增量式和绝对式编码器(绝对值编码器)的比较

合集下载

分别说明绝对式和增量式光电编码器的工作原理

分别说明绝对式和增量式光电编码器的工作原理

分别说明绝对式和增量式光电编码器的工作原理光电编码器的工作原理1. 引言光电编码器是一种精密测量仪器,广泛应用于工业自动化、机械加工、机器人等领域。

它可以将旋转或线性运动转换为数字信号,实现位置、角度等参数的准确测量和控制。

2. 绝对式光电编码器的工作原理绝对式光电编码器可以直接获取运动目标的位置信息,而无需复位操作。

它主要由光源、光栅、光电元件和信号处理电路组成。

光源光源发出光线,照射到光栅上。

光栅光栅是由透明和不透明的条纹交替组成的,有着特定的周期和形状。

光栅可以将光线分成多个光斑,并将其传递到光电元件上。

光电元件光电元件是一种将光信号转换为电信号的器件。

光电编码器中常用的光电元件包括光电二极管和光电三极管。

当光线照射到光电元件上时,光电元件会产生相应的电信号。

信号处理电路信号处理电路将光电元件产生的电信号进行放大、滤波等处理,得到数字信号。

这些数字信号可以表示光栅上光斑的位置信息。

工作原理在绝对式光电编码器中,光栅上的每个光斑都被赋予了一个唯一的编号。

当光栅和光电元件相对运动时,光电元件会感知到每个光斑的位置,并将其转换为数字信号。

通过解读这些数字信号,可以准确获取运动目标的位置信息。

3. 增量式光电编码器的工作原理增量式光电编码器可以实时监测对象的运动方向和速度,但无法直接获取位置信息。

它由光源、光栅、光电元件和信号处理电路组成,与绝对式光电编码器类似。

光源、光栅、光电元件和信号处理电路增量式光电编码器的光源、光栅、光电元件和信号处理电路的原理与绝对式光电编码器相同,不再赘述。

工作原理在增量式光电编码器中,光栅上的光斑被分为A相和B相两组,每组中的光斑数量相同但错位。

光电元件检测到光栅上的光斑变化,并产生相应的电信号。

通过检测A相和B相两组信号的相位变化和周期,可以确定对象的运动方向和速度。

由于无法直接获得位置信息,增量式光电编码器通常需要结合其他传感器或复位机构来实现位置的准确测量。

结论绝对式光电编码器和增量式光电编码器都是常用的位置测量和控制装置。

光电编码器分类及作用

光电编码器分类及作用

光电编码器分类及作用光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成,光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器.一、增量式编码器增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。

它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。

一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。

标志脉冲通常用来指示机械位置或对积累量清零。

二、绝对式编码器绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

其位置是由输出代码的读数确定的。

当电源断开时,绝对型编码器并不与实际的位置分离。

重新上电时,位置读数仍是当前的。

绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。

在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。

在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。

并且在不同位置输出不同的数字码。

从而可以检测绝对位置。

但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。

绝对值编码器和增量编码器的工作原理

绝对值编码器和增量编码器的工作原理

绝对值编码器和增量编码器的工作原理一、引言编码器是将机械运动转换为数字信号的设备,广泛应用于自动化控制系统中。

其中,绝对值编码器和增量编码器是两种常见的编码器类型。

本文将详细介绍它们的工作原理。

二、绝对值编码器1. 原理绝对值编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的刻度盘上的标记来确定角度位置。

刻度盘通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。

当旋转轴旋转时,光电传感器会读取刻度盘上的标记,并将其转换为数字信号输出。

2. 类型根据不同的检测方式和输出类型,绝对值编码器可以分为以下几种类型:(1)单圈型:只能检测单圈角度范围内的位置。

(2)多圈型:可以检测多圈角度范围内的位置。

(3)线性型:可以检测线性位移范围内的位置。

3. 优缺点优点:(1)精度高:由于采用了高精度刻度盘和光电传感器,因此具有很高的精度。

(2)不受干扰:由于输出的是绝对位置信息,所以不受外界干扰影响。

(3)快速响应:由于无需进行复位操作,因此具有快速响应的特点。

缺点:(1)成本高:由于采用了高精度刻度盘和光电传感器,因此成本较高。

(2)复杂结构:由于需要安装刻度盘和光电传感器,因此结构较为复杂。

三、增量编码器1. 原理增量编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的齿轮或条纹运动来确定角度位置。

