LINGO软件与数学建模

合集下载

数学建模中的优秀软件——LINGO

数学建模中的优秀软件——LINGO

第9卷第3期2007年6月黄山学院学报JOurnal0fHuangshanUniVefsityVo】.9.NO.3Jun.2007数学建模中的优秀软件——LINGO周甄川(黄山学院数学系,安徽黄山245041)摘要:介绍了数学建模的相关概念、数学建模竞赛概况,探讨了LINGo系统的功能与特点,以及它在数学建模中的应用。

关键词:数学模型;数学建模;LlNGo系统中图分类号:TP319:0141.4文献标识码:A文章编号:1672—447x(2007)03—0112—03在对自然科学与社会科学许多课题的研究中,科学工作者常将事物的变化规律用特定的数学表达式的形式加以描述。

将寻求这种确定事物变化规律的过程称为“数学建模”。

而在数学建模以及全国大学生数学建模竞赛中,最常碰到的是一类决策问题,即在一系列限制条件下,寻求使某个或多个指标达到最大或最小,这种决策问题通常称为最优化问题【1】。

最优化理论是近几十年发展和形成的一门新兴的应用性学科。

它主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。

主要研究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。

它主要由决策变量、目标函数、约束条件三个要素组成。

当遇到的实际问题时即使建立了模型,找到了解的方法,对于较大的计算量也是望而却步,LINGo系列优化软件包就给我们提供了理想的选择。

1什么是数学建模数学建模(MatheImticalModelin曲‘11顾名思义就是建立数学模型以解决实际问题的过程。

它利用数学和计算机对实际问题进行分析研究,抽象出反映事物内在活动规律的数学关系表达式,通过对这些数学关系表达式的求解和反复验证,最终解决实际问题。

数学是所有自然科学的基础,随着计算机软硬件技术的迅速发展,数学建模和与之相伴的计算已逐渐成为工程设计的关键工具,并在人类社会实践活动中的众多领域内发挥着越来越重要的作用。

