数据结构+二叉树及遍历课件

合集下载

二叉树的遍历ppt课件

二叉树的遍历ppt课件
后序遍历:若二叉树非空,则先遍历左子树,再 遍历右子树,最后访问根节点。
后序遍历顺序:
A
B
C
DE
F
中 序遍历 : 资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
拓展:
已知二叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

数据结构+二叉树及遍历+PPT

数据结构+二叉树及遍历+PPT

课程13 课程
数据结构和算法
定义二叉树( 定义二叉树(续) 完整二叉树:
指有 n 个节点且深度为 d ,且其节点对应深度为k 的完整二叉 树中序号从0到n − 1 的节点。
0
A
0
A
0
A
1
B
4 5
2
C
6 3
1
B
4 5
2
C
3
1
B
4
2
C
5
3
D
E
F
G
D
E
F
D
E
G
满二叉树
完整二叉树
不完整二叉树
Ver. 1.0
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续)
I的右子树为空。 因此,移动到节点G。
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续) 访问节点 G。
root A
B
B
C
D
E
F
G
H
D
Ver. 1.0
H
课程13 课程
I
数据结构和算法
中序遍历( 中序遍历(续)
H的右子树为空。 因此,移动到节点 B。
root A

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

《二叉树的概念》课件

《二叉树的概念》课件
过程中进行一些特定的操作。
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。

《二叉树的遍历》PPT课件.ppt

《二叉树的遍历》PPT课件.ppt
最后访问根结点。
a
b
c
前序遍历:abdefgc
d
f
中序遍历: debgfac
ห้องสมุดไป่ตู้
后序遍历: edgfbca
eg
练习!!!!!!!!
练习!!!!!!!!
A
B
C
前序序列: ABDGCEFH 中序序列: DGBAECHF 后序序列: GDBEHFCA
D G
E
F
H
图 5-15
下面我们再给出一种遍历二叉树的方法
二叉树的遍历
二叉树遍历的定义
所谓二叉树的遍历,是指按一定的顺序对二叉 树中的每个结点均访问一次,且仅访问一次。
按照根结点访问位置的不同,通常把二叉树的 遍历分为六种:
TLR(根左右), TRL(根右左) LTR(左根右), RTL(右根左) LRT(左右根), RLT(右左根)
其中,TRL、RTL和RLT三种顺序在左右子树之间均 是先右子树后左子树,这与人们先左后右的习惯不 同,因此,往往不予采用。余下的三种顺序TLR、 LTR和LRT根据根访问的位置不同分别被称为前序遍 历、中序遍历和后序遍历。
(1)二叉树的前序遍历 首先访问根结点; 然后按照前序遍历的顺序访问根结点的左子树; 再按照前序遍历的顺序访问根结点的右子树。
(2)二叉树的中序遍历 首先按照中序遍历的顺序访问根结点的左子树;
然后访问根结点; 最后按照中序遍历的顺序访问根结点的右子树。
(3)二叉树的后序遍历 首先按照后序遍历的顺序访问根结点的左子树; 然后按照后序遍历的顺序访问根结点的右子树;
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
有结点位于根右侧的形式绘制,就可以对每个结点做一条

数据结构树和二叉树ppt

数据结构树和二叉树ppt

A
B
C
D
E
FG
H
I
J
K
LM
树形表示法
(2) 文氏图表示法。使用集合以及集合的 包含关系描述树结构。下图就是树的文氏图 表示法。
A
C B
G EF
J
H D
IK LM
文氏图表示法
(3) 凹入表示法。使用线段的伸缩描述树结 构。下图是树的凹入表示法。
(4) 括号表示法。将树的根结点写在括号的左 边,除根结点之外的其余结点写在括号中并用逗号 间隔来描述树结构。下图是树的括号表示法。
1层 层次 根为第1层
最大层数为树的深度(高度)
2层 height 3层 = 4
双亲 (直接前驱) 孩子(直接后继)
KL
M d=0 4层
兄弟 堂兄弟 子孙 祖先
森林----m(m>=0)棵互不相交的树的集合。
B EF
A BC
树和森林的遍历
A C GH
F DG E
先 深根度次优序先遍遍历历
当树非先空根次序遍历
树孩结子点结结点构的:序da号ta
}link; he指ad向ptr下一个孩子结点typedef struct
特点:很快确定孩子指结向点第一个孩子结点{ dliantkaty*pheeaddapttar;;
每个结点但拥有确孩定子双的亲个效数率不同低,
所以采用单链表链接孩子结点。
}ctree; ctree T[maxnode];
bcd
在二叉树中查找指定结点
?a
? find(BTNode *b, elemtype x) {
b
c
if(b==NULL)
return(NULL); /*空树*/

