反比例函数课时练习

合集下载

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。

反比例函数的定义专项练习30题(有答案)

反比例函数的定义专项练习30题(有答案)

反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A .y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A .y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A .﹣1 B.0 C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A .0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A .正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A .x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A .①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A .x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A .0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A .正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A .①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A .m≠0B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A .2 B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m= _________ 时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k= _________ .21.若是反比例函数,则m= _________ .22.已知函数,当m= _________ 时,它是正比例函数;当m= _________ 是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= _________ .24.已知函数y=,若y=﹣3,则x的取值为_________ .25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________ .26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________ .27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________ ;当y越来越大时,x越来越_________ ;但无论x,y如何变化,它们都必须满足等式_________ .(2)如果把x看成自变量,则y是x的_________ 函数;(3)如果把y看成自变量,则x是y的_________ 函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________ .30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数定义30题参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。

(完整版)反比例函数经典习题及答案

(完整版)反比例函数经典习题及答案

反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A )2 (B )—2 (C)4 (D )-45.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。

A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 38.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4OA 1 A 2 A 3 P 1 P 2P 3xy11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x 〉2x 〉0,则12y y -的值为( )(A )正数 (B )负数 (C )非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 .12.已知反比例函数8y x =-的图象经过点P (a+1,4),则a=_____.13.反比例函数6y x=-图象上一个点的坐标是 .14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 . 15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-;16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.18.已知点P 在函数2y x = (x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,—2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21。

(完整版)反比例函数基础练习题及答案

(完整版)反比例函数基础练习题及答案

反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。

反比例函数课时训练(含答案)

反比例函数课时训练(含答案)

则 k 的值为
.
13.如图,反比例函数 y k 的图像经过□ABCD 对角线的交点 P ,己知点 A,C, D 在坐标轴上, x
BD DC ,□ABCD 的面积为 6,则 k 的值为
.
14.如图,正比例函数 y kx 的图像与反比例函数 y 6 的图像有一个交点 A(2, m) ,过点 A 作 x
16.如图,A 是一次函数 y 1 x ( x 0 )的图像上一点,过点 A 作 x 轴的垂线 l ,B 是 l 上一点(点 2
B 在点 A 上方),在 AB 的右侧以 AB 为斜边作等腰直角三角形 ABC ,反比例函数 y k ( x 0 ) x
的图像过点 B,C .若△OAB 的面积为 6,则 ABC 的面积是
课时 15-16 期末复习·反比例
教学目标:
1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反 比例函数的解析式,能判断一个给定函数是否为反比例函数; 2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式; 3.能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质 分析和解决一些简单的实际问题.
(3)根据图象写出当 x 取何值时,一次函数的值小于反比例函数的值? 6、制作一种产品,需先将材料加热达到 60℃后,再进行操作,设该材料温度为 y (℃),从加热
开始计算的时间为 x min .据了解,设该材料加热时,温度 y 与时间 x 成一次函数关系;停止
加热进行操作时,温度 y 与时间 x 成反比例关系(如图).已知该材料在操作加工前的温度为 15℃,
教学重难点:
掌握反比例函数的性质,能利用这些性质分析和解决一些简单的实际问题
要点一、反比例函数的概念
一般地,形如 y k ( k 为常数, k 0 )的函数称为反比例函数,其中 x 是自变量, y 是函数, x

八年级数学反比例函数练习题

八年级数学反比例函数练习题

第一课时[A 组]1、下列函数中,哪些是反比例函数?( )(1)y=-3x ; (2)y=2x+1; (3) y=-x 2;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数:(1) x y 1-= ;(2)xy=12 ;(3) xy=-13 (4)y=3x3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式;(2)当13x =时,求y 的值; (3)y =3时,x 的值。

7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗?8、当m 为何值时,函数224-=m x y 是反比例函数,并求出其函数解析式.9、已知y 成反比例,且当4b =时,1y =-。

求当10b =时,y 的值。

10:画出下列函数双曲线,y=-x 2的图象,已知点A (-3,a )、B (-2,b ),C(4,c)在双曲线,y=-x 2的图象令上,请把[B 组]11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比例函数。

12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式(2)若y 与2x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( )(A )xy 1=(x >0) (B )x y 1-= (x >0)(C )xy 1=(x <0) (D )x y 1-= (x <0)第二课时[A 组]1、xy 3-=的图像叫 ,图像位于 象限,在每一象限内,当x 增大时,则y ;函数4y x=图象在第象限,在每个象限内y 随x 的减少而 2:、根据下列表格中x 与y 的对应值:(1)在直角坐标系中,描点画出图象;(2)试求式。

反比例函数的应用专题练习(含答案)

反比例函数的应用专题练习(含答案)

初二数学反比例函数的应用课后练习(答题时间:60分钟)一、选择题1. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A . x y 300=(x >0)B . xy 300=(x≥0) C . y =300x (x≥0) D . y =300x (x >0)2. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k ,即pV =k (k 为常数,k >0),下列图象能正确反映p 与V 之间函数关系的是( )3. 小华以每分钟x 字的速度书写,y 分钟写了300字,则y 与x 的函数关系为( )A . x=300yB . y=300x (0>x )C . x+y=300D . y=300x x- 二、解答题4. 王大爷家需要建一个面积为2 500米2的长方形养鸡厂.(1)养鸡厂的长y 米与宽x 米有怎样的函数关系?(2)王大爷决定把养鸡厂的长确定为250米,那么宽应是多少?(3)由于受厂地限制,养鸡厂的宽最多为20米,那么养鸡厂的长至少应为多少米?5. 一个圆台形物体的上底面积是下底面积的23,如图所示,放在桌面上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?6. 一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3.(ρ、V 成反比例)(1)求ρ与V 的函数关系式;(2)求当V=9m 3时ρ的值.7. 某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.求y 与x 之间的函数关系式.8. 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (min )成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?一、选择题1. A ;xy=300,注意自变量的取值范围2. C ;解题思路:vk p =,如果不与实际相结合,图象分布在一、三象限,但事实上,自变量的取值范围应为y>0.3. B二、解答题4. (1)y=2500x(2)y=250,x=10米 (3)125,20y 2500,2500≥≤==y x xy ,长至少为125米 5. •300Pa6. (1)V=5m 3时,ρ=1.98kg/m 3 ,ρ=9.9V(2)V=9m 3 ,ρ=1.1kg/m 3 7. 设4.0y -=x k ,当 x=0.65元时,y=0.8. k=0.2,化简得y=152x - 8. 解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = 145k =.∴此阶段函数解析式为45y x = (2)设药物燃烧结束后的函数解析式为22(0)k y k x=≠, 由题意得:2810k = 280k =.∴此阶段函数解析式为80y x= (3)当 1.6y <时,得80 1.6x< 0x >1.680x >50x >∴从消毒开始经过50分钟后学生才可以回教室.。

北师大版九年级数学上册课时练:第六章 《反比例函数》 (培优篇)

