固态相变
固态相变原理
固态相变原理
固态相变是指物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。
在固态相变中,原子或分子重新排列,从而改变了物质的性质。
固态相变是固体物理学中的重要研究对象,对于材料科学和工程技术具有重要的意义。
固态相变的原理主要包括热力学和动力学两个方面。
热力学描述了相变过程中
物质内部的能量变化和熵变化,而动力学则描述了相变过程中原子或分子的运动和排列。
在热力学方面,相变需要克服能量壁垒,使得原子或分子从一个稳定的晶体结构转变为另一个稳定的晶体结构。
而在动力学方面,相变的速率取决于原子或分子的扩散和重新排列速度。
固态相变可以分为一级相变和二级相变两种类型。
一级相变是指在相变过程中
伴随着热量的吸收或释放,如固液相变和固气相变;而二级相变则是在相变过程中不伴随热量的吸收或释放,如铁磁相变和铁电相变。
不同类型的相变具有不同的热力学和动力学特性,因此需要采用不同的方法和技术来研究和应用。
固态相变在材料科学和工程技术中具有广泛的应用。
例如,通过控制金属材料
的固态相变,可以改变材料的硬度、强度和导电性能,从而实现对材料性能的调控。
另外,固态相变还可以应用于存储技术、传感器技术和能源材料等领域,为现代科学技术的发展提供了重要支撑。
总之,固态相变是固体物理学中的重要研究内容,对材料科学和工程技术具有
重要的意义。
通过深入研究固态相变的原理和特性,可以为材料的设计、制备和应用提供重要的理论和技术支持。
希望在未来的研究中,固态相变能够得到更加深入和全面的理解,为人类社会的发展做出更大的贡献。
固态相变初步
第六章 固态相变初步固态相变是从固相到固相的转变,即反应相和生成相均是固态。
固态相变的生成相可能是平衡相, 也可能是亚稳相;可能是稳态组织,也可能是亚稳态组织。
即:稳态组织,平衡相 固态相变的产物 亚稳态组织,平衡相 亚稳态组织,亚稳相 固态相变可分为两大类:扩散型相变和非扩散型相变 6.1 扩散型相变扩散型相变有五种:1)沉淀 (脱溶、析出)相变 新相从母相中沉淀析出 β α脱溶相变一般都是经过形核和长大两个过程,与结晶过程相似。
2) 共析分解γ α+β典型实例:珠光体转变3) 调幅分解α α1+α2特征:1、α、α1、α2结构相同,点阵常数不同 2、没有形核过程3、成分分布呈调幅波 (图1、图2)形成条件: 从化学成分的角度,调幅分解必需发生在G -X 曲线的拐点内(化学调幅),如图3所示。
图1图2图34) 块状转变 (图4、图5)βα 不同于脱溶晶界形核,快速长大,形貌无规则(图4)图55) 有序化转变 分两种类型(图6):一种有形核(有序畴)长大过程属一级相变(图7),另一种没有形核长大过程 (图8),属二级相变。
图6 图7 图8 6.2 沉淀相变从组织的角度,沉淀相变可分为连续沉淀和非连续沉淀,连续沉淀的生成相可能是稳态组织,也可能是非稳态组织。
从工艺的角度,沉淀相变可以在冷却过程中发生,也可以在时效过程中发生。
所谓时效是指将材料置于一定的温度下保温。
时效分人工时效和自然时效。
后者是在室温下自然放置,前者则是人为地将材料置于设定的温度,时效的时间根据时效时间和材料性能之间的关系而决定。
因此,在工业上也有时效相变的说法。
沉淀相变的分类方法可参看图9.图96.2.1连续沉淀和非连续沉淀 (1) 连续沉淀一般情况下脱溶是以连续沉淀的方式进行的连续脱溶的形核大多数是非均匀形核(因为晶体内部存在大量缺陷),形核借助于缺陷,因此可能的形核位置有,晶界、位错、和空位。
如:高温合金中的γ’相。
(图10) 脱溶相呈均匀分布一般不是均匀形核。
固态相变
非连续脱溶与连续脱溶的主要区别: 连续脱溶属于长程扩散,非连续脱溶属于短程 扩散。 非连续脱溶的产物主要集中于晶界上,并形成 胞状物;连续脱溶的产物主要集中于晶粒内部, 较为均匀。
36
四、调幅分解(Spinodal Decomposition) 调幅分解(也称为增幅分解)是指过饱和固溶 体在一定温度下分解成结构相同、成分不同两 个相的过程。
