自动控制原理实验2

合集下载

《自动控制原理》实验2(线性系统时域响应分析)

《自动控制原理》实验2(线性系统时域响应分析)

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

自动控制实验2实验报告

自动控制实验2实验报告

⾃动控制实验2实验报告:实验报告项⽬名称: MATLAB⽤于时域分析课程名称: ⾃动控制原理信息科学与⼯程学院通信⼯程系⼀、实验名称:MATLAB⽤于时域分析⼆、1)⼀阶系统响应sys1=tf([100],[1 0]);sys2=tf([0.1],[1]);sys=feedback(sys1,sys2);step(sys)1)⼆阶系统响应%Wn=1;t=0:0.1:12;num=[1];zetal=0;den1=[1 2*zetal 1]; zeta3=0.3; den3=[1 2*zeta3 1]; zeta5=0.5; den5=[1 2*zeta5 1]; zeta7=0.7; den7=[1 2*zeta7 1]; zeta9=1.0; den9=[1 2*zeta9 1]; [y1,x,t]=step(num,den1,t);[y3,x,t]=step(num,den3,t);[y5,x,t]=step(num,den5,t);[y7,x,t]=step(num,den7,t);[y9,x,t]=step(num,den9,t);plot(t,y1,t,y3,t,y5,t,y7,t,y9); grid on3)稳定性分析den=[1 1 2 24];roots(den)4)动态性能分析t=0:0.01:2;num=[1000];den=[1 34.5 1000];[y,x,t]=step(num,den,t);plot(t,y);%求超调量maxy=max(y);yss=y(length(t));pos=100*(maxy-yss)/yss%求峰值时间for i=1:1:201if y(i)==maxy,n=i;endendtp=(n-1)*0.01%求调节时间for i=n:1:201if(y(i)<1.05&y(i)>0.95),m=i;break;endendym=y(18)ts=(m-1)*0.015)稳态误差分析%-----------单位冲击-------t=0:0.1:15;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=impulse(num1,den1,t); y2=impulse(num2,den2,t);y3=impulse(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er1=0-y1(length(t))%0型系统稳态误差er2=0-y2(length(t))%1型系统稳态误差er3=0-y3(length(t))%2型系统稳态误差figure;%-----------单位阶跃-------t=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,den1,t);y2=step(num2,den2,t);y3=step(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er4=0-y1(length(t))%0型系统稳态误差er5=0-y2(length(t))%1型系统稳态误差er6=0-y3(length(t))%2型系统稳态误差figure%-----------单位斜坡-------t=0:0.1:20;t1=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,[den1 0],t);y2=step(num2,[den2 0],t);y3=step(num3,[den3 0],t);subplot(3,1,1);plot(t1,y1,t1,t1); subplot(3,1,2);plot(t,y2,t,t); subplot(3,1,3);plot(t,y3,t,t);er7=t1(length(t1))-y1(length(t))%0型系统稳态误差er8=t(length(t))-y2(length(t))%1型系统稳态误差er9=t(length(t))-y3(length(t))%2型系统稳态误差6)实例分析:kp=[0.11 6];t=[0:0.01:1];num1=303.03*kp(1);den1=[0.00001 0.00633 0.20167 21.21*kp(1)+1]; y1=step(num1,den1,t);num2=303.03*kp(2);den2=[0.00001 0.00633 0.20167 21.21*kp(2)+1]; y2=step(num2,den2,t);subplot(211),plot(t,y1);subplot(212);plot(t,y2);gtext('kp=0.11');gtext('kp=6');。

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

自动控制原理2 实验报告

自动控制原理2 实验报告

中国石油大学(北京)实验报告实验课程:自动控制原理2实验名称:采样控制系统分析班级:学号: 姓名:实验台号:成绩:实验日期:年月日实验1采样控制系统一、实验目的考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔Ts对系统稳定性的影响。

二、实验步骤1、典型单位负反馈连续时间系统的开环传递函数为G(s)=K/(s2+s),借助于Matlab 仿真,并分析并验证K对系统性能的影响。

步骤:Matlab相关命令:Gs=tf([1],[1 1 0]) ;pzmap(Gs);figure(1)rlocus(Gs);K值变化时的阶跃相应曲线for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k];den=[1,1,0]Gs=tf(num,den);figure(1)margin(Gs);figure(2)t=0:0.001:500;step(Gs,t);grid;hold onend2、将上述连续系统离散化,成为带零阶保持器的采样系统。

