2011年全国高考理科数学试题及答案-山东卷
2011年山东高考理科数学试题及答案(word版)
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按能上能下要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh ,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl ,其中c 是圆柱的底面周长,l 是圆柱的母线长。
球的体积公式:343V R ,其中R 是球的半径。
球的表面积公式:24S R ,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:12241??,ni ii n i x y nx yb a y bx xnx ,如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.1.设集合M ={x|260x x },N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3] 2.复数z=22ii (i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3x y 的图象上,则tan=6a 的值为A .0 B .33C .1 D .34.不等式|5||3|10x x 的解集是A .[-5,7]B .[-4,6]。
2011山东数学高考试题及答案
2011年普通高等学校夏季招生全国统一考试数学(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试用时120分钟. 参考公式:柱体的体积公式:V =Sh ,其中S 是柱体的底面积,h 是柱体的高.圆柱的侧面积公式:S =cl ,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式:343V R π=,其中R 是球的半径. 球的表面积公式:S =4πR 2,其中R 是球的半径.用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx ybxnx ---=-∑∑ , ay bx =- . 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(理)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A .[1, 2) B .[1,2] C .(2,3] D .[2,3]2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若点(a ,9)在函数y =3x 的图象上,则tan 6a π的值为 …( ) A .0B .33C .1D .34.不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7] B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)5.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.若函数f (x )=sin ωx (ω>0)在区间[0,3π]上单调递增,在区间[3π,2π]上单调递减,则ω=( )A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)4 2 35 销售额y (万元) 49 26 39 54 根据上表可得回归方程 y bx a =+ 中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221x y a b-=(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .2222154x y -=B .2222145x y -=C .2222136x y -=D .2222163x y -=9.函数2sin 2xy x =-的图象大致是( )10.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .911.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( )A .3B .2C .1D .012.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R ),1412A A A A μ= (μ∈R ),且112λμ+=,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.执行下图所示的程序框图,输入l =2,m =3,n =5,则输出的y 的值是__________.14.若62()a x x -展开式的常数项为60,则常数a 的值为__________.15.设函数()2xf x x =+ (x >0),观察: 1()()2xf x f x x ==+, 21()(())34xf x f f x x ==+, 32()(())78xf x f f x x ==+, 43()(())1516xf x f f x x ==+, ……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=__________.16.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =__________.三、解答题:本大题共6小题,共74分.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,C .已知cos 2cos 2cos A C c aB b--=. (1)求sin sin CA的值; (2)若cos B =14,b =2,求△ABC 的面积S .18.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EA ⊥平面ABCD ,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF .(1)若M 是线段AD 的中点,求证:GM ∥平面ABFE ;。
2011年全国普通高等学校招生统一考试-理科数学(山东卷)
山东理科1.(2011山东,理1)设集合M={x|x 2+x-6<0},N={x|1≤x ≤3},则M ∩N=( ). A.[1,2) B.[1,2] C.(2,3] D.[2,3]2.(2011山东,理2)复数z=2-i 2+i(i 为虚数单位)在复平面内对应的点所在象限为( ).A.第一象限B.第二象限C.第三象限D.第四象限3.(2011山东,理3)若点(a,9)在函数y=3x 的图象上,则tan a π6的值为( ). A.0 B. 33C.1D. 34.(2011山东,理4)不等式|x-5|+|x+3|≥10的解集是( ). A.[-5,7] B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,-4]∪[6,+∞)5.(2011山东,理5)对于函数y=f(x),x ∈R,“y=|f(x)|的图象关于y 轴对称”是“y=f(x)是奇函数”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件6.(2011山东,理6)若函数f(x)=sin ωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A.3 B.2 C.32 D.23根据上表可得回归方程y ^=b ^x+a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( ). A.63.6万元 B.65.5万元 C.67.7万元D.72.0万元8.(2011山东,理8)已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线均和圆C:x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( ). A.x 25-y 24=1 B.x 24-y 25=1C.x 23-y 26=1 D.x 26-y 23=19.(2011山东,理9)函数y=x2-2sin x 的图象大致是( ).10.(2011山东,理10)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为( ).A.6B.7C.8D.911.(2011山东,理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( ).A.3B.2C.1D.012.(2011山东,理12)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则下面说法正确的是( ).A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上13.(2011山东,理13)执行下图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是.14.(2011山东,理14)若(x-ax2)6展开式的常数项为60,则常数a的值为.15.(2011山东,理15)设函数f(x)=xx+2(x>0),观察:f 1(x)=f(x)=xx+2,f 2(x)=f(f 1(x))=x3x+4, f 3(x)=f(f 2(x))=x7x+8, f 4(x)=f(f 3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x)=f(f n-1(x))= .16.(2011山东,理16)已知函数f(x)=log a x+x-b(a>0,且a ≠1).当2<a<3<b<4时,函数f(x)的零点x 0∈(n,n+1),n ∈N *,则n= .17.(2011山东,理17)在△ABC 中,内角A,B,C 的对边分别为a,b,c.已知cos A-2cos C cos B=2c-a b.(1)求sin Csin A的值;(2)若cos B=14,b=2,求△ABC 的面积S.18.(2011山东,理18)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.19.(2011山东,理19)在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB=90°,EA ⊥平面ABCD,EF ∥AB,FG ∥BC,EG ∥AC,AB=2EF.(1)若M 是线段AD 的中点,求证:GM ∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.20.(2011山东,理20)等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.21.(2011山东,理21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,立方米,且l≥2r.假设该容器的建造费用仅与其表左右两端均为半球形,按照设计要求容器的容积为80π3面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.22.(2011山东,理22)已知动直线l 与椭圆C:x 23+y 22=1交于P(x 1,y 1),Q(x 2,y 2)两不同点,且△OPQ 的面积S△OPQ= 62,其中O 为坐标原点.(1)证明:x 12+x 22和y 12+y 22均为定值;(2)设线段PQ 的中点为M,求|OM|·|PQ|的最大值;(3)椭圆C 上是否存在三点D,E,G,使得S △ODE =S △ODG =S △OEG = 62?若存在,判断△DEG 的形状;若不存在,请说明理由.山东理科1.A ∵M={x|x 2+x-6<0}={x|(x+3)(x-2)<0}={x|-3<x<2},N={x|1≤x ≤3},∴M ∩N={x|1≤x<2}.2.D ∵z=2-i2+i =(2-i)2(2+i)(2-i)=3-4i 5=35-45i, ∴复数z 在复平面内对应的点在第四象限.3.D 由题意知9=3a ,∴a=2. ∴tan a π6=tan π3= 3.4.D (法一)令y=|x-5|+|x+3|, 则函数对应的图象为令y=10,即|x-5|+|x+3|=10,得x=-4或x=6,结合图象可知|x-5|+|x+3|≥10的解集为(-∞,-4]∪[6,+∞).(法二)将x=6代入可知适合,故排除C;将x=0代入可知不适合,故排除A,B. 5.B 若f(x)是奇函数,则对任意的x ∈R,均有f(-x)=-f(x),即|f(-x)|=|-f(x)|=|f(x)|, 所以y=|f(x)|是偶函数,即y=|f(x)|的图象关于y 轴对称.反过来,若y=|f(x)|关于y 轴对称,则不能得出y=f(x)一定是奇函数,比如y=|x 2|,显然,其图象关于y 轴对称,但是y=x 2是偶函数.故“y=|f(x)|的图象关于y 轴对称”是“y=f(x)是奇函数”的必要而不充分条件.6.C 根据函数f(x)=sin ωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,可知ωπ3=π2,即ω=32.7.B ∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1, ∴回归方程为y ^=9.4x+9.1,令x=6,得y ^=9.4×6+9.1=65.5(万元).8.A 由题意得,x 2a -y 2b2=1(a>0,b>0)的两条渐近线方程为y=±b ax,即bx ±ay=0, 又圆C 的标准方程为(x-3)2+y 2=4,半径为2,圆心坐标为(3,0). ∴a 2+b 2=32=9,且=2,解得a 2=5,b 2=4.∴该双曲线的方程为x 25-y 24=1. 9.C 令f(x)=x 2-2sin x,x ∈R, 则可知f(-x)=-f(x),∴f(x)为奇函数,故排除A. 又f'(x)=12-2cos x, 可知f'(x)有无穷多个零点,即f(x)有无穷多个极值点, 故排除B,D.选C.10.B 当0≤x<2时,令f(x)=x 3-x=0,得x=0或x=1. 根据周期函数的性质,由f(x)的最小正周期为2, 可知y=f(x)在[0,6)上有6个零点, 又f(6)=f(3×2)=f(0)=0,所以f(x)在[0,6]上与x 轴的交点个数为7. 11.A ①正确,如图一直三棱柱,其中四边形BCC 1B 1与四边形BAA 1B 1是全等的矩形,且面BCC 1B 1⊥面BAA 1B 1,即满足要求. ②正确,如图一正四棱柱ABCD-A 1B 1C 1D 1,即满足要求.