9.水系统水力计算
水管水力计算表格

S-35
/
/
/
/
/ R-35
S-36
/
/
/
/
/ R-36
SUM(Pa)
0
36 回
运动粘度 (10-6m2/s) 0.805
水
管
内径 管段长 流 速 阻力
(mm) m
m/s
系数
13 14
15
16
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
40
制冷机组
41
热水锅炉
42
热交换器
43 电动调节阀
44
空调箱
45
风机盘管
46
冷却塔
SUM(Pa)
0
水系统总阻力
水系统水力计算
管径 内径 数量 阻力 mm mm (只) 系数
4 567
流量 m3/h
8
流 速 局部阻力
m/s
Pa
9
10
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
给排水水力计算

给排水水力计算1. 引言给排水工程设计中,水力计算是非常重要的一部分,它涉及到管道的流量、压力和速度等参数的计算。
准确的水力计算可以确保给排水系统的正常运行和安全性。
本文将介绍给排水水力计算的基本原理和方法。
2. 水力计算的基本原理在给排水系统中,液体在管道内流动时受到压力和摩擦力的作用。
水力计算就是通过计算流体在管道中的压力和速度等参数,来确定管道的尺寸和布局,以便确保正常的水流量和压力。
水力计算主要涉及以下几个基本原理:2.1 流量计算流量是描述液体在单位时间内通过管道截面的体积。
流量的计算通常使用流量公式进行,其中包括管道的截面积和流速等参数。
通过流量计算,可以确定管道尺寸的大小,以满足给排水系统的需要。
2.2 压力计算压力是描述流体在管道中受到的力的大小。
压力的计算通常使用流体静压力和流体动压力的原理。
静压力是由于流体本身重力造成的压力,动压力是由于流体流动产生的压力。
2.3 速度计算速度是描述液体在管道中流动的快慢程度。
速度的计算通常使用流速公式进行,其中包括流体的流量和管道的截面积等参数。
通过速度计算,可以确定流速的大小,以满足给排水系统的需要。
3. 水力计算的方法水力计算的方法主要包括手工计算方法和计算机辅助方法。
手工计算方法通常是通过公式和图表等工具进行计算,而计算机辅助方法则是通过软件工具进行计算。
3.1 手工计算方法手工计算方法是水力计算的传统方法,它需要依靠人工进行计算。
手工计算方法通常需要使用流量公式、压力公式和速度公式等进行计算。
这种方法的优点是便于理解和掌握,但也存在计算精度低、速度慢和易出错等缺点。
3.2 计算机辅助方法计算机辅助方法是水力计算的现代方法,它借助计算机和专业软件进行计算。
计算机辅助方法通常具有计算精度高、速度快和可重复性强的优点。
同时,计算机辅助方法还可以进行模拟和优化等更复杂的计算任务。
4. 水力计算的案例分析为了更好地理解水力计算的方法和应用,我们将通过一个具体的案例来进行分析。
给排水水力计算

引言:给排水工程是建筑物的重要组成部分,对于建筑物的正常运行和生命安全具有重要意义。
在给排水设计中,水力计算是一项必不可少的工作。
水力计算可以帮助工程师确定给排水系统的水流速度、压力和管道尺寸,以保证系统的正常运行。
本文将详细介绍给排水水力计算的相关内容,包括流量计算、管道压力计算、管道尺寸确定等。
概述:给排水水力计算是指根据给定的参数和条件,利用水力学原理和公式,计算给排水系统的水流速度、压力、管道尺寸等参数的过程。
水力计算主要用于确定给排水系统中液体的流动情况,以保证系统的正常运行和安全性。
正文:一、流量计算1.流量计算是给排水系统设计的基础。
确定流量可以帮助工程师确定管道的尺寸和泵的选型。
2.流量的计算可以通过公式、图表或计算软件来进行。
常用的计算方法有曼宁公式、肯尼斯公式等。
3.在流量计算中,需要考虑水流的速度、管道的摩阻系数、管道的形状等因素。
4.流量计算还需要考虑到给排水系统的用途和工况要求,如住宅楼的供水、排水需求和工业厂房的给水、排水需求等。