借助于Matlab仿真,调整采样周期T 和增益K 的大小,观察T 和K 对系统稳定性和调节性能的影响。

调整系数,给出[1]p384-385习题7-24和7-26的答案。

实验步骤:(1) 确定有零阶保持器的开环系统脉冲传递函数G(z)。

))(1()1()(T T e z z z e K z G -----=Matlab 相关命令:for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k*0.1,0];den=[1,-1.9,0.9];G1=tf(num,den);G=tf2zp(num,den);Gd=c2d(G,0.1,’zoh ’);G0=feedback(Gd,a);t=0:0.1:50;u=1;tsim(G0,u,t,0);gridfor k=[0,0.01,0.05,0.10,0.15,0.20,0.25]G=tf([5],[1 1 0]);Gd=c2d(G,0.1,'zoh');G0=feedback(Gd,1);t=0:0.1:50;step(G0,t); gridxlabel('t');ylable('c(t)');title(‘ramp response ’)hold onend当T=0.1,0.5,1,2时分别重复上面的命令习题7-247-24(1)求出脉冲传递函数:程序代码:rlocus(G)G0=tf([1],[1 10 0 ]);G=c2d(G0,0.1,'zoh')G =0.003679 z + 0.002642----------------------z^2 - 1.368 z + 0.3679Sample time: 0.1 secondsDiscrete-time transfer function.(2)求闭环系统的z特征方程feedback(G,1)ans =0.003679 z + 0.002642----------------------z^2 - 1.364 z + 0.3705Sample time: 0.1 secondsDiscrete-time transfer function.(3)计算使系统稳定的K的最大值rlocus(G)(4)K=78(5)求闭环脉冲传递函数并绘出单位阶跃响应曲线程序代码:G0=tf([78],[1 10 0 ]);G=c2d(G0,0.1,'zoh')Gd= feedback(G,1);t=0:0.1:6;step(Gd,t)Gd =0.2869 z + 0.2061---------------------z^2 - 1.081 z + 0.574Sample time: 0.1 seconds Discrete-time transfer function. 阶跃响应曲线:(6)系统闭环极点以及超调量程序代码:G0=tf([120],[1 10 0 ]);G=c2d(G0,0.1,'zoh');Gd=feedback(G,1);t=0:0.1:6;step(Gd,t)Transfer function:0.4415 z + 0.3171----------------------z^2 - 0.9264 z + 0.685 Sampling time: 0.1b = [0.4415 0.3171];a = [1 -0.9264 0.685]; [b,a] = eqtflength(b,a); [z,p,k] = tf2zp(b,a)z =-0.7182p =0.4632 + 0.6859i0.4632 - 0.6859i k =0.4415超调量为53.8%. (7) t=0:0.1:6;step(Gd,t)7-267-26.程序代码:G0=tf([1],[1 1 0]);G=c2d(G0,0.2,'zoh');Gd=feedback(G,1);t=0:0.2:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.4,'zoh');Gd=feedback(G,1);t=0:0.4:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.6,'zoh');Gd=feedback(G,1);t=0:0.6:25;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.8,'zoh');Gd=feedback(G,1);t=0:0.8:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.0,'zoh');Gd=feedback(G,1);t=0:1.0:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.2,'zoh');Gd=feedback(G,1);t=0:1.2:30;step(Gd,t)hold on实验图形记录:(1)T=0.2s%21%;8.38s T σ==(2)T=0.4s%26%;8.53s T σ==(3)T=0.6s%31%;11.4s T σ==(4)T=0.8ss(5)T=1.0s(6)%40%;15.3s T σ==(7)T=1.2ssT 从0.2s 到1.2s3、计算机控制系统如图5-7所示,采样周期T=0.1s ,试分析不同的PID 调节器及不同参数对系统性能的影响,并分析各种情况下PID 参数的选择方法。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书电力学院自动控制原理实验室二○○八年三月目录实验一典型环节的电路模拟与软件仿真 (2)实验二线性定常系统的瞬态响应 (6)实验三线性系统稳态误差的研究 (8)实验四系统频率特性的测量 (11)实验五线性定常系统的串联校正 (13)附: THBDC-1控制理论.计算机控制技术实验平台简介 (16)实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用方法。