北师大版九年级数学上册课时练:第六章 《反比例函数》 (培优篇)

课时练:第六章 《反比例函数》 (培优篇)一.选择题1.下列各点中,在反比例函数y =图象上的是( )A .(﹣1,8)B .(﹣2,4)C .(1,7)D .(2,4)2.如果点A (﹣1,y 1)、B (1,y 2)、C (2,y 3)是反比例函数图象上的三个点,则下列结论正确的是( )A .y 1>y 3>y 2B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 3>y 1>y 2 3.函数图象的大致形状是( )A .B .C .D .4.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y =﹣x +6于B 、C 两点,若函数y =(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )A .5≤k ≤20B .8≤k ≤20C .5≤k ≤8D .9≤k ≤20 5.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P(4a ,a )是反比例函数y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k 的值为( )A .16B .1C .4D .﹣166.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .B .C .D .7.函数y =ax ﹣a 与y =(a ≠0)在同一直角坐标系中的图象可能是( ) A . B . C . D .8.如图,A 、C 分别是x 轴、y 轴上的点,双曲线y =(x >0)与矩形OABC 的边BC 、AB分别交于E 、F ,若AF :BF =1:2,则△OEF 的面积为( )。

(完整word)新人教版九年级下第26章《反比例函数》课时作业及答案(全套),推荐文档

(完整word)新人教版九年级下第26章《反比例函数》课时作业及答案(全套),推荐文档

第二十六章 反比例函数 26.1 反比例函数 第1课时 反比例函数1.下列函数中,不是反比例函数的是( )A .y =-3xB .y =-32xC .y =1x -1D .3xy =22.已知点P (-1,4)在反比例函数y =kx(k ≠0)的图象上,则k 的值是( )A .-14 B.14C .4D .-43.反比例函数y =15x 中的k 值为( )A .1B .5 C.15D .04.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数解析式为( )A .y =400xB .y =14xC .y =100xD .y =1400x5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( ) A .正比例函数关系 B .反比例函数关系 C .一次函数关系 D .不能确定6.反比例函数y =kx的图象与一次函数y =2x +1的图象都经过点(1,k ),则反比例函数的解析式是____________.7.若y =1x2n -5是反比例函数,则n =________.8.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数解析式是__________(不考虑x 的取值范围).9.已知直线y =-2x 经过点P (-2,a ),反比例函数y =kx(k ≠0)经过点P 关于y 轴的对称点P ′.(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.10.已知函数y =(m +1)xm 2-2是反比例函数,求m 的值.11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围.(1)在时速为60 km的运动中,路程s(单位:km)关于运动时间t(单位:h)的函数关系式;(2)某校要在校园中辟出一块面积为84 m2的长方形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式.第2课时反比例函数的图象和性质1.反比例函数y =-1x(x >0)的图象如图26-1-7,随着x 值的增大,y 值( )图26-1-7A .增大B .减小C .不变D .先增大后减小2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)3.反比例函数y =k 2+1x的图象大致是( )4.如图26-1-8,正方形ABOC 的边长为2,反比例函数y =kx的图象经过点A ,则k 的值是( )图26-1-8A .2B .-2C .4D .-45.已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大6.已知反比例函数y =bx(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y=x +b 的图象不经过第几象限.( )A .一B .二C .三D .四7.若反比例函数y =kx(k <0)的函数图象过点P (2,m ),Q (1,n ),则m 与n 的大小关系是:m ____n (填“>”“=”或“<”).8.已知一次函数y =x -b 与反比例函数y =2x的图象,有一个交点的纵坐标是2,则b的值为________.9.已知y 是x(1)(2)根据函数解析式完成上表.10.(2012年广东)如图26-1-9,直线y =2x -6与反比例函数y =kx(x >0)的图象交于点A (4,2),与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.图26-1-911.当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )12.如图26-1-10,直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ,C 两点,A 为y 轴上的任意一点,则△ABC 的面积为( )图26-1-10A .3 B.32t C.32D .不能确定13.如图26-1-11,正比例函数y =12x 的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.图26-1-1126.2 实际问题与反比例函数1.某学校食堂有1500 kg 的煤炭需运出,这些煤炭运出的天数y 与平均每天运出的质量x (单位:kg)之间的函数关系式为____________.2.某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.3.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例⎝⎛⎭⎫即y =kx (k ≠0),已知200度近视眼镜的镜片焦距为0.5 m ,则y 与x 之间的函数关系式是____________.4.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y (单位:m/min)可以表示为y =1500x;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y (单位:N/m 2)可以表示为y =1500x……函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:________________________________________________________________________. 5.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d (单位:天),平均每天工作的时间为t (单位:小时),那么能正确表示d 与t 之间的函数关系的图象是( )6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa)是气体体积V (单位:m 3)的反比例函数,其图象如图26-2-2.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )图26-2-2A .不小于54 m 3B .小于54 m 3C .不小于45 m 3D .小于45m 37.某粮食公司需要把2400吨大米调往灾区救灾.(1)调动所需时间t (单位:天)与调动速度v (单位:吨/天)有怎样的函数关系?(2)公司有20辆汽车,每辆汽车每天可运输6吨,预计这批大米最快在几天内全部运到灾区?8.如图26-2-3,先在杠杆支点左方5 cm处挂上两个50 g的砝码,离支点右方10 cm 处挂上一个50 g的砝码,杠杆恰好平衡.若在支点右方再挂三个砝码,则支点右方四个砝码离支点__________cm时,杠杆仍保持平衡.图26-2-39.由物理学知识知道,在力F(单位:N)的作用下,物体会在力F的方向上发生位移s(单位:m),力F所做的功W(单位:J)满足:W=Fs,当W为定值时,F与s之间的函数图象如图26-2-4,点P(2,7.5)为图象上一点.(1)试确定F与s之间的函数关系式;(2)当F=5时,s是多少?图26-2-410.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图26-2-5所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?图26-2-511.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元.乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x (400≤x <600)元,优惠后得到商家的优惠率为p ⎝ ⎛⎭⎪⎫p =优惠金额购买商品的总金额,写出p 与x 之间的函数关系式,并说明p 随x 的变化情况; (3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x (200≤x <400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.第二十六章 反比例函数26.1 反比例函数第1课时 反比例函数【课后巩固提升】1.C 2.D 3.C 4.C 5.B6.y =3x解析:把点(1,k )代入函数y =2x +1得:k =3,所以反比例函数的解析式为:y =3x. 7.3 解析:由2n -5=1,得n =3.8.y =90x 解析:由题意,得12⎝⎛⎭⎫13x +x ·y =60,整理可得y =90x. 9.解:(1)将P (-2,a )代入y =2x ,得a =-2×(-2)=4.(2)∵a =4,∴点P 的坐标为(-2,4).∴点P ′的坐标为(2,4).(3)将P ′(2,4)代入y =k x 得4=k 2,解得k =8, ∴反比例函数的解析式为y =8x. 10.解:由题意,得m 2-2=-1,解得m =±1.又当m =-1时,m +1=0,所以m ≠-1.所以m 的值为1.11.解:(1)s =60t ,s 是t 的正比例函数,自变量t ≥0.(2)y =84x,y 是x 的反比例函数,自变量x >0.第2课时 反比例函数的图象和性质【课后巩固提升】1.A 2.A3.D 解析:k 2+1>0,函数图象在第一、三象限.4.D 5.D6.B 解析:当x >0时,y 随x 的增大而增大,则b <0,所以一次函数不经过第二象限.7.> 解析:k <0,在第四象限y 随x 的增大而增大.8.-1 解析:将y =2代入y =2x,得x =1.再将点(1,2)代入y =x -b ,得2=1-b ,b =-1.9.解:(1)设y =k x (k ≠0),把x =-1,y =2代入y =k x 中,得2=k -1,∴k =-2. ∴反比例函数的解析式为y =-2x. (2)如下表:10.解:(1)把A (4,2)代入y =k x ,2=k 4,得k =8,对于y =2x -6,令y =0,即0=2x -6,得x =3,∴点B (3,0).(2)存在.如图D55,作AD ⊥x 轴,垂足为D ,图D55则点D (4,0),BD =1.在点D 右侧取点C ,使CD =BD =1,则此时AC =AB ,∴点C (5,0). 11.C 12.C 解析:因为直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ⎝⎛⎭⎫t ,2t ,C ⎝⎛⎭⎫t ,-1t ,所以BC =3t ,所以S △ABC =12·t ·3t =32. 13.解:(1)设点A 的坐标为(a ,b ),则b =k a,∴ab =k . ∵12ab =1,∴12k =1.∴k =2. ∴反比例函数的解析式为y =2x. (2)由⎩⎨⎧ y =2x ,y =12x 得⎩⎪⎨⎪⎧x =2,y =1.∴A 为(2,1). 设点A 关于x 轴的对称点为C ,则点C 的坐标为(2,-1).令直线BC 的解析式为y =mx +n .∵B 为(1,2),∴⎩⎪⎨⎪⎧ 2=m +n ,-1=2m +n .∴⎩⎪⎨⎪⎧ m =-3,n =5. ∴BC 的解析式为y =-3x +5.当y =0时,x =53.∴P 点为⎝⎛⎭⎫53,0. 26.2 实际问题与反比例函数【课后巩固提升】1.y =1 500x 2.y =200x 10 3.y =100x 4.体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可)5.C6.C 解析:设p =k V ,把V =1.6,p =60代入,可得k =96,即p =96V.当p ≤120 kPa 时,V ≥45m 3.7.解:(1)根据题意,得v t =2400,t =2400v .(2)因为v =20×6=120,把v =120代入t =2400v ,得t =2400120=20. 即预计这批大米最快在20天内全部运到灾区.8.2.5 解析:设离支点x 厘米,根据“杠杆定律”有100×5=200x ,解得x =2.5.9.解:(1)把s =2,F =7.5代入W =Fs ,可得W =7.5×2=15,∴F 与s 之间的函数关系式为F =15s. (2)把F =5代入F =15s,可得s =3. 10.解:(1)将(40,1)代入t =k v ,得1=k 40,解得k =40. 函数关系式为:t =40v .当t =0.5时,0.5=40m, 解得m =80.所以,k =40,m =80.(2)令v =60,得t =4060=23. 结合函数图象可知,汽车通过该路段最少需要23小时. 11.解:(1)400≤x <600,少付200元,∴应付510-200=310(元).(2)由(1)可知少付200元,∴函数关系式为:p =200x. ∵k =200,由反比例函数图象的性质可知p 随x 的增大而减小.(3)购x 元(200≤x <400)在甲商场的优惠金额是100元,乙商场的优惠金额是x -0.6x =0.4x .当0.4x <100,即200≤x <250时,选甲商场优惠;当0.4x =100,即x =250时,选甲乙商场一样优惠;当0.4x >100,即250<x <400时,选乙商场优惠.。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

