圆的经典测试题及答案
圆测试题及答案解析
圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。
2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。
二、填空题1. 半径为7的圆的面积是 __________。
答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。
2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。
答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。
将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。
三、简答题1. 描述圆的切线的性质。
答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。
解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。
四、计算题1. 已知圆的半径为8,求圆的面积。
答案:圆的面积为200π。
解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。
2. 已知圆的直径为20,求圆的周长。
答案:圆的周长为20π。
解析:圆的周长公式是C = πd,其中d为直径。
将直径20代入公式得C = π × 20 = 20π。
圆的认识单元测试题及答案
圆的认识单元测试题及答案一、选择题:1. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = πdD. C = 2πd2. 半径为2厘米的圆的面积是()平方厘米。
A. 12.56B. 3.14C. 4D. 6.283. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 4二、填空题:4. 圆的半径为3厘米,其周长是________厘米。
5. 一个圆的直径是8厘米,那么它的半径是________厘米。
三、判断题:6. 圆的直径是圆内最长的线段。
()7. 圆心决定圆的位置,半径决定圆的大小。
()四、简答题:8. 请简述圆的基本概念。
五、计算题:9. 已知一个圆的半径为5厘米,求这个圆的周长和面积。
六、应用题:10. 一个圆形花坛的直径是20米,如果绕着花坛走一圈,需要走多少米?如果花坛的面积是1256平方米,那么它的半径是多少米?答案:一、选择题:1. B2. A3. B二、填空题:4. 18.845. 4三、判断题:6. 正确7. 正确四、简答题:圆是一个平面上所有与定点(圆心)距离相等的点的集合。
这个定点称为圆心,距离称为半径。
圆的边界称为圆周。
五、计算题:9. 周长:C = 2πr = 2 × 3.14 × 5 = 31.4厘米面积:A = πr² = 3.14 × 5² = 3.14 × 25 = 78.5平方厘米六、应用题:10. 周长:C = πd = 3.14 × 20 = 62.8米半径:A = πr²,所以 r² = A / π,r = √(A / π) =√(1256 / 3.14) ≈ 20米结束语:通过本单元测试题,同学们应该能够更好地理解和掌握圆的基本性质和计算方法。
希望同学们能够通过练习,加深对圆的认识,提高解题能力。
中考数学复习《圆》专题训练-附带有答案
中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
圆的练习题(含答案)
圆的练习题一.选择题1.⊙O是△ABC的外接圆,直线EF切⊙O于点A,若∠BAF=40°,则∠C等于()A、20°B、40°C、50°D、80°2.如图,BC是⊙O的直径,P是CB延长线上一点,P A切⊙O于点A,如果P A=, PB=1,那么∠APC等于()3.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π4.下列语句中正确的是()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴.(A)1个(B)2个(C)3个(D)4个5.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于() (A)(B)(C)(D)6.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1。
5π(C)2π(D)2。
5π7。
在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S()(A)2∶3(B)3∶4(C)4∶9(D)5∶128.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线长为() A.6 cm B.8 cm C.10 cm D.12 cm9.已知⊙O1和⊙O2相外切,它们的半径分别是1厘米和3厘米.那么半径是4厘米,且和⊙O1、⊙O2都相切的圆共有()(A)1个(B)2个(C)5个(D)6个10.已知圆的半径为6。
5厘米,如果一条直线和圆心距离为6。
5厘米,那么这条直线和这个圆的位置关系是()(A)相交(B)相切(C)相离(D)相交或相离二.填空题1.已知:如图,AB是⊙O的直径,弦CD⊥AB于P,CD=10cm,AP︰PB=1︰5.则:⊙O的半径为。
圆单元测试题及答案初三
圆单元测试题及答案初三一、选择题(每题2分,共10分)1. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 2r2. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πdD. S = 4r²3. 半径为2的圆的面积是()A. 4πB. 8πC. 12πD. 16π4. 圆的直径是半径的()A. 1倍B. 2倍C. 4倍D. 8倍5. 圆心角为60°的扇形的圆心角所对的弧长是半径的()A. 1/6B. 1/3C. 1/2D. 2/3二、填空题(每题2分,共10分)6. 半径为5的圆的周长是________。
7. 一个圆的直径是10厘米,它的半径是________厘米。
8. 圆的面积是半径平方的________倍。
9. 一个圆的半径是3厘米,它的直径是________厘米。
10. 圆的周长是直径的________倍。
三、计算题(每题10分,共20分)11. 已知圆的半径为7厘米,求该圆的周长和面积。
12. 已知扇形的圆心角为120°,半径为6厘米,求扇形的弧长和面积。
四、解答题(每题15分,共30分)13. 一个圆的周长为44厘米,求这个圆的半径。
14. 一个扇形的半径为8厘米,圆心角为150°,求这个扇形的弧长和面积。
五、结束语通过本单元的测试,同学们应该能够熟练掌握圆的基本性质和公式,能够灵活运用这些知识解决实际问题。
希望同学们在今后的学习中继续努力,不断提高自己的数学素养和解决问题的能力。
答案:一、选择题1. B2. A3. B4. B5. B二、填空题6. 10π7. 58. π9. 610. π三、计算题11. 周长:44π厘米,面积:49π平方厘米。
12. 弧长:4π厘米,面积:12π平方厘米。
四、解答题13. 半径:11厘米。
14. 弧长:10π厘米,面积:20π平方厘米。
(专题精选)初中数学圆的经典测试题及答案解析