二、管道压力计算1.管道压力计算是为了确定给排水系统中管道的压力,以确保系统的正常运行和管道的安全性。
2.管道压力的计算可以通过公式、图表或计算软件来进行。
常用的计算方法有伯努利方程、能量平衡等。
3.在管道压力计算中,需要考虑管道的摩阻、流速、管道的材料、管道的尺寸等因素。
4.管道压力计算还需要考虑到给排水系统的用途和工况要求,如供水系统的最小压力要求、排水系统的排放高度要求等。
三、管道尺寸确定1.管道尺寸的确定是为了满足给排水系统流量计算和管道压力计算的要求,并保证系统的正常运行和安全性。
2.管道尺寸的确定需要考虑到流量、流速、管道的材料、管道的摩阻系数等因素。
3.常用的管道材料有铸铁、钢、聚氯乙烯等,不同材料的管道有不同的摩阻系数。
4.管道尺寸的确定还需要考虑到工程经济性和材料供应的可行性。
四、水泵选型1.水泵选型是为了满足给排水系统的流量要求和管道压力要求,并确保系统的正常运行。
水泵系统水力计算

水泵系统水力计算
以下是进行水泵系统水力计算的基本步骤:
1. 确定所需的流量
首先,需要确定水泵系统需要提供的流量。
这可以根据具体应用的需求来确定,例如,给定的建筑物所需的供水流量或者工业生产线所需的流量。
2. 确定所需的压力
接下来,需要确定水泵系统需要提供的压力。
压力可以根据所需的流量以及系统中的阻力来计算。
阻力可以来自管道、阀门、弯头等元件。
3. 确定水泵
一旦确定了所需的流量和压力,就可以选择合适的水泵。
水泵的选择应基于所需的流量和压力,以及其他因素,如可靠性、效率和成本等。
4. 进行水力计算
进行水力计算时,需要考虑以下因素:
- 管道直径:根据所需的流量和阻力来确定适当的管道直径。
- 管道长度:管道长度将影响水泵所需的功率和效率。
- 阻力损失:根据管道长度、直径、阀门、弯头等因素来计算阻力损失。
- 速度:确定水在管道中的速度,以避免过高或过低的速度对系统性能造成影响。
5. 验证计算结果
在进行水力计算后,应通过验证来确保所选择的水泵能够满足系统的需求。
这可以通过进行实际测试或使用模拟软件来完成。
以上是进行水泵系统水力计算的基本步骤。
通过正确进行水力计算,并选择合适的水泵,可以确保水泵系统能够正常运行,并满足所需的流量和压力要求。
给水排水管道系统水力计算

e ( mm )
平均 0.003 0.03 0.06 0.15 0.3 0.6 3 15 150
( 4 )巴甫洛夫斯基公式 巴甫洛夫斯基公式适用于明渠流和非满流管道的计算,公式为:
C
R
y
nb 0.10
3-3 。
( 3-11 )
式中: y
2.5 nb
0.13 0.75 R
nb
nb — 巴甫洛夫斯基公式粗糙系数,见表
2
A 和水力半径 R 的值 (表中 d 以 m 计) 充满度 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 过水断面积 A ( m 2) 0.4426 d 0.4920 d 0.5404 d 0.5872 d 0.6319 d 0.6736 d 0.7115 d 0.7445 d 0.7707 d 0.7845 d
图 3-1 无压圆管均匀流的过水 断面
3-1 所示。设其 , 称为充满度,
h d
sin
2
4
所对应的圆心角 素之间的关系为:
称为充满角。由几何关系可得各水力要
过水断面面积:
A
湿周:
d
2
8
sin
( 3-16 )
d 2
水力半径:
( 3-17 )
R
所以
d 4
1
sin
( 3-18 )
2
v
2
1 d n 4 sin
将( 3-11 )式代入( 3-2 )式得:
hf
nb v R
2
2
2y 1
l
( 3-12 )
常用管渠材料粗糙系数
nb 值
管渠材料
水力计算书

水力计算书水力计算是涉及到水流、水体运动以及水力学原理的一门学科,广泛应用于水力工程、水资源管理、水利规划等领域。
