些尖锐的边角,电线就可能被弄断。
还有哦,电线的接头那里也很容易出问题。
你想啊,接头就像是两个人拉手,如果没有拉稳,稍微有点风吹草动就松开了,那这回路不就断了嘛。
这可能是因为安装的时候就没接好,或者时间长了,被氧化啦,就像铁生锈一样,变得松松垮垮的。
再说说那些小零件的问题吧。
继电器可是控制回路里的大忙人呢。
它就像一个小管家,负责传递信号。
但是这个小管家要是生病了,比如说里面的线圈烧坏了,那就不能正常工作啦。
这就好比小管家突然聋了,听不到控制中心的指令,也没法把指令传给设备,那这回路在它这儿就相当于断了线。
还有开关呢,开关要是坏了,就像一扇门怎么也打不开或者关不上,信号就被卡在那儿,过不去了,这也会导致控制回路断线。
控制回路断线之后啊,可就乱套了。
设备就像突然没了主心骨,不知道该干啥了。
比如说一个大电机,本来好好地按照控制回路的指令在转呢,突然回路断了,它可能就停在那儿不动了,或者更糟糕的是,处于一种很危险的半工作状态。
这就像一个人跑步的时候突然被抽走了灵魂,要么就直接瘫倒,要么就姿势怪异得让人担心。
那怎么才能发现控制回路断线了呢?这就需要一些小机灵鬼来帮忙啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位置继电器除了提供位置指示外,还有一个重要作用是监视控制回路是否完好。
因为正常情况下,不论开关处于何状态,TWJ和HWJ必有一个带电,状态为1。
如果全为0,则代表控制回路异常,也即我们常说的控制回路断线。
按照部颁技术要求,必须监视跳闸回路(相比而言,跳闸回路断线要比合闸回路断线后果严重的多)。
这也是HWJ线圈负端没有引出装置直接在内部就和跳闸回路并在一起的原因(9661/RCS941的操作回路,HWJ负也单独引出装置,主要是为了配合开关的方便)。
TWJ负端单独引出,主要是为了同不同类型开关控制回路配合(比如防跳),但常规设计上,一般也在端子排上直接同合闸回路并接。
装置产生的控制回路断线信号=TWJ常闭接点+HWJ常闭接点。
无论是通讯还是硬接点输出的该信号,都加了3S的判断延时。
主要是因为断路器常开和常闭触点并不是完全同步的。
比如开关由分到合,常闭触点(TWJ)打开时,常开触点(HWJ)还没有闭合,中间一般会有几十个毫秒两者都为0的情况,如果不加判断延时,则会误报控制回路断线。
注意对主变各侧开关的控制回路断线,同上文所讲事故总信号采集一样,是通过测控装置(出厂设计一般是本侧后备保护的开入2)采集操作回路的硬接点输出。
硬接点信号开出是没有任何时间延时的,为了避免因为TWJ和HWJ不同步误发控制回路断线信号,现场要通过增加该开入采集的遥信去抖时间来躲过这段时间,一般可设为0.3S。
控制回路断线就是TWJ与HWJ两个常闭节点同时闭合就会发。
也就是两个节点与的关系。
主要用于监视控制回路是否完好。
在开关节点转换的过程中也有可能会报出控制回路断线(只是短时报)。
4.双机切换功能测试:
1) 双机切换功能测试。
具体根据《NSC 总控双机切换功能测试报告》中的双机切换测试内容进行验证性测试;检查切换过程发生的双机通讯中断信号、网络故障信号是否上送到调度。
2) 固定时间段15 分钟内,发生5 次切换闭锁功能测试。
在15 分钟内,总控切换次数大于5 次时将会发生“双机切换次数达到限制值”告警信号,检查调度是否正确收到该信号。
3) 雪崩功能测试。
具体根据《NSC 总控双机切换功能测试报告》中的雪崩测试内容进行验证性测试;需要注意提醒用户将测试的信号点分别接在多个不同的装置上(例如10x3,即10 个装置每个装置接3 个测试信号点),并且所接的测试信号点都已经转发调度。
4) 双机切换过程信号不丢失测试。
在双机切换的过程中发生大量雪崩信号,待切换完成后,检查调度接收的SOE 记录个数是否与实际发生的个数一致。
5) 双通道切换过程信号不丢失测试。
在发生雪崩时,切换调度的主备通道,待全部信号上送调度后,检查调度接收的SOE 记录个数是否与实际发生的个数一致。