九年级数学北师大版上册 6反比例函数的应用 课时练(含答案)

九年级数学北师大版上册 6反比例函数的应用  课时练(含答案)

课时练6.3反比例函数的应用一、单选题1.已知一次函数y1=kx-b 与反比例函数y2= k x,在同一平面直角坐标系中的图象如图所示,则当kx< kx+b时,x的取值范围是()A.x<-1或0<x<3B.-1<x<0或x>3C.-3<x<0或x> 1D.x>32.若双曲线y=k x与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1B.1C.﹣2D.2 3.已知点A(2,3)在反比例函数y=k+1x的图象上,则k的值是()A.﹣7B.7C.﹣5D.5 4.若点A(3,-4)、B(-2,m)在同一个反比例函数的图象上,则m的值为()A.6B.-6C.12D.-125.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<-2或x>2B.x<-2或0<x<2 C.-2<x<0或0<x<2D.-2<x<0或x>2二、填空题6.在平面直角坐标系中,正比例函数y1=12x与反比例函数y2=k x的图象交于点A(a,−2),则k=.7.一次函数y=kx+1的图象经过(1,2),则反比例函数y=k x的图象经过点(2, ).8.如图,一次函数与反比例函数的图象交于A (1,12)和B (6,2)两点.点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图象于点M 、N ,则四边形PMON 面积的最大值是 .9.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .三、解答题10.已知反比例函数 y =m−5x的图象过点P (-1,3),求m 的值和该反比例函数的表达式.11.如图,矩形OABC 的顶点A ,C 分别在x ,y 轴的正半轴上,点D 为对角线OB 的中点,点E(4,n)在边AB 上,反比例函数y =k x(k≠0)在第一象限内的图象经过点D ,E ,且tan∠BOA =12.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x ,y 轴正半轴交于点H ,G ,求线段OG 的长.12.如图,在平面直角坐标系中,点A 的横坐标为8,AB∠x 轴于点B ,sin∠OAB=45,反比例函数y=k x的图象的一支经过AO 的中点C ,交AB 于点D . (1)求反比例函数的解析式;(2)四边形OCDB的面积.参考答案1.B2.B3.D4.A5.D6.87.128.2529.y=80x10.解:把点P (-1,3)代入 y =m−5x,得 m−5−1=3 .解得 m =2 . 把m=2代入 y =m−5x ,得 y =2−5x,即 y =−3x . ∴反比例函数的表达式为 y =−3x. 11.解:(1)在Rt∠BOA 中,∵OA =4,tan∠BOA =12, ∴AB =OA×tan∠BOA =2.(2)∵点D 为OB 的中点,点B(4,2),∴点D(2,1), 又∵点D 在y =k 2的图象上,∴1=k 2, ∴k =2,∴y =2x. 又∵点E 在y =2x图象上, ∴4n =2,∴n =12. (3)设点F(a ,2),∴2a =2,∴CF =a =1,连接FG ,设OG =t ,则OG =FG =t ,CG =2-t , 在Rt∠CGF 中,GF 2=CF 2+CG 2,∴t 2=(2-t)2+12,解得t =54,∴OG =t =54. 12.解:(1)∵A 点的坐标为(8,y ), ∴OB=8,∵AB∠x 轴于点B ,sin∠OAB=45, ∴OB OA =45, ∴OA=10,由勾股定理得:AB=√OA 2−OB 2=6,∵点C 是OA 的中点,且在第一象限内, ∴C (4,3),∵点C 在反比例函数y=k x的图象上, ∴k=12,∴反比例函数解析式为:y=12x; (2)作CE∠x 轴于点E .则E 的坐标是(4,0). OE=BE=4,CE=3.在y=12x 中,令x=8,解得y=32,则BD=32. 则S 四边形OCDB =S ∠OCE +S 梯形CEBD =12OE•CE+12(CE+BD )•BE=12×3×4+12(3+32)×4=6+9=15.。

