反比例函数(每日一练)
5-1反比例函数

k y=— x
y kx
( k是不等于零的常数). ( k是不等于零的常数).
1
形式4: x y= k (k≠0)
形式5: ቤተ መጻሕፍቲ ባይዱ量 y 与 x 成反比例,比例系数为k(k≠0)
课外练习
( ( ( ( ( (
判断下列说法是否正确(对”√”, 错”×”)
)(1)一矩形的面积为 cm2 , 相邻的两条边长分别为 (cm)和y (cm), 20 x 则变量y是变量x的反比例函数 . )(2)圆的面积公式s r 2中,s与r成正比例 . )(3)矩形的长为a,宽为b,周长为C,当C为常量时, a是b的反比例函数 . )(4)一个正四棱柱的底面正 方形的边长为x,高为y, 当其体积V为常量时,y是x的反比例函数 . )(6)当被除数(不为零)一 定时,商和除数成反比 . 例 )(8)计划修建铁路 1200km, 则铺轨天数y (d )是每日铺轨量 x(km / d )的反比例函数 .
k y ( k为常数, k 0) x
练 习 1
1 、在下列函数中,y是x的反比例函数的是( C ) 2 8 (A)y = (B)y = 2 + 7 x X+5 (C)x y = 5
3 (D)y = x
练 习 2
2.已知函数 y = xm-7 是正比例函数,
反比例函数 练习题

26.1.1 反比例函数 练习题一、选择题。
1.某工厂现有原材料100吨,每天平均用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( )A .y =100xB .y =100xC .y =12x +100 D .y =100-x2.在下列函数中,y 是x 的反比例函数的是( )A .y =3xB .y =x 3C .y =3xD .y =3x -13.在函数y =1x中,自变量x 的取值范围是( )A .x ≠0B .x>0C .x <0D .一切实数4.在反比例函数y =-25x中,k 的值是( )A .2B .-2C .-25D .-525.已知y 与x 成反比例,且当x =12时,y =1,则这个反比例函数是( )A .y =1xB .y =12xC .y =2xD .y =-1x6.下列函数:①y =x -2;②y =x 5;③y =-5x -1;④y =2x +1;⑤xy =-8;⑥y =8x 2;⑦y x =3;⑧y =k x ,其中y 是x 的反比例函数的有( )A .2个B .3个C .4个D .5个 7.某地计划修建铁路l km ,铺轨天数为t(d),每日铺轨量为s(km/d),则在下列三个结论中,正确的是( )①当l 一定时,t 是s 的反比例函数;②当t 一定时,l 是s 的反比例函数; ③当s 一定时,l 是t 的反比例函数.A .仅①B .仅②C .仅③D .①②③ 二、填空题 8.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,那么y 与x 的函数关系式为 . 9.一名司机驾驶汽车从甲地去乙地,他以80 km/h 的平均速度用了4 h 到达乙地,当他按原路匀速返回时,汽车的速度v(km/h)与时间t(h)之间的函数关系式是 . 10.若y =1xn -1是y 关于x 的反比例函数关系式,则n 的值是 .11.如果函数y =x 2m -1为反比例函数,那么m 的值是 .12.若y =(m -1)xm 2-2是y 关于x 的反比例函数关系式,则m =-1,此函数的解析式是 . 13.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例,若200度近视眼镜的镜片焦距为0.5 m ,则y 与x 之间的函数解析式是 . 三、解答题14.已知y 是x 的反比例函数,并且当x =-3时,y =8.(1)写出y 关于x 的函数解析式;(2)当x =6时,求y 的值.15.已知y是x的反比例函数,下表给出了x与y的一些对应值:求这个反比例函数的解析式;16.设面积为20 cm2的平行四边形的一边长为a cm,这条边上的高为h cm.(1)求h关于a的函数解析式及自变量a的取值范围;(2)h关于a的函数是不是反比例函数?如果是,请说出它的比例系数;(3)当a=25时,求这条边上的高h.17.已知函数y=(5m-3)x2-n+(n+m).