中性点直接接地系统中低压电动机接地保护配置原则的浅析

中性点直接接地系统中低压电动机接地保护配置原则的浅析
中性点直接接地系统中低压电动机接地保护配置原则的浅析

中性点直接接地系统中低压电动机接地保护配置原则的浅析

陈进1 杨涛2

(1鄂州供电公司检修公司2鄂州电力勘察设计有限责任公司湖北鄂州436000)

摘要:文章根据《火力发电厂厂用电设计技术规定》及《电力工程电气设计手册1》中的规定和计算表格及曲线,分析了低压厂用电系统中性点为直接接地时,不同容量的电动机单相接地短路保护的实现方式,提出了经济、合理的配置低压电动机单相接地短路保护措施。

关键词:中性点接地;单相接地短路保护;相间短路保护

中图分类号:TM732 文献标识码:Adoi:10.3969/j.issn.1665-2272.2014.07.073

1概述

在火力发电厂厂用电系统的供电负荷中,低压厂用电动机的种类繁多、数量庞大,其重要性也各不相同,如何根据“厂技规”中低压厂用电动机的配置原则,经济、合理的配置低压厂用电动机单相接地短路保护,保证整个低压厂用电系统安全、可靠的运行,具有重要的现实意义。本文结合“厂技规”的规定,重点分析了几种不同容量的低压厂用电动机的相间短路保护对单项接地短路保护的灵敏性,提出了低压厂用电动机在几种典型的配置接线方式下单相接地短路保护的实现方式。

2低压常用电动机单相接地短路保护的配置原则

“厂技规”第41页、42页完整地描述了低压厂用电动机的保护配置原则,其中对低压厂用电动机单相接地短路保护的配置原则作了明确规定,全文引用如下:

低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机宜装设单相接地短路保护。

对55kW及以上的电动机如相间短路保护能满足单相接地短路的灵敏性时,可由相间短路保护兼作接地短路保护;当不能满足时,应另装设接地短路保护。

保护装置由1个接于零序电流互感器上的电流继电器构成,瞬时动作于断路器跳闸。355kW及以上的电动机的单相接地短路保护措施

根据“手册1”第310页的设备选择表,以下面的1组数据对55kW及以上的低压厂用电动机的单相接地短路保护进行分析;电动机的额定功率Pe=110kW,额定电流Ie=201.9A,起动电流Iq=1413.3A,所选电缆截面3×185,ΔU≤5%,允许长度为L=277m。

低压厂用电动机电流速段保护动作电流的整定值可根据《电力工程电气设计手册2》(电气二次部分)③(以下简称“手册2”)第215页的计算公式(23-3)进行计算,即:Idz=Kk·Iqd=2×1413.3=2826.6A(Kk为可靠系数,取2)。根据“厂技规”第32页9.1.1的规定,动作于跳闸的单相接地保护的灵敏度不小于1.5,当由相间短路保护兼作接地短路保护时,在电动机的出口单相接地的短路电流应不小于1.5×2826.6=4239.9A,以低压厂用变压器为干式变压器,其容量为1600kVA(Ud=8%),根据“厂技规”第134页的关系曲线,当L≤53m时,Id(1)≥4240>4239.9,电动机的相间短路保护兼作接地短路保护时满足灵敏度的要求。

根据上面的分析,当低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机,考虑到相间短路的整定值高,满足单相接地短路保护的灵敏性时供电距离短。在实际的工程设计时,大量的供电距离稍远的100kW以上的低压电动机,是应装设单相接地短路保护的,只有极少量供电距离很近的100kW以上的低压电动机,其相间短路保护兼作短路保护时能满足灵敏度的要求,考虑到容量为100kW以上的电动机本身的价值高、数量少,相间短路保护兼作接地保护时满足灵敏度要求的几率小,另外装设一套灵敏性高的

