中央空调水系统快捷水力计算方法(估算方法)

合集下载

水系统中央空调设计及概算

水系统中央空调设计及概算

水系统中央空调设计及概算一、水泵选型(1) 水泵流量:冷却水流量L (m3/h )=)2.1~15.1(163.1)5~4()(⨯⨯kw Q ;Q 为制冷主机制冷量(2) 冷冻水流量:L (m3/h )=163.1)5~4()(⨯kw Q(3) 水系统水管管径的计算:D (m )=)/(3600785.0)/(3s m V h m L ⨯⨯DN100-DN250时V 取1.5m/s 左右,小于DN100时,流速小于1.0m/s ,管径大于DN250时,流速再加大;管径:DN15/20/25/32/40/50/70/80/100/125/150/200/250/300/350/400/450/500/600 水泵进出水管径比水泵所在管段小一个型号(需使用大小头)(4) 冷冻水泵扬程:1制冷机组蒸发器水阻力:一般为5-7m 水;2 末端设备表冷器(空气处理机组、风盘)水阻力:一般为5-7m 水3 回水过滤一般3-5m 水4 分集水器一般3m 水5 制冷系统水管路沿程阻力和局部阻力损失:一般7-10m 水冷却水泵扬程:1制冷机组冷凝器水阻力:一般为5-7m 水;2 冷却塔喷头喷水压力2-3m 水3冷却塔积水盘到喷嘴高差2-3m 水4 回水过滤阻力一般3-5m 水5 制冷系统水管路沿程阻力和局部阻力损失:一般5-8m 水补水泵扬程:沿程和局部阻力与系统最高点距补水接管处垂直距离;沿程和局部为3-5m 水 。

二、冷却塔选择1冷却塔台数与制冷机组数量对应2冷却塔流量=冷却水流量*1.23电子水处理仪安装在冷冻水系统管中或膨胀水箱进水管中三、膨胀水箱膨胀水箱按冷冻水系统总水容量的2%-3%取,一万平米建筑容积2-4立方米。

冷冻水系统水容量=(1.3空调,1.9采暖)*建筑面积四、空气处理机由风量、表冷排管数、机外余压确定。

三、阀门选择见阀门知识。

三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法如同学过流体力学的人都做过流体分析一样,做过中央空调系统的人都熟悉水力计算,也害怕水力计算。

水力计算基本上是中央空调设计计算里面最繁杂的计算之一。

很多设计过程中的中央空调风道水力计算,都是采用的经验公式或者估算值,下面制冷快报就为大家介绍几种中央空调风道系统水力计算的方法。

风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。

风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。

风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。

对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。

1.假定流速法假定流速法也称为比摩阻法。

先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。

这是低速送风系统目前最常用的一种计算方法。

2.压损平均法压损平均法也称为当量阻力法。

这种方法以单位管长压力损失相等为前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。

该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。

此方法适用于高速空调系统的水力计算。

课件2-空调冷(热)水系统水力计算

课件2-空调冷(热)水系统水力计算

空调冷(热)水系统的水力计算1 空调冷(热)水水力计算的基本公式设备阻力++=∆+∆=∆2.2ρνζRl P P P j m (1-1)Rl P m =∆(1-2)2.2ρνζ=∆j P (1-3)22v d l R ⋅⋅=ρ (1-4))Re 5.271.3lg(0.21λλ+-=d k (1-5) 式中 ΔP--管网总阻力,(Pa ) ΔP m --管网沿程阻力,(Pa ) ΔP j --管网局部阻力,(Pa )设备阻力--如制冷机组蒸发器及冷凝器、热交换器、锅炉、冷却塔、风机盘管、 新风机组、空调机组等R ——单位长度直管段的摩擦阻力(又称比摩阻),Pa/m ;)—最不利管网总长(—m l λ——摩擦阻力系数,m ; ζ——管道配件的局部阻力系数 ρ——水的密度,kg/m 3;v ——水的流速,m/s ;k ——管内表面的当量绝对粗糙度,m ;闭式循环水系统:k=0.2mm ;开式循环水系 统:k=0.5mm ;冷却水系统:k=0.5mm 。

d ——管道直径,m 。

Re ——雷诺数:附:一个大气压下水的密度2 空调计算管段冷(热)水流量计算tqG ni i∆=∑=163.11(2-1)式中∑=ni iq1——计算管段的空调冷(热)负荷,W ;t ∆——供回水温差,oC 。

(空调冷水供回水温差不应小于5 oC ;空调热水供回水温差,严寒和寒冷地区不宜小于15 o C ,夏热冬冷地区不宜小于10oC )确定计算管段的冷水量∑=ni iq1时,可以根据管路所连接末端设备(如AHU 、FCU 等)的额定流量进行计算(叠加)。

但必须注意,当总水量达到与系统总流量(水泵流量)相等时,干管的水量不应再增加。

3 管径的选择及沿程阻力计算3.1 空调水系统单位长度摩擦压力损失(比摩阻)宜控制在100~300Pa/m ;最大不应超过400Pa/m (热水管道建议取低值)。

空调房间内管道流速不宜超过表3-1的限值。

空调水系统水力计算方法与步骤详解

空调水系统水力计算方法与步骤详解
注意:计 算结果要 用表格的 形式!!
5 并联管路阻力平衡计算
6 系统总阻力计算 7 水泵的流量与扬程计算
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次
水泵的流量和扬程。
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm

c t
8.5 空调水系统的冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
管径的确定85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算管径的确定8885空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统一般一般为闭式系统泵的流量按空调系统夏季最大计算冷负荷确定即85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算泵的扬程应能克服冷冻水系统最不利环路的总阻力包括用冷设备产冷设备管道阀门等阻力85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算当空调冷冻水系统为二次泵系统时泵的选择
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定

中央空调水流量简易计算方法

中央空调水流量简易计算方法

中央空调水流量简易计算方法冷冻水泵的选择通常选用每秒转速在30~150转的离心式清水泵, 水泵的流量应为冷水机组额定流量的1.1~1.2 倍(单台工作时取1.1 ,两台并联工作时取1.2 )。

水泵的扬程应为它承担的供回水管网最不利环路的总水压降的1.1~1.2 倍。

最不利环路的总水压降,包括冷水机组蒸发器的水压降A pl、该环路中并联的各台空调末端装置的水压损失最大一台的水压降△ p2、该环路中各种管件的水压降与沿程压降之和。

冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m管长的沿程损失为5mH2O这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H( mH2O可按下式估算。

Hmax =A p1 +A p2 +0.05L (1+ K)式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。

当最不利环路较长时K取0.2〜0.3 ;最不利环路较短时K取0.4〜0.6。

冷却水泵的选择1 )冷却水泵的流量应为冷水机组冷却水量的1.1 倍。

2 )水泵的扬程就为冷水机组冷凝器水压降 A pl、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的 1.1〜1.2倍。

A pl和Z 可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O沿程损失可取每100m管长约5 mH2O若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H( mH2O约为H = △ pl + Z + 5 + 0.05L3) 依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。

水流量计算1 、. 冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)二[Q(kW)/ (4.5~5 ) C x1.163]X(1.15〜1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