20
3)空位对形核 促进扩散
空位形核 被新相生成处空位消失,提供能量 空位群可凝结成位错 (在过饱和固溶体的脱溶析出过程
中, 空位作用更明显。)
21
第三节 固态相变的的晶核长大
扩散
长大
切变
界面控制
相界面附近 原子的短程 迁移进行
扩散控制
原子的长 程扩散完 成
一、长大机制 共格、半共格界面的晶核,长大方式不同。 实际长大的界面:非共格和半共格界面。
22
1.非共格界面的迁移 非共格界面的迁移方式有两种。 1)直接迁移模式:母相原子通过热激活越过界 面不断地短程迁入新相,界面随之向母相中迁 移,新相长大。 2)原子迁移至新相台阶端部:
23
2 半共格界面的长大
1)切变长大
界面长大通过半共格界面上母相一侧的原子的 均匀切变完成,大量原子沿着某个方向作小间 距的迁移并保持原有的相邻关系不变。——协 同型长大。
7
2 半共格界面 3 非共格界面
8
二、位向关系 固态相变中,新相常与低指数、原子密度大且 彼此匹配较佳的晶面互相平行,借以减小新相 与母相之间的界面能。典型的关系是K-S关系。 {111}γ//{110}α,<110>γ//<111>α 表明晶体发生固态相变时新相和母相存在特定 的关系。
5. 固态相变
α
∂ G ≠ ∂p 2 T
2
β
T
∂ G ∂ G ≠ ∂T∂p ∂T∂p
2 2
α
β
由于
cp ∂ 2G ∂S 2 = − =− ∂T T p ∂T p
迁移使点阵发生改组。马氏体转变 固态相变不一定都属于单纯的扩散型或非扩散 型。
3. 按相变方式分类 有核相变和无核相变
有核相变:有形核阶段, (1)有核相变:有形核阶段,新相核心可均匀形 也可择优形成。大多数固态相变属于此类。 成,也可择优形成。大多数固态相变属于此类。 (2)无核相变:无形核阶段,通过扩散偏聚的方 无核相变:无形核阶段, 式进行。以成分起伏作为开端, 式进行。以成分起伏作为开端,新旧相间无明显界 如调幅分解。 面,如调幅分解。
第五章
固态相变
第一节
总论
固态相变的定义:
固体材料的组织、结构在温度、压力、成分改 变时所发生的转变统称为固态相变。
一、固态相变的特点
驱动力: 大多数固态相变是通过形核和长大完 成的,驱动力是新相和母相的自由焓之差。 阻力: 界面能和应变能。
1. 相界面
a) 共格界面
b) 半共格界面
c) 非共格界面
晶粒1 晶粒2
新相
非共格界面 晶界
共格或半共格界面
晶界形核示意图
四、晶核的长大 1. 晶核长大的方式 “平民式”散漫无序位移 非协同型长大 “军队式”有序位移 协同型长大 2. 晶核长大类型
• 成分不变协同型长大 • 成分不变非协同型长大 • 成分改变协同型长大 • 成分改变非协同型长大 前两类无需溶质原子扩散,长大速度仅与界面点 阵重构过程有关,故晶核长大速度很快。
固态相变知识点总结
固态相变知识点总结固态相变(solid state phase transition)是指物质在固态下,由于温度、压力等外界条件的变化,使得物质的晶体结构和性质发生显著变化的现象。
固态相变分为一级相变和二级相变两种类型,其中一级相变又称为凝固、熔化或者升华相变,而二级相变则包括了铁磁性转变、铁电性转变、铁弹性转变等多种类别。
一级相变是指固态物质在相变过程中伴随着传热的明显变化,其自由能函数在温度、压力和摩尔体积或摩尔焓差范围内不连续变化。
一级相变包括了凝固、熔化和升华三种基本类型。
凝固是物质由液态转变为固态的一种相变过程。
在凝固的过程中,液体的分子排列变得有序,形成规则的晶体结构。
凝固点是物质在一定压力下的温度,当温度降低达到凝固点时,液体开始凝固。
熔化是物质由固态转变为液态的一种相变过程。
在熔化的过程中,固体的晶体结构破坏,分子之间的相互作用减弱,形成无序排列的分子结构。
熔点是物质在一定压力下的温度,当温度升高达到熔点时,固体开始熔化。
升华是物质由固态转变为气态的一种相变过程。