单相接地短路保护是值得的,因此规程规定“宜装设单相接地短路保护”。对容量在100kW以下、55kW及以上的电动机,相间短路的整定值相对较低,满足单相接地短路保护的灵敏性的要求,是应装设单相接地短路保护的;而部分供电距离较近、容量在100kW以下、55kW及以上的低压厂用电动机,其相间短路保护兼作接地短路保护是能够满足灵敏度的要求,不必再装设单相接地短路保护。考虑到容量在100kW以下、55kW及以上的低压厂用电动机数量较多,相间短路保护兼作接地保护时满足或不满足灵敏度要求的机会均等,为了减少投资,增加厂用电熊的供电可靠性,规程规定容量在100kW以下、55kW及以上的低压厂用电动机“可由相间短路保护兼作接地短路保护;当不能满足时,应另装接地短路保护”。

因此,在具体的工程实施中,建议对55kW及以上的电动机,通过计算分析来确定是否安装单相接地短路保护,对于增强设计的合理性,减少设备投资,其益处是不言而喻的。455kW以下的电动机的单相接地短路保护措施

对容量在55kW以下的低压厂用电动机的单相接地短路保护,规程没有给出明确规定,根据“手册1”第306页、307页的设备选择表,以下面的1组数据对容量在55kW以下的电动机的单相接地保护进行分析;电动机的额定功率Pe=37kW,额定电流Ie=69.8A,启动电流Iq=488.6A,所选电缆截面3×50,ΔU≤5%允许长度为L=232m。

根据上面介绍的计算方法,电动机相间短路保护的动作电流整定值Idz=2Iqd=2×488.6=977.2A。当由相间短路保护兼作接地短路保护时,在电动机的出口单相接地的短路电流应不小于1.5×977.2=1465.8A,以低压厂用变压器为干式变压器,其容量为1600kVA(Ud=8%),根据“厂技规”第134页的关系曲线,当L≤95m时,Id(1)≥1480>1465.8A,电动机的相间短路保护兼作接地短路保护时满足灵敏度的要求。

在实际的工程设计过程中,存在着大量的供电距离较远,容量在55kW以下的电动机,其相间短路保护兼作接地短路保护时灵敏度不能满足规程的要求,下面将重点讨论这一类电动机的在电动机出口处发生单相接地短路时的短路电流。

假定单相接地短路发生在B相靠近电动机侧,取计算长度L=200m。根据“厂技规”第103页(P2)的计算公式Id(1)=Id(100)(1)×100/L=1334×100/200=667,次计算电流为B相的单相短路电流,A、C相的电流计算如下:

B相接地前、后,A、B、C三相电源的相位和幅值均不发生变化电动机的输出功率维持不变,根据电动机各绕组间的电流、电压和他们之间的相角关系,可列出以下等式:U相·I1+U相·I3+U线·I2=U相·I线=K·Pe

I2=I1

I1=I3

式中:K为考虑功率因素和效率的系数求解上面的方程组,可以得出:

I2=0.6U相·I线=1.04I线

根据向量图,结合余弦定理(c2=a2+b2-2abcosφ),可以得出:Ia=Ic=1.53I线

计算结果表明:当在靠近电动机B相发生短路时,流过A、C相的电流仅为额定工作电流的1.53倍,流过B相的短路电流为Id(1)=667A,为额定电流的9.55倍,均小于电动机相间短路保护的动作电流整定值Idz=977.2A,此时,流过电动机绕组的最大工作电流为正常运行时的1.80倍(1.04I线).

根据计算结果,对容量在55kW以下的低压电动机,当其相间短路保护兼作接地短路保护,灵敏度不能满足规程的要求时,结合电动机不同配置接线方式,可以得出如下结论:(1)当电动机回路的保护设备由带磁保护的断路器(或者是熔断器)、热继电器构成、且热继电器安装在电动机附近时,如果单相接地短路发生在热继电器之前,同时电动机的单相短路电流无法使电动机的速断保护可靠动作(根据上面的计算结果,这种概率是很大

的),电动机将较长时间在B相接地的工况下运行(此运行时间将受短路点的位置、电动机的容量、电缆截面等的影响),极有可能烧毁电动机绕组。如果单相接地短路发生在热继电器之后,电动机的单相接地故障将由热继电器(反时限曲线段)快速切除故障,对保护电动机具有积极的意义。