2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。

3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THBDC-1型控制理论·计算机控制技术实验平台2.PC机1台(含上位机软件) USB数据采集卡37针通信线1根16芯数据排线USB接口线3.双踪慢扫描示波器1台(可选)4.万用表1只三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等典型环节按一定的关系连接而成。

熟悉这些环节对阶跃输入的响应,对分析线性系统将是十分有益的。

在附录中介绍了典型环节的传递函数、理论的阶跃响应曲线和环节的模拟电路图。

五、实验步骤1.熟悉实验台,利用实验台上的各电路单元,构建所设计比例环节(可参考本实验附录)的模拟电路并连接好实验电路;待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。

2.把采集卡接口单元的输出端DA1、输入端AD2与电路的输入端U i相连,电路的输出端U o则与采集卡接口单元中的输入端AD1相连。

连接好采集卡接口单元与PC上位机的通信线。

自动控制原理实验——二阶系统的动态过程分析

自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。

二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。

2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。

图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。

图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。

比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。

其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

《自动控制原理》实验指导书(正文全)

《自动控制原理》实验指导书(正文全)

实验一基于MATLAB实验平台的系统被控对象的建立与转换[说明]一个控制系统主要由被控对象、检测测量装置、控制器和执行器四大部分构成。

用于自控原理实验方面的被控对象可以有①用于实际生产的实际系统的真实被控对象,如进行温度控制的锅炉、进行转速控制的电机等;②用于实验研究的真实被控对象,如进行温度控制的实验用锅炉、进行转速控制的电机等;③用运算放大器等电子器件搭建的电模拟被控对象(电路板形式),它们的数学模型与真实被控对象的数学模型基本一致,而且比真实被控对象更典型,更精准。

它们是实物型原理仿真被控对象。

④计算机仿真的被控对象,它们是非实物型原理仿真被控对象,是以各种形式展现的被控对象的数学模型。

它们通过计算机屏幕展示,或是公式形式的数学算式,或是数字形式的数表、矩阵,或是图形形式的结构框图,或是动画形式的真实被控对象实物的动态图形。

在自控原理实验中,①极少用;②用的不多;③用的较多;④在MATLAB软件广泛使用后,用的较多。

③、④各有其优缺点。

MATLAB软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。

我们的实验采用的是④:采用MATLAB软件平台的计算机仿真的被控对象。

这里“被控对象的建立”,指在MATLAB软件平台上怎样正确表示被控对象的数学模型。

[实验目的]1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成及整体传递函数的求取方法。

[实验指导]一、被控对象模型的建立在线性系统理论中,一般常用的描述系统的数学模型形式有:(1)传递函数模型——有理多项式分式表达式(2)传递函数模型——零极点增益表达式(3)状态空间模型(系统的内部模型)这些模型之间都有着内在的联系,可以相互进行转换。

1、传递函数模型——有理多项式分式表达式设系统的传递函数模型为1110111......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。

改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。

① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。

(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。

自动控制原理实验02

自动控制原理实验02

实验二、线性系统的根轨迹法1. 设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)*(s+5)), (1)绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较;clf>> num=1;>> den=conv([1 1 0],[1 5]);>> rlocus(num,den)(2)从实验结果上观察系统稳定的K值范围;由图可知K值范围为0~29.9(3)用simulink环境观察系统临界稳定时的单位阶跃响应。

2.设单位反馈控制系统的开环传递函数为G(s)=K*(s+3)/(s*(s+1)*(s+2));(1)仿照上题绘制系统的根轨迹,并判断系统的稳定性;clf>> num=[1 3];>> den=conv([1 1 0],[1 2]);>> rlocus(num,den)由图知,该系统始终保持稳定.(2)分别取K=5 和K=50,利用simulink环境观察系统的单位阶跃响应,并比实验结果。

K=5时,该系统呈现欠阻尼状态,阻尼系数接近于1。

K=50时,该系统呈现欠阻尼状态,阻尼系数接近于0.3.完成教材第四章习题4-7,4-8,4-10(1)习题4-7,已知开环传递函数为K/(s(s+4)(s^2+4s+20));试概略画出其闭环系统根轨迹图。

clf>> num=1;>> den=conv([1 4 0],[1 4 20]);>> rlocus(num,den)该系统K值范围为0~260时系统稳定。

(2)习题4-8,已知开环传递函数为K(s+2)/((s^2+4s+9)^2);试概略画出其闭环系统根轨迹图。

clf>> num=[1 2];>> den=conv([1 4 9],[1 4 9]);>> rlocus(num,den)该系统K值范围为0~95.6时稳定。