③正确,横卧的圆柱即可,如图.12.D ∵C,D 调和分割点A,B, ∴AC=λAB ,AD =μAB ,且1λ+1μ=2(*), 不妨设A(0,0),B(1,0),则C(λ,0),D(μ,0),对A,若C 为AB 的中点,则AC=12AB ,即λ=12,将其代入(*)式,得1μ=0,这是无意义的,故A 错误;对B,若D 为AB 的中点,则μ=12,同理得1λ=0,故B 错误; 对C,要使C,D 同时在线段AB 上,则0<λ<1且0<μ<1,∴1λ>1,1μ>1,∴1λ+1μ>2,这与1λ+1μ=2矛盾;故C 错误;显然D 正确.13.68 由程序框图可知,y 的变化情况为y=70×2+21×3+15×5=278,进入循环,显然278>105, 因此y=278-105=173;此时173>105,故y=173-105=68. 经判断68>105不成立,输出此时y 的值68.14.4 由二项式定理可知T r+1=C 6r x 6-r (- a x )r =C 6r (- a )r x 6-3r , 令6-3r=0,得r=2,∴T 3=C 62(- a )2=60.∴15a=60.∴a=4.15.x(2n -1)x+2n 由已知可归纳如下:f 1(x)=x (21-1)x+21,f 2(x)=x (22-1)x+22,f 3(x)=x (23-1)x+23,f 4(x)=x (24-1)x+24,…,f n (x)=x(2n-1)x+2n . 16.2 ∵a>2,∴f(x)=log a x+x-b 在(0,+∞)上为增函数,且f(2)=log a 2+2-b,f(3)=log a 3+3-b, ∵2<a<3<b<4,∴0<log a 2<1,-2<2-b<-1. ∴-2<log a 2+2-b<0.又1<log a 3<2,-1<3-b<0,∴0<log a 3+3-b<2,即f(2)<0,f(3)>0. 又∵f(x)在(0,+∞)上是单调函数, ∴f(x)在(2,3)必存在唯一零点.17.解:(1)由正弦定理,设asin A =b sin B =c sin C =k, 则2c-a b=2k sin C-k sin A k sin B =2sin C-sin Asin B , 所以cos A-2cos C cos B=2sin C-sin Asin B , 即(cos A-2cos C)sin B=(2sin C-sin A)cos B.化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,所以sin C=2sin A.因此sin Csin A=2. (2)由sin C sin A=2得c=2a. 由余弦定理b 2=a 2+c 2-2accos B 及cos B=14,b=2, 得4=a 2+4a 2-4a 2×14. 解得a=1.从而c=2.又因为cos B=14,且0<B<π,所以sin B=154.因此S=12acsin B=12×1×2×154=154.18.解:(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P()=0.4,P()=0.5,P()=0.5.红队至少两人获胜的事件有:DE F、D E F、D EF、DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F、E、D是两两互斥事件,且各盘比赛的结果相互独立, 因此P(ξ=0)=P()=0.4×0.5×0.5=0.1,P(ξ=1)=P(DE F)+P(D E F)+P(D EF)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P(ξ=3)=P(DEF)=0.6×0.5×0.5=0.15.由对立事件的概率公式得P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=0.4.因此Eξ=0×0.1+1×0.35+2×0.4+3×0.15=1.6.19.(1)证法一:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,所以∠EGF=90°,△ABC∽△EFG.由于AB=2EF,因此BC=2FG.连接AF,由于FG∥BC,FG=12BC,在▱ABCD中,M是线段AD的中点,BC,则AM∥BC,且AM=12因此FG∥AM且FG=AM.所以四边形AFGM为平行四边形.因此GM∥FA.又FA⊂平面ABFE,GM⊄平面ABFE,所以GM∥平面ABFE.证法二:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,所以∠EGF=90°,△ABC∽△EFG,由于AB=2EF,所以BC=2FG.取BC的中点N,连接GN,因此四边形BNGF为平行四边形,所以GN∥FB.在▱ABCD中,M是线段AD的中点,连接MN,则MN∥AB.因为MN∩GN=N,所以平面GMN∥平面ABFE.又GM⊂平面GMN,所以GM∥平面ABFE.(2)解法一:因为∠ACB=90°,所以∠CAD=90°.又EA⊥平面ABCD,所以AC,AD,AE两两垂直.分别以AC,AD,AE所在直线为x轴、y轴和z轴,建立如图所示的空间直角坐标系,不妨设AC=BC=2AE=2,则由题意得A(0,0,0),B(2,-2,0),C(2,0,0),E(0,0,1),所以AB=(2,-2,0),BC=(0,2,0).AB,所以F(1,-1,1),BF=(-1,1,1).又EF=12设平面BFC的法向量为m=(x1,y1,z1),则m·BC=0,m·BF=0,所以 y 1=0,x 1=z 1.取z 1=1,得x 1=1,所以m=(1,0,1).设平面ABF 的法向量为n=(x 2,y 2,z 2), 则n ·AB=0,n ·BF =0, 所以 x 2=y 2,z 2=0.取y 2=1,得x 2=1, 则n=(1,1,0). 所以cos<m,n>=m ·n |m|·|n|=12. 因此二面角A-BF-C 的大小为60°.解法二:由题意知,平面ABFE ⊥平面ABCD, 取AB 的中点H,连接CH,因为AC=BC,所以CH ⊥AB. 则CH ⊥平面ABFE.过H 向BF 引垂线交BF 于R,连接CR, 则CR ⊥BF.所以∠HRC 为二面角A-BF-C 的平面角. 由题意,不妨设AC=BC=2AE=2,在直角梯形ABFE 中,连接FH,则FH ⊥AB. 又AB=2 2,所以HF=AE=1,BH= 2. 因此在Rt △BHF 中,HR= 63. 由于CH=12AB= 2, 所以在Rt △CHR 中,tan ∠HRC= 2 63= 3.因此二面角A-BF-C 的大小为60°. 20.解:(1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意. 因此a 1=2,a 2=6,a 3=18. 所以公比q=3.故a n =2·3n-1. (2)因为b n =a n +(-1)n ln a n =2·3n-1+(-1)n ln(2·3n-1)=2·3n-1+(-1)n [ln 2+(n-1)ln 3]=2·3n-1+(-1)n (ln 2-ln 3)+(-1)n nln 3,所以S n =2(1+3+…+3n-1)+[-1+1-1+…+(-1)n ](ln 2-ln 3)+[-1+2-3+…+(-1)n n]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n +n 2ln 3-1;当n为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n-12-n)ln 3=3n -n-12ln 3-ln 2-1. 综上所述,S n =3n +n 2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.21.解:(1)设容器的容积为V, 由题意知V=πr 2l+43πr 3, 又V=80π3, 故l=V-43πr 3πr 2=803r 2-43r=43(20r 2-r). 由于l ≥2r,因此0<r ≤2.所以建造费用y=2πrl ×3+4πr 2c=2πr ×43(20r -r)×3+4πr 2c. 因此y=4π(c-2)r 2+160πr ,0<r ≤2. (2)由(1)得y'=8π(c-2)r-160πr2=8π(c-2)r 2(r 3-20c-2).0<r<2. 由于c>3,所以c-2>0. 当r 3-20c-2=0时,r= 20c-23. 令 20c-23=m,得m>0, 所以y'=8π(c-2)r 2(r-m)(r 2+rm+m 2). ①当0<m<2即c>92时, 当r=m 时,y'=0;当r ∈(0,m)时,y'<0; 当r ∈(m,2)时,y'>0.所以r=m 是函数y 的极小值点,也是最小值点. (2)当m ≥2即3<c ≤92时, 当r ∈(0,2)时,y'<0,函数单调递减. 所以r=2是函数y 的最小值点.综上所述,当3<c ≤92时,建造费用最小时r=2;当c>92时,建造费用最小时r= 20c-23. 22.解:(1)当直线l 的斜率不存在时,P 、Q 两点关于x 轴对称, 所以x 2=x 1,y 2=-y 1.因为P(x 1,y 1)在椭圆上,因此x 123+y 122=1.①又因为S △OPQ = 62,所以|x 1|·|y 1|= 62.② 由①、②得|x 1|= 62,|y 1|=1,此时x 12+x 22=3,y 12+y 22=2.(2)当直线l 的斜率存在时,设直线l 的方程为y=kx+m,由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx+3(m 2-2)=0, 其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0,即3k 2+2>m 2.(*) 又x 1+x 2=-6km 2+3k2,x 1x 2=3(m 2-2)2+3k2,所以|PQ|= 1+k 2· (x 1+x 2)2-4x 1x 2 = 2 6 3k 2+2-m 22+3k2.因为点O 到直线l 的距离为d=1+k .所以S △OPQ =12|PQ|·d =12 1+k 2·6 222·=6|m| 3k 2+2-m 22+3k2.又S △OPQ = 62.整理得3k 2+2=2m 2,且符合(*)式,此时x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6km 2+3k2)2-2×3(m 2-2)2+3k2=3,y 12+y 22=23(3-x 12)+23(3-x 22)=4-23(x 12+x 22)=2. 综上所述,x 12+x 22=3,y 12+y 22=2,结论成立.(2)解法一:①当直线l 的斜率不存在时, 由(1)知|OM|=|x 1|= 62,|PQ|=2|y 1|=2, 因此|OM|·|PQ|= 62×2= 6. ②当直线l 的斜率存在时,由(1)知,x 1+x 22=-3k2m , y 1+y 22=k(x 1+x22)+m=-3k 22m+m=-3k 2+2m 22m=1m , |OM|2=(x 1+x22)2+(y 1+y 22)2=9k 24m 2+1m 2=6m 2-24m 2=12(3-1m 2),|PQ|2=(1+k 2)24(3k 2+2-m 2)(2+3k 2)=2(2m 2+1)m =2(2+1m ),所以|OM|2·|PQ|2=12×(3-1m 2)×2×(2+1m 2) =(3-1m 2)(2+1m 2)≤(3-1m 2+2+1m 22)2=254. 所以|OM|·|PQ|≤52,当且仅当3-1m =2+1m ,即m=± 2时,等号成立. 综合①②得|OM|·|PQ|的最大值为52. 解法二:因为4|OM|2+|PQ|2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 12+x 22)+(y 12+y 22)]=10.所以2|OM|·|PQ|≤4|OM|2+|PQ|22=102=5, 即|OM|·|PQ|≤52. 当且仅当2|OM|=|PQ|= 5时等号成立. 因此|OM|·|PQ|的最大值为52. (3)椭圆C 上不存在三点D,E,G,使得S △ODE =S △ODG =S △OEG = 62. 证明:假设存在D(u,v),E(x 1,y 1),G(x 2,y 2)满足S △ODE =S △ODG =S △OEG = 62, 由(1)得u 2+x 12=3,u 2+x 22=3,x 12+x 22=3;v 2+y 12=2,v 2+y 22=2,y 12+y 22=2, 解得u 2=x 12=x 22=32;v 2=y 12=y 22=1.因此u,x 1,x 2只能从± 62中选取,v,y 1,y 2只能从±1中选取, 因此D,E,G 只能在(± 62,±1)这四点中选取三个不同点, 而这三点的两两连线中必有一条过原点, 与S △ODE =S △ODG =S △OEG = 62矛盾.所以椭圆C 上不存在满足条件的三点D,E,G.。
2011年山东高考数学理科试卷(带详解)
2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的的四个选项中,只有一个项是符合题目要求的.1.设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N = ( )A.[1,2)B. [1,2]C. (2,3]D. [2,3] 【测量目标】集合的基本运算.【考查方式】给出两集合(描述法),求解两集合的交集. 【难易程度】容易 【参考答案】A【试题解析】{32}M x x =-<<,[1,2)M N = ,答案应选A. 2.复数2i(i 2iz -=+为虚数单位)在复平面内对应的点所在的象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复平面.【考查方式】给出复数的分数形式,通过化简判断复数对应的点在第几象限. 【难易程度】容易 【参考答案】D【试题解析】22i (2i)34i2i 55z ---===+对应的点为34(,)55-在第四象限,答案应选D.3.若点(,9)a 在函数3xy =的图象上,则πtan6a 的值为 ( )A.0B.3C. 1D. 【测量目标】任意角的三角函数值.【考查方式】给出函数图象上的点,判断出a 的值,求π3的正切值. 【难易程度】容易 【参考答案】D【试题解析】2393a ==,2a =,ππtantan 63a == D. 4.不等式5310x x -++≥的解集是 ( ) A.[5,7]- B. [4,6] C. (,5][7,)-∞-+∞ D. (,4][6,)-∞-+∞ 【测量目标】绝对值不等式.【考查方式】直接求解绝对值不等式. 【难易程度】中等【参考答案】D【试题解析】当5x >时,原不等式可化为2210x -≥,解得6x ≥;(步骤1) 当35x -≤≤时,原不等式可化为810≥,不成立;(步骤2)当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D.(步骤3)另解1:可以作出函数53y x x =-++的图象,(步骤1) 令5310x x -++=可得4x -=或6x =,(步骤2)观察图象可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.(步骤3)另解2:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.5.