(专题精选)初中数学圆的经典测试题及答案解析一、选择题1.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.3B.36ππC.312πD.48336ππ【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.【详解】连接OE,OF.∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.4.如图,正方形ABCD 内接于⊙O ,AB=22,则»AB 的长是( )A .πB .32πC .2πD .12π 【答案】A【解析】 【分析】连接OA 、OB ,求出∠AOB=90°,根据勾股定理求出AO ,根据弧长公式求出即可.【详解】连接OA 、OB ,∵正方形ABCD 内接于⊙O ,∴AB=BC=DC=AD ,∴»»»»AB BCCD DA ===, ∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(22)2,解得:AO=2,∴»AB的长为902 180π´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°【答案】A【解析】【分析】连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.【详解】解:连接OD,∵OC⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠OCE=180°﹣90°﹣65°=25°,∵OD=OC,∴∠ODC=∠OCD=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,∴由圆周角定理得:∠BAD=12∠DOB=20°,故选:A.【点睛】本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.7.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.22C.3D.23【答案】B【解析】【分析】根据垂径定理得到CH=BH,»»AC BC=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【详解】如图BC与OA相交于H∵OA⊥BC,∴CH=BH,»»AC AB=,∴∠AOB=2∠CDA=60°,∴BH=OB⋅sin∠3,∴BC=2BH=23,故选D.【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.8.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A .3B .23C .32D .233【答案】A【解析】连接OC ,∵OA=OC ,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC 是⊙O 切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC •tan30°=3,故选A10.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.13.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C【解析】【分析】 连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID,AD=DI,同理得到BE=EI,即可解答.【详解】连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB=22AC BC+=5∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线14.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:CD=224223,243AC CD-===,∵sin∠COD=3, CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.15.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.16.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.17.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB22AC BC+10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:OB= 22+=BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.91cm B.8cm C.6cm D.4cm【答案】B【解析】【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,22AM=5-3=4,∴AB=2AM=2×4=8.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,选:C.【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.。
圆的测试题及答案
圆的测试题及答案一、选择题1. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 圆的面积公式是()。
A. A = πr^2B. A = 2πrC. A = πd^2D. A = 2πd答案:A3. 半径为2的圆的直径是()。
A. 2B. 4C. 6D. 8答案:B4. 圆的半径增加一倍,面积增加几倍?A. 2倍B. 4倍C. 8倍D. 16倍答案:B二、填空题1. 如果一个圆的半径是3厘米,那么它的周长是______厘米。
答案:18.842. 一个圆的面积是28.26平方厘米,那么它的半径是______厘米。
答案:3三、计算题1. 已知一个圆的半径是5厘米,求它的周长和面积。
答案:周长:C = 2πr = 2 × 3.14 × 5 = 31.4厘米面积:A = πr^2 = 3.14 × 5^2 = 78.5平方厘米2. 一个圆的周长是31.4厘米,求它的半径。
答案:半径 = 周长/ (2π) = 31.4 / (2 × 3.14) = 5厘米四、简答题1. 请解释圆周率π的含义。
答案:圆周率π是一个数学常数,它表示圆的周长和直径的比值,是一个无理数,约等于3.14159。
2. 为什么圆的面积公式是πr^2?答案:圆的面积公式是πr^2,因为圆的面积可以通过将圆分割成无数个微小的扇形,然后将这些扇形重新排列成一个近似的矩形来计算。
这个矩形的长就是圆的周长的一半,即πr,宽就是圆的半径r,所以面积就是πr乘以r,即πr^2。
圆的单元测试题及答案
圆的单元测试题及答案一、选择题(每题2分,共20分)1. 圆的周长公式是()。
A. C = πdB. C = 2πrC. C = πrD. C = 2πd2. 半径为3厘米的圆的面积是()平方厘米。
A. 28.26B. 9C. 18D. 363. 圆内接四边形的对角线()。
A. 垂直B. 平行C. 相等D. 互补4. 圆的内切角是()。
A. 直角B. 锐角C. 钝角D. 无法确定5. 圆的直径是半径的()倍。
A. 1C. 3D. 4二、填空题(每题2分,共20分)6. 圆的半径为5厘米,其周长是________厘米。
7. 圆的直径为10厘米,其面积是________平方厘米。
8. 圆心角为60°的扇形,其面积占整个圆面积的________。
9. 圆的切线与半径在圆上________。
10. 圆的弧长公式是L=________。
三、简答题(每题10分,共30分)11. 描述圆的切线的性质。
12. 解释圆周角定理。
13. 圆的内接三角形的角平分线与圆的关系是什么?四、计算题(每题15分,共30分)14. 已知圆的半径为7厘米,求圆的周长和面积。
15. 已知圆的周长为44厘米,求圆的半径。
答案:一、选择题1. B2. A3. C4. A5. B二、填空题6. 31.47. 78.59. 垂直相交于一点10. rθ(其中θ为弧度)三、简答题11. 圆的切线在圆上与圆相切于一点,且与过切点的半径垂直。
12. 圆周角定理指出,一个圆周角的度数等于它所对的弧的度数的一半。
13. 圆的内接三角形的角平分线与圆相切。
四、计算题14. 周长:C = 2πr = 2 × 3.14 × 7 = 43.96厘米面积:A = πr² = 3.14 × 7² = 153.86平方厘米15. 半径:r = C/(2π) = 44/(2 × 3.14) ≈ 7厘米结束语:本单元测试题涵盖了圆的基本性质、公式和定理,通过对这些题目的练习,可以加深对圆的理解,提高解题能力。
中考数学复习《圆》经典题型及测试题(含答案)
中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。
数学初三圆的试题及答案
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
(完整版)有关圆的经典练习题及答案
圆的经典练习题及答案一、填空题1. (2011浙江省舟山,15 , 4分)如图,AB 是半圆直径,半径0C丄AB于点O, AD平分/ CAB交弧BC于点D,连结CD、0D,给出以下四个结论:① AC// 0D :②CE 0E ;③厶0DE ADO :④2CD2CE AB •其中正确结论的序号是___________________ .【答案】①④2. (2011安徽,13, 5分)如图,O 0的两条弦AB、CD互相垂直,垂足为E,且AB=CD , 已知CE=1 , ED=3,则O 0的半径是 ______________________ •4. (2011山东日照,14, 4分)如图,在以AB为直径的半圆中,有一个边长为1的内接正5. (2011山东泰安,23 , 3分)如图,FA与O 0相切,切点为A, P0交O 0于点C,点B是优弧CBA上一点,若/ ABC==32°,则/ F的度数为 ____________________________ 。