北师大版九年级数学上册第六章《反比例函数的图像和性质》课时练习题(含答案)

北师大版九年级数学上册第六章《反比例函数的图像和性质》课时练习题(含答案)

北师大版九年级数学上册第六章《2.反比例函数的图像和性质》课时练习题(含答案)一、单选题1.反比例函数6y x=-的图像大致是( )A .B .C .D .2.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .63.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<4.反比例函数的图像如图所示,则这个反比例函数的表达式可能是( )A .4y x =-B .3y x=-C .83y x=D .52y x=-5.一次函数y ax a =-与反比例函数(0)ay a x=≠在同一坐标系中的图象可能是( )A .B .C .D .6.若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .231x x x <<C .132x x x <<D .312x x x <<7.已知反比例函数y kx=(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限8.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC //BD //y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32二、填空题9.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.10.已知反比例函数2a y x-=的图象在第二、第四象限,则a 的取值范围是______. 11.在平面直角坐标系中,一次函数2y x =与反比例函数()0ky k x=≠的图象交于()11,A x y ,()22,B x y 两点,则12y y +的值是____________.12.已知函数25(1)ny n x -=+是反比例函数,且图象位于第一、三象限,则n =________.13.如图,点A 是反比例函数1(0)k y x x=<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.14.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y =3x (x >0),y =﹣6x(x >0)的图像交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为_____.三、解答题15.九年级某数学兴趣小组在学习了反比例函数的图像与性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下:(1)绘制函数图像列表:下表是x 与y 的几组对应值,其中m =_________. x…3-2-1-12-121 2 3 …y (23)12 4 4 2 1 m …描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出各点,请你描出剩下的点; 连线:用平滑的曲线顺次连接各点,已经画出了部分图像,请你把图像补充完整; (2)观察函数图像;下列关于该函数图像的性质表述正确的是:__________;(填写代号) ①函数值y 随x 的增大而增大;②函数图像关于y 轴对称;③函数值y 都大于0. (3)运用函数性质:若点()()()1230.5,,1.5,,2.5,-y y y ,则1y 、2y 、3y 大小关系是__________.16.已知反比例函数y =4kx-,分别根据下列条件求出字母k 的取值范围. (1)函数图象位于第一、三象限;(2)在每个象限内,y 随着x 的增大而增大.17.已知反比例函数1k y x-=(k 为常数,1k ≠);(1)若点()1,2A 在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围.18.如图,在平面直角坐标系中,四边形OABC 为矩形,点B 在函数y 1=4x (x >0)的图象上,边AB 与函数y 2=2x(x >0)的图象交于点D .求四边形ODBC 的面积.19.已知反比例函数ky x=(k 为常数,k≠0)的图象经过点A (2,3). (1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.20.已知,在平面直角坐标系中,有反比例函数y =3x的函数图像:(1)如图1,点A是该函数图像第一象限上的点,且横坐标为a(a>0),延长AO使得AO=A'O,判断点A'是否为该函数图像第三象限上的点,并说明理由;(2)如图2,点B、C均为该函数图像第一象限中的点,连接BC,点D为线段BC的中点,请仅用一把无刻度的直尺作出点D关于点O的对称点D'.(不写作图过程,保留作图痕迹)参考答案1.C2.B3.B4.D5.D6.C7.C8.B9.k<010.2a<11.012.213.20-14.9 215.(1)解:把x=3代入函数2yx =,得:23m y==;如图(2)解:由函数图像可知,当x <0时,函数值y 随x 的增大而增大;当x >0时,函数值y 随x 的增大而减小;函数图像关于y 轴对称;函数值y 都大于0, ∴下列关于该函数图像的性质表述正确的是②③; (3)解:分别把x =-0.5、x =1.5、x =2.5代入函数2y x=, 得1y =4,2y =43,3y =45,∴123y y y >>.16.(1)∵双曲线在第一、三象限,∴4-k >0,k <4; (2)∵在每个象限内,y 随x 的增大而增大,∴4-k <0,k >4. 17.(1)∵点()1,2A 在这个函数的图象上, ∴121k -=, 解得3k =. 故答案是3k =. (2) 在函数1k y x-=图象的每一分支上,y 随x 的增大而增大, ∴10k -<, ∴1k <. 故答案是:1k <.18.解:∵点D是函数y2=2x(x>0)图象上的一点,∴△AOD的面积为1212⨯=,∵点B在函数y1=4x(x>0)的图象上,四边形ABCO为矩形,∴矩形ABCO的面积为4,∴阴影部分ODBC的面积=矩形ABCO的面积-△AOD的面积=4-1=3,19.解:(1)∵反比例函数kyx=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得k32=,解得,k=6.∴这个函数的解析式为:6yx=.(2)∵反比例函数解析式6yx =,∴6=xy.分别把点B、C的坐标代入,得(-1)×6=-6≠6,则点B不在该函数图象上;3×2=6,则点C在函数图象上.(3)∵k>0,∴当x<0时,y随x的增大而减小.∵当x=-3时,y=-2,当x=-1时,y=-6,∴当-3<x<-1时,-6<y<-2.20.(1)点A'是该函数图像第三象限上的点,理由如下:过点A作AM⊥x轴于点M,过点A'作A N x'⊥轴于点N,点A 是反比例函数y =3x的图像第一象限上的点,且横坐标为a (a >0),3y a∴=,即3(,)A a a ,3,OM a AM a∴==, ,,AOM A ON AMO A NO OA OA '''∠=∠∠=∠=, ()AOM A ON AAS '∴≅,3,OM ON a AM A N a'∴====, 3(,)A a a '∴--,3()3a a-⋅-=,∴点A '是该函数图像第三象限上的点;(2)连接BO 并延长,交反比例函数第三象限的图像于点B ',连接CO 并延长,交反比例函数第三象限的图像于点C ',连接B C '',连接DO 并延长,交B C ''于点D , 此时,点D 即为所求.。