水力计算的目的是通过各种计算方法来研究水体流动的各种参数,如流速、水位、水压等,并对水力结构和工程进行设计和优化。
水力计算的基本原理包括质量守恒定律和能量守恒定律。
质量守恒定律表明,在封闭的系统中,流入的水量必须等于流出的水量,即入流=出流。
能量守恒定律则表明在流体运动中,流体的总能量保持不变,包括动能和势能。
根据这两个基本原理,可以推导出一系列水力计算的公式和方法。
在水力计算中,常用的参数包括流量、流速、水位和水压等。
流量是单位时间内通过某一横截面的水量,通常用Q表示,单位为m³/s或m³/h。
流速是单位时间内通过某一横截面的水流速度,通常用v表示,单位为m/s。
水位是指水面的高度或者压力水头,通常用H表示,单位为m。
水压是单位面积上受到的水力作用力,通常用P表示,单位为Pa。
根据质量守恒定律,可以得到流量计算公式:Q = Av,其中A 是横截面的面积,v是水流的速度。
根据能量守恒定律,可以得到水位和流速之间的关系:v = (2gH)^(1/2),其中g是重力加速度。
通过这些公式,可以相互计算不同的水力参数。
在水力计算中,还经常需要考虑一些特殊情况,如管道阻力、水库泄洪等。
管道阻力是由于水在管道内运动而产生的阻力,可以根据Darcy-Weisbach公式来计算。
水库泄洪是指水库在超过一定水位后,通过泄洪口排放多余水量,通常需要根据水库的形状和放水能力来进行计算。
除了上述基本原理和方法,水力计算还涉及一些复杂的计算模型和数值计算方法,如有限元法、计算流体力学等。
这些方法可以用来模拟和计算复杂的水力现象,如水力振荡、水波传播等。
总之,水力计算是研究水流、水体运动以及水力学原理的一门学科,通过质量守恒定律和能量守恒定律,可以得到一系列水力计算的公式和方法。
水力计算在水力工程、水资源管理、水利规划等领域具有重要的应用价值。
水力计算Z

一、风系统水力计算1.风系统水力计算一般有两种方法:压损平均法与假定流速法,一般采用假定流速法。
2.假定流速法的步骤:(1)绘制管网系统图,对各管段进行编号,标出长度和流量(2)合理确定管内流速(3)据各管段的流量和流速,确定断面尺寸(4)计算各管段的阻力(沿程+局部阻力),(5)平衡并联支路,计算管网的总阻力,较核所选空调设备的余压能否满足要求。
注意:对于车库通风系统,还需参照风量以及计算出的管网总阻力选风机。
3.表一为推荐风速值,一般我们将空调干管的风速控制在6~8m/s 的范围内,支管的风速3~5 m/s 的范围内。
对于通风系统,由于对噪声的要求没有空调系统严格,风速可适当加大一些,但干管不应超过10 m/s 。
4.风管一般采用矩形断面。
表二给出矩形风管规格。
5.沿程阻力的计算:l R p p m m y .=∆=∆,比摩阻m R 查莫迪图或查钢板矩形风管计算表(实用供热空调设计手册P567~574页)确定。
另外矩形风管不能直接使用莫迪图,要计算流速当量直径ba abd e +=2,然后根据选定的流速才能查表确定。
6.局部阻力计算:∑=∆2.2ρυςj p ,对于空气密度取为1.2kg/m 3。
统计各管段的∑ς查局部阻力系数表。
7.必需进行并联支路阻力平衡,同时将不平衡率控制在15%以内。
有两种方法平衡阻力损失:阀门调节,调整管径。
调整管径的方法为:225.0''⎪⎪⎭⎫ ⎝⎛∆∆=p p D D 。
8.将你计算的结果列表。
具体可参照流体输配管网通风管网水力计算例题P53~P56页。
9. 风管压力损失值可按下式估算: )1(...k l p p m +=∆弯头三通少时 k 取1.0~2.0, 弯头三通多时k 取3.0~5.0l 指最远送风管总长度加上最远回风管总长度 推荐风管摩擦阻力损失值m p 为0.8~1.5pa/m 。
10.风口尺寸确定:(1)送风口尺寸一般按风速3~4m/s 来确定风口喉部尺寸,风口一般采用正方形的散流器。
九章水力计算和水压图-

(3)各分支线的计算