在升华的过程中,固体的晶体结构破坏,分子之间的相互作用减弱,形成无序排列的分子结构。
升华点是物质在一定压力下的温度,当温度升高达到升华点时,固体开始升华。
与一级相变不同,二级相变是指固态物质在相变过程中没有明显的传热变化,其自由能函数在温度、压力和摩尔体积或摩尔焓差范围内连续变化。
二级相变包括了铁磁性转变、铁电性转变和铁弹性转变等多种类型。
铁磁性转变是指在一定温度下,物质由铁磁相转变为顺磁相或者反铁磁相的一种相变过程。
铁磁性转变常伴随着磁滞回线的出现,磁化强度和温度之间存在明显的关联。
铁电性转变是指在一定温度下,物质由铁电相转变为非铁电相的一种相变过程。
铁电性转变常伴随着电滞回线的出现,电极化强度和温度之间存在明显的关联。
铁弹性转变是指在一定温度下,物质由弹性相转变为非弹性相的一种相变过程。
铁弹性转变常伴随着应力-应变曲线的出现,应力和温度之间存在明显的关联。
材料科学基础第8章固态相变
第二节 固态相变的形核与长大
二 非均匀形核(能量条件) 2 非均匀形核的能力变化 △ G=-V△Gv+S+ V-△GD △GD-晶体缺陷导致系统降低的能量。
第三节 固态相变的晶核长大
三 常见固态相变类型 相变名称
同素异构转变 多型性转变 脱溶转变 共析转变 包析转变 马氏体转变 贝氏体转变 调幅分解 有序化转变
相变特征
同一种元素通过形核与长大发生晶体结构的变化 合金中晶体结构的变化 过饱和固溶体脱溶分解出亚稳定或稳定的第二相 一个固相转变为两个结构不同的固相 两个不同结构的固相转变为一个新的固相,组织中一般 有某相残余 新旧相之间成分不变、切变进行、有严格位向关系、有 浮凸效应 兼具马氏体和扩散转变的特点,借助铁的切变和碳的扩 散进行 非形核转变,固溶体分解成结构相同但成分不同的两相 合金元素原子从无规则排列到有规则排列,担结构不变。
3.惯习现象
* 新相沿特定的晶向在母相特定晶面上形成。
惯习方向 (母相) 惯习面
原因:沿应变能最小的方向和界面能最低的界 面发展。
4 母相晶体缺陷促进相变
缺陷类型
点… 线… 晶格畸变、自由能高,促进形核及相变。 面…
5 易出现过渡相
* 固态相变阻力大,直接转变困难 协调性中间产物(过渡相) +Fe3C +(3Fe+C) 例 M +Fe3C
第二节 固态相变的形核与长大
三 晶核的长大
(3)相变动力学 f第三节 过饱和固溶体的分解
一 脱溶(时效)转变
1 概念:脱溶转变 2 脱溶转变过程 相的名称-形貌-尺寸-结构-点阵常数-共格关系 -强化作用 3 脱溶动力学
材料科学基础-固态相变
固态相变
非均匀形核的形核率及受扩散控制的长 大速率随时间而变化,此类相变的动力 学用Avrami方程描述:f(τ)=1exp(-Bτn)固态相变
2. 等温转变动力学图
100%
T2
T3
转
变
体
积 50%
分
数
0
温 度
固态相变
T1>T2>T3 T1
时间 T1 T2 T3 时间
扩散型相变, 非扩散型相变 扩散型相变
脱溶沉淀、调幅分解、共析转变等
非扩散型相变
原子(或离子)仅作有规则的迁移使点阵 发生改组。 马氏体转变
固态相变不一定都属于单纯的扩散型
或非扩散型。 见表8-1
固态相变
3. 按相变方式分类 有核相变和无核相变 无核相变
通过扩散偏聚的方式进行的相变,为无核相变。 调幅分解
C曲线的鼻子温度
固态相变
r △G
△G在r=r*时达到极大值,这里 r*=-2γαβ/(△GV+△GE)
固态相变
形成临界晶核必须
△G
首先克服形核势垒
4πr2γαβ
△G*, △G*称为临
界晶核的形核功
△G*= 16
3
3
GV GE 2
γαβ、 △GE减小,均
可降低△G*,有利
于新相形核。
△G* 0
r*
4πr3(△GV+△GE)/3
T
2G Tp
2G Tp
固态相变
由于
2G T 2
p
S T
p
cp T
2G p 2
T
V
2G Tp
V
材料科学基础固态相变PPT课件
固态相变
《材料科学基础》第八章
固态相变 1
第四章第一节
固态相变总论
《材料科学基础》第八章 第一节