(完整版)反比例函数练习题及答案

(完整版)反比例函数练习题及答案

反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。

反比例函数练习题及答案6套文库.doc

反比例函数练习题及答案6套文库.doc

反比例函数练习(1)一、判断题1.当尤与y乘积一定时,v就是尤的反比例函数,尤也是),的反比例函数()2.如果一个函数不是正比回函数,就是反比例函数()3.),与疽成反比例时v与]并不成反比例()%1.填空题4.己知三角形的面积是定值S,则三角形的高与底。

的函数关系式是力=这时h是a的;5.如果),与尤成反比例,z与y成正比例,则z与尤成;6.如果函数y = kx2k2+k~2是反比例函数,那么如,此函数的解析式是—7.有一面积为60的梯形,其上底长是下底长的L,若下底长为x,高为y,则y 3与X的函数关系是三、选择题:8.如果函数y = r妇为反比例函数,则m的值是()A -1B 0 cl D 129.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s千米与行进时间t的函数图像的示意图,同学们画出的示意图如下,你认为正确的是()10、下列函数中,y是x反比例函数的是()2 1(A))=M1 (B) y=—(C) y = —(D)2y=x•< 5x%1.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:兄(y)29282726. . ♦ . .♦321 -……一逐渐凋沙弟(X)1234272829... —逐渐增多②这是一个反比例函数吗?③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.② 出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写X),的取值范围)②虽然当弟吃的饺子个数增多时,兄吃的饺子数()「)在减少,但y与尤是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如下表:①写出放光池中水用时t(小时)与放水速度V(吨/小时)之间的函数关系.%1.已知y是邪勺反比例函数,当户2时,y=6.⑴写出),与尤的函数关系式;⑵求当x=4时y的值.%1.已知口48CD中,AB = 4, AD = 2, E是AB边上的一动点,设AE=X, DE延长线交CB的延长线于F,设CF = y,求)',与尤之间的函数关系。

人教版 九年级数学 26.1 反比例函数 课时训练(含答案)

人教版 九年级数学 26.1 反比例函数 课时训练(含答案)

人教版九年级数学26.1 反比例函数课时训练一、选择题1. 点(2,-4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是() A. (2,4) B. (-1,-8) C. (-2,-4) D. (4,-2)2. (2020·海南)下列各点中,在反比例函数y=8x图象上的点是( ) A.(-1,8) B.(-2,4) C.(1,7) D.(2,4)3. 设函数y=kx(k≠0,x>0)的图象如图所示,若z=1y,则z关于x的函数图象可能为()4. (2020·营口)反比例函数y=1x(x<0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限5. 反比例函数y=-1x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26. (2020·湖北孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图像如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R7. (2020·青海)若ab<0,则正比例函数y=ax与反比例函数y=bx在同一平面直角坐标系中的大致图象可能是( )8. (2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B (3,0)为顶点的R t△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y的图象上,则k的值为()A.36 B.48 C.49 D.64二、填空题9. 已知反比例函数y=kx的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式____________.yxyO O xA.10. 已知反比例函数y =kx (k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是________.11. 如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1=1x ,则y 2与x 的函数表达式是________.12. 双曲线y =m -1x 在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是________.13. 已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx (m <0)图象上的两点,则y 1________y 2(填“>”或“=”或“<”).14. 如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.15. 如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC的中点D ,若矩形OABC 的面积为8,则k 的值为________.16. (2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,点A 关于x 轴的对称点B 在双曲线y =2kx,则k 1+k 2的值为__________.三、解答题17. 如图,函数y 1=k 1x +b的图象与函数y 2=k 2x (x>0)的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3). (1)求函数y 1的表达式和B 点坐标;(2)观察图象,比较当x>0时,y 1与y 2的大小.18. 在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第二、第四象限内的A ,B 两点,与y 轴交于C 点,过点A 作AH ⊥y轴,垂足为H ,OH =3,tan ∠AOH =43,点B 的坐标为(m ,-2). (1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.19. (2019·山东泰安)已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.人教版九年级数学26.1 反比例函数课时训练-答案一、选择题1. 【答案】D【解析】由题知,A(2,-4)在反比例函数图象上,则k=2×(-4)=-8,所以只需要某个点的横纵坐标的乘积等于-8,该点就在这个反比例函数图象上.不难得到,只有D选项中2×(-4)=-8.2. 【答案】D【解析】∵反比例函数的系数8,∴该反比例函数图象上的点的横坐标与纵坐标之积为8,故选D.3. 【答案】D【解析】函数y=kx(k≠0,x>0)的图象在第一象限,则k>0,x>0.由已知得z=1y=1kx=xk,所以z关于x的函数图象是一条射线,且在第一象限,故选D.4. 【答案】【答案】C【解析】结合反比例函数图象的性质,∵k=1>0,所以反比例函数y=1x的图象分布在第一、三象限,又∵x<0,所以它的图象位于第三象限.5. 【答案】D【解析】根据反比例函数的性质或者利用特殊值法即可作出选择.方法一:∵反比例函数y=-1x中k=-1<0,∴当x<0时,y>0;当x>0时,y<0.又∵x1<0<x2,∴y1>0>y2.故选D.方法二:令x1=-1,则y1=1,令x2=1,则y2=-1,∴y1>0>y2.6. 【答案】C【解析】设反比例函数解析式为I=kR,把图中点(8,6)代入得:k=8×6=48.故选C.7. 【答案】B【解析】∵ab<0,∴a,b异号.(1)当a>0,b<0时,正比例函数y=ax的图象是经过一、三象限和原点的直线,反比例函数y=bx是位于二、四象限的双曲线.选项中没有这样的图形;(2)当a<0,b>0时,正比例函数y=ax的图象是经过二、四象限和原点的直线,反比例函数y=bx是位于一、三象限的双曲线.选项B中的图形与此相符.故选B.8. 【答案】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△P AE +S△P AB+S△PBD+S△OAB=S矩形PEOD,∴t ×(t ﹣4)5×t t ×(t ﹣3)3×4=t ×t ,解得t =6, ∴P (6,6), 把P (6,6)代入y 得k =6×6=36.故选:A .二、填空题9. 【答案】y =-2x (答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x 的增大而增大,∴k <0,∴k 可取-2(答案不唯一).10. 【答案】k>0【解析】∵反比例函数y =kx (k≠0),图象所在的每一个象限内,y 的值随着x 的值增大而减小,∴k 的取值范围是:k >0.11. 【答案】y 2=4x 【解析】设y 2与x 的函数关系式为y 2=k x,A 点坐标为(a ,b),则ab=1.又A点为OB的中点,因此,点B的坐标为(2a,2b),则k=2a·2b=4ab =4,所以y2与x的函数关系式为y2=4x.12. 【答案】m<1【解析】∵在每个象限内,函数值y随x的增大而增大,∴双曲线在二、四象限内,∴在函数y=m-1x中,m-1<0,即m<1.13. 【答案】>【解析】∵m<0,∴反比例函数y=mx的图象位于第二、四象限,且在每一象限内y随x的增大而增大,又∵m-1>m-3,∴y1>y2.14. 【答案】6【解析】设A点的坐标为(a,9a),直线OA的解析式为y=kx,于是有9a=ka,∴k=9a2,直线为y=9a2x,联立得方程组⎩⎪⎨⎪⎧y=9a2xy=1x,解得B点的坐标为(a3,3a),∵AO=AC,A(a,9a),∴C(2a,0),∴S△ABC=S△AOC-S△BOC=12×2a×9a -12×2a×3a=9-3=6.15. 【答案】2【解析】由题意可知,D点在反比例函数图象上,如解图所示,过点D作DE⊥x轴于点E,作DF⊥y轴于点F,则k=x D·y D=DF·DE=S矩形OEDF,又D为对角线AC中点,所以S矩形OEDF=14S矩形OABC=2,∴k=2.16. 【答案】0【解析】∵点A(a,b)(a>0,b>0)在双曲线y=1kx上,∴k1=ab;又∵点A 与点B 关于x 轴对称,∴B (a ,–b ), ∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0; 故答案为:0.三、解答题17. 【答案】解:(1)由直线过A 、C 两点得⎩⎨⎧2k 1+b =1,b =3解得k 1=-1,b =3.∴y 1=-x +3.将A 点坐标代入y 2=k 2x 得1=k 22,∴k 2=2,∴y 2=2x .设B 点坐标为(m ,n),∵B 是函数y 1=-x +3与y 2=2x 图象的交点, ∴-m +3=2m ,解得m =1或m =2,由题意知m =1, 此时n =2m =2, ∴B 点的坐标为(1,2). (2)由图知:①当0<x <1或x >2时,y 1<y 2; ②当x =1或x =2时,y 1=y 2; ③当1<x <2时,y 1>y 2.18. 【答案】(1)【思路分析】在Rt △AOH 中用三角函数求出AH ,再用勾股定理求出AO ,进而得周长.解:在Rt △AOH 中,tan ∠AOH =43,OH =3,∴AH =OH·tan ∠AOH =4,(2分)∴AO =OH 2+AH 2=5,∴C △AOH =AO +OH +AH =5+3+4=12.(4分)(2)【思路分析】由(1)得出A 点坐标,再用待定系数法求出反比例函数解析式,由反比例函数解析式求出B 点坐标,最后把A 、B 点坐标代入一次函数解析式中求出一次函数解析式.解:由(1)得,A(-4,3),把A(-4,3)代入反比例函数y =k x 中,得k =-12,∴反比例函数解析式为y =-12x ,(6分)把B(m ,-2)代入反比例函数y =-12x 中,得m =6,∴B(6,-2),(8分)把A(-4,3),B(6,-2)代入一次函数y =ax +b 中,得⎩⎨⎧6a +b =-2-4a +b =3, ∴⎩⎪⎨⎪⎧a =-12b =1, ∴一次函数的解析式为y =-12x +1.(10分)19. 【答案】(1)如图1,过点A 作AD ⊥x 轴于D ,∵B(5,0),∴OB=5,∵S△OAB =152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD22AB AD-,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2,∴a=658,∴P(658,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(658,0).。