那么,什么是数学模型?如何建立数学模型?如何用数学模型解决实际问题呢?模型就是对事物的一种抽象。

LINGO在数学建模中的应用

LINGO在数学建模中的应用

一、LINGO简介LINGO[1]是美国LINDO系统公司开发的求解数学规划系列软件中你的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO的不同版本对模型的变量总数、非线性变量数目、整型变量数目和约束条件的数量做出不同的限制.LINGO的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强.(4)内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;(6)能方便地与EXCEL、数据库等其他软件交换数据.LINGO像其他软件一样,对他的语法有规定,LINGO的语法规定如下:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以字母开头,由字母、数字和下划线所组成,昌都不超过32个字符,不区分大小写;(3)每个语句必须以分号“;”结束,每行可以有多个语句,语句可以跨行;(4)如果对变量的取值范围没有特殊说明,则默认所有决策变量都非负;(5)LINGO模型以语句“MODEL”开头,以语句“END”结束,对于比较简单的模型,这这两个语句可以省略.LINGO提供了五十几个内部函数,使用这些函数可以大大减少编程工作量,这些函数都是以字符@开头,下面简单介绍其中的集合操作函数和变量定界函数及用法.集合是LINGO建模语言中最重要的概念,使用集合操作函数能够实现强大的功能,LINGO提供的常用集合操作函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等.@FOR(s:e)常用在约束条件中,表示对集合s中的每个成员都生成一个约束条件表达式,表达式的具体形式由参数e描述;@SUM(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值的和;@MAX(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最大值;@MIN(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最小值.LINGO默认变量的取值可以从零到正无穷大,变量定界函数可以改变默认状态,如对整数规划,限定变量取整数,对0-1规划,限定变量取0 1或.LINGO提供的变量定界函数有:@BIN(X)、@BND(L,X,U)、@GIN(X)、@FREE(X).@BIN(X)限定X为0或1,在0-1规划中特别有用;@GIN(X)限定X为整数,在整数规划中特别有用;@BND(L,X,U)限定L<X<U,可用作约束条件;@FREE(X)取消对X的限定,即X可以取任意实数.二、LINGO 在线性规划中的应用具有下列三个特征的问题称为线性规划问题(Linear program)[2]简称LP 问题,其数学模型称为线性规划(LP)模型.线性规划问题数学模型的一般形式为:求一组变量(1,2,,)j x j n =的值,使其满足1122max(min),n n z c x c x c x =+++2111122111211222221122***.0,1,2,,,,..n j n n n n nn nn n n x j na x a x a xb a x a x a x b s t a x a x a x b ⎧⎪⎪⎪⎨⎪⎪≥=⎪⎩+++++++++ 式中“*”代表“≥”、“ ≥”或“=”.上述模型可简写为1max(min),nj j j z c x ==∑1*0,1,2,,,1,2,,..nij j j ji a x x j n b i ms t =⎧⎪⎨⎪≥=⎩=∑其中,变量j x 称为决策变量,函数1nj jj z c x==∑称为目标函数,条件1*nj jij c x b =∑称为约束条件,0j x ≥ 称为非负约束.在经济问题中,又称j c 为价值系数,i b 为资源限量. 线性规划在科学决策与经营管理中实效明显[3],但是对于规模较大的线性模型,其求解过程非常繁琐,不易得出结果.而 LINGO 中的内部集合函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等,可以用这些集合函数使程序编程简单可行,下面举例说明.例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩ 编写LINGO 程序如下: MODEL : SETS :SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA :A=1,2 ; B=100,120; C=200,300; ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00 Total solver iterations: 0 Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price 1 29000.00 1.000000 2 0.000000 50.00000 3 90.00000 0.000000 4 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.三、LINGO 在整数规划和0-1规划中的应用1 求解整数规划整数规划[4]分为整数规划和混合整数规划,要求全部变量都为非负整数的数学规划称为纯整数规划,只要求部分变量为非负整数的数学规划称为混合整数规划.下面只讨论约束条件和目标函数均为线性的整数规划问题,即整数线性规划问题(以下简称整数规划,记为ILP),其数学模型的一般形式是()1max min nj j j z c x ==∑,()()11,2,,..01,2,,ni j j i j j j a x b i n s t x j n x =⎧≤=⎪⎪⎪≥=⎨⎪⎪⎪⎩∑全为整数或部分为整数。

Lingo软件与数学建模

Lingo软件与数学建模
我们给于以下解释:
变量数目:变量总数 (Total)、非线型变量 数(Nonlinear)、整数 变量数(Integer)
约束变量:约束总数 ( Total )、非线性约束 个数(Nonlinear)
非线性系数数量:总数 ( Total )、非线性项的 系数个数(Nonlinear)
内存使用量:单位为千字节
数据多,咋办?
value=1,1.2,0.9,1.1;
enddata
max=@sum(goods:weight*value);
@for(goods:@bin(x));
end
游泳
四名同学的混合泳接 力赛的四种成绩如左 表所示,确定如何分 配使成绩最佳。
蛙蝶自仰 泳泳由泳

甲 99 60 59 73
线性规划
二次规划
非线性规划
LINGO软件的基本操作
双击快捷方式 即可计入程序编辑界面
Lingo软件介绍
➢解决一个简单的线性规划(LP)问题
max z 2x 3y 4x 3y 10
s.t. 3x 5y 12 x, y 0
LINGO软件介绍
点击图标
运行,屏幕上显示运行状态窗口如下: 对于LINGO运行状态窗口,
基 @EXP(X):指数函数(以自然对数e为底),返回eX的值
本 数 学
@ LOG(X):自然对数函数,返回X的自然对数值; @POW(X,Y):指数函数,返回XY的值;
函 @SQR(X):平方函数,返回X2的值;
数 @SQRT( X ):平方根函数,返回X的平方根;
@FLOOR(X):取整函数,返回X的整数部分(向靠近0 的方向取);
@GIN(X):限制X为整数.
0-1规划(线性规划)