(1)当m,n为何值时,为一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?18.已知y与x2-1成反比例,当x=2时,y=-1,求当x=-2时y的值.26.1.1 反比例函数 练习题一、选择题1.某工厂现有原材料100吨,每天平均用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为(B)A .y =100xB .y =100xC .y =12x +100 D .y =100-x2.在下列函数中,y 是x 的反比例函数的是(C)A .y =3xB .y =x 3C .y =3xD .y =3x -13.在函数y =1x中,自变量x 的取值范围是(A)A .x ≠0B .x>0C .x <0D .一切实数4.在反比例函数y =-25x中,k 的值是(C)A .2B .-2C .-25D .-525.已知y 与x 成反比例,且当x =12时,y =1,则这个反比例函数是(B)A .y =1xB .y =12xC .y =2xD .y =-1x6.下列函数:①y =x -2;②y =x 5;③y =-5x -1;④y =2x +1;⑤xy =-8;⑥y =8x 2;⑦y x =3;⑧y =k x ,其中y 是x 的反比例函数的有(A)A .2个B .3个C .4个D .5个7.某地计划修建铁路l km ,铺轨天数为t(d),每日铺轨量为s(km/d),则在下列三个结论中,正确的是(A)①当l 一定时,t 是s 的反比例函数;②当t 一定时,l 是s 的反比例函数; ③当s 一定时,l 是t 的反比例函数.A .仅①B .仅②C .仅③D .①②③ 二、填空题8.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,那么y 与x 的函数关系式为y =20x .3.一名司机驾驶汽车从甲地去乙地,他以80 km/h 的平均速度用了4 h 到达乙地,当他按原路匀速返回时,汽车的速度v(km/h)与时间t(h)之间的函数关系式是v =320t .10.若y =1x n -1是y 关于x 的反比例函数关系式,则n 的值是2.11.如果函数y =x2m -1为反比例函数,那么m 的值是0.12.若y =(m -1)xm 2-2是y 关于x 的反比例函数关系式,则m =-1,此函数的解析式是y =-2x .13.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例,若200度近视眼镜的镜片焦距为0.5 m ,则y与x 之间的函数解析式是y =100x.三、解答题14.已知y 是x 的反比例函数,并且当x =-3时,y =8.(1)写出y 关于x 的函数解析式; (2)当x =6时,求y 的值.解:(1)设y =kx.∵当x =-3时,y =8,∴8=k -3. 解得k =-24. ∴y =-24x.(2)把x =6代入y =-24x ,得y =-246=-4.15(2)根据函数解析式完成上表. 解:(1)设y =kx.∵当x =-1时,y =2,∴2=k -1. 解得k =-2.∴y =-2x.(2)如表.16.设面积为20 cm 2的平行四边形的一边长为a cm ,这条边上的高为h cm.(1)求h 关于a 的函数解析式及自变量a 的取值范围;(2)h 关于a 的函数是不是反比例函数?如果是,请说出它的比例系数; (3)当a =25时,求这条边上的高h.解:(1)h =20a(a>0).(2)是反比例函数,它的比例系数是20. (3)当a =25时,这条边上的高h =2025=45.17.已知函数y =(5m -3)x 2-n+(n +m).(1)当m ,n 为何值时,为一次函数? (2)当m ,n 为何值时,为正比例函数? (3)当m ,n 为何值时,为反比例函数?解:(1)由题意,得2-n =1,且5m -3≠0,解得n =1且m ≠35.(2)由题意,得2-n =1,5m -3≠0,且m +n =0, 解得n =1,m =-1.(3)由题意,得2-n =-1,5m -3≠0,且m +n =0,解得n =3,m =-3.18.将x =23代入反比例函数y =-1x 中,所得函数值记为y 1,又将x =y 1+1代入原反比例函数中,所得函数值记为y 2,再将x =y 2+1代入原反比例函数中,所得函数值记为y 2,…,如此继续下去,则y 2 020=-32.19.已知y 与x 2-1成反比例,当x =2时,y =-1,求当x =-2时y 的值.解:由y 与x 2-1成反比例,设y =k x 2-1(k ≠0),将x =2,y =-1代入,得-1=k22-1,解得k =-3.∴反比例函数的解析式为y =-3x 2-1.将x =-2代入,得y =-3(-2)2-1=-1.。