方形CDEF,则以AC和BC的长为两根的元二次方程是(第16题)【答,贝ACD=x+1=0【答案】26°6.(2011山东威海,15,3分)如图,O O的直径A B与弦C D相交于点E,若【答案】(—2,—1)8. (2011浙江杭州,14 , 4 )女口图,点A , B , C , D都在O O上,的度数等于84° CA是/ OCD的平分线,则/ ABD 十/ CAO= ________ °【答案】53°9. (2011浙江温州,14, 5分)如图,AB是O O的直径,点C, D都在O O上,连结CA,D=30 ° BC= 3,贝U AB 的长是.10. (2011浙江省嘉兴,16, 5分)如图,AB是半圆直径,半径OC丄AB于点O, AD平分 /CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四个结论:① S^2 AEC=2S^DEO ;②AC=2CD ;③线段OD是DE与DA的比例中项;④2CD CE AB .其的度数等于84° CA是/ OCD的平分中正确结论的序号是_________ .2【答案】①④ 11. (2011福建泉州,16, 4分)已知三角形的三边长分别为 3, 4, 5,则它的边与半径为1的圆的公共点个数所有可能的情况是 ______________________ .(写出符合的一种情况即 可)【答案】2 (符合答案即可)12. (2011甘肃兰州,16,4分)如图,0B 是O O 的半径,点C 、D 在O O 上,/ DCB=27 贝OBD=_________ 度。
初三圆单元测试题及答案
初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²2. 圆的周长公式为()A. 2πrB. πrC. 2πr²D. πr²3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的切线垂直于()A. 半径B. 直径C. 弦D. 切点5. 圆的内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行6. 圆的外切四边形的对角线()A. 相等B. 互补C. 垂直D. 平行7. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合8. 圆的弦中,最长的弦是()A. 直径B. 半径C. 切线D. 弦9. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍10. 圆的半径减少1倍,面积减少()A. 1倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)1. 圆的周长公式为C=2πr,其中C表示______,r表示______。
2. 圆的面积公式为A=πr²,其中A表示______,r表示______。
3. 直径是圆的两个点之间的最长距离,它的计算公式为d=______。
4. 圆的切线与半径的关系是______。
5. 圆的内接四边形的对角线具有______的性质。
6. 圆的外切四边形的对角线具有______的性质。
7. 圆的切线与半径垂直,即切线与半径的夹角为______度。
8. 圆的弦中,直径是______的弦。
9. 圆的半径增加1倍,面积增加到原来的______倍。
10. 圆的半径减少1倍,面积减少到原来的______倍。
三、解答题(每题20分,共40分)1. 已知圆的半径为5cm,求该圆的周长和面积。
2. 已知圆的周长为31.4cm,求该圆的半径,并计算其面积。
答案:一、选择题1-5:A A B A B6-10:A B A A D二、填空题1. 周长,半径2. 面积,半径3. 2r4. 垂直5. 互补6. 垂直7. 908. 最长9. 410. 1/4三、解答题1. 周长:C=2πr=2×3.14×5=31.4cm;面积:A=πr²=3.14×5²=78.5cm²。
圆测试题及答案
圆测试题及答案一、填空题1、如图,AB是半圆O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为.2、如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=√3a,那么△PMB的周长是.第1题图第2题图3、PA、PB切⊙O于A、B,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB= .4、如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是度.5、如图,以△ABC的边AB为直径作⊙O交BC于D,过D作⊙O的切线交AC 于E,要使得DE⊥AC,则△ABC的边必须满足的条件是.6、如图,在Rt△ABC中,∠A=90°,⊙O分别与AB、AC相切于点E、F,圆心O在BC上,若AB=a,AC=b,则⊙O的半径等于第4题图第5题图第6题图二、选择题7、l1、l2表示直线,给出下列四个论断:①l1∥l2;②l1切⊙O于点A;③l2切⊙O 于点B;④AB是⊙O的直径.若以其中三个论断作为条件,余下的一个作为结论,可以构造出一些命题,在这些命题中,正确命题的个数为()A、1B、2C、3D、48、如图,圆心O在边长为√2的正方形ABCD的对角线BD上,⊙O过B点且与AD、DC边均相切,则⊙O的半径是()A、2(√2-1)B、2(√2+1)C、2√2-1D、2√2+19、直角梯形ABCD中,AD∥BC,∠B=90°,AD+BC<DC,若腰DC上有一点P,使AP⊥BP,则这样的点()A、不存在B、只有一个C、只有两个D、有无数个10、如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.其中一定成立的是()A、①②④B、①③④C、②③④D、①②③11、如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,有下列结论:①∠ABP=∠AOP;②弧BC=弧DF;③OP∥BF;④AC平分∠PAB,其中结论正确的有()A、1个B、2个C、3个D、4个第10题图第11题图第12题图12、如图,已知△ABC,过点A作外接圆的切线交BC延长线于点P,PC/PA=√2/2,点D在AC上,且AD/CD=1/2 ,延长PD交AB于点E,则AE/BE的值是()三、解答题13、以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=3/5 ,那么圆心O在AB的什么位置时,⊙O与AC 相切?14、已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合)(1)当PQ∥AC,且Q为BC的中点时,求线段CP的长;(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由.15、如图1所示,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=5/6时,讨论△AD1D 与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.16、⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,(1)求弦AC、AB的长;(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.17、如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)若OE:EA=1:2,PA=6,求⊙O的半径;(3)求sin∠PCA的值.18、(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F (不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连接AC、AD.求证:①∠BAD=∠CAG;②AC•AD=AE•AF;(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.19、如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动.