对于函数()y f x =,x ∈R ,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ( ) A 充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】判断已知两个命题的关系. 【难易程度】容易 【参考答案】B【试题解析】若()y f x =是奇函数,则()y f x =的图象关于y 轴对称;反之不成立,比如偶函数()y f x =,满足()y f x =的图象关于y 轴对称,但不一定是奇函数,答案应选B.6.若函数()sin (0)f x x ωω=>在区间π[0,]3上单调递增,在区间ππ[,]32上单调递减,则ω= ( ) A.3 B. 2 C.32 D. 23【测量目标】三角函数的单调性.【考查方式】给出含参量的三角函数的单调区间,求解未知参量. 【难易程度】容易 【参考答案】C【试题解析】函数()sin (0)f x x ωω=>在区间π[0,]2ω上单调递增,在区间π3π[,]22ωω上单调递减, 则ππ23ω=,即32ω=,答案应选C. 另解1:令ππ[2π,2π]()22x k k k ω∈-+∈Z 得函数()f x 在2ππ2ππ[,]22k k x ωωωω∈-+为增函数,同理可得函数()f x 在2ππ2π3π[,]22k k x ωωωω∈++为减函数,则当ππ0,23k ω==时符合题意,即32ω=,答案应选C.另解2:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得极大值,则π()03f '=,即πco s 03ωω=,即πππ()32k k ω=+∈Z ,结合选择项即可得答案应选C. 另解3:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得最大值,则ππ2π()32k k ω=+∈Z ,36()2k k ω=+∈Z ,结合选择项即可得答案应选C.7.某产品的广告费用与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元是销售额为( ) A.63.6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元【测量目标】线性回归方程.【考查方式】给出实际应用中的数学模型数据,建立线性回归方程,求对应的函数值. 【难易程度】容易 【参考答案】B【试题解析】由题意可知 3.5,42x y ==,则 429.4 3.5,9.1,a a =⨯+= 9.469.165.5y =⨯+=,答案应选B.8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.22154x y -= B. 22145x y -= C. 22136x y -= D. 22163x y -= 【测量目标】双曲线的标准方程.【考查方式】给出双曲线的两条渐近线与圆的位置关系,判断双曲线的标准方程. 【难易程度】容易 【参考答案】A【试题解析】圆22:(3)4C x y -+=,3,c =而32bc=,则22,5b a ==,答案应选A. 9.函数2sin 2xy x =-的图象大致是 ( )A B C D 【测量目标】三角函数的图象.【考查方式】给出三角函数解析式判断其图象.【难易程度】中等 【参考答案】C【试题解析】函数2sin 2x y x =-为奇函数,且12cos 2y x '=-,令0y '=得1cos 4x =,(步骤1) 由于函数cos y x =为周期函数,而当2πx >时,2sin 02x y x =->,当2πx <-时,2sin 02xy x =-<,则答案应选C.(步骤2)10.已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()f x 的图象在区间[0,6]上与x 轴的交点的个数为 ( ) A.6 B.7 C.8 D.9【测量目标】函数的零点.【考查方式】给出函数一个区间内的函数解析式及函数周期,判断函数在某个区间段内函数图象与x 轴的交点.【难易程度】中等 【参考答案】B【试题解析】当02x <≤时32()(1)f x x x x x =-=-,则(0)(1)0f f ==,(步骤1)而()f x 是R 上最小正周期为2的周期函数,则(2)(4)(6)(0)0f f f f ====,(3)(5)(1)0f f f ===,答案应选B.(步骤2)11.如图是长和宽分别相等的两个矩形.给定三个命题: ①存在三棱柱,其正(主)视图、俯视图如图; ②存在四棱柱,其正(主)视图、俯视图如图; ③存在圆柱,其正(主)视图、俯视图如图.其中真,命题的个数是 ( )第11题图A.3B.2C.1D.0 【测量目标】平面图形的直观图与三视图.【考查方式】给出正(主)视图、俯视图,判断可能的几何体图形. 【难易程度】容易 【参考答案】A【试题解析】①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱, 让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面 是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真, 答案选A.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R,1412()A A A A μμ=∈R ,且112λμ+=,则称34,A A 调和分割12,A A ,已知平面上的点(,0),(,0),(,C c D d c d ∈R 调和分割点(0,0),A B ,则下面说法正确的是( )A. C 可能是线段AB 的中点B. D 可能是线段AB 的中点C. C 、D 可能同时在线段AB 上D. C 、D 不可能同时在线段AB 的延长线上 【测量目标】向量的线性运算.【考查方式】给出平面向量的数量关系,判断平面中线段的数量关系. 【难易程度】中等 【参考答案】D【试题解析】根据题意可知112c d +=,若C 或D 是线段AB 的中点,则12c =,或12d =,矛盾;(步骤1)若C,D 可能同时在线段AB 上,则01,01,c d <<<<则112c d +>矛盾,(步骤2) 若C,D 同时在线段AB 的延长线上,则1,1c d >>,1102c d<+<,故C,D 不可能同时在线段AB 的延长线上,答案选D.(步骤3) 二、填空题:本大题共4小题·,每小题4分,共16分. 13.执行如图所示的程序框图,输入2,3,5l m n ===, 则输出的y 的值是 .第13题图【测量目标】循环结构程序框图.【考查方式】给出程序框图输入值,判断输出值. 【难易程度】容易 【参考答案】68【试题解析】1406375278,y =++=(步骤1)278105173,17310568y y =-==-=.(步骤2)答案应填:68.14.若6(x 展开式的常数项为60,则常数a 的值为 .【测量目标】二项式定理【考查方式】给出二项式常数项的值,判断二项式中未知参量的值. 【难易程度】中等 【参考答案】4【试题解析】6(x 的展开式616C (k kk k T x -+=636C (kk k x -=,(步骤1)令630,2,k k -==226C (1560,4a a ===,答案应填:4.(步骤2)15.设函数()(0)2xf x x x =>+,观察: 1()()2x f x f x x ==+,21()(())34x f x f f x x ==+,32()(())78x f x f f x x ==+, 43()(())1516xf x f f x x ==+,……根据上述事实,由归纳推理可得:当*n ∈N ,且2n ≥时,1()(())n n f x f f x -== . 【测量目标】已知递推关系求通项.【考查方式】给出()f x 函数解析式,利用递推关系判断()n f x 的函数关系式. 【难易程度】较难 【参考答案】(21)2n nxx -+【试题解析】2122()(())(21)2x f x f f x x ==-+,3233()(())(21)2xf x f f x x ==-+, 4344()(())(21)2x f x f f x x ==-+,以此类推可得1()(())(21)2n n n nxf x f f x x -==-+. 答案应填:(21)2n nxx -+. 16.已知函数()log (0,a f x x x b a =+->且1)a ≠.当234a b <<<<时函数()f x 的零点为*0(,1)()x n n n ∈+∈N ,则n = .【测量目标】对数函数的图象与性质.【考查方式】给出含参量的对数函数关系式,通过对参量的范围讨论,判断函数零点的取值范围. 【难易程度】较难 【参考答案】2【试题解析】根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,(步骤1)而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.(步骤2)三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c ,已知cos 2cos 2cos A C c aB b--=,(Ⅰ)求sin sin C A 的值;(Ⅱ)若1cos ,24B b ==,求ABC △的面积S . 【测量目标】正弦定理,两角和的正弦,余弦定理.【考查方式】给出一个三角形内角边的三角函数关系式,通过三角函数变换,求解两个角的正弦比值及三角形面积.【难易程度】中等【试题解析】(Ⅰ)在ABC △中,由cos 2cos 2cos A C c aB b--=及正弦定理可得cos 2cos 2sin sin cos sin A C C AB B--=,(步骤1)即cos sin 2cos sin 2sin cos sin cos A B C B C B A B -=-则cos sin sin cos 2sin cos 2cos sin A B A B C B C B +=+(步骤2)sin()2sin()A B C B +=+,而πA B C ++=,则sin 2sin C A =,即sin 2sin CA=.(步骤3) 另解1:在ABC △中,由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤1)由余弦定理可得22222222222222b c a a b c a c b a c b c a a c +-+-+-+--=-,整理可得2c a =,由正弦定理可得sin 2sin C cA a==.(步骤2) 另解2:利用教材习题结论解题,在ABC △中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+.(步骤1) 由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤2)即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =,由正弦定理可得sin 2sin C cA a==.(步骤3) (Ⅱ)由2c a =及1cos ,24B b ==可得22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,(步骤4)S 11sin 1222ac B ==⨯⨯=,即S =(步骤5)18.(本题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. 【测量目标】离散型随机变量的分布列,期望和方差.【考查方式】给出数学模型,列出随机变量的分布列并求数学期望. 【难易程度】中等【试题解析】(Ⅰ)记甲对A 、乙对B 、丙对C 各一盘中甲胜A 、乙胜B 、丙胜C 分别为事件,,D E F ,则甲不胜A 、乙不胜B 、丙不胜C 分别为事件,,D E F ,(步骤1) 根据各盘比赛结果相互独立可得故红队至少两名队员获胜的概率为()()()()P P DEF P DEF P DEF P DEF =+++()()()()()()()()()()()()P D P E P F P D P E P F P D P E P F P D P E P F =+++0.60.5(10.5)0.6(10.5)0.5(10.6)0.50.50.60.50.5=⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯0.55=.(步骤2)(Ⅱ)依题意可知0,1,2,3ξ=,(0)()()()()(10.6)(10.5)(10.5)0.1P P DEF P D P E P F ξ====-⨯-⨯-=; (1)()()()P P DEF P DEF P DEF ξ==++0.6(10.5)(10.5)(10.6)0.5(10.5)(10.6)(10.5)0.50.35=⨯-⨯-+-⨯⨯-+-⨯-⨯=;(2)()()()P P DEF P DEF P DEF ξ==++0.60.5(10.5)(10.6)0.50.50.6(10.5)0.50.4=⨯⨯-+-⨯⨯+⨯-⨯=; (3)()0.60.50.50.15P P DEF ξ===⨯⨯=.故ξ的分布列为(步骤3)故00.110.3520.430.15 1.6E ξ=⨯+⨯+⨯+⨯=.(步骤4) 19. (本小题满分12分)在如图所示的几何体中,四边形ABCD 为平行四边形,90ACB ∠= ,EA ⊥平面ABCD ,//EF AB , //FG BC ,//EG AC ,2AB EF =.(I )若M 是线段AD 的中点,求证://GM 平面ABFE ; (II )若2AC BC AE ==,求二面角A BF C --的大小第19题图【测量目标】空间立体几何线面平行,二面角.【考查方式】给出空间几何体线面垂直,线线平行及线段之间的长度关系,判断线面平行及二面角大小. 【难易程度】中等【试题解析】几何法:证明:(Ⅰ)//EF AB ,2AB EF =可知延长BF 交AE 于点P ,而//FG BC ,//EG AC ,则P BF ∈⊂平面,BFGC P AE ∈⊂平面AEGC ,即P ∈平面BFGC 平面AEGC GC =,(步骤1) 于是,,BF CG AE 三线共点,1//2FG BC ,若M 是线段AD 的中点,而//AD BC , 则//FG AM ,(步骤2)四边形AMGF 为平行四边形,则//GM AF ,又GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤3)(Ⅱ)由EA ⊥平面ABCD ,作C H A B ⊥,则CH ⊥平面ABFE ,作H T B F ⊥,连接CT ,则CT B F ⊥,于是CTH ∠为二面角A BF C --的平面角.(步骤4)若2AC BC AE ==,设1AE =,则2A C B C==,AB CH ==,H 为AB 的中点,2t a n2AE AE FBA AB EF AB ∠====-,sin FBA ∠=(步骤5)sin HT BH ABF =∠==Rt CHT △中tan CH CTH HT ∠==则60CTH ∠=,即二面角A BF C --的大小为60.