第6讲 Lingo在数学建模中的作用

第6讲 Lingo在数学建模中的作用

LINGO软件陕西铁路工程职业技术学院赵增逊2014年10月18日主要内容1.LINGO简介2.LINGO中建模语言(集合、运算符和函数等)3.LINGO编程实例1.1LINGO软件简介(1)美国芝加哥(Chicago)大学的Linus Schrage(莱纳斯.施拉盖)教授于1980年前后开发。

(2)LINGO: Linear Interactive General Optimizer (线性交互式通用优化器)。

(3)用来求解的优化模型(连续优化和整数规划(IP))。

类型:线性规划(LP)、二次规划(QP)、非线性规划(NLP)。

1.2 LINDO/LINGO软件能求解的模型优化线性规划非线性规划二次规划连续优化整数规划LINDOLINGO1.3 LINGO的特点(1)求解线性规划问题(2)求解非线性规划问题(3)非线性方程组(4)输入模型简练直观(5)运行速度快、计算能力强1.4 学习LINGO 的要求 需要掌握:软件操作基本语法结构掌握集合(SETS)的应用 正确阅读求解报告 正确理解求解状态窗口 学会设置基本的求解选项(OPTIONS) LINGO: Linear Interactive General Optimizer 求解数学规划问题Min Z = f (x)s.t x ∈D (⊂Rn )Lingo软件的主窗口(用户界面) 所有Lingo窗口都在这个窗口内状态行(最左边显示“Ready”表示“准备就模型窗口(Model Window)用于输入LINGO优化模型(即LINGO程序)当前光标的位置当前时间1.5 LINGO软件界面1.新建(New )单击“新建”按钮或直接按F2键可以创建一个新的“Model ”窗口。

在这个新的“Model ”窗口中能够输入所要求解的模型。

2.打开(Open )单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。

这个文件可能是一个Model 文件。

数学建模-(货机装运Lingo)

数学建模-(货机装运Lingo)
成本。
约束条件
在货机装运问题中,通常需要考虑 多个约束条件,如货机的载重限制、 货物的体积限制、货物的装卸顺序 等。
优化目标
优化目标可以是最大化货机的装载 量、最小化装载成本、最大化利润 等。
数据分析与预处理
数据收集
数据清洗
收集与货机装运问题相关的数据,包括货 物的重量、体积、价值等信息,以及货机 的载重、容积等限制条件。
数据输入输出
介绍如何使用Lingo进行数据输入和 结果输出,包括数据文件的读写、图 形化界面的使用等。
Lingo在货机装运问题中的应用
问题描述
阐述货机装运问题的背景和实际意义,明确问题的目标和约束条件。
建模过程
详细讲解如何使用Lingo对货机装运问题进行数学建模,包括定义变 量、建立目标函数和约束条件等步骤。
货机装运是物流领域的重要问题,涉 及到如何有效利用货机容量,将不同 规格、重量的货物进行合理搭配,以 达到最优的装载方案。
提高运输效率
通过数学建模对货机装运问题进行优 化,可以提高货物的运输效率,减少 运输成本,为企业带来经济效益。
建模的重要性和应用
重要性
数学建模是一种将实际问题抽象化、形式化的方法,通过建立数学模型,可以对问题进行深入分析,找出问题的 本质和规律,为解决问题提供科学依据。
应用
数学建模在物流、交通、金融、工程等领域有着广泛的应用。在货机装运问题中,数学建模可以帮助企业制定最 优的装载方案,提高运输效率,降低成本。同时,数学建模也可以应用于其他类似的问题,如车辆路径问题、背 包问题等。
02 问题描述与数据分析
02 问题描述与数据分析
货机装运问题描述
货机装运问题
货机装运问题是一个经典的优化 问题,涉及到如何有效地将货物 装入货机以最大化利润或最小化

数学建模优化模型与Lingo Lindo软件

数学建模优化模型与Lingo Lindo软件


表二 :5名队员4中泳姿百米平均成绩
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?