固态相变 2
固态相变的定义:
固体材料的组织、结构在温度、压力、成 分改变时所发生的转变统称为固态相变。
一、固态相变的特点
大多数固态相变是通过形核和长大完成的, 驱动力同样是新相和母相的自由焓之差。 阻力: 界面能和应变能
V
所以 Sα≠Sβ, Vα≠Vβ
一级相变有体积和熵的突变, △V≠0,△S≠0
固态相变
7
二级相变:
若相变时,Gα=Gβ,μαi=μβi ,并且自由焓的 一阶偏导数也相等,但自由焓的二阶偏导数 不相等,称为二级相变。
G T
p
G T
p
G p
T
G p
T
固态相变
8
2TG2
p
2G T2
固态相变
19
3. 晶核长大控制因素
对于冷却过程中发生的相变,当相变 温度较高时原子扩散速率较快,但过 冷度和相变驱动力较小,晶核长大速 率的控制因素是相变驱动力;相变温 度较低时,过冷度和相变驱动力较大, 原子的扩散速率将成为晶核长大的控 制因素。
固态相变
20
<1>受界面过程控制的晶核长大 过冷度较小时,新相长大速率u与驱动力 △G成正比;过冷度较大时,长大速率随温 度下降而单调下降。
γαβ
θ β
rθ
△G=V△GV+Aαβγαβ +V△GE -Aααγαα
固态相变
界面形核示意图
16
推导出:
r* =-2γαβ/(△GV+△GE)
△G*非=△G*均 f( θ)
材料科学基础_第6章_固态相变的基本原理
,随着温度的降低,即过冷度的增大,相变驱动力增大, 相变速度加快;但是当过冷度增大到一定程度,扩散称为 决定性因素,进一步增大过冷度,反而使得相变速度减小 。
15
➢ ①共格界面:当界面上的原子所占据的位置恰好是两相点 阵的共有位置时,两相在界面上的原子可以一对一地相互 匹配 。
➢ ②半共格界面:如果一相的某一晶面上的原子排列和另一 相的某晶面的原子排列不能达到完全相同,但相近,这样 形成的界面在小区域内可以利用少量得到弹性变形来维持 共格关系,适当利用位错的半原子面来进行补偿,达到能 量较低。
9
2). 非扩散型(位移型): 在相变过程中没有原子的扩散运动,相变前后没有成分
的变化,原子以切变的方式,即相对周围原子发生有规律 的少量的偏移,基本维持原来的相邻关系,而发生晶体结 构的改变。
新旧相的界面有共格 马氏体相变就是属于非扩散型相变。
10
3).过度型相变: 介于二者之间的,具有扩散型和非扩散型的综合特征Hale Waihona Puke 2T 2P
( S T
)P
CP T
CP等压热容
2 1
P 2
T
22
P 2
T
2
P2
T
V V
V ( P )T
VB
B压缩系数
2 1
TP
22
TP
2
TP
V V
( V T
)P
VA
A膨胀系数
7
二级相变
V V ,S S CP CP , B B , A A
固态相变的原理及应用
固态相变的原理及应用1. 引言固态相变是指物质在不改变其化学组成的情况下,在一定条件下发生物理性质的显著变化,包括液固相变、固固相变等。
本文将介绍固态相变的原理及其在科学研究和工程应用中的重要性。
2. 固态相变的原理固态相变的原理主要涉及分子间相互作用、晶体结构和热力学的变化。
以下是固态相变的一些常见原理:2.1 同质固态相变同质固态相变是指在同一物质中固态结构的变化。
它可以由温度、压力、外界场等因素引起。
•温度引起的同质固态相变:温度的升降可以改变固体分子的平均振动能量,从而改变其固态结构。
例如,冰的固态结构在低温下是稳定的,但在高温下会发生相变为液态的水。
•压力引起的同质固态相变:压力的增加可以改变固态相对稳定的结构,使其发生相变。
例如,某些材料在高压下可以发生相变为更稳定的结晶形态。
•外界场引起的同质固态相变:外界场包括电场、磁场、光场等,它们可以改变固态相之间的平衡态,从而引起相变。
2.2 异质固态相变异质固态相变是指在不同组分或不同结构的物质之间发生的相变。
以下是几个常见的异质固态相变原理:•共晶相变:指两种或多种成分在一定温度下发生相变。
例如,凝固过程中的合金共晶相变。