非递归中序遍历二叉树课件

非递归中序遍历二叉树课件
由于在非递归实现中,我们使用栈来 模拟递归的过程,因此遍历后的结果 与递归实现相同。
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。

遍历二叉树与线索二叉树PPT

遍历二叉树与线索二叉树PPT
A B C X Y D E
作业:P217-218
后序列:DGJHEBIFCA, 中序列:DBGEHJACIF, 求:1、画出该二叉树; 2、先序; 3、画出该二叉树对应的森林。
由此可以看出:
(1)遍历操作实际上是将非线性结构线性化的过程, 其结果为线性序列; (2)遍历操作是一个递归的过程,因此,这三种遍历 操作的算法可以用递归函数实现。 先序遍历递归算法: DLR ( BiTree T ) { if (T) //非空二叉树 { printf(“%d”,T->data); //访问根结点D DLR(T->lchild); //递归遍历左子树 DLR(T->rchild); //递归遍历右子树 } return(0); }
这就是线索二叉树(Threaded Binary Tree)
如何预存这类信息?有两种解决方法: 缺点:空间效 ① 每个结点增加两个域:fwd和bwd; 率太低! fwd lchild data rchild bwd ② 与原有的左右孩子指针域“复用”,充分利用那n+1 个空链域。 lchild data rchild 如何判断是孩 子指针还是线 规 定: 索指针? 1)若结点有左子树,则lchild指向其左 孩子;否则,lchild指向其直接前驱(即 线索); 如何区 别? 2)若结点有右子树,则rchild指向其右 孩子;否则,rchild指向其直接后继(即线索) 。
中序遍历递归算法: LDR(BiTree T) { if(T) { LDR(T->lchild); printf(“%d”,T->data); LDR(T->rchild); } return(0); }
后序遍历递归算法 LRD (BiTree T) { if(T) { LRD(T->lchild); LRD(T->rchild); printf(“%d”,T->data); } return(0);}

二叉树遍历讲课教案ppt课件

二叉树遍历讲课教案ppt课件
I; 中序遍历序列:D,C,B,E,H,A,G, I,F,试画出二叉树,并写出该二叉树的前序 遍历序列和中序遍历序列。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.5 线索二叉树
§ 何谓线索二叉树? § 线索链表的遍历算法 § 如何建立线索链表?
一、问题的提出
顺着某一条搜索路径巡访二叉树 中的结点,使得每个结点均被访问一 次,而且仅被访问一次。
“访问”的含义可以很是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
if (T) {
visit(T->data);
// 访问结点
Preorder(T->lchild, visit); // 遍历左子树
Preorder(T->rchild, visit);// 遍历右子树 }
}
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
二、先左后右的遍历算法
先(根)序的遍历算法 中(根)序的遍历算法 后(根)序的遍历算法
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
先(根)序的遍历算法:
若二叉树为空树,则空操作;否则, (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。

二叉树的遍历PPT-课件

二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所

二叉树的遍历课件

二叉树的遍历课件
二叉树的遍历
教学目标
通过本案例的学习,能够认识和了 解二叉树的遍历,进而掌握通过其中 两种遍历顺序推出第三种遍历顺序的 分析方法,并且能够举一反三。
遍历的概念
所谓遍历是指沿着某条搜索路线, 依次对二叉树中每个结点均做一次且仅 做一次访问。
遍历分为:前序遍历、中序遍历、 后序遍历。
2011年3月全国计算机等级考试笔试填空题第2题
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
前序遍历顺序:
A
B
C
DE
F
中序遍历:若二叉树非空,则先遍历左子树,再 访问根节点,最后遍历右子树。
中序遍历顺序:
A
B
C
DE
F
后序遍历:若二叉树非空,则先遍历左子树,再 遍历右子树,最后访问根节点。
后序遍历顺序:
A
B
C
DE
F
中序遍历: D B E A F C 前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
拓展:
已知ቤተ መጻሕፍቲ ባይዱ叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?