(2)当电动机回路的保护设备由带热磁保护断路器构成时,电动机的相间短路故障由断路器的磁保护来切除,而电动机的单相接地故障和过载则由断路器的热保护(反时限曲线段)来切除,此时,没有必要再配置热继电器。

(3)如果忽略接地电阻的影响,电动机B相接地运行时流过变压器中性点的零序电流将达到Id(1)=667A。如果低压厂用电系统已存在某1台电动机在B相接地的工况下运行却又不能及时切除故障点,而此时又有其他某台电动机在B相短路的条件下运行时,极有可能是流过变压器中性点的零序电流(其值在数值上等于两台电动机B相接地短路电流的和)大于其整定值(其值通常由躲过未装设接地保护的某台电动机的相间保护兼作接地保护的整定值决定)而使变压器跳闸,扩大了事故范围。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

中性点接地方式的选择详细版

文件编号:GD/FS-4457 (安全管理范本系列) 中性点接地方式的选择详 细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

中性点接地方式的选择详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。因此,在变电所的规划设计时选择变压器中性点接地方式中应进行具体分析、全面考虑。 我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障

时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的增加,如不采取有效措施,将危及配电网的安全运行。 中性点非有效接地方式主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 1 中性点不接地方式 适用于单相接地故障电容电流IC 10A,瞬间性单相接地故障较多的架空线路为主的配电网。 其特点为:

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

浅析中压供配电系统中性点接地方式(一)

浅析中压供配电系统中性点接地方式(一) 摘要]中压供配电系统中性点接地方式是一个复杂的系统问题,应该结合不同地区、不同电网、不同发展阶段和不同的受电对象统筹考虑。针对中压电网中性点不接地方式应用的发展及单相接地电容电流也在不断的增加,电缆馈线回路的增加,改造和合理选择电网中性点接地方式,已经关系到电网运行的可靠性,现已引起多方面的关注,文中就电网的中性点接地方式进行分析。 关键词]供电系统中性点接地可靠性 我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,它们都属于中性点不接地系统。随着采用电缆线路的用户日益增加,系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。世界各国对中压电网中性点接地方式有不同的观点及运行经验,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。下面对分析中性点不同的接地方式与供电的可靠性。 一、中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式,中性点经小电阻接地方式可以泄放线路上的过剩电荷来限制弧光产生的过电压,由于美国在历史上过高的估计了弧光接地过电压的危害性,因而采用此种方式。中性点经小电阻接地方式通过零序电流继电器来保护线路。其优点是:接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检除接地线路;系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 但是其缺点也很明显:由于接地点的电流较大,当零序保护动作不及时或拒动时,将使接地点及附近的绝缘受到更大的危害,导致相间故障发生;当发生单相接地故障时,无论是永久性的还是非永久性的,均作用与跳闸,使线路的跳闸次数大大增加,严重影响了用户的正常供电,使其供电的可靠性下降。于是出现了中性点经消弧线圈接地方式。 二、中性点经消弧线圈接地方式 1916年发明了消弧线圈,运行经验表明,其广泛适用于中压电网,在世界范围有德国、中国、前苏联和瑞典等国的中压电网均长期采用此种方式,显著提高了中压电网的安全经济运行水平。采用中性点经消弧线圈接地方式,在系统发生单相接地时,流过接地点的电流较小,其特点是线路发生单相接地时,可不立即跳闸,按规程规定电网可带单相接地故障运行2小时。从实际运行经验和资料表明,当接地电流小于10A时,电弧能自灭。中性点经消弧线圈接地方式的供电可靠性,大大的高于中性点经小电阻接地方式,但中性点经消弧线圈接地方式也存在着以下2个问题: 中性点经消弧线圈接地方式存在的两大缺点,也是两大技术难题,多年来电力学者致力于解决这些难题,已经有了很多成就,具体体现在以下几个方面: 1.中性点位移电压由于电网中性点有不对称电压存在,回路中便有零序电流流过,于是在消弧线圈的两端产生了电位差,该电位差就是通常所说的中性点位移电压。中性点位移电压的增大会导致非故障相的最高对地电压升高。但实测表明,电缆网络中的不对称度一般都很小,由此导致的中性点位移电压也因此受到限制,此外运行中还可通过增大失谐度的方法来进一步降低中性点位移电压(位移电压并非越低越好,因为降低位移电压的同时必然会增大故障点的残流,会对熄弧不利),将其控制在无害的范围内‘ 2.断线故障过电压运行中的补偿电网,只有在消弧线圈欠补偿运行状态下,由单侧电源供电的线路发生断线故障,同时引起的不对称度、失谐度的变化综合不利时方有可能使中性点位移度显著升高,产生较高的过电压,而在其它运行状态下均不会出现有害的过电压。对这种可能出现的过电压,可通过消弧线圈过补偿运行、加装限压电阻等措施来降低,再加上消弧线圈的铁芯饱和也会抑制过电压,因此这种过电压基本可被限制在无害的范围内。