•共熔相变:指两种或多种成分在一定温度下熔化,并形成单一相。
例如,某些合金在特定温度下可以共熔。
•嵌段共聚物相变:指由于共聚物分子中不同段之间的相互作用力的不同,导致其发生异质结构相变的现象。
3. 固态相变的应用固态相变在科学研究和工程应用中具有广泛的应用价值。
以下是固态相变在不同领域中的一些应用:3.1 材料工程•形状记忆合金:由于固态相变的特性,一些合金材料具有形状记忆效应,可以在温度改变的条件下恢复到原来的形状。
这种特性使得形状记忆合金可以应用于医疗器械、航空航天等领域。
•热致变色材料:某些固态相变材料在温度变化时会发生颜色的变化。
这种特性使得热致变色材料可以用于温度测量和显示器件。
3.2 能源领域•储能材料:固态相变材料可以作为储能材料,通过在相变时释放储存的能量。
固态相变
固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部或结构会发生变化,即发生从一种相状态到另一种相状态的的转变,这种转变成为固态相变。
热力学分类一级相变:想便是新旧两厢的化学势相等,但化学势的一级偏微商不等的相变二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微商也相等,但化学势的二级偏微商不等的相变平衡状态分类平衡相变:在缓慢加热或冷却时所发生的能获得负荷平衡状态图的平衡组织的相变1同素异构转变和多形转变:纯金属在温度和压力改变时,由一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。
2平衡脱溶沉淀:在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程3共析相变:合金在冷却时由一个固相分解为两个不同固相的转变4调幅分解:某些合金在高温下具有均匀单项固溶体,但冷却到某一温度范围时可分解成为与原固溶体结构相同但成分不同的两个微区如α→α1+α2。
5有序化转变:固溶体中,各组元原子在晶体点阵中的相对位置由无序到有序的转变(长程有序)非平衡相变:托加热或冷却速度很快,平衡相变将被抑制,固态材料可能发生某些平衡状态图上不可能反映的转变并获得被称为不平衡或亚稳态的组织的转变1伪共析相变:Fe-C为例,转变过程和转变产物类似于共析相变,但转变产物中铁素体量与渗碳体量的比值不是定值,而是随奥氏体含量变化而变化2马氏体相变:Fe-C合金为例,进一步提高冷却速度,使伪共析相变也来不及进行而将奥氏体过冷到更低温度,则由于在低温下铁原子和碳原子都已不能或不易扩散,故奥氏体只能一步发生源自扩散,不引起成分改变的方式,通过切变由γ点阵改组为α点阵的转变3贝氏体相变:铁原子不能扩散,但碳原子尚具有一定的扩散能力,因此出现了一种独特的碳原子扩散而铁原子不扩散的非平衡相变4非平衡脱溶沉淀:在室温或低于固溶度曲线MN的某一温度下溶质原子尚具有一定的扩散能力,则在上述温度等温时,过饱和α固溶体仍可能发生分解,逐渐析出新相,但在析出的初期阶段,新相的成分和结构均与平衡脱溶沉淀相有所不同原子迁移分类扩散相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变基本特点:1相变过程中由原子扩散,相变速率受原子扩散速度所控制2新相和母相的成分往往不同3只有因新相和母相比容不同而引起的提及变化,没有宏观形状改变非扩散型相变:想必那过程中原子不发生扩散,参与转变的所有原子的运动时协调一致的相变。
固态相变_(考试必备)
固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种相态的转变,这种转变称之为固态相变。
固态相变的阻力有哪些:金属固态相变时的相变阻力应包括界面能和弹性应变能两项。
当界面共格时,可以降低界面能,但使弹性应变能增大。
当界面不共格时,盘(片)状新相的弹性应变能最低,但界面能较高;而球状新相的界面能最低,但弹性应变能却最大。