数据结构+二叉树及遍历课件

数据结构+二叉树及遍历课件
最 的 点被称 根(root)。 root
A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
4
课程13
数据结构和算法
定义树结构(续)
中的每一个 点在其 下可能有子 。
root A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
5
课程13
数据结构和算法
树结构术语 我 来 构常用的一些 。 叶子 点:指没有子 点的 点。
C 点的度 1
D节点的度为2
D
A节点的度为3
B节点的度为4
J
K
L
M
Ver. 1.0
8
课程13
数据结构和算法
树结构术语(续)
兄弟:它指同一个 点的子 点。
A
B、C和D 点互 兄弟
点。
B
C
D
E、F、G和H互为兄弟节点。
E F GH I J
K
L
M
Ver. 1.0
9
课程13
数据结构和算法
树结构术语(续)
使用 接列表来 一个二叉 。 接表示中的每个 点都具有以下信息:
数据 左子 点的引用 右子 点的引用
如果一个 点不含有左子 点或右子 点,或一个子 点都没 有,相 的左(右)子 点字段就指向NULL。
Ver. 1.0
Data
Node
18
课程13
数据结构和算法
表示一个二叉树(续)
内部 点:它指根 点与叶子 点之 的中 点 。
点的 :它指一个 点与根 点之 的距离(按 点数 目 算)。根 点永 位于0 。

数据结构-二叉树的存储结构和遍历ppt

数据结构-二叉树的存储结构和遍历ppt

A BE
C
F
BDC A EHGKF
D
G
HK
中序遍历
void Inorder (BiTree T, void( *visit)(TElemType& e))
{ // 中序遍历二叉树
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树
3 visit(T->data);
作用: 遍历的目的是线性化,使二叉树中的 结点能够按照某种次序排列在一个线性队列上, 便于处理。
问题的提出
线性结构的遍历:因为每个结点均只有一个后 继,所以只有一条搜索路径。
二叉树的遍历:二叉树是非线性结构,每个结 点有两个后继,则存在如何遍历即按什么样的 搜索路径进行遍历的问题。
问题的提出
二叉树存在下述三条搜索路径:
∧A
∧B ∧ C∧
∧D
E∧
∧F∧
链式存储—三叉链表
三叉链表的C 语言类型描述如下:
typedef struct TriTNode { // 结点结构 TElemType data; struct TriTNode *lchild, *rchild; // 左右孩子指针 struct TriTNode *parent; //双亲指针
11 1 0 1 0 1 0 0 0 0 0 0 1
二叉树的顺序存储
#define MAX_TREE_SIZE 100 // 二叉树的最大结点数
typedef TElemType SqBiTree[MAX_TREE_SIZE]; // 1号单元存储根结点
SqBiTree bt;
二叉树的顺序存储
#define MAX_TREE_SIZE 100

二叉树的遍历ppt讲稿

二叉树的遍历ppt讲稿
二叉树的遍历算法描述
D:访问根节点

DLR
L:遍历左子树 左 子树 R:遍历右子树 注:限定先左后右的进行遍历
数据结构-二叉树的遍历
右 子树
LDR LRD
二、遍历定义与算法描述
二叉树的遍历算法描述
先(根)序遍历-DLRD
若二叉树为空, 则空操作;否则 (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。
数据结构-二叉树的遍历
二、遍历定义与算法描述
二叉树的遍历算法描述

左 子树
右 子树
二叉树:二叉树是n个数据元素的有限集,它或为空集(n=0),或者含 有唯一称为根的元素,且其余元素分成两个互补相交的子集,每个子集 自身是一颗二叉树,分别称为根的左子树和右子树。
数据结构-二叉树的遍历
二、遍历定义与算法描述
数据结构-二叉树的遍历
二、遍历定义与算法描述
先(根)序遍历 - D L R:
前序遍历序列:ABDECFG
A
D A D
G
L
R
B D E
C F
L
R
D L R
D C
L
R
D L R
B
D L R
E D
D L RG

数据结构-二叉树的遍历
二、遍历定义与算法描述
中(根)序遍历 - L D R:
中序遍历序列:DBEAFCG
四、小 结
数据结构-二叉树的遍历
The end

谢!
数据结构-二叉树的遍历
E D


数据结构-二叉树的遍历
三、应用实例
已知: 一棵二叉树的 先(根)序遍历序列为:A B C D E F G 中(根)序遍历序列为:C B E D A F G 试构建该二叉树。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档