中央空调水流量简易计算方法

中央空调水流量简易计算方法

中央空调水流量简易计算方法之答禄夫天创作冷冻水泵的选择通常选用每秒转速在30~150转的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台工作时取1.1, 两台并联工作时取1.2).水泵的扬程应为它承当的供回水管网最晦气环路的总水压降的1.1~1.2倍.最晦气环路的总水压降, 包括冷水机组蒸发器的水压降Δp1、该环路中并联的各台空调末端装置的水压损失最年夜一台的水压降Δp2、该环路中各种管件的水压降与沿程压降之和.冷水机组蒸发器和空调末端装置的水压降, 可根据设计工况从产物样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出, 在估算时, 可年夜致取每100m管长的沿程损失为5mH2O.这样, 若最晦气环路的总长(即供、回水管管长之和)为L, 则冷水泵扬程H(mH2O)可按下式估算.Hmax =Δp1 +Δp2 +(1+ K)式中K为最晦气环路中局部阻力当量长度总和与直管总长的比值.当最晦气环路较长时K取0.2~0.3;最晦气环路较短时K 取0.4~0.6.冷却水泵的选择1)冷却水泵的流量应为冷水机组冷却水量的1.1倍.2)水泵的扬程就为冷水机组冷凝器水压降Δp1、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的1.1~1.2倍.Δp1和Z可从有关产物样本中查得;沿程损失和局部损失应从水力计算求出, 作估算时, 管路中管件局部损失可取5mH2O,沿程损失可取每100m管长约5 mH2O.若冷却水系统来回管长为L, 则冷却水泵所需扬程的估算值H(mH2O)约为H =Δp1 + Z + 5 +3) 依据冷却水泵的流量和扬程, 参考有关水泵性能参数选用冷却水泵.水流量计算1、.冷却冷却水流量水流量:一般依照产物样本提供数值选取, 或依照如下公式进行计算, 公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组, 可根据产物样本提供的数值选用或根据如下公式进行计算.如果考虑了同时使用率, 建议用如下公式进行计算.公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷.L(m3/h)= Q(kW)/(4.5~5)℃x1.1633、冷却水补水量一般1为冷却水循环水量的1~1.6%.风速的选择(1)风管内的风速一般空调房间对空调系统的限定的噪音允许值控制在40~50dB(A)之间, 即相应NR(或NC)数为35~45dB(A).根据设计规范, 满足这一范围内噪音允许值的主管风速为4~7m/s, 支管风速为2~3m/s.通风机与消声装置之间的风管, 其风速可采纳8~10m/s.(2)送风口的出风风速为防止风口噪音, 送风口的出风风速宜采纳2~5m/s.(3)回风口的吸风速度回风口位于房间上部时, 吸风速度取4~5m/s, 回风口位于房间下部时, 若不靠近人员经常停留的地址, 取3~4m/s , 若靠近人员经常停留的地址, 取1.5~2m/s , 若用于走廊回风时, 取1~/s .。

中央空调水流量简易计算方法

中央空调水流量简易计算方法

中央空调水流量简易计算方法冷冻水泵的选择通常选用每秒转速在30~150 转的离心式清水泵,水泵的流量应为冷水机组额定流量的~ 倍(单台工作时取,两台并联工作时取)。

水泵的扬程应为它承担的供回水管网最不利环路的总水压降的~ 倍。

最不利环路的总水压降,包括冷水机组蒸发器的水压降△ pl、该环路中并联的各台空调末端装置的水压损失最大一台的水压降△ p2、该环路中各种管件的水压降与沿程压降之和。

冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m 管长的沿程损失为5mH2O 。

这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H (mH20 )可按下式估算。

Hmax= △ pl + △ p2 + 0.05L (1+K )式中K 为最不利环路中局部阻力当量长度总和与直管总长的比值。

当最不利环路较长时K取〜;最不利环路较短时K取〜。

冷却水泵的选择1 )冷却水泵的流量应为冷水机组冷却水量的倍。

2)水泵的扬程就为冷水机组冷凝器水压降△ pl、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的〜倍。

△ pl和Z可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O ,沿程损失可取每100m 管长约5mH2O。

若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H ( mH2O )约为H= △ p1+Z+5+0.05L3)依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。

水流量计算1 、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q 为制冷主机制冷量L(m3/h)二[Q(kW)/ (~5 ) C ]X〜2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

中央空调系统估算经验公式

中央空调系统估算经验公式

2010年3月9日星期二非常冷今天太冷了,风呼呼的刮,雪刷刷的下,不去工地了,在办公室闲的无聊,随便写点东西,希望对刚参加工作的朋友有所帮助。

一公式Q=C M⊿TQ 单位为KJC单位为4.2KJ/KG.℃指单位质量物体温度提高单位温度所需要吸收的内能M 单位为KG⊿T温差我们经常用到的单位是制冷量(制热量)Q﹝KJ/S﹞流量L﹝M3/H﹞代入上式一转换,得出常用的流量计算公式L﹝M3/H〕=0.86×Q﹝KW﹞/⊿T= Q﹝KW﹞/⊿T 1.163这个公式很重要,常用于计算水量,比如水源热泵井水量,水泵水量等。

也常用于设备的选型,如冷水机组的选型,知道温差,知道水量,推出冷量,选出适合的机组。

二主要设备的选型主机一般来说,冷量小于等于116KW的,常选用模块机,冷量大于116KW的,常选用螺杆机。

模块机冷热转换一般通过系统内部氟路系统来完成,螺杆机通过水路转换阀门来完成,在画图时要注意这一点。

模块机分为风冷模块和水冷模块,风冷模块在冬天气温低的地区不宜选用,最明显的现象就是结霜严重,效果不好。

在水源充分的地区,可以优先考虑水冷模块,水源热泵这样的节能机组,机组运行效率确实要高,运行费用相对来说低,而且符合国家的节能要求,在这一块,国家也有补助。

水泵水泵的台数一般和主机一一对应,再加一台备用。

两个重要参数流量和扬程。

流量的选择1 冷冻水循环泵对于不考虑同时使用系数的,我们可以直接根据主机的流量乘上一定的系数1.1-1.2,得出水泵的流量。

对于考虑同时使用系数的,我们可以根据末端需要的能量,套用公式,L﹝M3/H〕=0.86×Q﹝KW﹞/⊿T2冷却水循环泵可以直接根据主机的流量,乘上一定的系数1.1-1.2,得出流量。

当然也可以根据公式L﹝M3/H〕=0.86×Q﹝KW﹞/⊿T再乘上一定的修正数1.1-1.2,得出。

扬程的选择这个就要考虑是开式系统还是闭式系统了。

冷冻水循环泵一般来说都是闭式系统,扬程一般为30米左右,当然,要看情况了。

中央空调设计常用计算公式

中央空调设计常用计算公式

1、风管阻力计算:估算法:阻力△H=Rm×L(1+k)Rm—单位风管长度的摩擦力,Pa/m;L—风管总长度;K—局部阻力与摩擦阻力比值,局部构件少时,取值:K=1~2,多时取3~5。