电力系统中性点接地方式浅析

电力系统中性点接地方式浅析 【摘要】电力系统中性点接地方式是指电力系统中发电机和变压器中性点与地的连接方式,中性点不同接地方式各具优点与不足,涉及电网安全运行、供电可靠性、过电压与绝缘的配合、断路器选用、继电保护方式、接地设计等多种因素。 【关键词】中性点;接地;方式 0 引言 电力系统中性点接地方式分为大接地电流系统和小接地电流系统。前者分为中性点直接接地电流系统、中性点经低值阻抗接地系统,后者可分为中性点不接地系统、中性点经消弧线圈接地系统、中性点经高值阻抗接地系统。本文将对各类中性点接地方式的优点与不足进行分析探讨。 1 大接地电流系统 1.1 中性点直接接地系统 1.1.1 中性点直接接地系统原理 1)单相接地故障时,电压情况 (1)接地故障相电压降低为零; (2)非接地故障相电压不变,依然为相电压; (3)中性点对地电压不变,依然为零。 2)单相接地故障时,电流情况 形成短路?流经很大短路电流?装设继电保护?跳闸切除故障,避免扩大成相间短路。 1.1.2 中性点直接接地系统优点 1)降低设备绝缘水平(约20%),节省造价。

在单相接地故障时,中性点电位仍为零,非故障相对地电压仍为相电压,设备绝缘水平只需按相电压考虑。 2)不另设消弧装置,即可自行消弧。 在单相接地故障时,不会产生间歇性电弧过电压,不会因此导致设备损毁,不需另设消弧装置。 1.1.3 中性点直接接地系统的不足及改进措施 1)不允许故障设备继续运行,可靠性不如小接地电流系统。 发生单相接地故障时,短路电流触发保护装置动作,断路器跳闸切断故障部分,降低了供电可靠性。 2)短路电流很大,单相磁场对弱电干扰,特别是电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 3)接地点还会产生较大跨步电压与接触电压,容易发生触电伤害事故。 1.2 中性点经低值阻抗接地系统(见3) 2 小接地电流系统 2.1 中性点不接地系统 2.1.1 中性点不接地系统原理 1)接地故障相对地电压降低为零; 2)非接地故障相对地电压升高为线电压,且相位改变; 3)中性点对地电压升高为相电压,且方向与故障相电压相反; 4)相对中性点电压和线电压仍不变,认为三相系统对称,可继续运行2h; 5)接地点流过的电容电流是正常每相对地电容电流的3倍,故在接地点产生电弧。 2.1.2 中性点不接地系统优点