(步骤6)坐标法:(Ⅰ)证明:由四边形ABCD 为平行四边形, 090ACB ∠=,EA ⊥平面ABCD ,可得以点A 为坐标原点,,,AC AD AE 所在直线分别为,,x y z 建立直角坐标系,(步骤1)设=,,AC a AD b AE c ==,则(0,0,0)A ,1(,0,0),(0,,0),(0,,0),(,,0)2C aD b M b B a b -.(步骤2)由//EG AC 可得()EG AC λλ=∈R ,1(,,)2GM GE EA AM a b c λ=++=-- (步骤3)由//FG BC 可得()FG BC AD μμμ==∈R,1122GM GF FA AM AD BA EA AD μ=++=-+++1(,(1),)2a b c μ=---,则12λμ==,12GM BA EA =+,而GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤4)(Ⅱ)若2AC BC AE ==,设1AE =,则2AC BC ==,(2,0,0),(0,0,1),(2,2,0),(1,1,1)C E B F --,则(0,2,0)BC AD == ,(1,1,1)BF =-,(步骤5) (2,2,0)AB =-,设11112222(,,),(,,)x y z x y z =n =n 分别为平面ABF 与平面CBF 的法向量.则11111220x y x y z -=⎧⎨-++=⎩,令11x =,则111,0y z ==,1(1,1,0)n =;2222200y x y z =⎧⎨-++=⎩,令21x =,则220,1y z ==,2(1,0,1)=n .(步骤6) 于是1212121cos 2<>== n n n ,n n n ,则1260<>= n ,n ,即二面角A BF C --的大小为60.(步骤7)20. (本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:()1ln nn n n b a a =+-,求数列{}n b 的前n 项和n S . 【测量目标】数列的通项及前n 项和.【考查方式】给出等比数列前三项求数列的通项,并求组合数列{}n b 的前n 项和. 【难易程度】较难【试题解析】(Ⅰ)由题意可知1232,6,18a a a ===,公比32123a a q a a ===, 通项公式为123n n a -= ;(步骤1) (Ⅱ)()1111ln 23(1)ln 2323(1)[ln 2(1)ln 3]nn n n n n n n n b a a n ---=+-=+-=+-+-当*2()n k k =∈N 时,122n k S b b b =+++212(133)[1(23)((22)(21))]ln3k k k -=+++++-+++--+- 2132ln 331ln 3132k n nk -=+=-+-(步骤2)当*21()n k k =-∈N 时1221n k S b b b -=+++222(133)[(12)((23)(22))]ln3ln 2k k k -=++++-++----21132(1)ln 3ln 213k k --=----(1)31ln 3ln 22n n -=---(步骤3) 故31ln 3,2(1)31ln 3ln 22nn n n n S n n ⎧-+⎪⎪=⎨-⎪---⎪⎩为偶数;,为奇数.(步骤4)另解:令11(1)ln 23nnn n T -=-⋅∑,即11(1)ln 2(1)(1)ln 3nnnn n T n =-+--∑∑(步骤1)223[1(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n =-+-++-+-+-++-- 231341[(1)(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n ++-=-+-++-+-+-++--则12312[1(1)]ln 2[(1)(1)(1)(1)(1)]ln3n n n n T n ++=---+-+-++----211111(1)(1)[1(1)]ln 2[(1)(1)]ln 3222n n n n T n +++---=---+---12111[1(1)]ln 2[(1)(1)(21)]ln 324n n n T n ++=---+----(步骤2)故1122(133)n n n n S b b b T -=+++=++++1211131[1(1)]ln 2[(1)(1)(21)]ln 324n n n n ++=-+---+----.(步骤3)21. (本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (3c >)千元.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .第21题图【测量目标】函数单调性的综合应用.【考查方式】给出实际问题,建立函数模型运用导数解决实际问题. 【难易程度】较难【试题解析】(Ⅰ)由题意可知2324π80ππ()33r l r l r +=…,即2804233l r r r =-≥,则02r <≤.(步骤1)容器的建造费用为2228042π34π6π()4π33y rl r c r r r c r =⨯+⨯=-+, 即22160π8π4πy r r c r=-+,定义域为{02}r r <≤.(步骤2)(Ⅱ)2160π16π8πy r rc r '=--+,令0y '=,得r =令2,r ==即 4.5c =,(步骤3)(1)当34.5c <≤2,当02r <≤,0y '<,函数y 为减函数,当2r =时y 有最小值;(步骤4)(2)当 4.5c >2,<当0r <<0y '<;当r >0y '>,此时当r =y 有最小值.(步骤5) 22. (本小题满分12分)已知动直线l 与椭圆C :22132x y +=交于()()1122,,,P x y Q x y 两不同点,且OPQ △的面积2OPQ S =△O 为坐标原点.(Ⅰ)证明:2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求OM PQ 的最大值;(Ⅲ)椭圆C 上是否存在三点,,D E G ,使得ODE ODG OEG S S S ===△△△?若存在,判断DEG △的形状;若不存在,请说明理由.【测量目标】椭圆的简单几何性质.【考查方式】给出直线与椭圆的位置关系,根据椭圆的几何性质,讨论坐标的定值及线段积的最值等综合问题.【难易程度】较难【试题解析】(Ⅰ)当直线l 的斜率不存在时,,P Q 两点关于x 轴对称,则1212,x x y y ==-,(步骤1)由()11,P x y 在椭圆上,则2211132x y +=,而11OPQ S x y ==△,则111x y == 于是22123x x +=,22122y y +=.(步骤2)当直线l 的斜率存在,设直线l 为y kx m =+,代入22132x y +=可得(步骤3) 2223()6x kx m ++=,即222(23)6360k x km m +++-=,0>△,即2232k m +>2121222636,2323km m x x x x k k -+=-=++(步骤4)12PQ x =-==d =1122POQS d PQ === △(步骤5) 则22322k m +=,满足0>△222221212122263(2)()2()232323km m x x x x x x k k -+=+-=--⨯=++,222222*********(3)(3)4()2333y y x x x x +=-+-=-+=, 综上可知22123x x +=,22122y y +=.(步骤6)(Ⅱ))当直线l的斜率不存在时,由(Ⅰ)知12OM x PQ === (步骤7)当直线l 的斜率存在时,由(Ⅰ)知12322x x km+=-, 2121231()222y y x x k k m m m m ++=+=-+=,(步骤8) 222212122229111()()(3)2242x x y y k OM m m m++=+=+=- 22222222224(32)2(21)1(1)2(2)(23)k m m PQ k k m m +-+=+==++(步骤9)22221125(3)(2)4OMPQ m m =-+≤,当且仅当221132m m -=+,即m =时等号成立,综上可知OM PQ 的最大值为52.(步骤10)(Ⅲ)假设椭圆上存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△, 由(Ⅰ)知2222223,3,3D E E G G D x x x x x x +=+=+=,2222222,2,2D E E G G D y y y y y y +=+=+=.解得22232D E G x x x ===,2221D E G y y y ===,(步骤11)因此,,D E G x x x 只能从,,D E G y y y 只能从1±中选取,因此,,D E G 只能从(,1)±中选取三个不同点,而这三点的两两连线必有一个过原点,这与2O D E O D G O E GS S S ===△△△相矛盾,故椭圆上不存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△.(步骤12)。
2011山东高考数学(理)word版带详解
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A.9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ= (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=,故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(r rr r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,15x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2s i n a R A =2s i n b R B =2s i n c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c C a A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年高考理科数学试题及详细答案(山东卷)
2011年高考理科数学试题及详细答案(山东卷)2011年普通高等学校招生全国统一考试(山东卷)理科数学第I卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2] C.(2,3] D.[2,3]2.(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)9.(2011•山东)函数的图象大致是()A.B.C.D.10.(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.911.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是()A.3 B.2 C.1 D.012.(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A 3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上第II卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是_________.14.(2011•山东)若(x﹣)6式的常数项为60,则常数a 的值为_________.15.(2011•山东)设函数f(x)=(x>0),观察:f 1(x)=f(x)=,f 2(x)=f(f1(x))=,f 3(x)=f(f2(x))=,f 4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=_________.16.(2011•山东)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=_________.三、解答题(共6小题,满分74分)17.(2011•山东)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.18.(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C 进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求平面角A﹣BF﹣C的大小.20.(2011•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1•a2•a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)lna n,求数列b n的前n 项和s n.21.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.22.(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(山东卷)理科数学参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分。
2011山东高考数学(理)word版带详解
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A.9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ= (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=,故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(r rr r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,15x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2s i n a R A =2s i n b R B =2s i n c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c C a A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011山东理科数学答案