经验取值:4 Pa/m计算。

2、风管风速计算:风速:V=Q/S3、水管管径计算:1.1标准层风机盘管水系统水力计算1.1.1基本公式本计算方法理论依据张萍编著的《中央空调实训教程》[1]。

1)沿程阻力△P e=ξe· v2·ρ/2 g mH2O (6.1)沿程阻力系数ξe=0.025·L/d(6.2)2)局部阻力水流动时遇弯头、三通及其他配件时,因摩擦及涡流耗能而产生的局部阻力为:△P m=ξ·ρ·v2/2 g mH2O (6.3)3)水管总阻力△P=△P e+△PmH2Oj(6.4)4)确定管径n d mm(6.5)式中:V j ——冷冻水流量,m 3/s ;v j ——流速,m/s 。

在水力计算时,初选管内流速和确定最后的流速时必须满足以下要求:表6.2 管内水的最大允许水流速表[1]空调系统的水系统的管材有镀锌钢管和无缝钢管。

当管径DN ≤100mm 时可以采用镀锌钢管,其规格用公称直径DN 表示;当管径DN >100mm 时采用无缝钢管,其规格用外径×壁厚表示,一般须作二次镀锌。

空调制冷量单位有kcal /h ,W ,btu /h ,匹 制冷量单位换算:1.1kcal /h(大卡/小时)=1.163W ,1W =0.8598kcal /h ;2.1btu /h(英热单位/小时)=0.2931W ,1W =3.412btu /h ; 3.1USRT(美国冷吨)=3.517kW ,1kW =0.28434USRT ;4.1kcal /h =3.968Btu /h ,1Btu /h =0.252kcal /h ;5.1USRT =3024kcal /h ,10000kcal /h =3.3069USRT ;6.1匹=2.5kW1. 1 kcal /h (大卡/小时) = 1.163W ,1 W = 0.8598 kcal /h ;2. 1 btu /h (英热单位/小时) = 0.2931W ,1 W =3.412 btu /h ; 3. 1 USRT (美国冷吨) = 3.517 kw ,1 kw = 0.28434 USRT ;4.1日本冷吨=3320千卡/小时(kcal/h )=3.861千瓦(kw ) 1英国冷吨=3373千卡/小时(kcal/h )=3.923千瓦(kw )5. 1 kcal /h = 3.968 btu /h ,1 btu /h = 0.252 kcal /h ;6. 1 USRT = 3024 kcal /h ,10000 kcal /h = 3.3069 USRT ;7. 1匹=0.735kw x cop00000说明:1. “匹”用于动力单位时,用hp(英制匹)或Ps(公制匹)表示,也称“马力”,1 hp (英制匹) =0.7457 kW,1 Ps (公制匹) =0.735 kW(用电功率);2. 中小型空调制冷机组的制冷量常用“匹”表示,大型空调制冷机组的制冷量常用“冷吨(美国冷吨)”表示。

中央空调水流量简易计算方法

中央空调水流量简易计算方法

中心空调水流量简略单纯盘算办法冷冻水泵的选择平日选用每秒转速在30~150转的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台工作时取1.1,两台并联工作时取1.2).水泵的扬程应为它承担的供回水管网最晦气环路的总水压降的1.1~1.2倍.最晦气环路的总水压降,包含冷水机组蒸发器的水压降Δp1.该环路中并联的各台空调末尾装配的水压损掉最大一台的水压降Δp2.该环路中各类管件的水压降与沿程压降之和.冷水机组蒸发器和空调末尾装配的水压降,可根据设计工况从产品样本中查知;环路管件的局部损掉及环路的沿程损掉应经水力盘算求出,在估算时,可大致取每100m管长的沿程损掉为5mH2O.如许,若最晦气环路的总长(即供.回水管管长之和)为L,则冷水泵扬程H(mH2O)可按下式估算.Hmax =Δp1 +Δp2 +(1+ K)式中K为最晦气环路中局部阻力当量长度总和与直管总长的比值.当最晦气环路较长时K取0.2~0.3;最晦气环路较短时K 取0.4~0.6.冷却水泵的选择1)冷却水泵的流量应为冷水机组冷却水量的1.1倍.2)水泵的扬程就为冷水机组冷凝器水压降Δp1.冷却塔开式段高度Z.管路沿程损掉及管件局部损掉四项之和的1.1~1.2倍.Δp1和Z可从有关产品样本中查得;沿程损掉和局部损掉应从水力盘算求出,作估算时,管路中管件局部损掉可取5mH2O,沿程损掉可取每100m管长约5 mH2O.若冷却水体系往返管长为L,则冷却水泵所需扬程的估算值H(mH2O)约为H =Δp1 + Z + 5 +3) 根据冷却水泵的流量和扬程,参考有关水泵机能参数选用冷却水泵.水流量盘算1..冷却冷却水流量水流量:一般按照产品样本供给数值拔取,或按照如下公式进行盘算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)2.冷冻水流量:在没有斟酌同时应用率的情形下选定的机组,可根据产品样本供给的数值选用或根据如下公式进行盘算.假如斟酌了同时应用率,建议用如下公式进行盘算.公式中的Q为建筑没有斟酌同时应用率情形下的总冷负荷.L(m3/h)= Q(kW)/(4.5~5)℃x1.1633.冷却水补水量一般1为冷却水轮回水量的1~1.6%.风速的选择(1)风管内的风速一般空调房间对空调体系的限制的噪音许可值掌握在40~50dB(A)之间,即响应NR(或NC)数为35~45dB(A).根据设计规范,知足这一规模内噪音许可值的主管风速为4~7m/s,支管风速为2~3m/s.通风机与消声装配之间的风管,其风速可采取8~10m/s.(2)送风口的出风风速为防止风口噪音,送风口的出风风速宜采取2~5m/s.(3)回风口的吸风速度回风口位于房间上部时,吸风速度取4~5m/s,回风口位于房间下部时,若不接近人员经常逗留的地点,取3~4m/s ,若接近人员经常逗留的地点,取1.5~2m/s ,若用于走廊回风时,取1~/s .。

空调水系统水力计算方法与步骤

空调水系统水力计算方法与步骤
选泵时水泵的流量与扬程均要乘以安全系数选泵时水泵的流量与扬程均要乘以安全系数85空调水系统的水力计算??空调冷冻水系统的水力计算例题如下图所示的空调冷冻水二次泵循环系统一级循环略去此系统计算冷负荷为此系统计算冷负荷为488kw冷冻水供水温度为7回水温度为12空调机组表冷器水侧阻力为空调机组表冷器水侧阻力为50kpa各管段的长度见表320求各管段的管径及二次水泵的流量和扬程
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c
t
精选2021版课件
4
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
沿程
精选2021版课件
5
8.5 空调2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择:
(1)一次泵
✓ 泵的流量等于冷水机组蒸发器的额定流量。
✓ 泵的扬程为克服一次环路的总阻力损失。
✓ 一次泵台数与冷水机组相同
选泵时,
(2)二次泵