第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。
用反比例解决问题(共9篇)

用反比例解决问题(共9篇)以下是网友分享的关于用反比例解决问题的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
《用反比例解决问题》练习篇1新课标人教版六年级下《用反比例解决问题》练习1.先判断x和y成什么比例,再填一填。
(1)x和y成()比例x 3 6 12 24 48y 8 16(2)x和y成()比例x 3 6 12 24 48y 16 82.判断。
(1)如果积不变,一个因数和另一个因数成反比例。
()(2)路程一定,速度和时间成反比例。
()(3)菜籽千克数一定,出油率与菜油的千克数成反比例。
( )(4)公顷数一定,总产量与每公顷产量成反比例。
()3.用比例的方法解答下面各题。
(1)有一堆煤,每天烧5吨,可以烧180天。
如果每天烧4.5吨,可以烧多少天?(2)街东村修一条水渠,原计划每天修32米,65天能完成;但是实际50天就完成了任务,实际平均每天修多少米?(3)同学们做操,每行站20人,正好站18行,如果每行多站4人,要站多少行?(4)一捆铁丝重68千克,剪下其中的2.5米,刚好重10千克,这捆铁丝全长多少米?(5)有一间大客厅,用面积9平方分米的方砖铺地,需要1200块,如果改用边长40厘米的方砖铺地,需要多少块?用反比例函数解决问题篇211.3用反比例函数解决问题(1)例1.小明将一篇24000字的社会调查报告录入电脑.打印成文.(1)如果小明以每分种120字的速度录入.他需要(2) 完成录入的时间t(分) 与录入文字的速度v(字/分)有怎样的函数关系?(3)小明希望能在3h内完成录入任务.那么他每分钟至少应录入多少个字?例2某厂计划建造一个容积为4 10m的长方形蓄水池.(1)蓄水池的底面积S与其深度h(m)有怎样的函数关系?(2)如果蓄水池的深度设计为5m.那么蓄水池的底面积应为多少平方米?(3)由于绿化以及辅助用地的需要.经过实地测量.蓄水池的长与宽最多只能设计为100m和60m.那么蓄水池的深度至少应为多少米(精确到0.01)?43例3. 某报报道:一村民在清理鱼塘时被困淤泥中,消防队员以门板作船,泥沼中救人.(1)写出压强和受力面积及压力的函数关系。
中考反比例函数的常见模型以及例习题

反比例函数的常见模型解决反比例函数的问题,除了掌握反比例函数的图像及性质以及反比例函数常见的面积模型之外,还要熟练掌握以下几个经典模型:【模型1】正比例函数图像被反比例函数图像所截得的线段相等【模型2】一次函数图像被坐标系和反比例函数图像所截得的相等线段【模型3】同一象限内反比例函数图像上两点连线的平行线【模型4】反比例函数与矩形(1)【模型5】反比例函数与矩形(2)【模型6】反比例函数与最值【模型7】反比例函数与黄金分割让我们一起领略反比例函数的神奇一、个人对反比例函数的几点困惑与感悟1.为何正比例函数的比例系数是比,而反比例函数的比例系数却不是比?2.为何我市中考的反比例函数问题总不像其它函数那么深入?只探究一些皮毛问题!至多探究一下的几何意义(面积),例如2016年台州市中考考查的也是“函数的研究通法”,并非专门深入研究反比例函数.3.过去我们遇到稍难一点的反比例函数问题,就只有“暴力设元”这一途径,总无法避开多元方程、分式方程、高次方程.4.个人认为作为老师,不应该只应付中考,而应该研究更纯粹的数学,站在更高的位置来了解数学本质!做到居高临下、解有依据!5.实际上,反比例函数中也存在很多的“比”,斜比、直比(纵比、横比、纵横比)、面积比,可以说“比比皆是”!现在就让我们一起来比出精彩、比出神奇.二、一道曾经困惑我多时的中考题某年宁波市中考的填空压轴题:如图,的顶点(,),双曲线经过点、,当以、、为顶点的三角形与的相似时,则.1.常规性解法:通过设元,例如设(,),则(,),再根据条件列方程:(1)利用、、或列方程;(2)利用列方程;(3)利用“一线三等角”模型、和列方程.