分支线BE与主干线BD并联,依据节点平衡原理,管段BE的资用 压差为
= + p Z ,B E p B C
pCD
=13362.53+16834.89=30197.42 Pa
局均部比R 损R p摩j 失pj阻与 大G沿BL 致E 程BE 可 损 控p失(Z 1 制,的B 为E 估算j)比值85 3 0 =j 1 0(1 .96 7 (.0 4 见.26附)录=292-32).04,P则a/管m线平
G Ec(3 t.g 6 Q tE h)4 .1 8 3 7 .6 (1 1 3 2 0 0 07 0 )1 7 .2 0(t/h)
用同样的方法确定热用户F、D的计算流量分别为: G F =14.33t/hG ,D =18.63t/h。
水力计算表
(2)确定管网主干线并计算
因为各热用户内部的阻力损失相等,各热用户入口要求的压力
sh
b sh
b
Rsh
b sh
Rb
查b 出、R 的b 、比b 摩—阻—(附Pa录/m9)-和1中流采速用(m的/s热)值媒;密度(kg/m3)和在表中
s h —水力计算中热媒的实际密度,kg/m3;
R s h 、 s h ——相应于实际 s h 条件下的实际比摩阻(Pa/m)和流速
在进行热水网路水力计算之前,通常应有 下列已知资料。
网路的平面布置图(平面图上应标明管道所 有的附件和配件),
热用户热负荷的大小, 热源的位置以及热媒的计算温度等。
热水网路水力计算的方法及步骤如下。
1.确定热水网路中各个管段的计算流量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 空调水系统方案确定和水力计算9.1 冷冻水系统的确定9.1.1 冷冻水系统的基本形式9.1.1.1 双管制、三管制和四管制系统(1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。
优点是系统简单,初投资少。
绝大多数空调冷冻水系统采用双管制系统。
但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。
(2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。
优点是能同时满足供冷供热的要求,管路系统较四管制简单。
其最大特点是有冷热混合损失,投资高于两管制,管路复杂。
(3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。
优点是能同时满足供冷、供热要求,且没有冷热混合损失。
缺点是初投资高,管路系统复杂,且占有一定的空间。
9.1.1.2 开式和闭式系统(1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。
(2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。
管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。
9.1.1.3 同程式和异程式系统(1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。
高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式(2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。
调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。
9.1.1.4 定流量和变流量系统(1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗始终为设计最大值。
(2)变流量水系统中供回水温度保持定值,负荷改变时,通过改变供水量来调节。
输送能耗随负荷减少而降低,水泵容量和电耗小,系统需配备一定的自控装置。