空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法Ξλρv 2放入大气.水系统管路水力计算是系统正确设计和优化的基础.糙度有关 ,即λ = f ( Re , K/ d)式中 : Re —雷诺数, Re = vd/ν =ρvd/μ;ν—水的运动粘滞系数 , m 2/ s ; 1 空调水循环管路水力计算的原理水管路将流量和管径不变的一段管路称为一个l ρv p y =λ = R (1可采用柯列勃洛克公式3和阿里特苏里公式中 :p y —计算管段沿程阻力损失 , Pa ;λ—沿程阻力系数 ,无因次量 ; 1 2 51 l —直管段长度 , m ;供吸压冷第 20卷第 3期 2004年 9月北京建筑工程学院学报Journal of B eijing Institu te of Civil Eng. and ArchitectureVol. 20 No. 3 Sep . 2004文章编号 :1004 - 6011 (2004) 03 - 0001 - 07空调冷冻水和冷却水循环系统水力计算简便方法许淑惠 , 罗文斌(城市建设工程系 ,北京 100044)摘要:根据空调水系统的计算原理,在不同管径下按不同流量把空调冷冻水和冷却水管路水力计算中的比摩阻绘制成计算表 ,应用该计算表能快速、准确、方便进行空调水系统管路水力计算;采用具体实例,说明空调水系统管路水力计算简便方法. 关键词:冷冻水;冷却水;水力计算中图分类号 : TU83 文献标识码 :A一个完整的中央空调系统有三大部分组成 , 即ρ—水密度 , kg/ m 3 ;冷热源、热与供冷管网、空调用户系统.空调水系 v —水速度 , m/ s ;统包括冷冻水系统和冷却水系统.冷冻水系统是把 R —单位长度沿程阻力损失,又称比摩阻, 冷热源产生的冷或热量通过管网输送到空调用户的 Pa/ m .冷水管采用钢管或镀锌管时 ,比摩阻一系统 ;冷却水系统是整个空调系统的重要组成部分 , 般为 100 Pa/ m ~ 400 Pa/ m ,最常用的为他以水作为冷却剂将冷凝器、收器、压缩机放出的 250 Pa/ m . 热量转移到冷却设备 (冷却塔、却水池等)中 ,最后 R = (2)d 2沿程阻力系数λ与流体的流态和管壁的相对粗空调水系统的管路水力计算是在已知水流量和推荐流速下,确定水管管径,计算水在管路中流动的沿程阻力损失和局部阻力损失 ,确定水泵的扬程和流量.μ—水的动力粘滞系数 , Pa ?s ; K —管壁的当量糙粒高度 , m ;空调冷冻水闭式系统管路 K = 0. 2 mm ,开式系统管路 K = 0. 5 mm ;空调冷却水系统管路 K = 0. 5 mm.空调水循环管路 ,管道设计中采用较低水流速 , 计算管段 ,计算管段沿程阻力损失 ,即流动状态一般处于紊流过渡区内 ,沿程阻力系数λ 2d 2进行计算 ,即= - 2 lg ( + ) (3) λ 3. 7 d Re λd —管道直径, m ;λ = 0. 11 ( K + 68 ) 0. 25 (4)d Re收稿日期 :2004 - 09 - 22基金项目 :建设部计划科技项目 (032111)作者简介 :许淑惠 (1966年—) ,女 ,工学硕士 ,副教授 ,热工流体教研室.112 沿程阻力损失计算表3 600ρπd 900ρπd 2式中 : q m —管段中的水质量流量 , kg/ h ;详见表 1和表 2.λ q m R = 6. 25×10(6)流不不 2北京建筑工程学院学报第 20卷在给定水状态参数及其流动状态的条件下,λ管道内的流速、量和管径的关系表达式为和ρ值均为已知 ,则式 (6)就表示为 R = f ( d , q m )的 4 q m q m 函数式.v = 2 = (5)利用公式 (4) , (5) , (6) ,计算出冷却水和冷冻水在不同水流量、不同管径、不同速度的沿程比摩阻 , 将式 (5)的流速 v 代入式 (2) ,整理成更方便的计算公式2- 8ρ d 5表 1 冷却水管不同流量、同管径、同流速的沿程比摩阻管径DN50/ mm 管径DN70/ mm 管径DN80/ mm 管径DN100/ mm 管径 DN125/ mm内径 53. 0/ mm 内径 68. 0/ mm 内径 80. 5/ mm 内径 106. 0/ mm 内径 131. 0/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 62 70. 2 0. 46 8. 05 92. 5 0. 62 16. 09 151. 0 0. 88 35. 20 169. 5 1. 11 56. 32 142. 6 1. 16 3. 82 78. 0 0. 48 8. 55 104. 3 0. 65 17. 10 170. 2 0. 93 36. 21 179. 2 1. 14 59. 34 158. 1 1. 22 4. 02 86. 2 0. 51 9. 05 116. 7 0. 69 18. 10 190. 6 0. 99 37. 21 189. 2 1. 17 62. 36 174. 5 1. 29 4. 53 108. 6 0. 57 9. 55 129. 8 0. 73 19. 11 212. 1 1. 04 38. 22 199. 5 1. 20 65. 37 191. 6 1. 35 5. 03 133. 6 0. 63 10. 06 143. 6 0. 77 20. 11 234. 7 1. 10 39. 22 210. 0 1. 24 68. 39 209. 5 1. 41 5. 53 161. 2 0.70 11. 06 173. 3 0. 85 21. 12 258. 5 1. 15 40. 23 220. 8 1. 27 71. 41 228. 3 1. 476. 03 191. 3 0. 76 12. 07 205. 8 0. 92 22. 13 283. 5 1. 21 42. 24 243. 2 1. 33 74. 42 247. 8 1. 53 6. 54 224. 0 0. 82 13. 07 241. 0 1. 00 23. 13 309. 6 1.26 44. 25 266. 7 1. 39 77. 44 268. 2 1. 60 7. 04 259. 3 0. 89 14. 08 279. 1 1. 08 24. 14 336. 8 1. 32 46. 26 291. 3 1. 46 80. 46 289. 3 1. 66 7. 54 297. 2 0. 95 15. 09 319. 9 1. 15 25.14 365. 2 1. 37 48. 28 317. 0 1. 52 83. 48 311. 2 1. 72 8. 05 337. 6 1. 01 16. 09 363. 5 1. 23 26. 15 394. 8 1. 43 50. 29 343. 7 1. 58 86.49 334. 0 1. 78 8. 55 380. 6 1. 08 17. 10 409. 9 1. 31 27. 15 425. 5 1. 48 53. 30 385. 9 1. 68 89. 51 357. 5 1. 85 9. 05 426. 2 1. 14 18.10 459. 1 1. 39 28. 16 457. 3 1. 54 56. 32 430. 5 1. 77 92. 53 381.9 1. 91 9. 55 474. 4 1. 20 19. 11 511. 1 1. 46 29. 17 490. 3 1. 59 59.34 477. 5 1. 87 96. 55 415. 6 1. 99 10. 06 525. 2 1. 27 20. 11 565.9 1. 54 30. 17 524. 5 1. 65 62. 36 433. 6 1. 96 100. 57 450. 7 2. 07管径DN150/ mm 管径DN200/ mm 管径DN250/ mm 管径DN300/ mm 管径 DN400/ mm 内径 156/ mm 内径 207/ mm 内径259/ mm 内径 309/ mm 内径 408/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 51 143. 7 1. 28 135. 77 75. 1 1. 12 241. 38 73. 0 1. 27 502.87 124. 7 1. 86 834. 76 79. 9 1. 77 92. 53 153. 5 1. 33 140. 80 80.7 1. 16 261. 49 85. 5 1. 38 522. 98 134. 8 1. 94 864. 93 85. 8 1. 84 96. 55 167. 0 1. 39 150. 86 92. 5 1. 25 281. 61 99. 1 1. 49 543. 10145. 3 2. 01 895. 10 91. 8 1. 90 100. 57 181. 1 1. 44 160. 