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

中压配电网中性点接地方式的选择

中压配电网中性点接地方式的选择.txt33学会宽容,意味着成长,秀木出木可吸纳更多的日月风华,舒展茁壮而更具成熟的力量。耐力,是一种不显山石露水的执着;是一种不惧风不畏雨的坚忍;是一种不图名不图利的忠诚。1国外中压配电网中性点接地方式的发展世界各国城市配电网中性点接地方式,各个国家和一个国家中的不同城市都不尽相同,主要是根据自己的运行经验和传统来确定的。 原苏联规定在下列情况下采用中性点不接地方式:6kV电网单相接地电流小于30A;10kV 电网单相接地电流小于20A;15~20kV电网单相接地电流小于15A;35kV电网单相接地电流小于10A。如果单相接地电流超过上述各值,则需采用中性点经消弧线圈接地方式。 德国在世界上首先使用了消弧线圈,自1916年投运以来积累了丰富的经验。在柏林市的30kV电网中,共有电缆1400km,其电容电流高达4kA,也采用于消弧线圈接地方式。但在50-60年代前西德却不再全部选用经消弧线圈接地方式。 美国自20年代中期至40年代中期,22~77kV电网中采用快速切除故障的中性点直接接地方式约占71%。1947年以后,采用消弧线圈的接地方式才有了发展;经电阻或小电抗接地约各占6.5%;不接地约占10.6%;经消弧线圈接地约占5.4%。 英国66kV电网中性点采用经电阻接地方式,而对33kV及以下由架空线路组成的配电网改为经消弧线圈接地;由电缆组成的配电网,仍采用中性点经低电阻接地方式。 法国从1962年开始将城市配电网电压定为20kV,其中性点采用电阻或经电抗接地方式。巴黎20kV配电网,电缆共4886km,中性点采用低电阻接地方式,单相接地电流1kA。 比利时布鲁塞尔10kV系统中性点采用低电阻接地方式,单相接地电流原为2kA,为减少对通讯的影响,现改为1kA。 2我国中压系统中性点接地方式的发展 建国初期至80年代,我国完全参照了前苏联的规定,对3-66kV电网中性点主要采用不接地或经消弧线圈接地2种方式。80年代中期,我国城市10kV配电网中电缆线路逐渐增多,电容电流相继增大,而且运行方式经常变化,消弧线圈调整存在困难,当发生单相接地时间一长,往往发展成为两相短路。对此,国内开始重新考虑合适的接地方式,从1987年开始,广州部分变电站为了满足10kV电缆较低的绝缘水平,采用了低电阻接地方式;随后,深圳根据其10kV配电网电缆不断增加的实际,从1995年开始实施10kV配电网中性点采用低电阻接地方式的工程;天津电缆网比较多,过去以消弧线圈接地为主,现在对35kV电缆网试行低电阻接地方式,运行情况正常;苏州工业园区,其配电网采用20kV供电,全部为电缆线路,中性点也采用低电阻接地的运行方式,自1996年正式投运至今,运行正常。上海在90年代对35kV配电网全面采用低电阻接地的运行方式。 针对上述情况,原国家电力部对原SDJ7-79《电力设备过电压保护设计技术规程》进行了修订,在颁布的新规程即国家电力行业标准DL/T620-1997《交流电气装置的过电压保护和绝缘配合》中,对有关配电网中性点接地方式做了重大修改: (1)将原规定3-10kV配电网中单相接地电容电流大于30A时才要求安装消弧线圈,修改为单相接地电容电流大于10A时即要求安装消弧线圈。 (2)根据国内已有的中性点经低电阻接地的运行经验,对6-35kV主要由电缆线路构成的系统,其单相接地故障电容电流较大时,可采用低电阻接地的运行方式。 (3)对于6-10kV系统以及发电厂厂用系统,其单相接地故障电容电流较小时,为防止谐振、间歇性电弧接地过电压等对设备的损害,可采用高电阻接地的运行方式。 3中压配电网中性点不同接地方式的比较 3.1中性点不接地的配电网

中性点虚拟接地装置工作原理

中性点虚拟接地装置工作原理 中性点虚拟接地装置将不稳定电路特性的供电系统转化为稳定电路特性的供电系统,提高系统可靠性和安全性。 在我国中压电力系统中,中性点的接地方式涉及到技术、经济、安全等诸多因素。中性点不接地系统由于投资、运行经济,供电可靠性高被广泛采用。但是,中性点不接地系统有着自身的缺点,系统不稳定,内部过电压水平高,故障概率高,极易发生谐振和单相弧光接地等故障。 过电压是电力系统安全运行最大杀手,系统故障及事故主要是由过电压引起。过电压不仅造成事故且加速系统绝缘累积老化,而且直接引发绝缘击穿发生故障,对电力系统安全运行造成严重危害。 中性点不接地系统过电压水平高与系统不稳定是由系统的电路参数决定的,根源在于系统的电路特性,下面就从系统的电路原理分析为什么不接地系统的过电压。 电路原理分析中性点不接地供电系统过电压 1、供电系统可以等效为一个RLC二阶电路 如图1,为一段母线的供电一次图。 图1 一段母线高压系统图 图1的一段母线上的出线可以等效为一条供电线路,如图2。 图3 一段母线出线等效图 图2中,由于负载为中性点不接地,系统输电线路对地,可以等效为一个RLC电路,如图3.