点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.(1)当∠QPA=90°时,判断△QCP是三角形;(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是三角形.20、如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在弧AB上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C作CE⊥AB,垂足为E.连接BD,交CE于点F.(1)当点C为弧AB的中点时(如图1),求证:CF=EF;(2)当点C不是弧AB的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.考点:切线的性质.21、如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.22、如图,PA、PB与⊙O切于A、B两点,PC是任意一条割线,且交⊙O于点E、C,交AB于点D,求证AC2/BC2=AD/BD23、如图,⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标为(1,-1),半径为√5.(1)求A,B,C,D四点的坐标;(2)求经过点D的切线解析式;(3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,试说明理由.第22题图第23题图24、当你进入博物馆的展览厅时,你知道站在何处观赏最理想?如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想.(1)设点E到墙壁的距离为x米,求a、b、m、x的关系式;(2)当a=2.5,b=2,m=1.6,求:(ⅰ)点E和墙壁距离x;(ⅱ)最大视角∠PEQ的度数.(精确到1度)答案一、填空题(共6小题,每小题4分,满分24分)1、如图,AB是半圆O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为.解:连接OD,由AB是半圆O的直径,得BC=DC,DE2=EA•EB,∵EA=1,ED=2,∴EB=4,∴AB=EB-EA=3,∴OD=OA=3/2 ,由CB切⊙O于B,CD切⊙O于D,知∠CBE=90°,∠ODE=90°,∴△CBE∽△ODE,解得EC=5,又∵CD和CB是⊙O的两条切线,∴CD=BC,则CD=EC-ED=5-2=3.2、如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=√3a,那么△PMB的周长是.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=√3a,∴tan∠MOP=MP:OM=√3,∴∠MOP=60°,∴OP=2a,∴PB=OP-OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(√3+2)a.3、PA、PB切⊙O于A、B,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB= .解:如图,连接OA,OB,∵PA、PB切⊙O于A、B,∴OA⊥PA,OB⊥PB,∴∠AOB=180°-∠BPA=180°-78°=102°,当C在优弧AB上,则∠ACB=1/2∠AOB=1/2 ×102°=51°;当C在劣弧AB上,即C′点,则∠AC′B=180°-51°=129°.4、如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是度.解:∵EB、EC是⊙O的切线,∴EB=EC,又∵∠E=46°,∴∠ECB=∠EBC=67°,∴∠BCD=180°-(∠BCE+∠DCF)=180°-99°;∵四边形ADCB内接于⊙O,∴∠A+∠BCD=180°,∴∠A=99°.5、如图,以△ABC的边AB为直径作⊙O交BC于D,过D作⊙O的切线交AC 于E,要使得DE⊥AC,则△ABC的边必须满足的条件是.解:如图,连接OD,则OD⊥BC;∵DE⊥AC,∴OD∥AC,∴∠C=∠ODB;∵OD=OB,∴∠ODB=∠B,∴∠C=∠B,∴AC=AB.6、如图,在Rt△ABC中,∠A=90°,⊙O分别与AB、AC相切于点E、F,圆心O在BC上,若AB=a,AC=b,则⊙O的半径等于解:连接OA、OE、OF,∵AB、AC相切于点E、F,∴OE⊥AB,OF⊥AC,∵△OAC的面积= 1/2AC•OF=1/2 br,同理,△OAB的面积= 1/2AB•OE=1/2 ar,又∵△ABC的面积=△OAC的面积+△OAB的面积,∴ab= br+ ar,∴r=ab/(a+b) .二、选择题(共8小题,每小题3分,满分24分)7、l1、l2表示直线,给出下列四个论断:①l1∥l2;②l1切⊙O于点A;③l2切⊙O 于点B;④AB是⊙O的直径.若以其中三个论断作为条件,余下的一个作为结论,可以构造出一些命题,在这些命题中,正确命题的个数为()A、1B、2C、3D、4解:第一种情况:①②③⇒④∵l1切⊙O于点A,l2切⊙O于点B∴OA⊥l1,OB⊥l2又∵l1∥l2∴OA⊥l2∴OA、OB为在同一条上∴AB是⊙O的直径命题成立;第二种情况:①②④⇒③∵l1切⊙O于点A∴OA⊥l1,∵AB是⊙O的直径;l1∥l2∴AB⊥l2即l2切⊙O于点B命题成立;第三种情况:①③④⇒②同第二种情况;命题成立第四种情况:②③④⇒①.∵l1切⊙O于点A,l2切⊙O于点B∴OA⊥l1,OB⊥l2又∵AB是⊙O的直径∴l1∥l2命题成立.故答案为D8、如图,圆心O在边长为√2的正方形ABCD的对角线BD上,⊙O过B点且与AD、DC边均相切,则⊙O的半径是()A、2(√2-1)B、2(√2+1)C、2√2-1D、2√2+1解:连接OE、OF,如图,设圆的半径为r,∴四边形OEDF是正方形,∴OD= √2r,BD=2,∵OB=r,∴√2r+r=2,解得r=2 √2-2,故选A.9、直角梯形ABCD中,AD∥BC,∠B=90°,AD+BC<DC,若腰DC上有一点P,使AP⊥BP,则这样的点()A、不存在B、只有一个C、只有两个D、有无数个解:这样的点有2个.设AB中点是M,使AP⊥BP的点P在以M为圆心,以1/2AB长为半径的圆上;若CD与圆M相切时,则AD+BC=DC;若CD与圆M相离时,则AD+BC>DC;已知AD+BC<DC,则CD与圆M一定相交,有两个交点.故选C.10、如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.其中一定成立的是()A、①②④B、①③④C、②③④D、①②③解:连接BD.由题意可证△PCD≌△HCD(HL),∴CH=CP;还可以证明△ADP≌△BDH(AAS),∴AD=DB;AP=BH.因圆的直径不确定,而无法证明DH为圆的切线.故选D.11、如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,有下列结论:①∠ABP=∠AOP;②弧BC=弧DF;③OP∥BF;④AC平分∠PAB,其中结论正确的有()A、1个B、2个C、3个D、4个12、如图,已知△ABC,过点A作外接圆的切线交BC延长线于点P,PC/PA=√2/2,点D在AC上,且AD/CD=1/2 ,延长PD交AB于点E,则AE/BE的值是()解:如图,由∠PAC=∠B,则△PAC∽△PBA.故S△PAC/S△PBA =PC2/PA2 =1/2 .又S△PAE/S△PBE=S△EAD/S△BED=AE/BE故S△PAD/S△PBD= AE/BE又S△PAD/S△PCD=AD/CD =S△BAD/S△BCD=1/2 ,则S△PAC/S△PBA=3S△PAD/(3/2S△PBD)=2×AE/BE.于是,2×AE/BE =1/2 ,AE/BE =1/4 .三、解答题(共12小题,满分102分)15、如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=3/5 ,那么圆心O在AB的什么位置时,⊙O与AC相切?解:(1)连接OD;∵OD=OB,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠ODB,∴OD∥AC;又∵DE⊥AC,∴DE⊥OD即DE是⊙O的切线.(2)如图所示⊙O与AC相切与F,⊙O与AB相交于G.则OF⊥AC;在RT△AOF中,sinA=OF:AO=3:5;设OF=3X,AO=5X,则OB=OG=OF=3X,OG=2X,∴8x=AB=5,∴X=5/8 ,此时OB=3x=15/8 时,即当圆心O在AB上距B点为3x= 15/8时,⊙O与AC相切.14、已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合)(1)如图,当PQ∥AC,且Q为BC的中点时,求线段CP的长;(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由.