优化模型

决策变量:记周一到周日每天聘用的人数分别为X1,

X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。

可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.

数学建模Lingo软件简介

数学建模Lingo软件简介

版本类型 总变量数 整数变量数 非线性变量数 约束数
演示版 求解包 高级版 超级版 工业版 扩展版
300 500 2000 8000 32000 无限
30 50 200 800 3200 无限
30 50 200 800 3200 无限
150 250 1000 4000 16000 无限
Lingo(Linear Interactive and General Optimizer),即交互 式的线性和通用优化求解器,可求解线性规划,也可以求解非 线性规划,还可以用于一些线性和非线性方程组的求解等。 Lingo软件的最大特),而且执行速度很快。Lingo实际上还是最 优化问题的一种建模语言,包括许多常用的数学函数共建立优 化模型时调用,并可以接受其它数据文件。
2. 建立LINDO/LINGO优化模型需要注意的几个基本问题
1. 尽量使用实数优化模型,尽量减少证书约束和整数变 量的个数;
2. 尽量使用光滑优化模型,尽量避免使用非光滑函数; 3. 尽量使用线性优化模型,尽量减少非线性约束和非线 性变量的个数; 4. 合理设定变量的上下界,尽可能给出变量的初始值; 5. 模型中使用的单位的数量级要适当。
演示版和正式版的基本功能是类似的,只是试用版能够
求解问题的规模受到严格限制,对于规模稍微大些的问题就不 能求解。即使对于正式版,通常也被分成求解包(solver suite)、 高级版(super)、超级版(hyper)、工业版(industrial)、扩展版 (extended)等不同档次的版本,不同档次的版本的区别也在于 能够求解的问题的规模大小不同,下表给出了不同版本 LINGO程序对求解规模的限制:
LINDO,LINGO,LINDO API 和 What’s Best! 在最优化软件的市场上占有很大的份额,尤其在供微机上使用 的最优化软件的市场上,上述软件产品具有绝对的优势。根据 LINDO公司主页()上提供的信息,位列 全球《财富》杂志500强的企业中一半以上使用上述产品,其 中位列全球《财富》杂志25强企业中有23家使用上述产品。读 者可以从上述主页下载上面4种软件的演示版和大量应用例子。

Lingo软件在数学建模竞赛中的应用word精品文档9页

Lingo软件在数学建模竞赛中的应用word精品文档9页

Lingo软件在数学建模竞赛中的应用[收稿日期] 2010-06-20[基金项目] 福建交通职业技术学院科技发展基金(Ky1001)。

数学建模(Mathematical Modeling)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1]。

1 非线性规划模型历年全国大学生数学建模竞赛都需解决最优生产计划、最优分配最优设计、最优决策、最佳管理等较为复杂的非线性规划问题,模型由决策变量、目标函数、约束条件三个要素组成,其计算量较大,可用Lingo软件求解。

2006“高教社杯”全国大学生数学建模竞赛C题[3]第二小题,设易拉罐是一个正圆柱体,什么是它的最优设计?经测量得圆柱的上底厚度为a=0.036 cm、下底厚度为c=0.040 cm、圆柱侧壁厚度为b=0.012 cm?А?悸且桌?罐设计美观性、便于把握以及材料节省等因素,于是建立目标规划模型如下:目标函数:minW=b×2πRh+(a+c)πR2约束条件:V=πR2>3552R/h=0.618πr2≤18.56,h≥8.71R>0,h>0,a=0.036,b=0.0 12利用Lingo8.0编程如下:Model:min=b*2*3.14159*R*h+(a+c)*3.14159*R^2;!以上是目标函数,以下为约束条件;3.14159* R^2 * h>355;2*R/h=0.618;3.14159*R^2=18.56;h>=8.71;R>0;h>0;a=0.036;c=0.040;b=0.012;EndLingo以语句Model开始,以语句End结束,这两个语句单独成一行。