实际上,在上述常规处理方法中,已经透着一点智慧、一点灵性了,具体操作方法中也具备了一定的技巧性.但我本人对此,却一直难言满意,耿耿于怀!2.挖掘隐含性质,巧解此题(1)实际上,此图中含有一些很重要的性质:过点作轴于,连接,直线分别交坐标轴于点、.则有①∥;②,;③,.基于以上这些性质,有如下解法.(2)我的第一种解法(整体思想):由,可得,,即,于是,,……(3)我一个同事的解法(斜边转直比):由,可得,,转为横比,,因此,……(4)我一个学生的解法(斜等转直等):由得,则,……(5)我的第二种解法(平行导角度):由∥得,,于是,……(6)下面我们要着重解决两件事:①上述性质是否永远成立?如何证明?②解题技巧除上述方法:整体思想、斜边转直比、斜等转直等、平行导角度外,还有斜长转直长、面积比与边比互转、纯面积转化等等,后面将一、一介绍.三、探究性质1.如图,双曲线与矩形边交于点、,直线交坐标轴于点、.①如图1,若,则;②如图2,若,则;③如图3,若,则,直线与的位置关系是,与的大小关系.图1图2图32.①如图1,双曲线与直线交于点、,轴于点,轴于点,请探究直线与的位置关系,线段与的大小关系.②如图2,双曲线与直线交于点、,轴于,轴于,轴于,轴于,请探究直线与、的位置关系,以及线段与的大小关系.图1图2四、最常见思想方法(斜转直):斜边转直比、斜等转直等、斜长转直长1.如图,直线反比例函数()图象交直线于点、,且,则的值为.(1)常规方法(斜长转直长):,则,可设(,),则(,),列方程解决;(2)口算巧解(斜边转直比):由,得,,转为横比得,,则,,……2.同类变式题:如图,直线交坐标轴于点、,双曲线交直线于点、.若,则的值为;3.难题展示(中国数学教育名师讲堂481230254,每日一题第8题,2017/3/29)如图,点(,),,在双曲线上,,分别交,轴于,,分别交,轴于,.(1)求的面积;(2)求证:.4.原创清新小题和近年的中考题:(1)如图1,,的面积为,则的值为.(2)如图2,点,在双曲线上运动,轴,.①在运动过程中,的面积是不是定值?答:;②若,且是正三角形,则点的坐标为.(3)如图3,□中,,,双曲线经过点和中点,则该双曲线的解析式为.(4)如图4,直线与分别与双曲线交于点、,,则的值为.图1图2图3图4(5)(十堰)如图5,正的边长为,双曲线经过点、,且,则的值为.(6)如图6,双曲线与直线交于点、.①(原创、铺垫②)若、,且,则;②(常州模拟·改编)若,且,则;③(杭州模拟·改编)若,且,则.(7)(据上题改编)如图7,为双曲线上的动点,过点作矩形,直线的解析式为,交矩形边于,,则.图5图6图7五、面积比、边比互转1.①(原创、铺垫)如图1①,直线与双曲线交于点,为双曲线上一点,射线交轴于点,若的面积为,则点坐标为;②(成都)如图1②,直线与双曲线交于点、,为双曲线上一点,射线交轴于点,若的面积为,则点坐标为.2.(无锡)如图2,轴,∥轴,双曲线过点、,且,已知的面积为,则的值为.图1①图1②图33.(宁波)如图3,正的顶点在双曲线上,双曲线与边交于点,连接,则的面积为.4.(丽水)如图4,双曲线与直线交于点、,轴,设点的横坐标为.①用含的式子表示;②若与四边形的面积和为,则.5.如图5,双曲线与直线交于点、.①(常州模拟)若,且,则;②(改编自①)若、,且,则.图3图4图56.如图6,轴,为中点,延长到,延长到,若双曲线恰好经过点,,且,则.7.如图7,双曲线过点,,过点,,若,均与轴平行,,,且它们之间的距离长为,则.8.如图8,直线交双曲线于点,,若,则.图6图7图89.如图,点在双曲线上,轴,,延长线交轴于,若的面积为,则的值为.10.如图,点、在双曲线上,轴,轴,垂足、分别在轴的正半轴和负半轴上,,,是的中点,若面积是的倍,则的值为.六、反比例函数图象中的“一线三等角”构造,初探黄金比例1.如图1,中,,,双曲线经过点、,且点的纵坐标为,则的值为.(1)剖析:对于坐标系中的一个直角,若两条边均“倾斜”,我们经常构造“”形全等或相似,即“一线三等角”模型,或叫“矩形大法”,见图2,得. (2)后感:我们可以发现,矩形恰好是一个“黄金矩形”,这到底是一种偶然的巧合,还是一种必然的存在呢?这有待于我们进一步探究…(3)探究(2016临沭模拟):如图3,双曲线与矩形的边交于点,,若设点的坐标为(,),且有,,则.图1图2图32.