解:(1)在Rt△ABC中∠ACB=90°,AC=5,BC=12,∴AB=13;∵Q是BC的中点,∴CQ=QB;又∵PQ∥AC,∴AP=PB,即P是AB的中点,∴Rt△ABC中,CP= .(2)解:当AC与PQ不平行时,只有∠CPQ为直角,△CPQ才可能是直角三角形.以CQ为直径作半圆D,①当半圆D与AB相切时,设切点为M,连接DM,则DM⊥AB,且AC=AM=5,∴MB=AB-AM=13-5=8;设CD=x,则DM=x,DB=12-x;在Rt△DMB中,DB2=DM2+MB2,即(12-x)2=x2+82,解之得x=10/3 ,∴CQ=2x=20/3 ;即当CQ= 20/3且点P运动到切点M位置时,△CPQ为直角三角形.②当20/3 <CQ<12时,半圆D与直线AB有两个交点,当点P运动到这两个交点的位置时,△CPQ为直角三角形③当0<CQ<20/3 时,半圆D与直线AB相离,即点P在AB边上运动时,均在半圆D外,∠CPQ<90°,此时△CPQ不可能为直角三角形.∴当20/3≤CQ<12时,△CPQ可能为直角三角形.15、如图1所示,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=5/6时,讨论△AD1D 与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.证明:(1)∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切圆B于点C.又∵EF切圆B于点G,∴AE=EG,FC=FG.∴EG=FG,即G为线段EF的中点.(2)根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y,根据勾股定理,得:(x+y)2=(1-x)2+(1-y)2∴y=(1-x)/(1+x) (0<y<1).(3)当EF= 5/6时,由(2)得EF=EG+FG=AE+FC,即x+ (1-x)/(1+x)= 5/6,解得x1=1/3 或x2= 1/2.①当AE=1/2 时,△AD1D∽△ED1F,证明:设直线EF交线段DD1于点H,由题意,得:△EDF≌△ED1F,EF⊥DD1且DH=D1H.∵AE=1/2 ,AD=1,∴AE=ED.∴EH∥AD1,∠AD1D=∠EHD=90°.又∵∠ED1F=∠EDF=90°,∴∠ED1F=∠AD1D.∴△ED1F∽△AD1D②当AE=1/3 时,△ED1F与△AD1D不相似.16、⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,(1)求弦AC、AB的长;(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.17、如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)若OE:EA=1:2,PA=6,求⊙O的半径;(3)求sin∠PCA的值.解:(1)∵弦CD⊥AB于点E,∴∠CEP=90°.∵∠POC=∠PCE,∠P=∠P,∴△POC∽△PCE,∴∠PCO=∠CEP=90°.∴PC是⊙O的切线.18、(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F (不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连接AC、AD.求证:①∠BAD=∠CAG;②AC•AD=AE•AF;(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.解:(1)证明:①连接BD,∵AB是⊙O的直径,∴∠ADB=90°.∴∠AGC=∠ADB=90°.又∵ACDB是⊙O内接四边形,∴∠ACG=∠B.∴∠BAD=∠CAG.②连接CF,∵∠BAD=∠CAG,∠EAG=∠FAB,∴∠DAE=∠FAC.又∵∠ADC=∠F,∴△ADE∽△AFC.∴AD/AF=AE/AC .∴AC•AD=AE•AF.(2)①如图;②两个结论都成立,证明如下:①连接BC,∵AB是直径,∴∠ACB=90°.∴∠ACB=∠AGC=90°.∵GC切⊙O于C,∴∠GCA=∠ABC.∴∠BAC=∠CAG(即∠BAD=∠CAG).②连接CF,∵∠CAG=∠BAC,∠GCF=∠GAC,∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,∠E=∠ACG-∠CAE.∴∠ACF=∠E.∴△ACF∽△AEC.∴AC/AE=AF/AC .∴AC2=AE•AF(即AC•AD=AE•AF).19、如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动.点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.(1)当∠QPA=90°时,判断△QCP是三角形;(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是三角形.解:(1)等腰直角三角形;(2)当∠QPA=60°,△QCP是等边三角形.证明:连接OQ.CQ是⊙O的切线,∴∠OQC=90°.∵PQ=PO,∴∠PQO=∠QOP.∴∠QOP+∠QCO=90°,∠OQP+∠CQP=90°,∴∠QCO=∠CQP.∴PQ=PC.又∠QPA=60°,∴△QCP是等边三角形;(3)等腰三角形.20、如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在弧AB上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C 作CE⊥AB,垂足为E.连接BD,交CE于点F.(1)当点C为弧AB的中点时(如图1),求证:CF=EF;(2)当点C不是弧AB的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.考点:切线的性质.证明:(1)∵DA是切线,AB为直径,∴DA⊥AB.∵点C是弧AB的中点,且CE⊥AB,∴点E为半圆的圆心.又∵DC是切线,∴DC⊥EC.又∵CE⊥AB,∴四边形DAEC是矩形.∴CD∥AD,CD=AD.∴EF:AD =BE:AB=1/2 .即EF=1/2AD=1/2EC.∴F为EC的中点,CF=EF.(2)CF=EF,证明:连接BC,并延长BC交AP于G点,连接AC,如图所示:∵AD、DC是半圆O的切线,∴DC=DA,∴∠DAC=∠DCA.∵AB是直径,∴∠ACB=90°,∴∠ACG=90°.∴∠DGC+∠DAC=∠DCA+∠DCG=90°.∴∠DGC=∠DCG.∴在△GDC中,GD=DC.∵DC=DA,∴GD=DA.∵AP是半圆O的切线,∴AP⊥AB,又CE⊥AB.∴CE∥AP.∴DG:CF=DB:FB=DA:FE.∵GD=AD,∴CF=EF.21、如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.(1)证明:∵点E是切点∴∠AED=90°∵∠A=∠A,∠ACB=90°∴△ADE∽△ABC;22、如图,PA、PB与⊙O切于A、B两点,PC是任意一条割线,且交⊙O于点E、C,交AB于点D,求证AC2/BC2=AD/BD23、如图,⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标为(1,-1),半径为√5.(1)求A,B,C,D四点的坐标;(2)求经过点D的切线解析式;(3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,试说明理由.24、当你进入博物馆的展览厅时,你知道站在何处观赏最理想?如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想.(1)设点E到墙壁的距离为x米,求a、b、m、x的关系式;(2)当a=2.5,b=2,m=1.6,求:(ⅰ)点E和墙壁距离x;(ⅱ)最大视角∠PEQ的度数.(精确到1度)解:(1)由题意可知:据PR=a,QR=b,HR=m,HE=x,∴HQ=QR-HR=b-m,PH=PR-HR=a-m,∵HE是圆O的切线,∴HE2=HQ•HP,∴x2=(a-m)(b-m).(2)①根据(1)中得出的x2=(a-m)(b-m),∴x2=(2.5-1.6)×(2-1.6)=0.36,∴x=0.6.②在直角三角形PHE中,EH=0.6,PH=0.9,∴tan∠PEH=PH/HE =3/2 ,因此∠PEH≈56.3°;在直角三角形HQE中,QH=0.4,EH=0.6,∴tan∠HEQ=QH/HE=2/3 ,因此∠HEQ≈33.7°;∴∠PEQ=∠PEH-∠HEQ=56.3-33.7=22.6°.。