语句分为集合定义部分、数据初始化部分、目标函数、约束条件部分,这几个部分的先后次序无关紧要。

min开头的语句表示求目标函数最小值。

“!”开头的语句是注释语句,Lingo不作运行,每条中间语句必须以“;”号作为结尾。

数学建模讲座优化模型与LINDOLINGO优化软件

数学建模讲座优化模型与LINDOLINGO优化软件

美国芝加哥(Chicago)大学的Linus Schrage教授于1980 年前后开发, 后来成立 LINDO系统公司(LINDO Systems Inc.), 网址:
LINDO: Linear INteractive and Discrete Optimizer
结果解释
最优解不变时目标
DO RANGE(SENSITIVITY) ANALYSIS? Yes
RANGES IN WHICH THE BASIS IS UNCHANGED:
系数允许变化范围
OBJ COEFFICIENT RANGES
(约束条件不变)
VARIABLE CURRENT ALLOWABLE ALLOWABLE
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数
如:尽量少使用绝对值、符号函数、多个变量求 最大/最小值、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变 量的个数 (如x/y <5 改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当 (如小于103)
LINDO/LINGO预处理程序 LP QP NLP IP 全局优化(选)
分枝定界管理程序
ILP IQP INLP
线性优化求解程序 非线性优化求解程序
1. 单纯形算法 2. 内点算法(选)
1、顺序线性规划法(SLP) 2、广义既约梯度法(GRG) (选) 3、多点搜索(Multistart) (选)
x1 x2 50
线性 规划
劳动时间
12 x1 8x2 480
模型
加工能力 非负约束

数学建模软件LinDoLinGo的简介(修改)

数学建模软件LinDoLinGo的简介(修改)

X——表示变量X可取任意实数值。 GIN X——表示变量X只取非负整数值。 INT X——表示变量X只能取0或1。 SLB X value——表示变量X以value为下界。 SUB X value——表示变量X以value为上界。 FREE m——表示问题的前m个变量为自由变量 GIN m——表示问题前m个变量为非负整数值 INT m——表示问题前m个变量为0-1变量。
LINGO 示例
查看简单例子
LINHGO程序
Lindo模型到Lingo模型的转换
“ST”在Lingo模型中不再需要,所以删除了; 在每个系数与变量之间增加了运算符“*”;
将目标函数的表示方式从“MAX”变成“MAX=”;
每行(目标、约束和说明语句)后面均增加了一
个分号“;”; 约束的名字被放ngo中模型以“Model:”开始,以“END”结束。 对简单模型,这两个语句也可以省略。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP); LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。 最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
Lindo求解整数规划
Lindo求解整数规划程序
LP OPTIMUM FOUND AT STEP 2 OBJECTIVE VALUE = 998.811951

数学建模优秀软件介绍之lingo课件

数学建模优秀软件介绍之lingo课件
INV (0) 10
加上变量的非负约束
➢集合及属性
记四个季度组成的集合QUARTERS={1,2,3,4}, 它们就是上面数组的下标集合,而数组DEM、RP、OP、 INV对集合QUARTERS中的每个元素1,2,3,4分别对 应于一个值。
LINGO正是充分利用了这种数组及其下标的关系, 引入了“集合”及其“属性”的概念
Mon,Tue,Wed,Thu,Fri
MonthM..MonthN
Oct..Jan
Oct,Nov,Dec,Jan
MonthYearM..Mont Oct2001..Jan200 Oct2001,Nov2001,Dec
hYearN
2
2001,Jan2002
➢函数
Lingo函数
➢最全面的格式:
@function(setname(index)|conditional:expression)
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE(标题)语句外的其他语句都是 约束条件,因此语句的顺序并不重要 。
•限定变量取整数值的语句为“@GIN(X1)”和 “@GIN(X2)”。不可以写成“@GIN(2)”,否则LINGO 将把这个模型看成没有整数变量。
结构设计 资源分配 生产计划 运输方案
➢解决优化问题的手段:
• 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略
➢数学模型一般形式:
优化问题三要素:决策变量;目标函数;约束条件
min f (x)
s.t. hi (x) 0, i 1,...,m g j (x) 0, j 1,...,l
Generator Memory Used (K) (内存使用 量)