92 105. 1 1. 33 301. 72 113. 6 1. 59 563. 21 156. 2 2. 09 925. 27 98. 1 1. 97 105. 60 199. 5 1. 52 170. 97 118. 6 1. 41 321. 83 129. 2 1. 70 583.32 167. 5 2. 16 955. 45 104. 5 2. 03 110. 63 218. 8 1. 59 181. 03 132. 8 1. 50 341. 95 145. 7 1. 80 603. 44 179. 2 2. 24 985. 62 111.2 2. 10 115. 66 239. 0 1. 66 191. 09 147. 9 1. 58 362. 06 163. 2 1.91 623. 55 191. 2 2. 31 1 015. 79 118. 1 2. 16 120. 69 260. 0 1. 73 201. 15 163. 7 1. 66 382. 18 181. 8 2. 02 643. 67 203. 7 2. 39 1 045.96 125. 1 2. 22 125. 72 282. 0 1. 80 221. 26 197. 8 1. 83 402. 29 201. 3 2. 12 663. 78 216. 6 2. 46 1 076. 13 132. 4 2. 29 130. 75 304.9 1. 88 241. 38 235. 2 1. 99 422. 41 221. 8 2. 23 683. 90 229. 8 2.53 1 106. 31 139. 9 2. 35 135. 77 328. 6 1. 95 261. 49 275. 7 2. 16 442. 52 243. 3 2. 33 704. 01 243. 5 2. 61 1 136. 48 147. 6 2. 42 140.80 353. 3 2. 02 281. 61 319. 6 2. 33 462. 64 265. 8 2. 44 724. 13 257. 5 2. 68 1 166. 65 155. 5 2. 48 150. 86 405. 2 2. 17 301. 72 366.6 2. 49 482. 75 289. 3 2. 55 744. 24 272. 0 2. 76 1 196. 82 163. 6 2. 54 160. 92 460.7 2. 31 321. 83 416.8 2. 66 502. 87 313. 8 2. 65 764. 36 286. 8 2. 83 1 226. 99 171. 9 2. 61 170. 97 519. 8 2. 45 341.95 470. 3 2. 82 522. 98 339. 3 2. 76 784. 47 302. 0 2. 91 1 257. 17 180. 4 2. 67注 :表中冷却水温度为34. 5℃( (32℃+ 37℃) / 2) ,密度 994. 3 kg/ m 3 ,运动粘滞系数0. 735×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 5 mm.不不第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法表 2 冷冻水管不同流量、同管径、同流速的沿程比摩阻3管径 DN15/ mm 内径 15. 8/ mm 管径 DN20/ mm内径 20. 3/ mm 管径 DN27/ mm内径 27. 0/ mm 管径 DN32/ mm内径 35. 8/ mm 管径 DN40/ mm内径 41. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 35 0. 4054. 8 62. 7 71. 2 80. 1 89. 5 99. 5 109. 9 120. 8 144. 1 169. 3 196. 5 225. 6 256. 7 342. 8 440. 90. 19 0. 20 0. 21 0. 23 0. 24 0. 26 0. 27 0. 29 0. 31 0. 34 0. 37 0. 40 0. 43 0. 50 0. 570. 26 0. 28 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 9044. 8 51. 3 58. 2 77. 2 98. 9 123. 0 149. 7 178. 9 210. 6 244. 8 281. 5 320. 7 362. 3 406. 5 453. 10. 20 0. 22 0. 24 0. 27 0. 31 0. 35 0. 39 0. 43 0. 47 0. 51 0. 55 0. 59 0. 63 0. 67 0. 710. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 90 1. 001. 20 1. 40 1. 60 1. 8037. 7 45. 7 54. 5 64. 0 74. 2 85. 1 96. 8 109. 1 122. 2 136. 0 165. 7 233. 7 313. 0 403. 6 505. 60. 22 0. 24 0. 27 0. 29 0. 32 0. 34 0. 36 0. 39 0. 41 0. 44 0. 490. 58 0. 68 0. 78 0. 871. 00 1. 20 1. 40 1. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 8041. 0 57. 5 76. 6 98. 3 122. 6 49. 5 179. 1 211. 2 245. 9 283. 2 323. 1 365. 6 410. 6 458. 3 508. 50. 28 0. 33 0. 39 0. 44 0. 50 0. 55 0. 61 0. 66 0. 72 0. 78 0. 830. 89 0. 94 1. 00 1. 051. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 804. 00 4. 505. 0049. 7 61. 8 75. 3 90. 0 106. 0 123. 3 141. 8 161. 6 182. 6 204.9 228. 5 253. 3 279. 4 350. 2 428. 80. 34 0. 38 0. 42 0. 46 0. 51 0. 55 0. 59 0. 63 0. 67 0. 72 0. 76 0. 80 0. 84 0. 95 1. 05管径 DN50/ mm内径 53. 0/ mm 管径 DN70/ mm内径 68. 0/ mm 管径 DN80/ mm内径 80. 5/ mm 管径 DN100/ mm内径 106. 0/ mm 管径 DN125/ mm内径 131. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 60 3. 804. 00 4. 505. 00 5. 506. 00 6. 507. 00 7. 508. 00 8. 509. 00 9. 50 10. 0062. 8 69. 5 76. 5 95. 6 116. 6 139. 8 165. 0 192. 2 221. 5 252.8 286. 1 321. 5 359. 0 398. 5 440. 00. 45 0. 48 0. 50 0. 57 0. 63 0. 69 0. 76 0. 82 0. 88 0. 95 1. 011. 07 1. 13 1. 20 1. 268. 00 8. 50 9. 00 9. 50 10. 00 11. 00 12. 00 13. 00 14. 00 15. 00 16. 00 17. 00 18. 00 19. 00 20. 0180. 9 90. 8 101. 2 112. 2 123. 7 148. 4 175. 3 204. 4 235. 7 269.3 305. 0 342. 9 383. 1 425. 5 470. 00. 61 0. 65 0. 69 0. 73 0. 77 0. 84 0. 92 1. 00 1. 07 1. 15 1. 221. 30 1. 38 1. 45 1. 5316. 00 17. 00 18. 00 19. 00 20. 01 21. 01 22. 01 23. 01 24. 01 25. 01 26. 01 27. 01 28. 01 29. 01 16. 00129. 0 144. 9 161. 7 179. 5 198. 1 217. 6 238. 1 259. 4 281. 7 304. 9 329. 0 354. 0 379. 9 406. 7 434. 40. 87 0. 93 0. 98 1. 04 1. 09 1. 15 1. 20 1. 