自动控制原理实验

自动控制原理实验

目录目录 (1)实验一基本绘图 (2)一、实验目的 (2)二、实验内容 (2)实验二模型建立 (9)一、实验目的 (9)二、实验内容 (9)实验三稳定性分析 (15)一、实验目的 (15)二、实验内容 (15)实验四响应曲线 (21)一、实验目的 (21)二、实验内容 (21)实验五根轨迹 (24)一、实验目的 (24)二、实验内容 (24)实验六控制系统的频域分析 (32)一、实验目的 (32)二、基础知识及MATLAB函数 (32)三、实验内容 (32)实验一基本绘图一、实验目的1.学习了解MATLAB语言环境;2.练习MATLAB命令的基本操作;3.学习MATLAB的基本矩阵运算;4.学习MATLAB的各种二维绘图;5.学习MATLAB的三维绘图。

二、实验内容2.1基本二维绘图(1)向量绘图x=0:2*pi/100:2*pi;y1=sin(2*x);y2=cos(2*x);plot(x,y1);plot(x,y2);%保持作图plot(x,y1);hold on;plot(x,y2);hold off;%设定颜色与线型plot(x,y1,':',x,y2,'ro');%多窗口绘图figure(1);plot(x,y1);figure(2);plot(x,y2);%子图绘图subplot(221);plot(x,y1);subplot(222);plot(x,y2)subplot(223);plot(x,y1,x,y1+y2)subplot(224);plot(x,y2,x,y1-y2)2.2多种二维绘图(1)半对数绘图(频率特性绘图)w=logspace(-1,1);%横坐标对数分度g=20*log10(1./(1+2*w*i));%幅值纵坐标取分贝p=angle(1./(1+2*w*i))*180/pi;%相角纵坐标取度subplot(211);semilogx(w,g);grid;%幅频特性子图,半对数绘图,加网线subplot(212);semilogx(w,p);grid;%相频特性子图,半对数绘图,加网线(2)极坐标绘图t=0:2*pi/180:2*pi;mo=cos(2*t);polar(t,mo);(3)直方图绘图t=0:2*pi/8:2*pi;y=sin(t);bar(t,y);(四)离散棒图t=0:2*pi/8:2*pi;y=sin(t);stem(t,y);(五)阶梯图t=0:2*pi/8:2*pi;y=sin(t);stairs(t,y);2.3图形注释fplot('[sin(t),cos(t)]',[0,5]);title('曲线')xlabel('时间t');ylabel('幅值y');gtext('正弦函数');gtext('余项函数');grid2.4三维绘图(1)三维线图t=0:pi/50:10*pi;plot3(sin(t),cos(t),t);comet3(sin(t),cos(t),t);(2)单变量高度网线图Z2=[1 1;1 -1];Z4=[Z2 Z2;Z2 -Z2];Z8=[Z4 Z4;Z4 -Z4];mesh(Z8)(3)变量马鞍面网线图x=-4:0.5:4;y=x;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)(四)圆锥面网线图t1=0:0.1:0.9;t2=0:0.1:2;r=[t1,-t2+2];[x,y,z]=cylinder(r,40); mesh(x,y,z)实验二模型建立一、实验目的1.学习在MATLAB命令窗口建立系统模型的方法;2.学习如何在两种模型之间相互转换;3.学习如何用SIMULINK仿真工具建模。

自动控制原理试-2_真题-无答案

自动控制原理试-2_真题-无答案

自动控制原理试-2(总分100,考试时间90分钟)1. 已知系统特征方程为3s4+10s3+5s2+s+2=0,试用劳斯判据判断该系统的稳定性。

2. 已知单位反馈系统的开环传递函数为试确定系统稳定时的K值范围。

3. 已知单位负反馈一阶系统的单位阶跃响应如图所示,试求闭环传递函数Φ(s)及调节时间ts。

一阶系统单位阶跃响应曲线4. 已知二阶系统的单位阶跃响应为h(t)=10-12.5e-1.2tsin(1.6t+53.1)试求系统的超调量σ%、峰值时间tp和调节时间ts。