lingo-lindo简介

lingo-lindo简介

Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。

LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。

LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。

模型更加容易构建,更容易理解,因此也更容易维护。

2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。

同样地,LINGO 可以将求解结果直接输出到数据库或工作表。

使得您能够在您选择的应用程序中生成报告。

3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。

lingo数学模型

lingo数学模型

lingo数学模型
"lingo"是一种用于数学建模和优化的软件工具。

它提供了一个
直观的界面,用于建立和求解复杂的数学模型,包括线性规划、整
数规划、非线性规划、多目标规划等。

lingo的使用可以帮助分析
师和决策者在面临复杂的决策问题时进行优化决策。

在数学建模方面,lingo可以用来建立数学模型,包括定义决
策变量、约束条件和目标函数。

用户可以通过lingo的界面直观地
输入模型的各个部分,而无需深入了解数学建模的具体语法和规则。

这使得非专业的用户也能够快速地建立数学模型。

在优化方面,lingo提供了强大的求解算法,可以对各种类型
的数学模型进行求解,以找到最优的决策方案。

lingo支持对模型
进行灵敏度分析,帮助用户了解参数变化对最优解的影响,从而更
好地进行决策。

除了数学建模和优化外,lingo还具有数据可视化功能,可以
直观地展示模型的结果和决策方案。

这有助于用户向决策者传达模
型分析的结果,从而更好地支持决策过程。

总的来说,lingo作为数学建模和优化工具,为用户提供了一
个方便、强大的平台,帮助他们解决复杂的决策问题。

通过lingo,用户可以更好地理解问题、制定决策,并得到最优的解决方案。

LINGO在数学建模中的应用

LINGO在数学建模中的应用

LINGO的菜单
1.File(文件菜单) • Export file(输出特殊格式文件) • Database User Info(用户基本信息) 2.Edit Menu(编辑菜单) • Paste Special(选择性粘贴) • Go to Line(光标移到某一行) • Match Parenthesis(匹配括号) • Insert New Object(插入新对象)
3.关系运算符 = 表达式左右相等 <= 表达式左边小于或等于右边 >= 表达式左边大于或等于右边 注:Lingo没有单独的<和>
A<B A B, 是一个小的正数
Lingo函数
• Lingo提供了五十几个内部函数,所有函数都 以字符@开头
• 数学函数 @ABS(x),@SIN(X),@COS(x),@TAN(X), @LOG(X),@EXP(X),@SIGN(X), @SMAX(X1,…,Xn),@SMIN(X1,…,Xn) @FLOOR(X),@LGM(X)
LINGO的菜单
3.LINGO • Debug(调试) • Model Statistics(模型资料统计) • Look(查看)
LINGO的菜单
4.Window • Command Window(命令行窗口) • Status Window(状态窗口) 5.Help • Help Topics(帮助主题) • Register(在线注册) • Auto Update(自动更新) • About Lingo(关于Lingo)
41,52,现有8个客户各要一批货,数量分别为35,37,22,32, 41,32,43,38,各供货栈到8个客户的单位运价如表1. 如何确定各供货栈到8个客户的货物调运量,使总的运费最小?