为什么固态相变中出现过渡相?晶体缺陷对固态相变形核有什么影响?1.当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。
此时,过渡相往往具有界面能较低的共格界面或半共格界面,以降低形核功,使形核容易进行。
2.晶体缺陷是能量起伏、结构起伏和成分起伏最大的区域,在这些区域形核时,原子扩散激活能低,扩散速度快,相变应力容易被松弛。
在固态相变中,从能量的观点来看,均匀形核的形核功最大,空位形核次之,位错形核更次之,晶界非均匀形核的形核功最小。
为什么新相形成的时候,常常呈薄片状或针状?如果新相呈球状,新相与母相之间是否存在位相关系?①金属固态相变时,因新相与母相恶比容不同,可能发生体积变化,但由于受到周围母相的约束,新相不能自由膨胀产生弹性应变能。
而片状或针状的弹性应变能最小,所以新相形成时常常呈片状或针状 ②存在位相关系。
许多情况下,金属固态相变时,新相与母相之间往往存在一定的位相关系,且新相呈球状时与母相的弹性应变能最大,是由新、母相的比容不同或两相界面共格或半共格关系造成的,所以必然存在一定的位相关系。
TTT 曲线的建立:将不同温度下的等温转变开始时间和终了时间以及某些特定的转变量所对应的时间绘制在温度—时间半对数坐标系中,并将不同温度下的转变开始点和转变终了点以及转变50%点分别连接成曲线,则可得到过冷奥氏体等温转变图,即TTT 曲线。
固态相变知识点总结
固态相变知识点总结相变是物质在温度、压强或其他外部条件改变时,从一种物态转变为另一种物态的现象。
固态相变是指物质从固态状态转变到其他固态状态的过程,通常包括晶体-晶体相变和晶体-非晶相变,以及液晶-固体相变等。
固态相变是材料科学和固态物理领域的重要研究课题,掌握固态相变的基本原理和规律对于材料设计、制备和性能改进具有重要意义。
本文将从固态相变的基本概念、分类和特征等方面进行总结,并通过实例来说明固态相变的重要意义和应用。
一、固态相变的基本概念1. 固态相变是指物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。
固态相变是晶体学和固态物理学的重要研究课题,可以帮助我们深入了解物质的内部结构和性质。
2. 固态相变的基本特征包括晶格结构的改变、原子位置的重新排列、晶体的晶界和缺陷等。
固态相变通常伴随着能量的吸收或释放,使得固态物质的性能和特性发生变化。
3. 固态相变的驱动力包括温度、压强、外界场等,这些外部条件的改变可以引起晶体结构和性质的改变,从而产生相变现象。
4. 固态相变可以分为等温相变和非等温相变两种类型。
等温相变指的是在恒定温度下发生的相变过程,例如固态合金的热处理过程;非等温相变指的是在变化温度下发生的相变过程,例如冰的熔化过程。
二、固态相变的分类根据相变过程中晶体结构的改变和外部条件的影响,固态相变可以分为以下几种类型:1. 晶体-晶体相变:指的是物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。
晶体-晶体相变通常伴随着晶粒形状、大小和取向的变化,对材料的组织结构和性能产生重要影响。
2. 晶体-非晶相变:指的是物质在固态状态下由晶体结构转变为非晶结构的过程。
晶体-非晶相变可以发生在非晶态金属、非晶态合金和非晶态陶瓷等材料中,对于提高材料的强度、硬度和耐腐蚀性具有重要意义。
3. 液晶-固体相变:指的是液晶分子在固态基体中发生有序排列的过程。
液晶-固体相变广泛应用于液晶显示器、液晶材料和光学器件等领域。
固态相变名词解释
固态相变名词解释
固态相变:
固态相变是物质由一种形态变成另一种形态的过程,可分为凝固及融化两个过程。
当物质温度达到特定条件时,其内部结构发生改变,产生凝固及融化等物理现象。
固态相变一般发生在固态到液态或气态,称为融化,液态到固态,称为凝固,固态到气态,称为汽化,气态到固态,称为凝结。
凝固变态:凝固变态是某种物质由液体或气体状态变成固体状态的一种物理变化过程。