类似题:①(2015临海模拟·填空压轴题)如图,,,双曲线经过点,双曲线经过点,已知点的纵坐标为,则,点的坐标为.②(个人原创)如图2,中,,,双曲线经过点,双曲线经过点,且点的纵坐标为,则的值为.3.难题展示(常州·于新华老师原创题)(1)如图1,点(,),均在双曲线上,过点作轴垂线,过点作轴垂线,两垂线交于点,垂足分别为,,将沿翻折,点恰好落在轴上的点处.求点的坐标.(2)如图2,点(,),均在双曲线上,过点作轴垂线,过点作轴垂线,两垂线交于点,垂足分别为,,将沿翻折,点恰好落在轴上的点处.求点的坐标.图1图24.如图,矩形的边的解析式为,顶点,在双曲线上.①若,则点的坐标为;②连接,,若是等边三角形,则.后感:若能发现,本题将更简单!拓展:如图,正方形的顶点、在双曲线上,、在双曲线上,则正方形的面积为.5.(2013湖州模拟)如图1,矩形的顶点、在双曲线上,若点(,),则点的坐标为.6.如图2,矩形中,,点(,),点,在双曲线上,若为中点,则的值为.图1图27.①如图1,点,在双曲线上运动,以为底边作等腰直角,则点也在一条双曲线上运动,则该双曲线的解析式为;②如图2,点,在双曲线上运动,以为底边作等腰,则点也在一条双曲线上运动,若,则该双曲线解析式为;③如图3,点,在双曲线上运动,以为底作等腰,点在另一双曲线上运动,若,请用,表示.图1图2图3七、平行导角度,角度导比例1.如图,点,在双曲线上,经过原点,过点作∥轴,连接并延长,交双曲线于点.①求证:;②求的值.根据本题的发现,改编了一个清新小题:如图,点,在双曲线上,经过原点,过点的直线交该双曲线于点,分别交轴,轴于点,,若,.求的值.2.如图,直线交在双曲线于点、,经过原点,过作交轴于点,连接并延长,交双曲线于点.求的值.3.如图,双曲线与过原点的直线交于点、,点在双曲线上,直线、分别交轴于点、.若设,,则.4.如图,,双曲线经过点、、,求证:.八、纯面积推导1.如图,点(,),,在双曲线上,,分别交,轴于,,分别交,轴于,.求证:.(此方法感谢江苏·于新华老师的指导!)2.(2016菏泽)如图,,均是等腰直角三角形,双曲线经过点,交线段与点,求与的面积之差.后感:①题中条件“,均是等腰直角三角形”可如何改变?②写出,,的关系:.3.(十堰)如图5,正的边长为,双曲线经过点、,且,则的值为.4.(常州)如图1,,双曲线经过点、,且,求的值;5.如图2,,双曲线经过点、、,求证:.图1图2。
人教版八年级数学下册反比例函数复习与典型例题

4.某气球内充满了一定质量的气体,当温度不变时,
气球内气体的气压P ( kPa )是气体体积V ( m3)
的反比例函数,其图象如图所示.当气球内气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应()
A、不小于 m3B、小于 m3C、不小于 m3D、小于 m3
(5)如图,正比例函数y=kx(k>0)和反比例函数 的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.
第(5)题图第(6)题图
(6)如图在Rt△ABO中,顶点A是双曲线 与直线 在第四象限的交点,AB⊥x轴于B且S△ABO= .
①求这两个函数的解析式;
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则( , )在双曲线的另一支上.图象关于直线 对称,即若(a,b)在双曲线的一支上,则( , )和( , )在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线 上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是 (三角形PAO和三角形PBO的面积都是 ).
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.
越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当 时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当 时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.
①求B点坐标和k的值;
②当 时,求点P的坐标;
③写出S关于m的函数关系式.