lingo在数学建模中的应用

lingo在数学建模中的应用

LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

数学建模与lingo软件使用

数学建模与lingo软件使用

东北大学秦皇岛分校数学建模课程设计报告生产、库存与设备维修综合计划的优化安排学院数学与统计学院专业数学与应用数学学号7110402姓名崔冰洁指导教师成绩教师评语:指导教师签字:2014年7月9日1 绪论线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。

它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。

为合理地利用有限的人力、物力、财力等资源做出的最优决策,提供科学的依据。

在经济生活中,一个公司库存、生产、销售量要受限于与公司设备的生产能力,如何确定最优的生产库存等计划,可以使用线性规划的知识进行数学模型的建立并通过数学软件进行求解。

将库存金额控制在合理水准,是每个公司都期望的,这样的话可以将运营成本降到最低,让现金流动起来。

就是要合理处理好生产、库存与设备维修综合计划的优化安排。

在保证企业生产、经营需求的前提下,合理处理好生产、设备维修综合计划的优化安排。

使库存量经常保持在合理的水平上;掌握库存量动态,适时,适量提出订货,避免超储或缺货;减少库存空间占用,降低库存总费用;控制库存资金占用,加速资金周转2 LINGO软件简介LINGO是Linear Interactive and General Optimizer的缩写,即“交互式的线性和通用优化求解器”,由美国LINDO系统公司推出的,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

3 数学模型建立与求解3.1问题:某工厂有以下设备:4台磨床、2台立钻、3台水平钻、1台镗床和1台刨床。

关于数学建模与实验课堂上LINGO软件教学的几点体会

关于数学建模与实验课堂上LINGO软件教学的几点体会

们高等 院校数学教育中的重要一部分 , 是一种新型的教学 模 式 。它 是经 过 多次 的实 验 和研 究 多种 实 际 问题 的特 点 , 通过提出各种假设性问题 , 并使得问题能够尽可能简单概 括, 得到合理解释 , 最终以建立数学模 型的形式( 建立数学
师“ 应该 具 有 一个健 全 的人 格 , 一 副 能够 鼓 动人 心 的 口才 、

问题 的专业软件包 , 它的创始人是来 自 美 国芝加哥大学 的 L i n u s S c h r a g e 教授 ,这 是 他在 十 九世纪 八 十年代 经 过 多次
种“ 亲 自” 实 践 的精 神 , 真 正有 一 片 “ 亲 自” 飞翔 的天 空 , 真 正 的体 验 收 获 知识 的成 就 感 ,使 学 生 的 个性 得 到 全 面 发 展, 健 康成 长 。
四、 小 结
丰富的专业知识 , 有一颗热情的心 、 年轻 的心 , 温和的性 格; 有强烈的责任心等。 但是 , 现在有些教师思想政治素质 并不十分乐观 , 甚至出现误导学生。为此 , 首先提高专业课 教师的政治思想素质和专业教学水平。 ( 三) 结合具体知识点 , 帮助学生树立 良好的职业素养 随着现代科学技术的迅速发展 ,交差科学发展迅猛 , 同样也 决 定生 产过 程 中 的合作 性 不断 增 强 , 任 何一 项 生产 基本都不能单独完成 , 一个企业 内部的生产需要多个工序 的严密配合 , 才能生产出质量优 良的零件 , 实现高效率 、 低 消耗 的生产 , 一个行业需要资源和技术的优化配合 , 才能 促 进行 业 的 良性 发展 。 很多的专业课本身就是各个行业生产经验的集合 , 因 此在专业课教学过程 中, 不仅是传授专业理论 、 专业技能 , 我们还可 以抓住具体 的知识点 ,培养学生合作互助精神 , 讲诚信 、 讲信誉 的良好的职业道德 。利用具体的知识点帮 助学生分析专业技能所具有的职 在教 学 的各 个 环节 和 各个 方 面, 不是哪一 门课程能单独奏效 , 但是通过专业课程教学 中渗透思想道德教育 , 对学生 的综合素质 、 价值 观念 、 工作