9.1.1.5 单式泵和复式泵系统(1)单式泵水系统的冷热源侧和负荷侧只有一组循环水泵,系统简单初投资省,这种系统不能调节水泵流量,不能节省水泵输送能量。
(2)复式泵水系统的冷热源侧和负荷侧分别设置循环水泵,可以实现负荷侧水泵变流量运行,能节省输送能耗,并能适应供水分区不同压降的需要,系统总的压力低。
但系统较复杂,初投资高。
9.1.2 确定冷冻水系统形式除了参考以上几种系统划分优缺点的比较,在工程设计中,应根据具体的情况来考虑系统形式。
对于本设计,空调水路中以风机盘管和吊顶式空气处理器为空调设备,由于各处风机盘管的型号相差不大,其水流阻力的差距较小,且平面布置规律性较强,采用同程式系统有利于环路中各风机盘管小环路的水力平衡,但在竖直方向高度不是很高,采用竖程浪费管材且阻力加大,所以本系统只采用水平同程竖向不同程,竖向加阀门调节不平衡率;在管制方面,由于本设计不考虑过渡季节出现即供冷又供热的情况,在系统的复杂性和初投资方面,采用两管制系统;由于开式系统水中含氧量较高,管路和设备易腐蚀,且需要克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统,所以对于本设计而言,采用闭式系统;为了节约能耗和更有效地控制冷冻水系统本设计采用二次泵变流量水系统。
综上所述,本设计采用的冷冻水系统形式为闭式同程式两管制二次泵变流量水系统。
9.2 水管水力计算内容空调水系统阻力一般由三大部分组成,即设备阻力、附件阻力和管道阻力。
设备阻力通常由设备生产厂家提供,因此进行水力计算的主要内容是附件和管件(如阀门、三通、弯头等)的阻力以及直管段的阻力。
通常前者也称局部阻力,后者称为沿程阻力。
9.2.1 空调水系统的管材空调水系统中,常用管材有焊接钢管、无缝钢管、镀锌钢管及PVC塑料管。
空调冷热水一般采用焊接钢管和无缝钢管,当公称直径DN<50mm时,采用普通焊接钢管;DN ≥50mm时,采用无缝钢管;DN≥250者,采用螺旋焊接钢管。
管道在使用之前,应进行除锈及涮防锈漆处理,然后必须进行保温。
所以本工程空调水系统的管材采用钢管,DN <50mm时,采用普通的焊接钢管,DN≥50mm时,采用无缝钢管。
9.2.2 管内流速无论是局部阻力还是沿程阻力,都与水流速有关。
流速过小,尽管水阻力较小,对运行及控制较为有利,但在水流量一定时,其管径要求加大,既带来投资(管道及保温等)的增加。
当流速超过3m/s 时还将对管件内部产生严重的冲刷腐蚀,影响使用寿命。
因此必须合理地选择管内流速。
不同管径闭式系统和开式系统管内流速推荐值按表9-1选用。
该空调水系统采用的是闭式系统,所以初选流速时应按闭式系统的流速去选择。
表9-1 不同管径闭式系统和开式系统管内流速推荐值 (单位:m/s )9.2.3空调管道水力计算的基本公式空调水在管道内流动时像其他流体一样会产生压力损失,这种损失包括沿程摩擦损失和局部摩擦损失。
(1)沿程摩擦压力损失计算公式22m P l R l d λρν∆=⋅⋅=⋅式中 m P ∆——摩擦压力损失,Pa ;λ——摩擦系数;d ——管道内径,m ;l ——管道长度,m ;ν——流体在管道内的流速,m/s ;ρ——流体的密度,3/kg m ;R ——单位长度沿程摩擦压力损失,简称比摩阻Pa/m 。
(2)局部压力损失计算公式22j P ρνξ∆=⋅式中 j P ∆——局部压力损失,Pa ;ξ——局部阻力系数。
(3)水系统总压力损失m j s P P P P ∆=∆+∆+∆式中 s P ∆——水系统设备阻力,Pa ;P ∆——水系统总压力损失,Pa 。
9.3 水系统管路设计计算方法空调水系统的管路计算是在已知水流量和推荐流速下,确定水管管径及水流动阻力。
选择水泵及配用电机。
空调水系统管路计算流程图如图9-2所示:图9-2 水系统管路计算流程图9.4 冷冻水系统和冷却水系统水力计算详细说明在水力计算时,初选管内流速和确定最后的流速时必须满足规范要求。