2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。
自学初中数学资料-反比例函数

自学资料年份题量分值考点题型201514反比例函数与几何综合填空201613反比例函数图象选择2017110反比例函数的简单应用解答2018210反比例函数的基本运算及反比例函数图象解答2019110反比例函数的应用解答一、正比例函数、反比例函数、一次函数、二次函数的概念【知识探索】1.解析式形如(为常数,)的函数叫做反比例函数.其中也叫做比例系数.反比例函数的定义域是不等于零的一切实数.【错题精练】例1.已知函数y=(m+2)x m2−10是反比例函数,且图象在第二、四象限内,则m的值是()A. 3B. -3C. ±3D. -13例2.下列问题中,两个变量成反比例的是()A. 商一定时(不为零),被除数与除数B. 等边三角形的面积与它的边长C. 长方形的长a不变时,长方形的周长C与它的宽bD. 货物的总价A一定时,货物的单价a与货物的数量x第1页共14页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第3页 共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训二、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】例1.已知变量y 与x 成反比例,且当x=2时,y=-6.求: (1)y 与x 之间的函数表达式; (2)当y=2时,x 的值.例2.如图,点A ,B 在反比例函数y=mx 的图象上,点A 的坐标为(√3,3),点C 在x 轴上,且使△AOC 是等边三角形,BC ∥OA .(1)求反比例函数的解析式和OC 的长; (2)求点B 的坐标;(3)求直线BC 的函数解析式.例3.如图,函数y={2x,(0≤x ≤3)−x +9,(x >3)的图象与双曲线y=kx (k≠0,x >0)相交于点A (3,m )和点B .(1)求双曲线的解析式及点B的坐标;(2)若点P在y轴上,连接PA,PB,求当PA+PB的值最小时点P的坐标.【举一反三】1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8 ).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)求经过点P的反比例函数的解析式.2.已知函数y=y1-y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.(k≠0)图象上一点,AB⊥x轴于B点,一次函3.如图,在平面直角坐标系中,点A是反比例函数y=kx数y=ax+b(a≠0)的图象交y轴于D(0,-2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.第4页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训三、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的交点【知识探索】1.反比例函数(是常数,)的图像的两支都无限接近于轴和轴,但不会与轴和轴相交.【错题精练】例1.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交的图象经过P,D两点,则AB的长是______.于点P,反比例函数y=2x在第一象限上运动,过点O作OB⊥OA,当tanA=√2时,点B 例2.如图,已知点A在反比例函数y=2x在第二象限的图象上,则k的值为______.恰好落在反比例函数y=kx例3.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是______.第5页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例4.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若(k≠0)的图象恰好经过A′,B,则k的值为______.AB=2,反比例函数y=kx图象上有三个点A(x1,y1)B(x2,y2)C(x3,y3),若x1<0<x2<x3,则例5.在反比例函数y=-2019x下列结论正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y1<y2D. y3<y2<y1例6.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=k的图象上,OA=1,OC=6,x试求出正方形ADEF的边长.第6页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例7.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=k(kx >0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求反比例函数的表达式及点E的坐标;(2)点F是OC边上一点,若△FBC∽△DEB,求点F的坐标.例8.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、A n-1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、……、A n-1A n都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点P n(x n,(x>0)的图象上,已知B1(-1,1).y n)在反比例函数y=kx(1)反比例函数解析式为______;(2)求点P3和点P2的坐标;(3)点P n的坐标为(______)(用含n的式子表示),△P n B n O的面积为______.【举一反三】1.如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=k(k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是x()第7页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 239B. 1289C. 16D. 1542.已知反比例函数y=6x的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,那么下列结论中,正确的是()A. y1<y2B. y1>y2C. y1=y2D. y1与y2之间的大小关系不能确定3.如图,矩形ABCD的顶点A在y轴上,反比例函数y=kx(x>0)的图象恰好过点B和点C,AD与x 轴交于点E,且AE:DE=1:3,若E点坐标为(2,0),且AD=2AB,则k的值是()A. 6B. 8C. 10D. 124.如图,已知点A,C在反比例函数y=ax (a>0)的图象上,点B,D在反比例函数y=bx(b<0)的图象上,AB∥CD∥y轴,AB,CD在y轴的同侧,AB=3,CD=2,AB与CD的距离为1,则a-b的值是______.