凝固变态是特定温度下,气体或液体随着温度的降低便可变成固体的物理变化。
凝固变态对比液体和气体,固体有着自己独特的结构,粒子由整体状态变为排列有序的晶格状态。
融化变态:融化变态是指某种物质由固体状态变成液体状态的一种物理变化过程。
融化时,物质中的原子和分子具有活动能,开始运动,由原来晶体状态变为液体态。
一般来说,融化变态可以受温度大小影响,温度过低会凝固,温度过高则会蒸发。
金属固态相变知识点总结
金属固态相变知识点总结一、金属固态相变概述金属的固态相变是指金属在固态下由于温度、压力等外部条件的变化而发生的结构变化。
金属的固态相变具有一定的规律性,可以通过实验和理论研究来预测和解释金属相变过程中的行为。
金属固态相变对于金属材料的性能和应用具有重要的影响,因此对金属固态相变进行深入的研究具有重要的意义。
二、金属固态相变类型1. 多种金属的固态相变类型金属的固态相变包括晶格变化、相变温度、相变形式等不同的类型,主要有以下几种类型:(1) α-β型固溶体相变α-β型固溶体相变是金属合金中比较常见的相变类型,指的是在金属合金中存在两种不同的固溶体相,分别为α相和β相。
这种相变类型在许多重要的金属合金中都有出现,如Fe-C合金、Ni-Cr合金等。
(2) 费氏体相变费氏体相变是一种典型的金属固态相变类型,指的是金属在一定温度下发生由奥氏体相向费氏体相转变的过程。
这种相变类型在一些铁素体不锈钢中尤为常见。
(3) 莫尔铂相变莫尔铂相变是一种金属固态相变类型,指的是金属在相变过程中由六方最密堆积(HCP)结构向立方最密堆积(FCC)结构的转变。
这种相变类型在一些贵金属合金中具有重要作用。
2. 典型金属的固态相变不同的金属在固态下的相变类型也有所不同,下面以常见的几种金属为例进行介绍:(1) 铁素体不锈钢的固态相变铁素体不锈钢是一种重要的金属材料,其固态相变主要包括奥氏体到费氏体的相变,以及费氏体到马氏体的相变。
这些相变在不锈钢的应用性能中具有重要的影响。
(2) 铝合金的固态相变铝合金是一种广泛应用的金属材料,其固态相变主要包括固溶体相变和析出相变。
这些相变对于铝合金的强度和耐腐蚀性能具有重要的影响。
(3) 镍基高温合金的固态相变镍基高温合金是一种用途广泛的高温合金,其固态相变主要包括γ'-γ''转变、析出相变等。
这些相变对于高温合金的高温强度和高温抗氧化性能具有重要的影响。
三、金属固态相变的影响因素金属的固态相变受到多种因素的影响,主要包括温度、压力、合金元素、晶体结构等因素。
固态相变
• (1)伪共析转变 某些非共析成分的奥氏体在快 速冷却到ES线和GS线的延长线以下的区域内所发 生的共析转变,转变产物与共析转变没有本质上 的区别,但伪共析转变产物两相比列不同
•
6
E G
S
MS
伪共析转变示意图
• (2)马氏体转变 奥氏体在过冷到MS以下的低温 区所发生的转变,转变后马氏体成分与母相相同, 但结构不同。
固态相变
Phase Transformation in solid State
1
1 固态相变概论
• 1.1基本概念 • 组元: 金属和合金最基本的、独立的物质 • 相:金属和合金中结构相同、成分和性能
均一并以界面相互分开的组成部分 • 相变:金属和合金中新产生的相称为新相,
导致新相产生的称为母相。母相向新相的 转变成为相变 • 固态相变:在固态状态下产生的相变
相中的转变,但固态相变是在固态状态下 发生的转变过程,由此固态相变与液态相 变相比既有相同的地方又有不同的地方。
• 相同的:相变驱动力都是新旧两相的自由 能差,相变都包含形核和长大两个基本过 程;
• 不同的:固态相变新相和母相都是固体, 与液态相变发生的结晶有显著的不同,主 要在如下几方面。
11
• 1.3.1 相变阻力大 • 固态相变新旧两相比容不同会引起体积变
5
• (6)调幅分解 某些高温下形成的均一固溶体缓 冷到某一温度,分解为结构与母相相同但成分不 同的微区转变:
•
α α 1 +α 2
• (7)有序化转变 在平衡条件下,固溶体中原子
位置由无序到有序的转变.