空调水系统的系统图见附录图4。
1.选定最不利环路,给管段标号。
2.用假定流速法确定管段管径。
根据各管段的冷负荷确定管段的供回水流量,计算式如下:G=0.86·Q/(t g -t h ) Kg/h=0.86·Q/「(t g -t h )* ρ」 m 3/h式中 Q:冷负荷,W ;ρ:水的密度,Kg/ m 3;t g :冷冻水、冷却水供水温度,分别为7℃、30℃;t h :冷冻水、冷却水回水温度,分别为12℃、35℃;故:冷冻水、冷却水t g -t h =5℃。
根据假定的流速和确定的流量计算出管径,计算式如下:VG d ρπ900=根据给定的管径规格选定管径,由确定的管径和选定的设备的流量计算出管 内的实际流速:ρπ=2d 900Gv 3.计算比摩阻从而计算管段的沿程阻力沿程阻力的计算式如下:式中 y p ∆:沿程阻力,P aR :每米管长的沿程损失(比摩阻),P a /mL :管段长度,m摩擦阻力系数λ由柯列勃洛克公式确定:/2)3.72K d=-+ 式中 K :管道的相对粗糙度,本设计中取K=0.15mm ;Re :雷洛数。
4.用局部阻力系数法求管段的局部阻力局部阻力计算式如下:2p 2j ρνξ∑=∆式中: j p ∆:局部阻力,Pa ;ξ∑:管段中总的局部阻力系数。
5.计算总的阻力,计算式如下:△P=△P y+△P j水力计算的详细步骤,见附录表一。
6.将此环路的总阻力累加起来得P∆=61150.9184 Pa= 61 KPa7.已知最不利环路上的各个附件的总阻力损失之和为160 KPa,冷水机组的水阻力为69 KPa ,风机盘管的阻力为35 KPa,因此此最不利环路总阻力为:∆= 61+160+69+35=325 KPaP8.同理可得出其它各层环路的水管管径。
其中四层环路的水力计算详细计算步骤和图见附录表二和图5,三层环路的水力计算详细计算步骤和图见附录表三和图6,二层环路的水力计算详细计算步骤和图见附录表四图7,一层环路的水力计算详细计算步骤和图见附录表五和图8。
9.5 冷凝水系统的设计9.5.1 水封的设置不论空调末端设备的冷凝水盘是位于机组的正压段还是负压段,冷凝水盘出水口处均需设置水封,水封高度应大于冷凝水盘处正压或负压值。
在正压段设置水封是为了防止漏风,在负压段设置水封是为了顺利排除冷凝水。
9.5.2 冷凝水管材冷凝水管处于非满流状态,内壁接触水和空气,不应采用无防锈功能的焊接钢管;冷凝水为无压自流排放,若采用软塑料管会形成中间下垂,影响排放。
因此空调冷凝水管材应采用强度较大和不易生锈的镀锌钢管或排水PVC管,管道应采取防结露措施。
9.5.3 冷凝水水管管径冷凝水管管径应按冷凝水的流量和管道坡度确定。
一般情况下,1KW冷负荷每小时约产生0.4~0.8kg的冷凝水,在此范围内管道最小坡度为0.003时冷凝水管管径可按下表9-2进行估算。
表9-2 冷凝水管管径选择表本设计冷凝水管的管径按上表进行计算,管径大小标在系统轴侧图和各层水平面图上。
9.5.4 冷凝水的排放冷凝水排入污水系统时,应有空气隔断措施,冷凝水管不得与室内密集雨水系统直接连接。
以防锈味和雨水从空气处理机组冷凝水盘外溢。
为便于定期冲洗、检修,冷凝水水平干管始端应设扫除口。
本设计空调的冷凝水直接排入卫生间。
9.5.5 冷凝水排水系统常遇到的问题及解决办法(1)由于冷凝水排水管坡度较小,或根本没有坡度而造成的漏水。
或由于风机盘管的集水盘安装不平,或盘内排水口堵塞而盘水外溢。
(2)由于冷水管及阀门的保温质量差,保温层未贴近冷水管壁,造成管道外壁冷凝水的滴水。
还有的集水盘下表面的二次凝结水滴水。
(3)尽可能多地设置垂直冷凝水排水立管,这样可缩短水平排水管的长度。
水平排水管的坡度不得小于1/100。
从每个风机盘管引出的排水管尺寸,应不小于DN20mm。
而空气处理机组的凝结水管至少应与设备的管口相同。
在控制阀和关断阀的下边均应附加集水盘,而且集水盘下要保温。