(完整版)反比例函数练习题及答案

(完整版)反比例函数练习题及答案

反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。

反比例函数的图象与性质》练习题

反比例函数的图象与性质》练习题

反比例函数的图象与性质》练习题1.2 反比例函数的图像与性质一、选择题1.已知反比例函数 $y=\frac{2}{x}$,则这个函数的图像一定经过()A。

(2,1) B。

(2,-1) C。

(2,4) D。

(-1,2)2.如果反比例函数 $y=\frac{k}{x}$ 的图像经过点 (-3,-4),那么该函数的图像位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.反比例函数 $y=\frac{k-1}{x}$ 的图像在每个象限内,y随x的增大而减小,则k的值可为A。

-1 B。

0 C。

1 D。

24.对于反比例函数 $y=\frac{2}{x}$,下列说法不正确的是()A。

点 (-2,-1) 在它的图像上 B。

它的图像在第一、三象限C。

当 x>0 时,y随 x 的增大而减小 D。

当 x<0 时,y随 x 的增大而减小5.反比例函数 $y=\frac{k}{x}$ 的图像如图1所示,点 M 是该函数图像上一点,MN 垂直于 x 轴,垂足是点 N,如果$\triangle MON=2$,则 k 的值为()A。

2 B。

-2 C。

4 D。

-46.函数 $y=x+m$ 与 $y=\frac{2}{x^2}$ 的图像可能是()A。

在同一坐标系内的直线和双曲线 B。

在同一坐标系内的直线和抛物线 C。

在不同坐标系内的直线和双曲线 D。

在不同坐标系内的直线和抛物线7.如图2,是一次函数 $y=kx+b$ 与反比例函数$y=\frac{2}{x}$ 的图像,则关于 x 的方程$kx+b=\frac{2}{x^2}$ 的解为()A。

$x_1=1,x_2=2$ B。

$x_1=-2,x_2=-1$ C。

$x_1=1,x_2=-2$ D。

$x_1=2,x_2=-1$二、填空题8.写出一个图像在第一、三象限的反比例函数的表达式。

答:$y=-\frac{1}{x}$9.已知正比例函数$y=kx$ 与反比例函数$y=\frac{k}{x}$,则 k 的值为________。

反比例函数(教案练习)

反比例函数(教案练习)