图3 等效RLC二阶电路 2、欠阻尼 如图3,这里不再累述二阶电路的推计算过程,我们直接引用二阶电路的结论。 固有角频率,也称无耗角频率: 衰减系数:(或用μ表示) 3、供电系统是欠阻尼的二阶电路 供电系统中由于输电线路中的电阻成分R消耗有功功率,因此系统中R越小越好,故系统中R的阻尼极小,系统处在严重的欠阻尼状态,且系统L、C振荡衰减很慢,这就带来系统的过电压水平高,系统不稳定容易发生谐振等。 供电系统中由于输电线路中的电阻成分R极小是系统各种过电压的根源。 《高电压技术》指出:系统无耗自振频率ω0= 1/√LC,衰减系数μ=R/2L,当ω0是电源频率整倍数时,系统如有风吹草动,就会发生事故。有些系统当操作人员拉开开关突然进线跳闸,就是属于这类情况。 中性点不接地系统的μ/ω0 < 0.2,系统谐振时过电压水平很高,其操作过电压水平很高,以致系统绝缘无法承受而发生故障及事故。 图4 μ/ω0的比值决定了系统的稳定性,对于架空线路供电系统送电距离长有较大的R,且架空线路对地电容很小,而对企业变电所送电距离很短有很小的R,且电缆线路对地电容很大,因此,企业变电所设计更要注意系统可能出现线性谐振,系统操作、不对称接地故障、断线(熔断器一相、二相熔断)时系统发生线性谐振。 总之,如果使系统系统的μ/ω0 >0.3,系统的各种过电压水平就会很低,系统就会稳定。 中性点虚拟接地装置电路原理

中性点接地方式及其影响(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 中性点接地方式及其影响(2021 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

中性点接地方式及其影响(2021版) 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地

中压系统中性点接地方式选用技术导则

Q/GDW 中压系统中性点接地方式选用 技术导则 江苏省电力公司发布

Q/GDW-10-375-2008 目次 前言............................................................................. II 1 适用范围 (3) 2 规范性引用文件 (3) 3 术语和定义 (3) 4 中性点接地方式选用技术原则 (4) 5 中性点接地装置选择和应用原则 (5) 附录A (资料性附录)常用计算公式和方法 (9) I

Q/GDW-10-375-2008 II 前言 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安 全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的联系。 我国中压电网中,80%以上的故障是单相接地引起的,架空线为主的电网单相故障中绝大多数为瞬时性故障,而架空线供电又是中压电网的主要形式。合理选用中性点接地方式,可以减少线路故障跳闸次数,提高供电的可靠性。在电网发展变化比较大的地区,合理选用中性点接地方式,可以减少设备的频繁改造和更换,减少投资。为规范管理,统一标准,指导江苏中压电网中性点接地方式的合理选用,特制订本导则。 本导则的编写格式和规则符合GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》及DL/T 600-2001《电力行业标准编写基本规定》的要求。 本导则的附录A为资料性附录。 本导则由江苏省电力公司生产技术部提出并解释。 本导则由江苏省电力公司生产技术部归口。 本导则起草单位:江苏省电力公司生产技术部、江苏省电力试验研究院有限公司。 本导则主要起草人:李长益、付慧、张霁、黄芬、王建刚