• 1.2.1.2 非平衡转变 在快速加热或冷却的条件 下,平衡转变受到抑制所发生的不符合平衡相图 上转变类型的转变,获得不平衡或亚稳态组织。
固态相变——精选推荐
固态相变广义来说,广义来说,物质中原子(或分子)的聚合状态发生变化的过程称为转变。
金属或合金发生转物质中原子(或分子)的聚合状态发生变化的过程称为转变。
金属或合金发生转变之后,新相与母相之间必然存在着某些差别,新相与母相之间必然存在着某些差别,这些差别或者表现在晶体结构上;这些差别或者表现在晶体结构上;这些差别或者表现在晶体结构上;或者表现或者表现在化学成分上(如调幅分解);或表现在表面能上(如粉末烧结);或表现在应变能上(冷变形金属的再结晶);或表现在界面能上;或表现在界面能上(如晶粒长大)(如晶粒长大);或几种差别兼而有之(如饱和固熔体的沉淀)。
从狭义来说,转变仅指具有晶体结构变化的相变。
固态相变的分类固态相变的类型及特征有以下几种:同素异构转变当温度或压力改变时,金属发生晶体结构的改变,但成分不变。
脱熔转变 在固熔度随温度下降而减小的合金中,经高温淬火所固定下来的过饱和固熔体,在适当条件下会发生第二相的脱熔过程,并在不同阶段形成偏聚区、亚稳定和稳定的第二相等。
有序-无序转变在一定成分范围的合金,高温时晶体结构中的原子呈无序排列,高温时晶体结构中的原子呈无序排列,而在低温时呈有序排列。
而在低温时呈有序排列。
这种转变随温度升高和下降是可逆的块型转变相变时晶体结构改变,但成分没有(或很少)改变,相变产物呈块型。
调幅分解 具有固熔体混合间隙的合金,当α →α1+α2时,它不需形核而自发地分解为晶体结构相同但成分不同的两相。
马氏体转变是一种无扩散型相变。
通过切变由一种晶体结构转变为另一种晶体结构,无成分变化。
贝氏体转变 同时具有无扩散和扩散型转变的特征,成分发生改变。
按原子迁移分类:扩散型相变,其特点是相变过程中原子进行扩散。
脱溶 共析有序化 块型转变 扩散型固态相变所涉及的各类相图无扩散型相变,其特点是相变过程中原子不扩散切变来完成。
如马氏体转变。
兼有扩散与无扩散的相变,兼有扩散与无扩散的相变,即同时具有上述两者中的某些特征,即同时具有上述两者中的某些特征,即同时具有上述两者中的某些特征,如相变时表面产生浮凸,成分发生改变,转变速率远比马氏体相变缓慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 固态相变与液固相变在形核、长大规律和组织等方面的主要区别。
答:固态相变形核要求有一个临界过冷度△Tc,只有当过冷度△T>△Tc时才满足相变热力学条件。
这是固态相变形核与液-固相变的根本区别。
相同:形核和长大规律相同,驱动力相同都存在相变阻力都是系统自组织的过程。
异处:不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。
固态相变阻力增加了应变能等,即固态相变中形核困难.
3.固态相变时为什么常常首先形成亚稳过渡相。
佳美试卷P31P33
(1)能量方面,所需要驱动力,平衡相大于过渡相,过渡相的界面能和应变能要低,形成有利于降低相变阻力。
(2)成分和结构方面。
过渡相在成分和结构更接近母相,两相易于形成共格或半共格界面,减少界面能,降低形核功,形核容易进行。
4.如何理解脱溶颗粒在粗化过程中的“小粒子溶解”和“大粒子长大”现象。
(1)粗化过程驱动力是界面能的降低当沉淀相越小,其中每个原子分到的界面能越多,化学势越高,与它处于平母相中的溶质原子浓度越高即c(r2)>c(r1)。
由此可见,在大粒子r1和小粒子r2之间体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度的作用下,大粒子通过吸收基体中的溶质而不断长大,小粒子要不断溶解收缩,放出溶质原子来维持这个扩散流。
所以出现了大粒子长大、小粒子溶解的现象
(2)
粗化过程中,小粒子溶解,大粒子长大,粒子总数减小,r增加。
小粒子溶解更快。
温度T升高,扩散系数D增大,使dr/dt增大。
所以当温度升高,大粒子长大更快,小粒子溶解更快。
5.如何理解调幅分解在热力学上无能垒,但在实际转变过程中有阻力。
(1)应变能,溶质溶剂原子尺寸不同
(2)梯度能,原子化学键结合
(3)相间点阵畸变
6.调幅分解与形核长大型脱溶转变的主要区别。
见佳美试卷P14 P34
7.如何从热力学角度理解马氏体相变的无扩散性。
8.在分析正火作用时,是应根据C曲线、CCT曲线,还是Fe-F3C相图?为什么?
以Al(2~4.5)%Cu合金为例,结合下图说明该合金脱溶过程规律和机理。
佳美P8
规律:
9.马氏体相变的特征 P40
10佳美P71
11.具备热弹性马氏体合金的必要条件和机理 P62
12.条幅分解,浓度波动方程佳美P7 P20 P34
13.Bain畸变和点阵不变
14.
15.
12.双球状更稳定。
(界面能,形核功)佳美P70
13.为什么温度太高太低,速度都很慢,中温时转变最快
条幅分解热力学条件,为什么无能垒有阻力
应变能(溶质溶剂源自尺寸不同),梯度能(原子化学键结合),相间点阵畸变。