《圆》精选测试题及参考答案
圆精选测试题(一)一、填空题̂=CD̂=BD̂,M是AB上一动点,则CM+DM的最1.在⊙O中,AB是⊙O的直径,AB=8cm,AC小值为____________.2.如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是____________.3.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,̂的度数为.交AC于点E,则BD4.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是.5.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于___ .6.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的是_____________.7.如图,半径为2,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为____________.二、解决问题1.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.2.如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=BFD.(1)求证:FD是⊙O的切线;(2)若AB=10,AC=8,求DF的长.3.如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.4.如图,AB是⊙O的直径,点C在0O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若CEDE =23,求tan∠E和cos∠ABC的值.5.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP 与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.6.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上.设∠PCB=α,∠POC=β.(1)下列结论:①BD ∥AC;②tan β2=BC AC ;③△PBD ∽△PAC.其中正确的有________________.(2)求证:tan α• tanβ=137.如图1,在⊙O 中,E 是弧AB 的中点,C 为⊙O 上的一动点(C 与E 在AB 异侧),连接EC 交AB 于点F ,r 是⊙O 的半径,EB=2r3,D 为AB 延长线上一点. (1)下列结论:①若DC=DF ,直线DC 是⊙O 的切线;②△EBF ∽△ECB;③EF•EC = 49r 2.其中正确的有____________________.(2)如图2,若F 是AB 的四等分点,求EF 和EC 的值.圆精选测试题(二)一、填空题1.如图,AB 是半圆的直径,点O 为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E ,交⊙O 于D ,连接BE .设∠BEC=α,则sinα的值为____________.2.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为____________.3.如图,等腰直角△ABC 中, AB = AC = 8,以AB 为直径的半圆O 交斜边BC 于D ,阴影部分面积为____________. (结果保留π).4.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为____________.5.图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为____________.6.直线AB 与⊙O 相切于点A ,弦CD∥AB,E ,F 为圆上的两点,且∠CDE=∠ADF.若⊙O 的半径为52,CD=4,则弦EF 的长为____________. BA7.菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为____________.8.AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF=65°,则∠E=____________.二、解决问题1.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°.(1)判断△ABC 的形状:______________;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB̂的什么位置时,四边形APBC 的面积最大?求出最大面积. B C P OA ACB O ABCHO D2.已知在△ABC 中,∠B=90o,以AB 上的一点O 为圆心,以OA 为半径的圆交AC 于点D ,交AB 于点E .(1)求证:AC ·AD=AB ·AE ;(2)如果BD 是⊙O 的切线,D 是切点,E 是OB 的中点,当BC=2时,求AC 的长.3.如图,在△ABC 中,BA=BC,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,BC 的延长线与⊙O 的切线AF 交于点F.(1)求证:∠ABC=2∠CAF ;(2)若AC=2√10,CE:EB=1:4,求CE 的长. 4.如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若BD=2,BE=3,求AC 的长.5.如图,点C 在以AB 为直径的⊙O 上,点D 是半圆AB 的中点,连接AC ,BC ,AD ,BD ,过点D 作DH ∥AB 交CB 的延长线于点H.(1)求证:直线DH 是⊙O 的切线;E DA O(2)若AB=10,BC=6,求AD ,BH 的长.6.如图,A 为⊙O 外一点,AB 切⊙O 于点B ,AO 交⊙O 于C ,CD ⊥OB 于E ,交⊙O 于点D ,连接OD .若AB=12,AC=8.(1)求OD 的长;(2)求CD 的长.参考答案测试题(一)一、填空题1. 82. √3−π23. 50°4. 35°5. 16π36. ①②③④7. π2−1 二、解决问题1(1)提示:计算∠OCD=90°(2)2√3−2π32(1)提示:证明FD ∥AC(2)提示:相似,DF=203 3(1)AC=5√3,AD=5√2(2) 提示:计算∠OCP=90°4(1) 提示:证明△OCD ≌△OAD(2) tan ∠E=√24,cos ∠ABC =√335(1) 提示:证明△OCP ≌△OAP(2) BF=56(1) ①②③(2) tan α• tanβ=BD BC ∙BC AC =BD AC =13 7(1) ①②③(2) EF=2√3r 9,EC=2√3r 3测试题(二)一、填空题1. 3√313 提示:连接BC ,sin α=BC BE2. 0.8m3. 4π+244. 288°5. 24√3−4π6. 2√57. 3π+2√348. 50°二、解决问题1(1) 等边三角形.(2)PC=PA+PB 提示:在PC 上截取PD ,使PD =PA ,证明△PAB ≌△DAC.(3)中点,最大面积是√3.2(1) 提示:接连DE,证明△ADE ∽△ABC.(2) 30°3(1) 提示:接连BD,证明∠CBD=∠ABD ,∠ABD=∠CAF.(2) CE=2.提示:设CE=x,则BE=4x,AB=5x,勾股定理列方程可解. 4(1) 提示:三线合一.(2) AC=9.提示:连接DE ,△BDE ∽△BCA .5(1)提示:平行法.(2)析:∠CAD=∠DBH ,∠ACD=∠BDH, △ACD ∽△BDH,AD BH =AC BD ,BH=254. 6(1) AC=5.提示:设半径是x,勾股定理.(2)析: CE∥AB ,△OEC∽△OBA,∠CAD=∠DBH ,∠ACD=∠BDH, △ACD ∽△BDH,CD=2013.。
初中圆的综合试题及答案
初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()。
A. d = 2rB. d = rC. d = r/2D. d = 4r答案:A2. 圆的周长C与半径r的关系是()。