中性点接地方式说明

4.2.2.3各级中性点接地方式 220、110kV均为中性点直接接地系统,本工程采用三相自耦变压器,,主变压器采用直接接地方式。 20kV系统为非有效接地系统,20kV出线以电缆线路为主,单相接地故障方式下,电容电流较大,同时电缆不具备故障方式运行2个小时能力,结合苏州工业园区20kV系统成功运行经验,推荐20kV 中性点采用小电阻接地方式。 3~66kV中性点非有效接地系统无间隙氧化锌避雷器存在的问题 文章转载自:电力科学研究院 [摘要]分析了3~66kV中性点不接地、消弧线圈接地电力系统中运行的无间隙氧化锌避雷器存在的三个问题,并提出了改进方向:一是无间隙氧化锌避雷器持续运行电压(Uc)和额定电压(Ur)太低,应提高。二是无间隙氧化锌避雷器承受不住间隙性电弧接地过电压和谐振过电压能量应力,应避开或抑制,三是氧化锌避雷器雷电过电压保护水平接近普阀的,失去应用ZnO材料的意义,应改进氧化锌结构,充分利用Zn0的特性,比现行国际规定值降低30%是完全可能的。 [关键词]氧化锌避雷器额定电压和持续运行电压能量应力保护水平 一、前言 我国阀式避雷器产品的发展,历经普阀SiC避雷器、磁吹SiC避雷器和金属氧化物避雷器(以下简称MOA)三代,每代产品的兴衰周期约20年左右。目前,虽然制造MOA企业众多,投运也不少,但仍处于初期。在MOA的制造和运行两方面的经验都不足,标准不

完善,还存在一些严重错误[1]。所以在3~66kV中性点不接地、消弧线圈接地电力系统中运行的无间隙MOA,在单相接地或谐振过电压下动作坏严重,1987~1988年和1990~1991年,两部联合调查组报告了这方面的结果,一些地区的工作总结,以及1992年中国电机工程学会广东分会高压技术专业委员会编纂的《广东城市配电网过电压绝缘配合及中性点接地方式研讨会》论文专辑(上下册),有多篇也谈及这方面问题,不再赘述。 据了解,目前在3~66kV中性点不接地、消弧线圈接地电力系统中,使用的无间隙MOA存在3个问题。经分析并提出了改进方向。其一,无间隙 MOA的持续运行电压(Uc)和额定电压(Ur)太低,应标准选取;其二,无间隙 MOA承受不住间歇性电弧接地过电压和谐振过电压能量应力,应避开;其三,MOA雷电过电压保护水平接近普阀,失去应用ZnO材料的意义,应改善。 二、无间隙MOA 的Uc 和Ur 太低,应标准选取 无间隙MOA 与惯用间隙SiC 避雷器不同,没有间隙的隔离运行电压和内过电压,实际是一个非线性电阻元件(发热元件),长年累月地连接在电网上承受着各种电压应力,产生老化和热稳定问题,实际观测到由很多小电流相加累积成很大能量,超过少数几次大幅值的发热能量无间隙MOA 站到了“第一道防线”。 我国规定3~66kV 中性点不接地、消弧线圈接地的电力系统,带单相接地运行方式允许持续时间2h 或更长。在单相接地时,作用在健全相上的无间隙MOA上暂态过电压,不是相电压而是1.73至2.0倍相电压[2]。GB11032-89中规定的3~66kV无间隙MOA 的Uc 为相电压,太低了。在起草国际GB11032-89 时,主持起草单

中压电网中性点接地方式分析与探讨参考文本

中压电网中性点接地方式分析与探讨参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

中压电网中性点接地方式分析与探讨参 考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1. 概述 中压电网以35KV、10KV、6KV三个电压电压应用较 为普遍,其均为中性点非接地系统,但是随着供电网络的 发展,特别是采用电缆线路的用户日益增加,使得系统单 相接地电容电流不断增加,导致电网内单相接地故障扩展 为事故。我国电气设备设计规范中规定35KV电网如果单 相接地电容电流大于10A,3KV—10KV电网如果接地电容 电流大于30A,都需要采用中性点经消弧线圈接地方式, 而《城市电网规划设计导则》(施行)第59条中规定 “35KV、10KV城网,当电缆线路较长、系统电容电流较 大时,也可以采用电阻方式”。因对中压电网中性点接地