26 1. 31 1. 37 1. 421. 47 1. 53 1. 58 1. 6435. 01 36. 01 37. 01 38. 01 39. 01 40. 01 42. 01 44. 01 46. 01 48. 01 50. 01 53. 01 56. 01 59. 01 62. 02143. 0 150. 9 159. 1 167. 5 176. 2 185. 0 203. 3 222. 5 242. 5 263. 4 285. 2 319. 4 355. 6 393. 7 433. 71. 10 1. 13 1. 17 1. 20 1. 23 1. 26 1. 32 1. 39 1. 45 1. 51 1. 58 1. 67 1. 76 1. 86 1. 9556. 01 59. 01 62. 02 65. 02 68. 02 71. 02 74. 02 77. 02 80. 02 83. 02 86. 02 89. 02 92. 02 96. 02 100. 03120. 0 132. 7 146. 1 160. 1 174. 7 190. 0 205. 9 222. 4 239. 6 257. 4 275. 8 294. 9 314. 6 341. 8 370. 21. 15 1. 22 1. 28 1. 34 1. 40 1. 46 1. 53 1. 59 1. 65 1. 71 1. 771. 84 1. 90 1. 982. 06管径 DN150/ mm内径 156/ mm 管径 DN200/ mm内径 207/ mm 管径 DN250/ mm内径 259/ mm 管径 DN300/ mm内径 309/ mm 管径 DN350/ mm内径 359/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 02 92. 02 96. 02 100. 03 105. 03 110. 03 115. 03 120. 03 125. 03 130. 03 135. 03 140. 04 150. 04 160. 04 170. 04 120. 3 128. 3 139. 3 150. 8 165. 8 181. 5 197. 9 215. 0 232. 8 251. 3 270. 5 290. 4 332. 3 377. 1 424. 71. 28 1. 32 1. 38 1. 44 1. 51 1. 58 1. 65 1. 72 1. 79 1. 87 1. 942. 01 2. 15 2. 30 2. 44135. 03 140. 04 150. 04 160. 04 170. 04 180. 05 190. 05 200.05 220. 06 240. 06 260. 07 280. 07 300. 08 320. 08 340. 0963. 3 67. 9 77. 6 87. 9 98. 9 110. 4 122. 7 135. 6 163. 2 193. 4 226. 2 261. 5 299. 4 339. 8 382. 81. 12 1. 16 1. 24 1. 32 1. 40 1. 49 1. 57 1. 65 1. 82 1. 982. 15 2. 31 2. 48 2. 64 2. 81240. 06 260. 07 280. 07 300. 08 320. 08 340. 09 360. 09 380.10 400. 10 420. 11 440. 11 460. 12 480. 12 500. 13 520. 1361. 1 71. 4 82. 4 94. 3 106. 9 120. 3 134. 5 149. 4 165. 2 181.7 199. 1 217. 2 236. 1 255. 8 276. 31. 27 1. 37 1. 48 1. 58 1. 69 1. 79 1. 902. 01 2. 11 2. 22 2. 32 2. 43 2. 53 2. 64 2. 74500. 13 520. 13 540. 14 560. 14 580. 15 600. 15 620. 16 640.16 660. 17 680. 17 700. 18 720. 18 740. 19 760. 19 780. 20102. 8 111. 0 119. 5 128. 3 137. 4 146. 8 156. 5 166. 6 176. 9 187. 6 198. 6 209. 9 221. 5 233. 4 245. 61. 85 1. 932. 00 2. 08 2. 15 2. 22 2. 30 2. 37 2. 45 2. 52 2. 59 2. 67 2. 74 2. 82 2. 89600. 15 620. 16 640. 16 660. 17 680. 17 700. 18 720. 18 740.19 760. 19 780. 20 800. 20 830. 21 860. 22 890. 22 920. 2367. 8 72. 2 76. 8 81. 6 86. 5 91. 5 96. 7 102. 0 107. 5 113. 1 118. 8 127. 7 136. 9 146. 4 156. 31. 65 1. 70 1. 76 1. 81 1. 87 1. 92 1. 982. 03 2. 09 2. 14 2. 20 2. 28 2. 36 2. 44 2. 53注 :表中冷冻水温度9. 5℃( (7℃+ 12℃) / 2) ,密度 999. 75 kg/ m 3 ,运动粘滞系数1. 329×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 2 mm.113 局部阻力损失ρv∑ζ 2 c t212 空调冷却水系统水力计算方法c t ′盘产管阀 ( ( 局产管阀 ( ( 4北京建筑工程学院学报第 20卷当流体通过管道的一些附件如阀门、弯头、三通、管等时 ,产生局部阻力损失 ,管段的局部阻力损失表示为2p j = (7) 式中 :p j —计算管段的总局部阻力损失 , Pa ;∑ζ—计算管段局部阻力系数之和 ,无因次.2 空调水系统水力计算方法空调冷冻水循环系统一般采用闭式系统,系统的供水温度通常为7℃,回水温度为12℃,温差为5℃,泵的流量按空调系统夏季最大计算冷负荷确定 ,即Φq m = (8)式中 : q m —系统环路总流量 , kg/ s ;Φ—系统环路的计算冷负荷 ,W ; t —冷冻水供回水温差,℃;c —冷冻水比热容 ,通常取c = 4. 187×103J / ( kg ?K) .若空调冷冻水循环系统采用一次泵循环管路 , 则水泵的扬程应能克服冷冻水系统最不利环路的用冷设备、冷设备、道、门附件等总阻力要求.即 p =∑py +p j +p m ) (9) 式中 : p —水泵扬程 , Pa ;∑py+p j+p m )—最不利环路各计算管段沿程、部和设备阻力损失之和 , Pa ; p y —各计算管段沿程阻力损失 , Pa ; p j —各计算管段总局部阻力损失 , Pa ;p m —各计算管段总设备阻力损失 , Pa.若空调冷冻水循环系统采用二次泵循环管路 , 则1)一次泵的选择a)泵的流量应等于冷水机组蒸发器的额定流量 ;b)泵的扬程为克服一次环路的阻力损失 ,其中包括一次环路的管道阻力和设备阻力 ;c)一次泵的数量与冷水机组台数相同.2)二次泵的选择a)泵的流量按分区夏季最大计算冷负荷确定 ; b)二次泵的扬程应能克服所管分区的二次最不利环路中用冷设备、管道、阀门附件等总阻力要求.无论采用一次泵冷冻水系统,还是采用二次泵冷冻水系统,选择水泵时 ,流量附加 10 %的余量 ,扬程也附加 10 %的余量 [2 ] .空调冷却水循环系统一般采用开式系统 ,水力计算是确定冷却水流量后 ,确定冷却水泵的扬程.冷却塔冷却水量可按下式计算 [3 ]Φq m = (10)式中 : q m —冷却塔冷却水量 , kg/ s ;Φ—冷却塔排走热量 , W ,压缩式制冷机 ,取制冷机负荷的 1. 3倍左右 ,吸收式制冷机 ,取制冷机负荷的 2. 5倍左右 ;t ′—冷却塔的进出水温差,℃;压缩式制冷机 ,取4℃~5℃;吸收式制冷机 ,取6℃~9 ℃;c —水的比热容 ,J / ( kg ?K) .冷却水泵所需扬程应能克服冷却水系统环路的用冷设备、冷设备、道、门附件等总阻力要求 , 即p =∑py +p j +p m ) +p 0 +ph (11)式中 : p —冷却水泵的扬程 , Pa ;∑p y+p j+pm )—冷却水循环管路总阻力损失之和 , Pa ;p y —冷却水各计算管段的沿程阻力损失 ; Pa ;p j —冷却水各计算管段的总局部阻力损失 , Pa ;p m —冷却水各计算管段中总设备阻力损失 ,Pa ;p 0—冷却塔喷嘴喷雾压力 , Pa ,约等于 49 kPa ;p h —冷却塔中水提升高度 (从冷却塔盛水213 管径的确定3 工程应用c t 4. 