2011年普通高等学校招生全国统一考试(山东卷)理科数学参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A2.D 3.D.4.D5.B 6.C 7.B8.A 9.C 10. B 11.A 12.D二、填空题(共4小题,每小题4分,满分16分)13.答案为:68.14.415.16.2三、解答题(共6小题,满分74分)17.解答:解:(Ⅰ)由正弦定理设则===整理求得sin(A+B)=2sin(B+C)又A+B+C=π∴sinC=2sinA,即=2(Ⅱ)由余弦定理可知cosB==①由(Ⅰ)可知==2②①②联立求得c=2,a=1sinB==∴S=acsinB=18.解答:解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,∵甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5可以得到D,E,F的对立事件的概率分别为0.4,0,5,0.5红队至少两名队员获胜包括四种情况:DE,D F,,DEF,这四种情况是互斥的,∴P=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55(II)由题意知ξ的可能取值是0,1,2,3P(ξ=0)=0.4×0.5×0.5=0.1.,P(ξ=1)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35P(ξ=3)=0.6×0.5×0.5=0.15P(ξ=2)=1﹣0.1﹣0.35﹣0.15=0.4∴ξ的分布列是∴Eξ=0×0.1+1×0.35+2×0.4+3×0.15=1.619.解答:证明:(I)∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC~△EFG,由于AB=2EF,∴BC=2FG,连接AF,∵FG∥BC,FG=BC,在▱ABCD中,M是线段AD的中点,∴AM∥BC,且AM=BC,∴FG∥AM且FG=AM,∴四边形AFGM为平行四边形,∴GM∥FA,∵FA⊂平面ABFE,GM⊄平面ABFE,∴GM∥平面ABFE.(II)由题意知,平面ABFE⊥平面ABCD,取AB的中点H,连接CH,∵AC=BC,∴CH⊥AB则CH⊥平面ABFE,过H向BF引垂线交BF于R,连接CR,则CR⊥BF,∴∠HRC为二面角的平面角,由题意,不妨设AC=BC=2AE=2,在直角梯形ABFE中,连接FH,则FH⊥AB,又AB=2,∴HF=AE=1,HR=,由于CH=AB=,∴在直角三角形CHR中,tan∠HRC==,因此二面角A﹣BF﹣C的大小为60°20..解答:解:(Ⅰ)当a1=3时,不合题意当a1=2时,当且仅当a2=6,a3=18时符合题意当a1=10时,不合题意因此a1=2,a2=6,a3=18,所以q=3,所以a n=2•3n﹣1.(Ⅱ)b n=a n+(﹣1)n lna n=2•3n﹣1+(﹣1)n[(n﹣1)ln3+ln2]=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)n nln3所以s n=2(1+3+…+3n﹣1)+[﹣1+1﹣1+1+…+(﹣1)n](ln2﹣ln3)+[﹣1+2﹣3+4﹣…+(﹣1)n n]ln3 所以当n为偶数时,s n==当n为奇数时,s n==综上所述s n=21.解答:解:(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=22.解答:解:(Ⅰ)1°当直线l的斜率不存在时,P,Q两点关于x轴对称,所以x1=x2,y1=﹣y2,∵P(x1,y1)在椭圆上,∴①又∵S△OPQ=,∴|x1||y1|=②由①②得|x1|=,|y1|=1.此时x12+x22=3,y12+y22=2;2°当直线l的斜率存在时,是直线l的方程为y=kx+m(m≠0),将其代入得(3k2+2)x2+6kmx+3(m2﹣2)=0,△=36k2m2﹣12(3k2+2)(m2﹣2)>0即3k2+2>m2,又x1+x2=﹣,x1•x2=,∴|PQ|==,∵点O到直线l的距离为d=,∴S△OPQ==,又S△OPQ=,整理得3k2+2=2m2,此时x12+x22=(x1+x2)2﹣2x1x2=(﹣)2﹣2=3,y12+y22=(3﹣x12)+(3﹣x22)=4﹣(x12+x22)=2;综上所述x12+x22=3,y12+y22=2.结论成立.(Ⅱ)1°当直线l的斜率不存在时,由(Ⅰ)知|OM|=|x1|=,|PQ|=2|y1|=2,因此|OM|•|PQ|=.2°当直线l的斜率存在时,由(Ⅰ)知=﹣,=k+m== |OM|2=()2+()2==,|PQ|2=(1+k2)==2(2+),所以|OM|2|PQ|2=×=(3﹣)(2+)=.|OM|•|PQ|.当且仅当=2+,即m=±时,等号成立.综合1°2°得|OM|•|PQ|的最大值为;(Ⅲ)椭圆C上不存在三点D,E,G,使得S△ODE=S△ODG=S△OEG=,证明:假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2解得u2=x12=x22=;v2=y12=y22=1.因此u,x1,x2只能从±中选取,v,y1,y2只能从±1中选取,因此点D,E,G,只能在(±,±1)这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与S△ODE=S△ODG=S△OEG=矛盾.所以椭圆C上不存在满足条件的三点D,E,G.。
2011山东高考数学真题及答案
2011年山东省高考数学试卷(理科)一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2]C.(2,3]D.[2,3]2.(3分)(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(3分)(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.4.(3分)(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7]B.[﹣4,6]C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)5.(3分)(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f (x)是奇函数”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.(3分)(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.8 B.2 C.D.x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元8.(3分)(2011•山东)已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.B.=1C.=1 D.=19.(3分)(2011•山东)函数的图象大致是()A. B.C.D.10.(3分)(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.911.(3分)(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.012.(3分)(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是.14.(3分)(2011•山东)若(x﹣)6式的常数项为60,则常数a的值为.15.(3分)(2011•山东)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=.16.(3分)(2011•山东)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=.三、解答题(共6小题,满分74分)17.(12分)(2011•山东)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.18.(12分)(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.(12分)(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.20.(12分)(2011•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某n(Ⅱ)如数列{b n}满足b n=a n+(﹣1)n lna n,求数列b n的前n项和s n.21.(12分)(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.22.(14分)(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG 的形状;若不存在,请说明理由.2011年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2]C.(2,3]D.[2,3]【分析】根据已知角一元二次不等式可以求出集合M,将M,N化为区间的形式后,根据集合交集运算的定义,我们即可求出M∩N的结果.【解答】解:∵M={x|x2+x﹣6<0}={x|﹣3<x<2}=(﹣3,2),N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A2.(3分)(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.【解答】解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D3.(3分)(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.【分析】先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.【解答】解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.4.(3分)(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7]B.[﹣4,6]C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)【分析】解法一:利用特值法我们可以用排除法解答本题,分别取x=0,x=﹣4根据满足条件的答案可能正确,不满足条件的答案一定错误,易得到答案.解法二:我们利用零点分段法,我们分类讨论三种情况下不等式的解,最后将三种情况下x 的取值范围并起来,即可得到答案.【解答】解:法一:当x=0时,|x﹣5|+|x+3|=8≥10不成立可排除A,B当x=﹣4时,|x﹣5|+|x+3|=10≥10成立可排除C故选D法二:当x<﹣3时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)﹣(x+3)≥10解得:x≤﹣4当﹣3≤x≤5时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)+(x+3)=8≥10恒不成立当x>5时不等式|x﹣5|+|x+3|≥10可化为:(x﹣5)+(x+3)≥10解得:x≥6故不等式|x﹣5|+|x+3|≥10解集为:(﹣∞,﹣4]∪[6,+∞)故选D5.(3分)(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f (x)是奇函数”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【分析】通过举反例判断出前面的命题推不出后面的命题;利用奇函数的定义,后面的命题能推出前面的命题;利用充要条件的定义得到结论.【解答】解:例如f(x)=x2﹣4满足|f(x)|的图象关于y轴对称,但f(x)不是奇函数,所以,“y=|f(x)|的图象关于y轴对称”推不出“y=f(x)是奇函数”当“y=f(x)是奇函数”⇒f(﹣x)=﹣f(x)⇒|f(﹣x)|=|f(x)|⇒y=|f(x)|为偶函数⇒,“y=|f (x)|的图象关于y轴对称”所以,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件故选B6.(3分)(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.8 B.2 C.D.【分析】由题意可知函数在x=时确定最大值,就是,求出ω的值即可.【解答】解:由题意可知函数在x=时确定最大值,就是,k∈Z,所以ω=6k+;k=0时,ω=故选C7.(3分)(2011•山东)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.8.(3分)(2011•山东)已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.B.=1C.=1 D.=1【分析】由题意因为圆C:x2+y2﹣6x+5=0把它变成圆的标准方程知其圆心为(3,0),利用双曲线的右焦点为圆C的圆心及双曲线的标准方程建立a,b的方程.再利用双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,建立另一个a,b的方程.【解答】解:因为圆C:x2+y2﹣6x+5=0⇔(x﹣3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线=1(a>0,b>0),∴a2+b2=9①又双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,而双曲线的渐近线方程为:y=⇔bx±ay=0,∴连接①②得所以双曲线的方程为:,故选A.9.(3分)(2011•山东)函数的图象大致是()A. B.C.D.【分析】根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.【解答】解:当x=0时,y=0﹣2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选C10.(3分)(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.9【分析】当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,由周期性可求得区间[0,6)上解的个数,再考虑x=6时的函数值即可.【解答】解:当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7故选B11.(3分)(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.0【分析】由三棱柱的三视图中,两个矩形,一个三角形可判断①的对错,由四棱柱的三视图中,三个均矩形,可判断②的对错,由圆柱的三视图中,两个矩形,一个圆可以判断③的真假.本题考查的知识点是简单空间图形的三视图,其中熟练掌握各种几何体的几何特征进而判断出各种几何体中三视图对应的平面图形的形状是解答本题的关键.