A. C = 2πrB. C = πrC. C = 4πrD. C = 2r答案:A3. 圆的面积S与半径r的关系是()。
A. S = πr^2B. S = 2πrC. S = πrD. S = r^2答案:A4. 圆心角为90°的扇形面积是整个圆面积的()。
A. 1/4B. 1/2C. 3/4D. 1答案:A5. 已知圆的半径为5cm,那么圆的直径是()。
A. 10cmB. 15cmC. 20cmD. 25cm答案:A6. 圆的切线与半径的关系是()。
A. 垂直B. 平行C. 相交D. 重合答案:A7. 圆的内接正方形的对角线长度等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:B8. 圆的外切正方形的边长等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:A9. 两个半径相等的圆是()。
A. 同心圆B. 等圆C. 相切圆D. 相交圆答案:B10. 圆的直径是半径的()倍。
A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共30分)11. 圆的周长公式为C=2πr,其中r代表圆的________。
答案:半径12. 圆的面积公式为S=πr^2,其中r代表圆的________。
答案:半径13. 一个圆的半径为3cm,那么它的周长是________cm。
答案:18.8414. 一个圆的半径为4cm,那么它的面积是________cm^2。
答案:50.2415. 圆的切线垂直于经过切点的________。
答案:半径16. 圆的内接正六边形的边长等于圆的________。
答案:半径17. 圆的外切正六边形的边长等于圆的________。
答案:半径18. 两个圆的半径之和等于它们圆心距的圆是________圆。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
圆综合测试题(含详细解析及答案)
《圆》的综合测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A .2cmB .1.5cmC .cmD .1cm2.已知⊙1O 的半径为5cm ,⊙2O 的半径为3cm ,两圆的圆心距为7cm ,则两圆的位置关系是( ),A 外离 ,B 外切 ,C 内切 ,D 相交3.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是【 】A .91032π⎛⎫- ⎪⎝⎭米2B .932π⎛⎫- ⎪⎝⎭米2 C .9632π⎛⎫- ⎪⎝⎭米2 D .()693π-米24.如右图,圆心角∠AOB=100°,则∠ACB 的度数为( )OA BCA 、100°B 、50°C 、80°D 、45°5.如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的大小为( )A .30ºB .45ºC .50ºD .60º6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3cm,则圆心O 到弦CD 的距离为( )A .错误!cmB .3 cmC .3错误!cmD .6cm7.圆心角为120°,弧长为12π的扇形半径为( )A .6B .9C .18D .368.⊙O 的直径AB =10cm ,弦CD ⊥AB ,垂足为P .若OP :OB =3:5,则CD 的长为( )A .6cmB .4cmC .8cmD .91cm 9.如图,在△ABC 中,∠A =90º,AB =AC =2.以BC 的中点O 为圆心的圆弧分别与AB 、AC 相切于点D 、E ,则图中阴影部分的面积是【 】A .1-4πB .4πC .1-2πD .2-2π 10.如图,PA 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA,PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )A 51312.125 C 3135 D 2133二、填空题(题型注释)11.母线长为4,底面圆的半径为1的圆锥的侧面积为___________。
九年级数学圆的测试题及答案(全)
圆的有关概念与性质圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
九年级圆练习题及答案
九年级圆练习题及答案一、选择题(每题3分,共15分)1. 圆的半径为5,那么圆的周长是多少?A. 10πB. 15πC. 20πD. 25π2. 已知圆的直径为10,圆的面积是多少?A. 25πB. 50πC. 100πD. 200π3. 圆心角为60°的扇形,其弧长是圆的周长的几分之几?A. 1/6B. 1/3C. 1/2D. 2/34. 圆的内接四边形的对角线互相平分,这个四边形是什么形状?A. 矩形B. 平行四边形C. 菱形D. 梯形5. 在圆中,弦AB所对的圆心角为40°,那么弦AB所对的圆周角是多少度?A. 20°B. 40°C. 80°D. 不能确定二、填空题(每空2分,共20分)6. 圆的半径为r,圆的面积公式为______。
7. 如果圆的周长为C,那么圆的半径r可以通过公式______计算。
8. 已知圆的半径为3,圆心角为120°,那么对应的弧长为______。
9. 圆内接正六边形的边长等于圆的半径,这个说法是______(正确/错误)。
10. 圆的切线垂直于经过切点的半径,这个说法是______(正确/错误)。
三、计算题(每题10分,共20分)11. 已知圆的半径为7,求圆的周长和面积。
12. 一个扇形的半径为8,圆心角为45°,求这个扇形的弧长和面积。
四、解答题(每题15分,共30分)13. 在圆O中,弦AB的长度为10,弦AB与圆心O的距离为4,求弦AB所对的圆心角的度数。
14. 圆内接正三角形ABC的边长为6,求圆的半径。
五、证明题(每题10分,共10分)15. 已知圆O的半径为r,弦AB和弦CD相交于点P,且OP垂直于AB 和CD,证明OP是AB和CD的垂直平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的经典测试题及答案一、选择题1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到BC 上任意一点的距离都相等C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到BC 上任意一点的距离都是DE ,故正确;勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.2.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.3.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A .54°B .27°C .36°D .46°【答案】C【解析】【分析】 先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】 本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.4.下列命题是假命题的是( )A .三角形两边的和大于第三边B .正六边形的每个中心角都等于60C .半径为R 2RD .只有正方形的外角和等于360︒【答案】D【解析】【分析】根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.【详解】A 、三角形两边的和大于第三边,A 是真命题,不符合题意;B 、正六边形6条边对应6个中心角,每个中心角都等于360606︒︒=,B 是真命题,不符合题意;C 、半径为R 的圆内接正方形中,对角线长为圆的直径2R ,设边长等于x ,则:222(2)x x R +=,解得边长为2x R :=,C 是真命题,不符合题意;D 、任何凸3n n ≥()边形的外角和都为360︒,D 是假命题,符合题意, 故选D.本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.5.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A.2 B.3C.2﹣3D.1【答案】B【解析】【分析】先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由AB=ACtanC=23可得答案.【详解】∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=ACtanC=23,∴⊙O的半径为3,故选:B.