187×103×(12 - 7) 0 01 0 02 4 2 6 4 89 8 8 8 8 8 7 1 8 7 1 8 1 7第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法5池到喷嘴的高差)所需的压力 , Pa .空调水系统中管内水流速按表3中的推荐值选用,或按表4根据流量确定管径 [1 ] .表 3 管内水流速推荐值/ m/ s管径/ mm 15 20 25 32 40 50 65 80 闭式系统 0. 4~0. 5 0. 5~0. 6 0. 6~0. 7 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 1. 2~1. 6 开式系统 0. 3~0. 4 0. 4~0. 5 0. 5~0. 6 0. 6~0. 8 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 管径/ mm 100 125 150 200 250 300 350 400 闭式系统 1. 3~1. 8 1. 5~2. 0 1. 6~2. 2 1. 8~2. 5 1. 8~2. 6 1. 9~2. 9 1. 6~2. 5 1. 8~2. 6 开式系统 1. 2~1. 6 1. 4~1. 8 1. 5~2.0 1. 6~2. 3 1. 7~2. 4 1. 7~2. 4 1. 6~2. 1 1. 8~2. 3表 4 水系统的管径和单位长度阻力损失闭式水系统开式水系统钢管直径/ mm流量/ (m 3/ h) kPa/ 100m 流量/ (m 3/ h) kPa/ 100m15 ~0. 5 ~60 —— 20 0. 5~1. 0 10~60 ——25 ~2 10~60 ~1. 3 ~43 32 ~4 10~60 1. 3~2. 0 10~4040 ~6 10~60 ~4 10~40 50 ~11 10~60 ~8 —65 11~18 10~60 ~14 — 80 18~32 10~60 14~22 — 100 32~65 10~60 22~45 — 125 65~115 10~60 45~82 10~40 150 115~185 10~47 82~130 10~43 200 185~380 10~37 130~200 10~24 250 380~560 ~26 200~340 10~18300 560~820 ~23 340~470 ~15 350 820~950 ~18 470~610 ~13 400 950~1 250 ~17 610~750 ~12 450 250~1 590 ~15 750~1 000 ~12 500 590~2 000 ~13 000~1 230 ~11的环路.根据各管段的流量 ,由表 5确定各管段直径.由表 2可查出比摩阻 R ,查各管件的局部阻力系数表 ,确定各管段的总阻力损失见表5.如图 1所示的空调冷冻水二次泵循环系统 (一级循环略去) ,此系统计算冷负荷为 48. 8 kW ,冷冻水供水温度为7℃,回水温度为1 2℃,空调机组表冷器水侧阻力为 50 kPa ,各管段的长度见表 5 ,求各管段的管径及二次水泵的流量和扬程.计算系统所需的冷冻水流量 ,为Φ 48. 8×103q m = = ( ) kg/ s = 2. 33 kg/ s = 8. 39 m 3/ h此系统最不利环路为 1 - 2 - 3 - 4 - 5 - 6组成图 1 冷冻水系统图q V / (m / h) (ρv / 2 ) / Pa c t ′ 4. 187×103×(37 - 32)ρπd 2 994. 1×3. 14×0. 152 p j =∑ζ994. 1×1. 612出止闸 6北京建筑工程学院学报第 20卷此水系统为闭式水系统,水泵的扬程为最不利环路的总阻力损失,加上表冷器的阻力损失 ,即p =∑(py +p j +p m ) = 74. 48 kPa选用水泵,流量和扬程皆考虑10 %的余量,则选用水泵的参数为流量1. 1×8. 39 m 3/ h = 9. 23 m 3/ h ,扬程1. 1×7. 59 m = 8. 35 mH 2O.= 7. 59 mH 2O表 5 冷冻水管段水力计算表管段1- 22- 3 3- 4 4- 5 5- 6 管长l /m 10 5 10 5 10 流量38. 39 4. 196 4. 196 4. 196 8. 39 管径d / mm DN50 DN40 DN40 DN40 DN50 流速v / (m/ s) 1. 06 0. 88 0. 88 0. 88 1. 06 比摩阻R / ( Pa/ m) 313. 7 307. 2 307. 2 307. 2 313. 7 局部阻力系数∑ζ14 0. 4 5. 3 0. 1 3. 5 动压2 561. 66 387. 10 387. 10 387. 10 561. 66 设备阻力 p m / kPa0 0 0 50 0 管段总损失 p / kPa11. 00 1. 69 5. 12 51. 57 5. 10 最不利环路的总阻力损失为 74. 48/ kPa 2- 5104. 196DN400. 88307. 28. 4387. 105056. 32管段 2 - 5与管段 2 - 3 - 4 - 5并联 ,不平衡率为 x = p 2 - 3 - 4 - 5 -p 2 - 5p 2 - 3 - 4 - 5=58 . 38 - 56. 3258 . 38= 3. 53 % < 15 % ,满足要求.某建筑建筑面积为 4 000 m 2 ,选用冷水机组一台 ,制冷量为 455 KW.冷凝器侧水阻力为4. 9×104 Pa ,进、冷凝器的水温分别为32℃和37℃,水处理器的阻力为2. 0×104 Pa ,冷却水管总长 48 m ,冷却塔盛水池到喷嘴的高差为 2. 5 m ,确定各管段的管径和水泵的选择参数.冷却水循环管路 ,由于管径没有沿程变化 ,认为是一个计算管段 ,则计算管段的冷却水流量为Φ 1. 3×455×103q m = = ( ) kg/ s= 28. 25 k g/ s = 1. 02×105 kg/ h = 102. 3 m 3/ h 根据冷却水流量 102. 3 m 3/ h ,查表 4 ,选用管道公称直径 DN150 mm ,管道水流速为4 q m 4×28. 25v = = ( ) m/ s= 1. 61 m/ s查表 1得比摩阻 R = 187. 43 Pa/ m ,管道长度为 48 m ,沿程压力损失为p y = Rl = (187. 43×48) Pa = 9. 0×103 Pa 弯头、回阀、阀等管件等的局部阻力系数总和∑ζ = 12. 46 ,总局部阻力为ρv 2 2= (12. 46× ) Pa2= 1. 61×104 Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失 ,为p m = (4. 9×104 + 2×104) Pa= 6. 9×104 Pa冷却塔喷雾所需压力p 0 = 4. 9×104 Pa 冷却水提升高度为 2. 5m ,所需的提升压力为p h = 2. 5 m ×9 807 N/ m 3 = 2. 45×104 Pa 故冷却水泵的扬程为p =∑(py +p j +p m ) +p 0 +ph = (9. 0×103 + 1. 61×104 + 6. 9×104) Pa+ 4. 9×104 Pa + 2. 45×104 Pa = 16. 76×104 Pa = 17. 1 mH 2O选用水泵,流量和扬程皆考虑10 %的余量;则选用水泵的参数为流量1. 1×102. 3 m 3/ h = 112. 5 m 3/ h ,扬程1. 1×17. 1 m = 18.81 mH 2O.参考文献 :社 ,2003出版社 ,1993第3期许淑惠罗文斌:空调冷冻水和冷却水循环系统水力计算简便方法7Simple Hydraulic Calculation of the Air Conditioning Chilled Waterand Cooling Water SystemsXu Shuhui Luo Wenbin(Dept . of Urban Construction Engineering , Beijing100044) Abstract : :Base on the theory of hydrodynamic calculation of air conditioning water systems , the ratio frictional resistance locity. The table makes the calculation quick , accurate and convenient . The application of the table is illustrated by practical examples.Key words :chilled water ; cooling water ; hydrauliccalculation。