【解答】解:存在正三棱柱,其三视图中有两个为矩形,一个为正三角形满足条件,故①为真命题;存在正四棱柱,其三视图均为矩形,满足条件,故②为真命题;对于任意的圆柱,其三视图中有两个为矩形,一个是以底面半径为半径的圆,也满足条件,故③为真命题;故选:A12.(3分)(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上【分析】由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.【解答】解:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入得(1)若C是线段AB的中点,则c=,代入(1)d不存在,故C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是68.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出y值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.此时y值为68.故答案为:68.14.(3分)(2011•山东)若(x﹣)6式的常数项为60,则常数a的值为4.【分析】利用二项展开式的通项公式求出通项,令x的指数等于0,求出常数项,列出方程求出a.【解答】解:展开式的通项为令6﹣3r=0得r=2所以展开式的常数项为aC62=60解得a=4故答案为:415.(3分)(2011•山东)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=.【分析】观察所给的前四项的结构特点,先观察分子,只有一项组成,并且没有变化,在观察分母,有两部分组成,是一个一次函数,根据一次函数的一次项系数与常数项的变化特点,得到结果.【解答】解:∵函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…所给的函数式的分子不变都是x,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15…2n﹣1,第二部分的数分别是2,4,8,16…2n∴f n(x)=f(f n﹣1(x))=故答案为:16.(3分)(2011•山东)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=2.【分析】把要求零点的函数,变成两个基本初等函数,根据所给的a,b的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n的值.【解答】解:设函数y=log a x,m=﹣x+b根据2<a<3<b<4,对于函数y=log a x 在x=2时,一定得到一个值小于1,在同一坐标系中划出两个函数的图象,判断两个函数的图形的交点在(2,3)之间,∴函数f(x)的零点x0∈(n,n+1)时,n=2,故答案为:2三、解答题(共6小题,满分74分)17.(12分)(2011•山东)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.【分析】(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA 的关系式,则的值可得.(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a 和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.【解答】解:(Ⅰ)由正弦定理设则===整理求得sin(A+B)=2sin(B+C)又A+B+C=π∴sinC=2sinA,即=2(Ⅱ)由余弦定理可知cosB==①由(Ⅰ)可知==2②再由b=2,①②联立求得c=2,a=1sinB==∴S=acsinB=18.(12分)(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.【分析】(I)由题意知红队至少有两名队员获胜包括四种情况,一是只有甲输,二是只有乙输,三是只有丙输,四是三个人都赢,这四种情况是互斥的,根据相互独立事件同时发生的概率和互斥事件的概率得到结果.(II)由题意知ξ的可能取值是0,1,2,3,结合变量对应的事件写出变量对应的概率,变量等于2使得概率可以用1减去其他的概率得到,写出分布列,算出期望.【解答】解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,∵甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5可以得到D,E,F的对立事件的概率分别为0.4,0,5,0.5红队至少两名队员获胜包括四种情况:DE,D F,,DEF,这四种情况是互斥的,∴P=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55(II)由题意知ξ的可能取值是0,1,2,3P(ξ=0)=0.4×0.5×0.5=0.1.,P(ξ=1)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35P(ξ=3)=0.6×0.5×0.5=0.15P(ξ=2)=1﹣0.1﹣0.35﹣0.15=0.419.(12分)(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.【分析】(Ⅰ)根据所给的一系列平行,得到三角形相似,根据平行四边形的判定和性质,得到线与线平行,根据线与面平行的判定定理,得到线面平行.(Ⅱ)根据二面角的求解的过程,先做出,再证明,最后求出来,这样三个环节,先证∠HRC 为二面角的平面角,再设出线段的长度,在直角三角形中求出角的正切值,得到二面角的大小.【解答】证明:(Ⅰ)∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC~△EFG,由于AB=2EF,∴BC=2FG,连接AF,∵FG∥BC,FG=BC,在▱ABCD中,M是线段AD的中点,∴AM∥BC,且AM=BC,∴FG∥AM且FG=AM,∴四边形AFGM为平行四边形,∴GM∥FA,∵FA⊂平面ABFE,GM⊄平面ABFE,∴GM∥平面ABFE.(Ⅱ)由题意知,平面ABFE⊥平面ABCD,取AB的中点H,连接CH,∵AC=BC,∴CH⊥AB则CH⊥平面ABFE,过H向BF引垂线交BF于R,连接CR,由线面垂直的性质可得CR⊥BF,∴∠HRC为二面角的平面角,由题意,不妨设AC=BC=2AE=2,在直角梯形ABFE中,连接FH,则FH⊥AB,又AB=2,∴HF=AE=1,HR===,由于CH=AB=,∴在直角三角形CHR中,tan∠HRC==,因此二面角A﹣BF﹣C的大小为60°20.(12分)(2011•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)n lna n,求数列b n的前n项和s n.【分析】(Ⅰ)由表格可看出a1,a2,a3分别是2,6,18,由此可求出{a n}的首项和公比,继而可求通项公式(Ⅱ)先写出b n发现b n由一个等比数列、一个等差数列乘(﹣1)n的和构成,故可分组求和.【解答】解:(Ⅰ)当a1=3时,不合题意当a1=2时,当且仅当a2=6,a3=18时符合题意当a1=10时,不合题意因此a1=2,a2=6,a3=18,所以q=3,所以a n=2•3n﹣1.(Ⅱ)b n=a n+(﹣1)n lna n=2•3n﹣1+(﹣1)n[(n﹣1)ln3+ln2]=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)n nln3所以s n=2(1+3+…+3n﹣1)+[﹣1+1﹣1+1+…+(﹣1)n](ln2﹣ln3)+[﹣1+2﹣3+4﹣…+(﹣1)n n]ln3所以当n为偶数时,s n==当n为奇数时,s n==综上所述s n=21.(12分)(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.【分析】(1)由圆柱和球的体积的表达式,得到l和r的关系.再由圆柱和球的表面积公式建立关系式,将表达式中的l用r表示.并注意到写定义域时,利用l≥2r,求出自变量r的范围.(2)用导数的知识解决,注意到定义域的限制,在区间(0,2]中,极值未必存在,将极值点在区间内和在区间外进行分类讨论.【解答】解:(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=22.(14分)(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.【分析】(Ⅰ)根据已知设出直线l的方程,利用弦长公式求出|PQ|的长,利用点到直线的距离公式求点O到直线l的距离,根据三角形面积公式,即可求得x12+x22和y12+y22均为定值;(Ⅱ)由(I)可求线段PQ的中点为M,代入|OM|•|PQ|并利用基本不等式求最值;(Ⅲ)假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2,从而求得点D,E,G,的坐标,可以求出直线DE、DG、EG的方程,从而得到结论.【解答】解:(Ⅰ)1°当直线l的斜率不存在时,P,Q两点关于x轴对称,所以x1=x2,y1=﹣y2,∵P(x1,y1)在椭圆上,∴①又∵S△OPQ=,∴|x1||y1|=②由①②得|x1|=,|y1|=1.此时x12+x22=3,y12+y22=2;2°当直线l的斜率存在时,是直线l的方程为y=kx+m(m≠0),将其代入得(3k2+2)x2+6kmx+3(m2﹣2)=0,△=36k2m2﹣12(3k2+2)(m2﹣2)>0即3k2+2>m2,又x1+x2=﹣,x1•x2=,∴|PQ|==,∵点O到直线l的距离为d=,∴S△OPQ==,又S△OPQ=,整理得3k2+2=2m2,此时x12+x22=(x1+x2)2﹣2x1x2=(﹣)2﹣2=3,y12+y22=(3﹣x12)+(3﹣x22)=4﹣(x12+x22)=2;综上所述x12+x22=3,y12+y22=2.结论成立.(Ⅱ)1°当直线l的斜率不存在时,由(Ⅰ)知|OM|=|x1|=,|PQ|=2|y1|=2,因此|OM|•|PQ|=.2°当直线l的斜率存在时,由(Ⅰ)知=﹣,=k+m==|OM|2=()2+()2==,|PQ|2=(1+k2)==2(2+),所以|OM|2|PQ|2=×=(3﹣)(2+)=.|OM|•|PQ|.当且仅当=2+,即m=±时,等号成立.综合1°2°得|OM|•|PQ|的最大值为;(Ⅲ)椭圆C上不存在三点D,E,G,使得S△ODE=S△ODG=S△OEG=,证明:假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2解得u2=x12=x22=;v2=y12=y22=1.因此u,x1,x2只能从±中选取,v,y1,y2只能从±1中选取,因此点D,E,G,只能在(±,±1)这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与S△ODE=S△ODG=S△OEG=矛盾.所以椭圆C上不存在满足条件的三点D,E,G.参与本试卷答题和审题的老师有:翔宇老师;涨停;rxl;wdnah;qiss;邢新丽;wdlxh;yhx01248;zhwsd;394782(排名不分先后)菁优网2016年4月12日第21页(共21页)。
2011年山东高考理科数学试题及答案
2011年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3]2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为A .0BC .1D 4.不等式|5||3|10x x -++≥的解集是A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞D .(][),46,-∞-+∞5.对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 42 3 5销售额y (万元)49 26 3954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .911.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是14.若6(x 展开式的常数项为60,则常数a 的值为 .15.设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
2011山东高考数学(理)word版带详解
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb为9.4,所以7ˆ429.42a =⨯+, 解得9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上, 因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若6(x 展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(rr r r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,1516x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知:sin sin c C a A ==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年山东卷(理科数学)