1.1 反比例函数班级:___________姓名:___________得分:__________一.选择题1.下列函数中,表示y是x的反比例函数的是()A.y=B.y=C.y=2x D.y=2.函数y=3x﹣1是()A.正比例函数B.一次函数C.反比例函数D.二次函数3.反比例函数y=﹣中常数k为()A.﹣3 B.2 C.﹣D.﹣4.下列问题情景中的两个变量成反比例的是()A.汽车沿一条公路从A地驶往B地所需的时间t与平均速度vB.圆的周长l与圆的半径rC.圆的面积s与圆的半径rD.在电阻不变的情况下,电流强度I与电压U5.若函数y=(m﹣1)是反比例函数,则m的值是()A.±1 B.﹣1 C.0 D.1二.填空题6.反比例函数中自变量x的取值范围.7.已知:是反比例函数,则m=.8.已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.9.小华要看一部300页的小说所需的天数y与平均每天看的页数x成比例函数,表达式为.10.判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中是反比例函数,而不是.三.解答题11.下列函数中,哪些表示y是x的反比例函数:(1)y=;(2)y=;(3)xy=6;(4)3x+y=0;(5)x﹣2y=1;(6)3xy+2=0.12.已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.13.y是x的反比例函数,下表给出了x与y的一些值:x﹣2﹣1﹣13y 2﹣1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.14.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.试题解析一.选择题1.B【分析】根据反比例函数的定义判断各选项即可.【解答】解:根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.故选:B.【点评】本题考查了反比例函数的定义,属于基础题,重点是熟练掌握反比例函数的形式.2.C【分析】根据反比例函数的一般形式和概念答题.【解答】解:y=3x﹣1=,属于反比例函数.故选:C.【点评】本题考查了反比例函数的定义,反比例函数的一般形式是(k≠0)或y=kx ﹣1(k≠0).3.D【分析】找出反比例函数解析式中k的值即可.【解答】解:反比例函数y=﹣中常数k为﹣,故选:D.【点评】此题考查了反比例函数的定义,熟练掌握反比例函数解析式的一般形式是解本题的关键.4.A【分析】根据反比例函数的定义解答.【解答】解:A、t=(S是路程,定值),t与v成反比例,故本选项正确;B、l=2πr,l与r成正比例,故本选项错误;C、s=πr2,s与r2成正比例,故本选项错误;D、I=,电流强度I与电压U成正比例,故本选项错误;故选:A.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).5.B【分析】根据反比例函数的定义.即y=(k≠0),只需令m2﹣2=﹣1,m﹣1≠0即可.【解答】解:∵y=(m﹣1)是反比例函数,∴.解之得m=﹣1.故选:B.【点评】本题考查了反比例函数的定义,特别要注意不要忽略k≠0这个条件.二.填空题6.x≠0【分析】根据分母不为0可得x的取值范围.【解答】解:∵自变量x在分母上,分式的分母不为0,∴x≠0.故答案为:x≠0.【点评】本题结合分式的意义考查反比例函数自变量的取值范围;用到的知识点为:分式的分母不为0.7.-2【分析】根据反比例函数的定义.即y=(k≠0),只需令m2﹣5=﹣1、m﹣2≠0即可.【解答】解:因为是反比例函数,所以x的指数m2﹣5=﹣1,即m2=4,解得:m=2或﹣2;又m﹣2≠0,所以m≠2,即m=﹣2.故答案为:﹣2.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k ≠0)的形式.8.-2【分析】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【解答】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y==﹣2,故答案为:﹣2.【点评】本题考查了反比例函数的定义,利用待定系数法求函数解析式是解题关键.9.反;y=【分析】根据反比例关系和需要的天数等于总页数除以平均每天看的页数解答.【解答】解:∵总页数300一定,∴所需的天数y与平均每天看的页数x成反比例函数,表达式为y=.故答案为:反;y=.【点评】本题考查了反比例函数的定义,是基础题,读懂题目信息,理解反比例关系是解题的关键.10.①③④;②【分析】x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数,不属于上述两个形式的函数不是反比例函数.【解答】解:①x,y相乘为一个常数,可以整理为(k≠0)的形式,是反比例函数;③④符合(k≠0)的形式,是反比例函数;②不符合反比例函数的一般形式;故答案为①③④;②.【点评】考查反比例函数的定义,用到的知识点为:x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数.三.解答题11.【分析】先将各函数关系式变形,凡形式上符合y=(k≠0)的,则是反比例函数.【解答】解:(1)y=不是反比例函数.(2)∵y=,∴xy=.∴y=,是反比例函数.(3)∵xy=6,∴y=,是反比例函数.(4)∵3x+y=0,∴y=﹣3x,不是反比例函数.(5)∵x﹣2y=1,∴2y=x﹣1.∴y=x﹣1,不是反比例函数.(6)∵3xy+2=0,∴xy=﹣.∴y=,是反比例函数.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).12.【分析】(1)化为一般形式后可直接求出比例系数;(2)将x=﹣10代入求值即可;(3)将y=6代入求值即可.【解答】解:(1)原式=,比例系数为﹣;(2)当x=﹣10时,原式=﹣=;(3)当y=6时,﹣=6,解得,x=﹣.【点评】本题考查了反比例函数的定义,将函数化为一般形式是解题的关键.13.【分析】(1)设反比例函数的表达式为y=,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.【解答】解:(1)设反比例函数的表达式为y=,把x=﹣1,y=2代入得k=﹣2,y=﹣.(2)将y=代入得:x=﹣3;将x=﹣2代入得:y=1;将x=﹣代入得:y=4;将x=代入得:y=﹣4,将x=1代入得:y=﹣2;将y=﹣1代入得:x=2,将x=3代入得:y=﹣.故答案为:﹣3;1;4;﹣4;﹣2;2;.【点评】本题主要考查的是反比例函数的定义、函数图象上点的坐标与函数解析式之间的关系,求得函数的解析式是解题的关键.14.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.【点评】本题考查了反比例函数,利用反比例函数的定义是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数26.1.1 反比例函数关键问答①这个实际问题中的相等关系是什么? ②反比例函数的一般形式是什么?③用待定系数法确定反比例函数的解析式,需要的条件是什么? 1.①某工厂现有原材料100吨,平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数解析式为( )A .y =100xB .y =100xC .y =x2+100 D .y =100-x2.②下列函数中,y 是x 的反比例函数的是( )A .y =-x 2B .y =-12xC .y =1x -1D .y =1x23.③已知反比例函数y =kx,当x =2时,y =-3,则k =________.命题点 1 用函数解析式表示实际问题中变量间的对应关系 [热度:95%] 4.④已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车的行驶时间t (单位:时)关于行驶速度v (单位:千米/时)的函数解析式是( )A .t =20vB .t =20vC .t =v 20D .t =10v方法点拨④利用“时间=路程速度”来构建函数解析式.5.⑤在“2016年北京郁金香文化节”中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n 株,总种植面积为S 平方米,则n 关于S 的函数解析式为________.易错警示⑤求n 关于S 的函数解析式,即用含S 的代数式表示n . 6.