方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2. 中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1) 中性点经小电阻接地方式世界上以美国为主的部分国家采用中性点经小电阻接地方式,原因是美国在历史上过高的估计了弧光接地过电压的危害性,而采用此种方式,用以泄放线路上的过剩电荷,来限制此种过电压。中性点经小

中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。 消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。 3、中性点直接接地 中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。 对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式;110kV接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

中性点直接接地系统中低压电动机接地保护配置原则的浅析

中性点直接接地系统中低压电动机接地保护配置原则的浅析 陈进1 杨涛2 (1鄂州供电公司检修公司2鄂州电力勘察设计有限责任公司湖北鄂州436000) 摘要:文章根据《火力发电厂厂用电设计技术规定》及《电力工程电气设计手册1》中的规定和计算表格及曲线,分析了低压厂用电系统中性点为直接接地时,不同容量的电动机单相接地短路保护的实现方式,提出了经济、合理的配置低压电动机单相接地短路保护措施。 关键词:中性点接地;单相接地短路保护;相间短路保护 中图分类号:TM732 文献标识码:Adoi:10.3969/j.issn.1665-2272.2014.07.073 1概述 在火力发电厂厂用电系统的供电负荷中,低压厂用电动机的种类繁多、数量庞大,其重要性也各不相同,如何根据“厂技规”中低压厂用电动机的配置原则,经济、合理的配置低压厂用电动机单相接地短路保护,保证整个低压厂用电系统安全、可靠的运行,具有重要的现实意义。本文结合“厂技规”的规定,重点分析了几种不同容量的低压厂用电动机的相间短路保护对单项接地短路保护的灵敏性,提出了低压厂用电动机在几种典型的配置接线方式下单相接地短路保护的实现方式。 2低压常用电动机单相接地短路保护的配置原则 “厂技规”第41页、42页完整地描述了低压厂用电动机的保护配置原则,其中对低压厂用电动机单相接地短路保护的配置原则作了明确规定,全文引用如下:

低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机宜装设单相接地短路保护。 对55kW及以上的电动机如相间短路保护能满足单相接地短路的灵敏性时,可由相间短路保护兼作接地短路保护;当不能满足时,应另装设接地短路保护。 保护装置由1个接于零序电流互感器上的电流继电器构成,瞬时动作于断路器跳闸。355kW及以上的电动机的单相接地短路保护措施 根据“手册1”第310页的设备选择表,以下面的1组数据对55kW及以上的低压厂用电动机的单相接地短路保护进行分析;电动机的额定功率Pe=110kW,额定电流Ie=201.9A,起动电流Iq=1413.3A,所选电缆截面3×185,ΔU≤5%,允许长度为L=277m。 低压厂用电动机电流速段保护动作电流的整定值可根据《电力工程电气设计手册2》(电气二次部分)③(以下简称“手册2”)第215页的计算公式(23-3)进行计算,即:Idz=Kk·Iqd=2×1413.3=2826.6A(Kk为可靠系数,取2)。根据“厂技规”第32页9.1.1的规定,动作于跳闸的单相接地保护的灵敏度不小于1.5,当由相间短路保护兼作接地短路保护时,在电动机的出口单相接地的短路电流应不小于1.5×2826.6=4239.9A,以低压厂用变压器为干式变压器,其容量为1600kVA(Ud=8%),根据“厂技规”第134页的关系曲线,当L≤53m时,Id(1)≥4240>4239.9,电动机的相间短路保护兼作接地短路保护时满足灵敏度的要求。 根据上面的分析,当低压厂用电系统中性点为直接接地时,对容量为100kW以上的电动机,考虑到相间短路的整定值高,满足单相接地短路保护的灵敏性时供电距离短。在实际的工程设计时,大量的供电距离稍远的100kW以上的低压电动机,是应装设单相接地短路保护的,只有极少量供电距离很近的100kW以上的低压电动机,其相间短路保护兼作短路保护时能满足灵敏度的要求,考虑到容量为100kW以上的电动机本身的价值高、数量少,相间短路保护兼作接地保护时满足灵敏度要求的几率小,另外装设一套灵敏性高的

相关文档
最新文档