2011年普通高等学校招全国统一考试理科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选择题只有一项是符合题目要求的.1.设集合2{60}M x x x =+-<,{13}N x x =≤≤,则=N M IA.[1,2)B.[1,2]C.(2,3]D.[2,3] 2.复数22iz i-=+(i 为虚数单位),在复平面内对应的点所在象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若点(,9)a 在函数x y 3=的图像上,则6tan πa 的值为A.0B.33C.1D.3 4.不等式5310x x -++≥的解集是A.[5,7]-B.[4,6]-C.(,5][7)-∞-+∞U ,D.(,4][6)-∞-+∞U ,5.对于函数R x x f y ∈= )(,“ )(x f y =的函数图象关于y 轴对称”是“y =()f x 是奇函数”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.若函数()sin f x x ω=(0ω>)在区间[0,]3π上单调递增,在区间[,]32ππ-上单调递减,则ω=A.3B.2C.12 D.237.某产品的广告费用x 销售额y 的统计数据如下表:根据上表可得回归方程$$y bxa =+$中的b $为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元8.已知双曲线22221x y a b-=(0a >,0b >)的两条渐近线和圆C :22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则双曲线的方程为A.22154x y -= B.22145x y -= C.22136x y -= D.22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 A.6 B.7 C.8 D.911.右图是长和宽分别相等的两个矩形,给定下列三个命题:(1)存在三棱柱,其正(主)视图、俯视图如右图;(2)存在四棱柱,其正(主)视图、俯视图如右图;(3)存在圆柱其正(主)视图、俯视图如右图;其中真命题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u r u u u u r正(主)视图俯视图(R λ∈),1412A A A A μ=u u u u r u u u u r ,(R μ∈),且112λμ+=,则称3A ,4A 调和分割1A ,2A 一直平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是 A .C 可能是线段A ,B 的中点 B .D 可能是线段A ,B 的中点 C .C ,D 可能同时在线段A ,B 上D .C ,D 不可能同时在线段A ,B 的延长线上 二、填空题:本大题共4小题,每小题4分,共16分.13.按右图所示的程序框图,输入2l =,3m =,5n =,则输出的y 的值是 . 14.若62(x x -式的常数项为60,则常数a 的值为 .15.设函数()2x f x x =+,0x >,观察:1()()2x f x f x x ==+,21()(())f x f f x == 34x x +,32()(())78x f x f f x x ==+,43()(())1516xf x f f x x ==+,根据以上事实,由归纳推理可得,当x N +∈,且2n ≥时,1()(())n n f x f f x -== . 16.已知函数()log a f x x x b =+-(0a >,且1a ≠).当234a b <<<<时,函数()f x 的零点0(,1)x n n ∈+,n N *∈,则n = .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,内角ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .,已知 cos 2cos cos A C B-2c ab -= (Ⅰ)求sin sin CA的值;(Ⅱ)若1cos 4B =,2b =,求ABC ∆的面积S .18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年高考试题——数学理(山东卷)解析版
2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N =A.[1,2)B. [1,2]C. (2,3]D. [2,3] 解析:{32}M x x =-<<,[1,2)M N = ,答案应选A 。
(2)复数2(2iz i i-=+为虚数单位)在复平面内对应的点所在的象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:22(2)34255i i iz i ---===+对应的点为34(,)55-在第四象限,答案应选D.(3)若点(,9)a 在函数3xy =的图象上,则tan6a π的值为A.0B.3C. 1D.解析:2393a ==,2a =,tantan 63a ππ== D. (4)不等式5310x x -++≥的解集是A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞ 解析:当5x >时,原不等式可化为2210x -≥,解得6x ≥;当35x -≤≤时,原不等式可化为810≥,不成立;当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D 。
另解1:可以作出函数53y x x =-++的图象,令5310x x -++=可得4x -=或6x =,观察图像可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
另解2:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
2011年山东省高考数学试卷(理科)及答案
2011年山东省高考数学试卷(理科)一、选择题(共12小题,每小题3分,满分36分)1.(3分)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2) B.[1,2]C.(2,3]D.[2,3]2.(3分)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B .C.1 D .4.(3分)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7]B.[﹣4,6]C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)5.(3分)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(3分)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.8 B.2 C .D .7.(3分)某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263 954根据上表可得回归方程=x +的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元8.(3分)已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.B.=1C.=1 D.=19.(3分)函数y=﹣2sinx 的图象大致是()A. B.C.D.10.(3分)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f (x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.911.(3分)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.012.(3分)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上二、填空题(共4小题,每小题3分,满分12分)13.(3分)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是.14.(3分)若(x﹣)6式的常数项为60,则常数a的值为.15.(3分)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=.16.(3分)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=.三、解答题(共6小题,满分74分)17.(12分)已知在△ABC中,内角A,B,C的对边分别为a,b,c.且=.(I)求的值;(II)若cosB=,b=2,求△ABC的面积S.18.(12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.(12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.20.(12分)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)n lna n,求数列b n的前n项和s n.21.(12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.22.(14分)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE =S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.2011年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2) B.[1,2]C.(2,3]D.[2,3]【分析】根据已知角一元二次不等式可以求出集合M,将M,N化为区间的形式后,根据集合交集运算的定义,我们即可求出M∩N的结果.【解答】解:∵M={x|x2+x﹣6<0}={x|﹣3<x<2}=(﹣3,2),N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A2.(3分)(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.【解答】解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D3.(3分)(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.【分析】先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.【解答】解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.4.(3分)(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7]B.[﹣4,6]C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)【分析】解法一:利用特值法我们可以用排除法解答本题,分别取x=0,x=﹣4根据满足条件的答案可能正确,不满足条件的答案一定错误,易得到答案.解法二:我们利用零点分段法,我们分类讨论三种情况下不等式的解,最后将三种情况下x的取值范围并起来,即可得到答案.【解答】解:法一:当x=0时,|x﹣5|+|x+3|=8≥10不成立可排除A,B当x=﹣4时,|x﹣5|+|x+3|=10≥10成立可排除C故选D法二:当x<﹣3时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)﹣(x+3)≥10解得:x≤﹣4当﹣3≤x≤5时不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)+(x+3)=8≥10恒不成立当x>5时不等式|x﹣5|+|x+3|≥10可化为:(x﹣5)+(x+3)≥10解得:x≥6故不等式|x﹣5|+|x+3|≥10解集为:(﹣∞,﹣4]∪[6,+∞)故选D5.(3分)(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】通过举反例判断出前面的命题推不出后面的命题;利用奇函数的定义,后面的命题能推出前面的命题;利用充要条件的定义得到结论.【解答】解:例如f(x)=x2﹣4满足|f(x)|的图象关于y轴对称,但f(x)不是奇函数,所以,“y=|f(x)|的图象关于y轴对称”推不出“y=f(x)是奇函数”当“y=f(x)是奇函数”⇒f(﹣x)=﹣f(x)⇒|f(﹣x)|=|f(x)|⇒y=|f(x)|为偶函数⇒,“y=|f(x)|的图象关于y轴对称”所以,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件故选B6.(3分)(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.8 B.2 C.D.【分析】由题意可知函数在x=时确定最大值,就是,求出ω的值即可.【解答】解:由题意可知函数在x=时确定最大值,就是,k∈Z,所以ω=6k+;k=0时,ω=故选C7.(3分)(2011•山东)某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263 954根据上表可得回归方程=x +的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.8.(3分)(2011•山东)已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A .B .=1C .=1D .=1【分析】由题意因为圆C:x2+y2﹣6x+5=0把它变成圆的标准方程知其圆心为(3,0),利用双曲线的右焦点为圆C的圆心及双曲线的标准方程建立a,b的方程.再利用双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,建立另一个a,b的方程.【解答】解:因为圆C:x2+y2﹣6x+5=0⇔(x﹣3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线=1(a >0,b>0),∴a2+b2=9①又双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,而双曲线的渐近线方程为:y=⇔bx±ay=0,∴连接①②得所以双曲线的方程为:,故选A.9.(3分)(2011•山东)函数y=﹣2sinx 的图象大致是()A. B.C.D.【分析】根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.【解答】解:当x=0时,y=0﹣2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选C10.(3分)(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.9【分析】当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,由周期性可求得区间[0,6)上解的个数,再考虑x=6时的函数值即可.【解答】解:当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7故选B11.(3分)(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.0【分析】由三棱柱的三视图中,两个矩形,一个三角形可判断①的对错,由四棱柱的三视图中,三个均矩形,可判断②的对错,由圆柱的三视图中,两个矩形,一个圆可以判断③的真假.本题考查的知识点是简单空间图形的三视图,其中熟练掌握各种几何体的几何特征进而判断出各种几何体中三视图对应的平面图形的形状是解答本题的关键.【解答】解:存在正三棱柱,其三视图中有两个为矩形,一个为正三角形满足条件,故①为真命题;存在正四棱柱,其三视图均为矩形,满足条件,故②为真命题;对于任意的圆柱,其三视图中有两个为矩形,一个是以底面半径为半径的圆,也满足条件,故③为真命题;故选:A12.