第8页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训5.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象.若将正方形沿x轴向左平移b个单位长度后,点C恰限作正方形ABCD,顶点D恰好落在双曲线y=kx好落在该双曲线上,则b的值为______.6.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k在第一象限的x 图象经过点B.①若OC=3,BD=2,则k=______;②若OA2-AB2=18.则k=______.7.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在(k>0,x>0)的图象上,点D的坐标为(√5,2).反比例函数y=kx(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=k(k>0,x>0)的图象上x时,求菱形ABCD平移的距离.第9页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训8.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.(2)若反比例函数y=kx四、反比例函数的应用【知识探索】1.【思想方法】:数形结合【错题精练】例1.一出租车油箱的容积为70升,某司机将该车油箱加满油后,将客人送达340km外的某地后立即返回.设出租车可行驶的总路程为y(单位:km),行驶过程中平均耗油量为x(单位:升/km).(1)写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若该车以每千米耗油0.1升行驶送达客人至目的地,返程时由于堵车,油耗平均增加了50%,该车返回出发地是否需要加油?若需要,试求出至少需加多少油,若不需要,请说明理由.例2.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?第10页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例3.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x、y①求y与x的函数关系式;②当y≥3时,求x的取值范围;(2)小明说其中有一个矩形的周长是6,小李说有一个矩形的周长为10,你认为小明和小李的说法对吗?为什么?例4.面积为定值的△ABC中,BC边的长为x,BC边上的高AD为y,当x=3时,y=4√3.(1)求△ABC的面积及y关于x的函数解析式;(2)当2<x<8时,△ABC能否为等边三角形,请说明理由.【举一反三】1.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB 为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=k上运动,则k的值为.x2.为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg.(1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室?(2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?3.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.4.某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x(m)、y(m).①求y关于x的函数表达式;②当y≥4m时,求x的取值范围;(2)小凯说篱笆的长可以为9.5m,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?1.下列函数中,反比例函数是()A. y=-2xB. y=1x+1C. y=x-3 D. y=13x2.如果函数y=kx k-2是反比例函数,那么k=______,此函数的解析式是______.3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A. y=400x B. y=14xC. y=100x D. y=1400x4.如图,在平面直角坐标系中,反比例函数y=k经过▱ABCD的顶点B,D,点D的坐标为(2,1),x点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为______,k=______;(2)求AB所在直线的解析式.(k为常数,且k≠0)的图象交于A(1,a),B两5.如图,一次函数y=-x+4的图象与反比例函数y=kx点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.6.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,其直角顶(k>0)的图象上点P1(4,4),P2,P3……P n均在反比例函数y=kx(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).7.已知反比例函数y=6的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关x系是______.的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一8.如图,已知反比例函数y=kx动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数(每日一练)1.(2019•河东区一模)已知点A(x1,y1),(x2,y2)是反比例函数y=2x图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y12.(2019•崂山区二模)二次函数y=ax2+bx+c的图象如图所示,则﹣次函数y=﹣bx﹣4ac+b2与反比例函数y=a−b+cx在同一坐标系内的图象大致为()A.B.C.D.3.(2019•蒙阴县一模)如图,点A是反比例函数y=3x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=−2x的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则S平行四边形ABCD为()A .2B .3C .4D .54.(2019•葫芦岛)如图,一次函数y =k 1x +b 的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =k2x 的图象分别交于C ,D 两点,点C (2,4),点B 是线段AC 的中点.(1)求一次函数y =k 1x +b 与反比例函数y =k2x 的解析式;(2)求△COD 的面积;(3)直接写出当x 取什么值时,k 1x +b <k 2x.5.k 为何值时y =(k 2+k )xk 2-k -3是反比例函数?6.某闭合电路中,电源的电压为定值,电流I (A)与电阻R (Ω)成反比例.