已知单位负反馈系统的开环传递函数如下,试分别求出r(t)=1(t)、t、时系统的稳态误差ess。

5. 。

6. 。

7. 。

8. 对于图示系统,试求r(t)=t,n(t)=1(t)时系统的稳态误差。

9. 设系统结构如图所示,试确定闭环系统的稳定性。

10. 某反馈控制系统的方框图如图所示,试求:(1)闭环传递函数。

(2)判别系统稳定性,并求不在左半s平面的特征根数。

已知单位反馈系统的开环传递函数为11. 系统稳定时,试确定K的取值范围。

12. 若要求闭环极点在s=-1左边,试确定K的取值范围。

13. 已知一阶环节的传递函数为,若采用负反馈的方法将调整时间ts减小为原来的0.1倍,并且保证总的放大系数不变,试选择kH和k0的值。

14. 图(a)为系统结构图,图(b)为某典型单位阶跃响应。

试确定k1、k2、a的值。

(a)系统结构图(b)阶跃响应曲线已知系统的结构图如图所示,若r(t)=2·1(t)时,试求:15. kf=0时,系统的超调量σ%和调节时间ts。

16. 当kf不等于零时,若要使σ%=20%,试求kf应为多大?并求出此时的调整时间ts的值。

电机控制系统如图所示。

系统参数为T=0.1,J=0.01,ki=10。

17. 设干扰力矩Td=0,输入θr(t)=t,试问k和kt之值对稳态误差有何影响。

18. 设输入θr(t)=t,试问当干扰力矩Td为单位阶跃函数时,k和kt之值对稳态误差的影响。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2n
R(S) T 2 S 2 2TS 2n S 2 2n S 2n
二阶系统电模拟表达式:
C(S)
1
R(S )
R1 R3C1C 2 S 2
R1 R3C 2 R2
S
1
若令R3=R1,C2=C1 则:
C(S)
1
R(S) T 2S 2 T S 1
K
其中:T R1C1
K R2 R1
给定二阶系统电模拟图
的单位反馈系统的模拟线路图,并注明线
路中的各元件参数(用R、C 等字母表示) 和传递函数中参数的关系。
七、注意事项
1、 若只使用其中某一个运算放大器,则其 余的运算放大器必须接成比例环节,不允许 输入端和输出端悬空,以避免损坏运算放大 器;
2、所有导线使用前须用万用表测通断 3、调零

1.根据实验结果,分析二阶系统ts 、σ%与ωn、 ξ之间的关系。 2.对于二阶系统,若将其反馈极性改为正反馈, 或将其反馈回路断开,这时的阶跃响应有何特 点?试从理论上进行分析。
1 3 、 根据所学习的电模拟方法,画出开环传
递函数为:
C(S) (T1S
K 1)(T2 2 S 2
2T2 S
1)
实验 二
典型二阶系统的瞬态响应
一、实验目的:
1.熟悉二阶系统的瞬态响应,观察二阶系统两 个重要参数ξ 和ωn 对系统动态特性的影响; 2.定量分析ξ和T与超调MP、过渡过程时间ts 的 关系。 3. 测出性能指标:超调量MP,峰值时间tp和调节 时间ts。
二、实验要求:
1.观测各种典型环节的阶跃 响应曲线;
2 、令T=0.05秒,( C1=C2=0.47μF)重新进行上述测试 。
五、实验报告要求:
1.记录实验线路及原始数据、测试数据 及波形图;
2.对实验中出现的现象进行讨论,计算 T=0.1秒时,ξ=0.1, 0.7, 1情况下的σ% 和ts (Δ=0.05),与实测数据比较;
六、思考题:
与二阶系统的标准形式比较,可得如下 关系:
ωn = 1/T = 1/(R1*C1) ξ = 1/2K = R1/2R2 同时改变C1和C2的大小,可改变无 阻尼自振频率ωn的大小,改变R2的大小 可改变ξ的大小。
四、实验步骤
1 、 令 T=0.1 秒 ( R1=R3=100K,C1=C2=1μF)。 分 别 设置ξ=0.1, 0.5, 0.7, 1,观测输入幅值为+1V的阶跃信号, 读出并记录各ξ值时的峰值时间,超调量和过渡过程时 间ts(取Δ=0.05),并绘制出ξ=0.1, 0.7, 1三种情况时 的波形。
2.观测参数变化对典型环 节阶跃响应的影响;
三、实验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.超低频双线示波器 DF4211 1台; 3.万用表
三、实验原理和内容:
二阶系统微分方程:
T2
d 2c(t) dt 2
2T
dc(t ) dt
c(t)
r (t )
传递函数:
C(S)
1
相关文档
最新文档