(3分)(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上【分析】由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.【解答】解:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入得(1)若C是线段AB的中点,则c=,代入(1)d不存在,故C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C 和D点重合,与条件矛盾,故C错误.故选D二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是68.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出y值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:L m n y是否继续循环循环前235第一圈235278是第二圈235173是第三圈23568否此时y值为68.故答案为:68.14.(3分)(2011•山东)若(x﹣)6式的常数项为60,则常数a的值为4.【分析】利用二项展开式的通项公式求出通项,令x的指数等于0,求出常数项,列出方程求出a.【解答】解:展开式的通项为令6﹣3r=0得r=2所以展开式的常数项为aC62=60解得a=4故答案为:415.(3分)(2011•山东)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=.【分析】观察所给的前四项的结构特点,先观察分子,只有一项组成,并且没有变化,在观察分母,有两部分组成,是一个一次函数,根据一次函数的一次项系数与常数项的变化特点,得到结果.【解答】解:∵函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…所给的函数式的分子不变都是x,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15…2n﹣1,第二部分的数分别是2,4,8,16…2n∴f n(x)=f(f n﹣1(x))=故答案为:16.(3分)(2011•山东)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=2.【分析】把要求零点的函数,变成两个基本初等函数,根据所给的a,b的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n的值.【解答】解:设函数y=log a x,m=﹣x+b根据2<a<3<b<4,对于函数y=log a x 在x=2时,一定得到一个值小于1,在同一坐标系中划出两个函数的图象,判断两个函数的图形的交点在(2,3)之间,∴函数f(x)的零点x0∈(n,n+1)时,n=2,故答案为:2三、解答题(共6小题,满分74分)17.(12分)(2011•山东)已知在△ABC中,内角A,B,C的对边分别为a,b,c.且=.(I)求的值;(II)若cosB=,b=2,求△ABC的面积S.【分析】(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA的关系式,则的值可得.(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.【解答】解:(Ⅰ)由正弦定理设则===整理求得sin(A+B)=2sin(B+C)又A+B+C=π∴sinC=2sinA,即=2(Ⅱ)由余弦定理可知cosB==①由(Ⅰ)可知==2②再由b=2,①②联立求得c=2,a=1sinB==∴S=acsinB=18.(12分)(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.【分析】(I)由题意知红队至少有两名队员获胜包括四种情况,一是只有甲输,二是只有乙输,三是只有丙输,四是三个人都赢,这四种情况是互斥的,根据相互独立事件同时发生的概率和互斥事件的概率得到结果.(II)由题意知ξ的可能取值是0,1,2,3,结合变量对应的事件写出变量对应的概率,变量等于2使得概率可以用1减去其他的概率得到,写出分布列,算出期望.【解答】解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,∵甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5可以得到D,E,F的对立事件的概率分别为0.4,0,5,0.5红队至少两名队员获胜包括四种情况:DE,D F,,DEF,这四种情况是互斥的,∴P=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55(II)由题意知ξ的可能取值是0,1,2,3P(ξ=0)=0.4×0.5×0.5=0.1.,P(ξ=1)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35P(ξ=3)=0.6×0.5×0.5=0.15P(ξ=2)=1﹣0.1﹣0.35﹣0.15=0.4∴ξ的分布列是ξ0123P0.10.350.40.15∴Eξ=0×0.1+1×0.35+2×0.4+3×0.15=1.619.(12分)(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.【分析】(Ⅰ)根据所给的一系列平行,得到三角形相似,根据平行四边形的判定和性质,得到线与线平行,根据线与面平行的判定定理,得到线面平行.(Ⅱ)根据二面角的求解的过程,先做出,再证明,最后求出来,这样三个环节,先证∠HRC为二面角的平面角,再设出线段的长度,在直角三角形中求出角的正切值,得到二面角的大小.【解答】证明:(Ⅰ)∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC~△EFG,由于AB=2EF,∴BC=2FG,连接AF,∵FG∥BC,FG=BC,在▱ABCD中,M是线段AD的中点,∴AM∥BC,且AM=BC,∴FG∥AM且FG=AM,∴四边形AFGM为平行四边形,∴GM∥FA,∵FA⊂平面ABFE,GM⊄平面ABFE,∴GM∥平面ABFE.(Ⅱ)由题意知,平面ABFE⊥平面ABCD,取AB的中点H,连接CH,∵AC=BC,∴CH⊥AB则CH⊥平面ABFE,过H向BF引垂线交BF于R,连接CR,由线面垂直的性质可得CR⊥BF,∴∠HRC为二面角的平面角,由题意,不妨设AC=BC=2AE=2,在直角梯形ABFE中,连接FH,则FH⊥AB,又AB=2,∴HF=AE=1,HR===,由于CH=AB=,∴在直角三角形CHR中,tan∠HRC==,因此二面角A﹣BF﹣C的大小为60°20.(12分)(2011•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)n lna n,求数列b n的前n项和s n.【分析】(Ⅰ)由表格可看出a1,a2,a3分别是2,6,18,由此可求出{a n}的首项和公比,继而可求通项公式(Ⅱ)先写出b n发现b n由一个等比数列、一个等差数列乘(﹣1)n的和构成,故可分组求和.【解答】解:(Ⅰ)当a1=3时,不合题意当a1=2时,当且仅当a2=6,a3=18时符合题意当a1=10时,不合题意因此a1=2,a2=6,a3=18,所以q=3,所以a n=2•3n﹣1.(Ⅱ)b n=a n+(﹣1)n lna n=2•3n﹣1+(﹣1)n[(n﹣1)ln3+ln2]=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)n nln3所以s n=2(1+3+…+3n﹣1)+[﹣1+1﹣1+1+…+(﹣1)n](ln2﹣ln3)+[﹣1+2﹣3+4﹣…+(﹣1)n n]ln3所以当n为偶数时,s n==当n为奇数时,s n==综上所述s n=21.(12分)(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.【分析】(1)由圆柱和球的体积的表达式,得到l和r的关系.再由圆柱和球的表面积公式建立关系式,将表达式中的l用r表示.并注意到写定义域时,利用l≥2r,求出自变量r的范围.(2)用导数的知识解决,注意到定义域的限制,在区间(0,2]中,极值未必存在,将极值点在区间内和在区间外进行分类讨论.【解答】解:(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=22.(14分)(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q (x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE =S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.【分析】(Ⅰ)根据已知设出直线l的方程,利用弦长公式求出|PQ|的长,利用点到直线的距离公式求点O到直线l的距离,根据三角形面积公式,即可求得x12+x22和y12+y22均为定值;(Ⅱ)由(I)可求线段PQ的中点为M,代入|OM|•|PQ|并利用基本不等式求最值;(Ⅲ)假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2,从而求得点D,E,G,的坐标,可以求出直线DE、DG、EG的方程,从而得到结论.【解答】解:(Ⅰ)1°当直线l的斜率不存在时,P,Q两点关于x轴对称,所以x1=x2,y1=﹣y2,∵P(x1,y1)在椭圆上,∴①=,又∵S△OPQ∴|x1||y1|=②由①②得|x1|=,|y1|=1.此时x12+x22=3,y12+y22=2;2°当直线l的斜率存在时,是直线l的方程为y=kx+m(m≠0),将其代入得(3k2+2)x2+6kmx+3(m2﹣2)=0,△=36k2m2﹣12(3k2+2)(m2﹣2)>0即3k2+2>m2,又x1+x2=﹣,x1•x2=,∴|PQ|==,∵点O到直线l的距离为d=,==,∴S△OPQ又S=,△OPQ整理得3k2+2=2m2,此时x12+x22=(x1+x2)2﹣2x1x2=(﹣)2﹣2=3,y12+y22=(3﹣x12)+(3﹣x22)=4﹣(x12+x22)=2;综上所述x12+x22=3,y12+y22=2.结论成立.(Ⅱ)1°当直线l的斜率不存在时,由(Ⅰ)知|OM|=|x1|=,|PQ|=2|y1|=2,因此|OM|•|PQ|=.2°当直线l的斜率存在时,由(Ⅰ)知=﹣,=k+m==|OM|2=()2+()2==,|PQ|2=(1+k2)==2(2+),所以|OM|2|PQ|2=×=(3﹣)(2+)=.|OM|•|PQ|.当且仅当=2+,即m=±时,等号成立.综合1°2°得|OM|•|PQ|的最大值为;(Ⅲ)椭圆C上不存在三点D,E,G,使得S△ODE =S△ODG=S△OEG=,证明:假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2解得u2=x12=x22=;v2=y12=y22=1.因此u,x1,x2只能从±中选取,v,y1,y2只能从±1中选取,因此点D,E,G,只能在(±,±1)这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与S△ODE =S△ODG=S△OEG=矛盾.所以椭圆C上不存在满足条件的三点D,E,G.。
2011年高考理科数学(山东卷)
2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N =A.[1,2)B. [1,2]C. (2,3]D. [2,3] (2)复数2(2iz i i-=+为虚数单位)在复平面内对应的点所在的象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限 (3)若点(,9)a 在函数3xy =的图象上,则tan6a π的值为A.0B.3C. 1D. (4)不等式5310x x -++≥的解集是A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞(5)对于函数()y f x =,x ∈R ,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的A 充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 (6)若函数()sin (0)f x x ωω=>在区间[0,]3π上单调递增,在区间[,]32ππ上单调递减,则ω=A.3B. 2C.32 D. 23(7)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元是销售额为A.63.6万元B. 65.5万元C. 67.7万元D. 72.0万元(8)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A.22154x y -=B. 22145x y -=C. 22136x y -=D. 22163x y -= (9)函数2sin 2xy x =-的图象大致是(10)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()f x 的图象在区间[0,6]上与x 轴的交点的个数为A.6B.7C.8D.9(11)右图是长和宽分别相等的两个矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(山东卷)
理 科 数 学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回.
注意事项:
1. 答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在自己的答题卡和试卷规定的位置上.
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
参考公式:
柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高.
圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长.
球的体积公式V=34R 3
π, 其中R 是球的半径. 球的表面积公式:S=4πR 2
,其中R 是球的半径. 用最小二乘法求线性回归方程系数公式1
221ˆˆˆ,n i i
i n i i x y nx y b a
y bx x nx
==-⋅==--∑∑ . 如果事件A B 、互斥,那么()()()P A B P A P B +=+.
第1卷(共60分)
一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =
(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]。