⑥把一个长、宽、高分别为3 cm,2 cm,1 cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm)之间的函数解析式为________.解题突破⑥(1)长方体和圆柱体的体积公式分别是什么? (2)铸造前后铜块的体积是否发生变化?7.小明家离学校1.5 km,小明步行上学需x min,那么小明步行的平均速度y (m/min)可以表示为y =1500x;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y (N/m 2)可以表示为y =1500x ;…,函数解析式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:________________________________________________________________________________________________________________. 命题点 2 识别反比例函数 [热度:98%] 8.⑦计划修建铁路l 千米,铺轨天数为t (天),每日铺轨量为s (千米),则在下列三个结论中,正确的是( )①当l 一定时,t 是s 的反比例函数; ②当t 一定时,l 是s 的反比例函数; ③当s 一定时,l 是t 的反比例函数.A .①B .②C .③D .①②③ 模型建立⑦识别反比例函数的方法:(1)看解析式是否满足y =k x(k 为常数,k ≠0)的形式;(2)看两个变量的积是否确定.9.设某矩形的面积为S ,相邻的两条边长分别为x 和y .那么当S 一定时,给出以下四个结论:①x 是y 的正比例函数;②y 是x 的正比例函数;③x 是y 的反比例函数;④y 是x 的反比例函数.其中正确的为( )A .①②B .②③C .③④D .①④ 10.⑧若y 是x 的反比例函数,x 是z 的正比例函数,则y 是z 的________函数. 解题突破⑧借助x 这一中间量找到y 与z 的函数关系.11.下列函数:①y =2x -1;②y =-5x ;③y =x 2+8x -2;④y =3x 3;⑤y =12x .其中y是x 的反比例函数的有________.(填序号)命题点 3 确定函数解析式及其应用 [热度:92%] 12.⑨根据下表中反比例函数的自变量与函数的对应值,可得p 的值为( )A .3B .1C .-2D .-6 方法点拨⑨反比例函数y =k x中的每对x ,y 的对应值的积都相等,都等于反比例函数的比例系数k . 13.⑩将x =23代入反比例函数y =-1x ,所得函数值记为y 1,又将x =y 1+1代入原反比例函数,所得函数值记为y 2,再将x =y 2+1代入原反比例函数,所得函数值记为y 3,…,如此继续下去,则y 2019的值为( )解题突破⑩分别计算出y 1,y 2,y 3,y 4,…的值,你能发现函数值有什么规律吗?14.已知y 与x 成反比例,当y =1时,x =4,则当x =2时,y =________.15.⑪已知y -2与x 成反比例,且当x =2时,y =4,求y 与x 之间的函数解析式.方法点拨 ⑪先利用待定系数法求出y -2与x 之间的函数解析式,进而写出y 与x 之间的函数解析式.16.⑫已知y =y 1+y 2,其中y 1与x 成反比例,y 2与x -2成正比例.当x =1时,y =-1;当x =3时,y =3.求:(1)y 与x 之间的函数解析式; (2)当x =-1时,y 的值.易错警示⑫同一函数解析式中,两个不同的比例系数要用不同的字母表示.A.-23 B .2 C .-13D .-32命题点 4 利用反比例函数的定义求未知字母的值 [热度:92%]17.若函数y =kxk 2-3是反比例函数,则k 的值是( )A .-1B .2C .±2 D.± 2 18.⑬若y =(m -1)x |m |-2是反比例函数,则m 的值为( ) A .2 B .-1 C .1D .0 易错警示 ⑬不要忽视反比例函数解析式中比例系数k ≠0这一隐含条件.19.⑭已知函数y =(m -1)xm 2+2m -4是反比例函数,则m 的值为________. 模型建立⑭对于形如y =ax b的函数,若它是反比例函数,则需满足a ≠0,b =-1;反之,若a ≠0,b =-1,则它是反比例函数.20.已知函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数. (1)求m 的值;(2)当函数值为4时,求对应的自变量的值.21.⑮已知函数y =(m 2+2m )xm 2+m -1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?解题突破⑮若函数为正比例函数,则自变量的指数是多少?对自变量的系数有没有限制?若函数为二次函数呢?若函数为反比例函数呢?详解详析1.B [解析] 由“平均每天用去的吨数×能用的天数=100吨”可得y =100x.2.B [解析] 形如y =kx(k ≠0)的函数是反比例函数,只有选项B 符合. 3.-6 [解析] 由题意,得-3=k2,解得k =-6.4.B [解析] 依据“时间=路程速度”可得t =20v. 5.n =3×106S[解析] 根据“每平方米种植的数量×总种植面积=3×106株”可得答案.6.S =6h[解析] 长方体铜块的体积为3×2×1=6(cm 3),则铸成的圆柱体铜块的体积为6 cm 3,所以Sh =6,所以S =6h.7.体积为1500 cm 3的圆柱的底面积为x cm 2,那么该圆柱的高y (cm)可以表示为y =1500x(答案不唯一,其他例子正确均可)8.A [解析] 依题意,得l =ts ,所以当l 一定时,t 是s 的反比例函数.9.C [解析] 由题意得S =xy ,所以x =Sy ,y =S x,所以当S 一定时,x 是y 的反比例函数,y 是x 的反比例函数.10.反比例 [解析] 由题意可设y =k 1x(k 1是常数,k 1≠0),x =k 2z (k 2是常数,k 2≠0),所以有y =k 1k 2z,所以y 是z 的反比例函数. 11.②⑤ [解析] 符合y =k x (k ≠0)的形式的只有y =-5x 和y =12x.12.D [解析] 设反比例函数的解析式为y =kx(k ≠0),则有k =2×(-3)=1×p ,解之得p =-6.13.C [解析] 由题意得y 1=-32,y 2=2,y 3=-13,y 4=-32,…,能看出函数值每三次一循环.因为2019÷3=673,所以y 2019=y 3=-13.14. 2 [解析] 设y =kx(k ≠0).因为当y =1时,x =4,所以k =2,所以当x =2时,y =22= 2. 15.解:设y -2=k x (k ≠0),因为当x =2时,y =4,所以4-2=k2,解得k =4,所以y -2=4x ,所以y =2+4x.16.解:(1)设y 1=k 1x (k 1≠0),y 2=k 2(x -2)(k 2≠0),所以y =k 1x+k 2(x -2). 因为当x =1时,y =-1;当x =3时,y =3,所以⎩⎪⎨⎪⎧-1=k 1+k 2×(-1),3=k 13+k 2,解得⎩⎪⎨⎪⎧k 1=32,k 2=52,所以y =32x +52(x -2).(2)当x =-1时,y =32×(-1)+52×(-1-2)=-9.17.D [解析] 由题意可得k 2-3=-1,解得k =± 2.18.B [解析] 由题意可得|m |-2=-1,解得m =±1.因为m -1≠0,所以m ≠1,所以m =-1.19.-3 [解析] 由题意得m 2+2m -4=-1,且m -1≠0,解得m =-3.20.解:(1)当2m 2+3m -3=-1,且2m 2+m -1≠0时,函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数.由2m 2+3m -3=-1,可解得m 1=-2,m 2=12,而当m 2=12时,2m 2+m -1=0,所以当函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数时,m 的值为-2.(2)当m 的值为-2时,反比例函数为y =5x,当函数值为4时,4=5x ,所以x =54.21.解:(1)根据题意,得⎩⎪⎨⎪⎧m 2+m -1=1,m 2+2m ≠0,解得m =1,即当m =1时,y 是x 的正比例函数.(2)根据题意,得⎩⎪⎨⎪⎧m 2+m -1=2,m 2+2m ≠0,解得m 1=-1+132,m 2=-1-132,即当m =-1+132或m =-1-132时,y 是x 的二次函数.(3)根据题意,得⎩⎪⎨⎪⎧m 2+m -1=-1,m 2+2m ≠0,解得m =-1,即当m =-1时,y 是x 的反比例函数.【关键问答】①平均每天用去的吨数×天数=总吨数. ②y =kx(k 为常数,k ≠0).③需要自变量和函数的一对对应值.。

相关文档
最新文档