数学建模实验报告

数学建模实验报告

《数学建模实验报告》Lingo软件的上机实践应用简单的线性规划与灵敏度分析学号:班级:姓名:日期:2010—7—21数学与计算科学学院一、实验目的:通过对数学建模课的学习,熟悉了matlab和lingo等数学软件的简单应用,了解了用lingo软件解线性规划的算法及灵敏性分析。

此次lingo上机实验又使我更好地理解了lingo程序的输入格式及其使用,增加了操作连贯性,初步掌握了lingo软件的基本用法,会使用lingo计算线性规划题,掌握类似题目的程序设计及数据分析。

二、实验题目(P55课后习题5):某工厂生产A、2A两种型号的产品都必须经过零件装配和检验两道工序,1如果每天可用于零件装配的工时只有100h,可用于检验的工时只有120h,各型号产品每件需占用各工序时数和可获得的利润如下表所示:(1)试写出此问题的数学模型,并求出最优化生产方案.(2)对产品A的利润进行灵敏度分析1(3)对装配工序的工时进行灵敏度分析(4)如果工厂试制了A型产品,每件3A产品需装配工时4h,检验工时2h,可获3利润5元,那么该产品是否应投入生产?三、题目分析:总体分析:要解答此题,就要运用已知条件编写出一个线性规划的Lingo 程序,对运行结果进行分析得到所要数据;当然第四问也可另编程序解答.四、 实验过程:(1)符号说明设生产1x 件1A 产品,生产2x 件2A 产品.(2)建立模型目标函数:maxz=61x +42x 约束条件:1) 装配时间:21x +32x <=100 2) 检验时间:41x +22x <=120 3) 非负约束:1x ,2x >=0所以模型为: maxz=61x +42xs.t 。

⎪⎩⎪⎨⎧>=<=+<=+0,1202410032212121x x x x x x(3)模型求解:1)程序model:title 零件生产计划; max=6*x1+4*x2; 2*x1+3*x2<=100; 4*x1+2*x2<=120; end附程序图1:2)计算结果Global optimal solution found。

数学建模实验报告关于LINGO的解题方法及其思路分析

数学建模实验报告关于LINGO的解题方法及其思路分析

数学建模实验报告1.解析:此题属于0-1模型问题。

设队员序号为i ,泳姿为j ,记c ij 为队员i 第j 种泳姿的百米成绩,若选择队员i 参加泳姿j 的比赛,记x ij =1, 否则记xij =0;则有,目标函数为∑∑===4151j i ij ij x c Z Min ,每个人最多选泳姿为1,则有5,1,141=≤∑=i xj ij,每种泳姿有且仅有1人,则有4,1,151==∑=j xi ij。

若丁的蛙泳成绩退步及戊的自由泳成绩进步,则将c43的值和c54的值改变即可。

实验过程及运行结果如下:若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,计算结果如下:通过计算结果可知,在原数据的情况下,队伍的选择应该是甲参加自由泳,乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊不参加任何比赛,且最好的时间是253.2秒。

若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,则组成接力的比赛队伍调整为乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊参加自由泳,甲不参加任何比赛。

2.解析:此题属于线性规划问题。

已知某工厂用1A 、2A 两台机床加工1B 、2B 、3B 三种不同的零件,设1A 生产1B 、2B 、3B 的个数分别为1x 、2x 、3x ,2A 生产1B 、2B 、3B 的个数分别为4x 、5x 、6x ,则目标函数为min=1*2*1x +2*3*2x +3*5*3x +1*3*4x +1*3*5x +3*6*6x ;1A 加工的工时小于80小时,2A 加工的工时小于100小时,生产1B 、2B 、3B 的总数分别为70个、50个、20个。

实验过程及运行结果如下:通过计算结果可知,当1A 生产1B 、2B 、3B 的个数分别为68个、0个、4个,2A 生产1B 、2B 、3B 的个数分别为2个、50个、16个的时候,才能得到最低的成本640元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档