如图所示是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数表达式为( )A .I =2RB .I =3RC .I =6RD .I =-6R7.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,并且当x =2时,y =-4;当x =-1时,y =5.求出y 与x 的函数表达式.8.已知反比例函数y =4-kx,分别根据下列条件求出k 的取值范围.(1)函数的图象位于第一、三象限;(2)在第二象限内,y 随x 的增大而增大.9.如图,正比例函数y =x 与反比例函数y =1x的图象相交于A ,B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )A .1B .2 C.32 D.5210.在函数y =-a 2-1x(a 为常数)的图象上有三点(-3,y 1),(-1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 211.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (h)变化的函数图象,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18℃的时间有多少小时? (2)求k 的值.(3)当x =16时,大棚内的温度为多少度?12.水池内共有12m 3的水,如果从排水管中每小时流出x m 3的水,则经过y h 就可以把水放完.(1)求y 与x 的函数表达式; (2)画出函数的图象;(3)当x =6m 3时,求时间y 的值.答案解析1.【分析】反比例函数y=2x(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限内,y随x的增大而减小判定则可.【答案】解:∵k=2>0,∴函数为减函数,又∵x1>0>x2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.2.【分析】根据二次函数图象确定﹣b、b2﹣4ac、a﹣b+c的符号,由它的符号判定一次函数图象与反比例函数图象所经过的象限即可.【答案】解:如图,抛物线y=ax2+bx+c的开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,所以b>0,故﹣b<0.又因为抛物线与x轴有2个交点,所以b2﹣4ac>0,所以直线y=﹣bx+b2﹣4ac经过第一、二、四象限.当x=﹣1时,y<0,即a﹣b+c<0,所以双曲线y=a−b+cx在经过第二、四象限.综上所述,符合条件的图象是B选项.故选:A.【点睛】本题综合考查了一次函数、二次函数以及反比例函数的图象.熟练掌握图象与函数关系式中系数的关系是解题的关键.3.【分析】连结OA、OB,AB交y轴于E,由于AB⊥y轴,根据反比例函数y=k x(k≠0)系数k的几何意义得到S△OEA与S△OBE,则四边形ABCD为平行四边形,然后根据平行四边形的性质得到S平行四边形ABCD=2S△OAB=5.【答案】解:连结OA、OB,AB交y轴于E,如图,∵AB∥x轴,∴AB⊥y轴,∴S△OEA=12×3=32,S△OBE=12×2=1,∴S△OAB=1+32=52,∵四边形ABCD为平行四边形,∴S平行四边形ABCD=2S△OAB=5.故选:D.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.4.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE ⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<k2x时,自变量x的取值范围.【答案】解:(1)∵点C(2,4)在反比例函数y=k2x的图象上,∴k2=2×4=8,∴y2=8 x;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴{2k 1+b =4b =2, 解得k 1=1,b =2, ∴一次函数为y 1=x +2; (2)由{y =x +2y =8x,解得{x =2y =4或{x =−4y =−2,∴D (﹣4,﹣2), ∴S △COD =S △BOC +S △BOD =12×2×2+12×2×4=6;(3)由图可得,当0<x <2或x <﹣4时,k 1x +b <k2x .【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B 点的坐标是解题的关键.5.解:由⎩⎪⎨⎪⎧k 2-k -3=-1,k 2+k ≠0得⎩⎪⎨⎪⎧k =2或k =-1,k ≠0且k ≠-1.∴k =2.当k =2时,y =(k 2+k )xk 2-k -3是反比例函数.6.解析:由图象知,该函数是反比例函数.设I =k R,把点B (3,2)的坐标代入得k =2×3=6,∴I =6R.答案:C 7.解析:本题是正、反比例函数综合题,根据题意可分别设出其表达式,把(2,-4),(-1,5)分别代入,求出待定系数,从而确定y 与x 的函数表达式.解:∵y 1与x 成正比例,∴设y 1=k 1x .∵y 2与x 成反比例,∴设y 2=k 2x .∴y =y 1+y 2=k 1x +k 2x.把x =2,y =-4,x =-1,y =5分别代入y =k 1x +k 2x,得⎩⎪⎨⎪⎧2k 1+k 22=-4,-k 1-k 2=5,解得⎩⎪⎨⎪⎧k 1=-1,k 2=-4,∴y =-x -4x.8.解:(1)∵反比例函数图象的两个分支位于第一、三象限, ∴4-k >0,∴k <4.(2)∵在第二象限内,y 随x 的增大而增大, ∴4-k <0,∴k >4. 9.解析:∵正比例函数y =x 与反比例函数y =1x的图象相交于A ,B 两点,∴A (1,1),B (-1,-1),∴点A 与点B 关于原点对称,∴S △AOC =S △BOC .∵BC ⊥x 轴,∴△ABC 的面积=2S △BOC =2×12×|-1|=1.答案:A 10.解析:∵y =-a 2-1x是反比例函数,且-a 2-1=-(a 2+1)<0,∴双曲线在第二、四象限,且在各象限内,y 随x 的增大而增大.∴y 1<y 2.又∵点(2,y 3)在第四象限,∴y 3<y 1,y 3<y 2. 因此,y 1,y 2,y 3的大小关系是y 3<y 1<y 2,故选D. 答案:D 11.解析:(1)观察图象得出大棚温度保持18℃的时间为12-2=10(h);(2)已知点B 的坐标,利用待定系数法求k 的值;(3)将x =16代入函数表达式求出y 的值.解:(1)恒温系统在这天保持大棚内温度为18℃的时间有10h. (2)∵点B (12,18)在双曲线y =k x 上,∴18=k12,∴k =216.(3)由(2)知函数表达式为y =216x .当x =16时,y =21616=13.5,∴当x =16时,大棚内的温度为13.5℃.12.解析:根据排水所用的时间=水池内水的总量(12m 3)÷排水速度,可直接列出函数表达式.结合自变量的取值范围,运用描点法可以画出函数的图象.解:(1)由已知条件,得y =12x(x >0).(2)列表:(3)当x =6m 3时,y =126=2(h).。