空调水系统水力计算方法与步骤

空调水系统水力计算方法与步骤
空调冷冻水系统一般一般为闭式系统, 泵的流量按空调系统夏季最大计算冷负荷 确定, 即
qm c t
.
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2.空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
.
8.5 空调水系统的水力计算
4 计算个管段的总阻力
5 并联管路阻力平衡计算 6 系统总阻力计算 7 水泵的流量与扬程计算
注意:计 算结果要 用表格的 形式! !
.
A
B
旁通管(平衡管)
.
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】解题步骤
1 计算冷冻水流量
2 选定最不利环路,结合表8-5、 8-6. 8-7、 8-8依据各管段的流量,确定各管段
的流速与管径,用线性插的局部阻力系数,计算各管段的局部阻力
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
.
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1.管径的确定
空调水系统的管内流速按下表9-6推荐值采用, 或依据表9-7根据流量确定管径。
.
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算

中央空调水系统中水泵扬程实用估算法

中央空调水系统中水泵扬程实用估算法

中央空调水系统中水泵扬程实用估算法空调闭式水系统的扬程计算公式对闭式水系统:∑△h=Hf+Hd+Hm。

Hf、Hd——水系统沿程阻力和局部阻力损失Pa。

Hm——设备阻力损失Pa。

冷冻水泵扬程估算方法这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。

1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。

若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。

目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。

3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。

它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。

此项阻力一般在20~50kPa范围内。

4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。

二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。

如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。

阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。

水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。

根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程:1.冷水机组阻力:取80 kPa(8m水柱);2.管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50 kPa;取输配侧管路长度300m与比摩阻200 Pa/m,则磨擦阻力为300*200=60000 Pa=60 kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60 kPa*0.5=30 kPa;系统管路的总阻力为50 kPa+60 kPa+30 kPa=140 kPa(14m水柱);3.空调末端装置阻力:组合式空调器的阻力一般比风机盘管阻力大,故取前者的阻力为45 kPa(4.5水柱);4.二通调节阀的阻力:取40 kPa(0.4水柱)。

中央空调水力计算

中央空调水力计算

0
#DIV/0!
#DIV/0!
提示一下
请输入关联数据:
V
动压头 △Pd
#DIV/0!
#DIV/0!
提示一下
计算结果: 管段编号 0
!请将计算结果迅速复制走,以免下次使用时丢失! 负荷或流量 0 管长度L 管径DN 0 局部阻力系数 流速V(m/s) 比摩阻R
m
0∑0m/s#DIV/0!Pa/m
#DIV/0!
中央空调水力计算空调水力计算空调水系统水力计算空调水管水力计算空调管道水力计算软件天正空调水路水力计算空调水力计算书空调水力计算公式空调水力计算表水力计算
杨俊锋 yang-jun-feng@
您需要输入:
输入管段号: 流量或负荷: 管段长度: 管径:DN 局部阻力系数∑: 请输入关联数据: G 或 Q 比摩阻 R 流速 V (kg/h或W) 单位:m 单位:mm
沿程 RL 动压头△Pd 局部损失 总阻力△Pa
Pa
#DIV/0!
Pa
#DIV/0!
Pa
#DIV/0!
Pa
#DIV/0!
备注

中央空调水泵扬程估算方法

中央空调水泵扬程估算方法

水泵扬程的计算公式本来就是估算,所以还不如彻底估算估算方法1:暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。

按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):Hmax=△P1+△P2+0.05L (1+K)△P1为冷水机组蒸发器的水压降。

△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。

L为该最不利环路的管长K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6估算方法2:这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。

1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。

若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。

目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。

3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。

它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。

此项阻力一般在20~50kPa 范围内。

4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。

二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。

如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。

阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。

水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。

根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程:1.冷水机组阻力:取80 kPa(8m水柱);2.管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50 kPa;取输配侧管路长度300m与比摩阻200 Pa/m,则磨擦阻力为300*200=60000 Pa=60 kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60 kPa*0.5=30 kPa;系统管路的总阻力为50 kPa+60 kPa+30 kPa=140 kPa(14m水柱);3.空调末端装置阻力:组合式空调器的阻力一般比风机盘管阻力大,故取前者的阻力为45 kPa(4.5水柱);4.二通调节阀的阻力:取40 kPa(0.4水柱)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。
L(m3/h)= Q(kW)/(4.5~5)℃x1.163
3、冷却水补水量一般1为冷却水循环水量的1~1.6%.
(2)送风口的出风风速 为防止风口噪音,送风口的出风风速宜采用2~5m/s。
(3)回风口的吸风速度 回风口位于房间上部时,吸风速度取4~5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3~4m/s ,若靠近人员经常停留的地点,取1.5~2m/s ,若用于走廊回风时,取1~1.5m/s 。
Hmax =Δp1 +Δp2 +0.05L(1+ K)
式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。当最不利环路较长时K取0.2~0.3;最不利环路较短时K取0.4~0.6。
冷却水泵的选择
1) 冷却水泵的流量应为冷水机组冷却水量的1.1倍。
2) 水泵的扬程就为冷水机组冷凝器水压降Δp1、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的1.1~1.2倍。Δp1和Z可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O,沿程损失可取每100m管长约5 mH2O。若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H(mH2O)约为
中央空调水系统快捷水力计算方法(估算方法)
冷水泵的选择
通常选用每秒转速在30~150转的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台工作时取1.1,两台并联工作时取1.2)。水泵的扬程应为它承担的供回水管网最不利环路的总水压降的1.1~1.2倍。最不利环路的总水压降,包括冷水机组蒸发器的水压降Δp1、该环路中并联的各台空调末端装置的水压损失最大一台的水压降Δp2、该环路中各种管件的水压降与沿程压降之和。冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m管长的沿程损失为5mH2O。这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H(mH2O)可按下式估算。
H =Δp1 + Z + 5 + 0.05L
3) 依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。
水流量计算
1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量
L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)
风速的统的限定的噪音允许值控制在40~50dB(A)之间,即相应NR(或NC)数为35~45dB(A)。根据设计规范,满足这一范围内噪音允许值的主管风速为4~7m/s,支管风速为2~3m/s。通风机与消声装置之间的风管,其风速可采用8~10m/s。
相关文档
最新文档