【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.的扇形无重叠地围成一个圆锥,则这个圆锥的高6.如图,用半径为12cm,面积272cm为()A.12cm B.6cm C.6√2 cm D.3【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得OC=22126=63-cm ,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.7.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .25cmB .45 cmC .25cm 或45cmD .23cm 或43cm【答案】C【解析】连接AC ,AO ,∵O 的直径CD=10cm ,AB ⊥CD ,AB=8cm ,∴AM=12AB=12×8=4cm,OD=OC=5cm, 当C 点位置如图1所示时, ∵OA=5cm ,AM=4cm ,CD ⊥AB , ∴OM=222254OA AM -=-=3cm ,∴CM=OC+OM=5+3=8cm ,∴AC=22224845AM CM +=+=cm ;当C 点位置如图2所示时,同理可得OM=3cm ,∵OC=5cm ,∴MC=5−3=2cm ,在Rt △AMC 中,AC=22224225AM CM +=+=cm.故选C.8.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C .3D .2 【答案】D【解析】【分析】先根据题意,画出图形,令直线y= 3x+ 23与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-,并利用垂线段最短求得PA 的最小值即可.【详解】如图, 令直线3x+23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,当x=0时,y=23,则D(0,23),当y=0时,3x+23=0,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴OH=22334⨯=.连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为22(3)12-=.故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.9.如图,正方形ABCD内接于⊙O,AB=22,则AB的长是()A.πB.32πC.2πD.12π【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB BC CD DA===,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴AB的长为902 180π=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.10.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心【答案】C【解析】【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可.【详解】A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选C.【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.11.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A .86°B .94°C .107°D .137° 【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°, ∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD 的度数是137°.故选D .【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).12.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.13.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A .5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=23323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO•cos∠A=33322⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()26031132323222360π⨯⨯⨯-⨯⨯-=5342π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14.如图,在矩形ABCD 中,6AB =,对角线10AC =,O 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O 的半径为r , ∵O 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC SAB BC AB AC BC r =⋅=++⋅, ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O 的半径为2, ∴2168-2224-4ABC O S SS ππ=-=⨯⨯⨯=阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3 B.4 C.5 D.7【答案】C【解析】【分析】连接AI、BI,根据三角形的内心的性质可得∠CAI=∠BAI,再根据平移的性质得到∠CAI=∠AID,AD=DI,同理得到BE=EI,即可解答.【详解】连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB225AC BC∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE 的周长=DE+DI+EI =DE+AD+BE =AB =5故选C .【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线16.如图,ABC 是O 的内接三角形,且AB AC =,56ABC ∠=︒,O 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB ,∵AB=AC ,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC , ∴∠BOC=68°×2=136°,∵OB=OC ,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB ,得到∠BOC的度数.17.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算18.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为()A.50cm2B.50πcm2C.52D.5cm2【答案】D【解析】【分析】根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm,22=55,圆锥底面圆半105径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=155cm2,2故选:D.【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.19.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.6C.8 D.8【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP 是矩形,∵OM =ON ,∴四边形MONP 是正方形,∴OP =.故选B .【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( )A 3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG =2cm , ∴2222213OB BG --= 3,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.。