齿轮或条纹通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。

当旋转轴旋转时,光电传感器会读取齿轮或条纹上的标记,并将其转换为数字信号输出。

2. 类型根据不同的检测方式和输出类型,增量编码器可以分为以下几种类型:(1)单路型:只能检测正转方向或反转方向的角度变化。

(2)双路型:可以同时检测正转方向和反转方向的角度变化。

(3)三路型:可以同时检测正转方向、反转方向和速度信息。

3. 优缺点优点:(1)成本低:由于采用了简单的齿轮或条纹结构,因此成本较低。

增量式编码器及绝对式编码器的特点及应用范围

增量式编码器及绝对式编码器的特点及应用范围

增量式编码器‎和绝对式编码‎器的特点及应‎用范围深圳职业技术‎学院刘遥生1、什么是编码器‎――编码器是把角‎位移或直线位‎移转换成电信‎号的一种装置‎。

2、编码器分类及‎原理按照工作原理‎编码器可分为‎增量式(SPC)和绝对式(APC)两类。

增量式编码器‎是将位移转换‎成周期性的电‎信号,再把这个电信‎号转变成计数‎脉冲,用脉冲的个数‎表示位移的大‎小。

绝对式编码器‎的每一个位置‎对应一个确定‎的数字码,因此它的示值‎只与测量的起‎始和终止位置‎有关,而与测量的中‎间过程无关。

两者一般都应‎用于转速控制‎或位置控制系‎统的检测元件‎。

3、特点及应用范‎围增量式编码器‎是直接利用光‎电转换原理输‎出三组方波脉‎冲A、B和Z相,A、B两组脉冲相‎位差90&ordm,从而可方便地‎判断出旋转方‎向,而Z相为每转‎一圈输出一个‎脉冲,用于基准点定‎位。

编码器转动时‎输出脉冲,通过计数设备‎来知道其位置‎和转速。

当编码器不动‎或停电时,依靠计数设备‎的内部记忆来‎记住位置。

这样,当停电后,编码器不能有‎任何的移动,当来电工作时‎,编码器输出脉‎冲过程中,也不能有干扰‎而丢失脉冲,不然,计数设备记忆‎的零点就会偏‎移,而且这种偏移‎的量是无从知‎道的,只有错误的生‎产结果出现后‎才能知道。

优点是构造简‎单,平均寿命长,抗干扰能力强‎,可靠性高,适合于连续运‎转高精度定位‎控制。

其缺点是无法‎输出轴转动的‎绝对位置信息‎。

绝对编码器是‎直接输出数字‎量的传感器,在它的圆形码‎盘上沿径向有‎若干同心码道‎,每条道上由透‎光和不透光的‎扇形区相间组‎成,相邻码道的扇‎区数目是双倍‎关系,码盘上的码道‎数就是它的二‎进制数码的位‎数。

绝对编码器由‎机械位置决定‎的每个位置的‎唯一性,它无需记忆,无需找参考点‎,而且不用一直‎计数,什么时候需要‎知道位置,什么时候就去‎读取它的位置‎。

这样,编码器的抗干‎扰特性、数据的可靠性‎大大提高了。

编码器基础知识

编码器基础知识

增量型和绝对值编码器常见问题(FAQ)编码器业务部目录1增量式编码器 (4)1.1如何选择单圈脉冲数PPR (4)1.2编码器的最大允许单圈脉冲数如何计算编码器的最大允许单圈脉冲数如何计算?? (4)1.3编码器的最大允许转速为? (4)1.4编码器的接口通信距离可达? (5)1.5是否必须使用屏蔽线缆是否必须使用屏蔽线缆?? (5)如何有效降低编码器应用时的噪声影响?? (5)1.6如何有效降低编码器应用时的噪声影响为何要使用柔性联轴器?? (5)1.7为何要使用柔性联轴器编码器输出的信号是什么意思?? (5)1.8编码器输出的信号是什么意思什么是门参考脉冲?? (6)1.9什么是门参考脉冲增量式编码器可兼容何种串行通信方式?? (7)1.10增量式编码器可兼容何种串行通信方式1.11倍加福RS422编码器的信号电平为编码器的信号电平为?? (7)输出接口有?? (7)1.12倍加福编码器的供电-输出接口有1.13什么是差分线驱动输出什么是差分线驱动输出?? (7)什么是集电极开路输出?? (8)1.14什么是集电极开路输出什么是图腾柱输出?? (8)1.15什么是图腾柱输出什么是推挽式输出?? (8)1.16什么是推挽式输出什么是吸收型输入和源型输入?? (8)1.17什么是吸收型输入和源型输入什么是正交信号输出?? (9)1.18什么是正交信号输出1.19正交输出和4倍频什么关系倍频什么关系?? (9)有何用处?? (9)1.20反向通道和有何用处什么是参考脉冲?? (9)1.21什么是参考脉冲为何需要使用上拉电阻?? (9)1.22为何需要使用上拉电阻更换编码器必须断电停机吗?? (9)1.23更换编码器必须断电停机吗成什么后果?? (10)1.24意外将24V DC连接到输出通道会造连接到输出通道会造成什么后果成什么后果编码器故障诊断需要什么检测设备?? (10)1.25编码器故障诊断需要什么检测设备等级?? (11)1.26什么是IP等级2绝对值编码器 (12)2.1什么是绝对值编码器? (12)绝对值编码器和增量式编码器的区别是什么?? (12)2.2绝对值编码器和增量式编码器的区别是什么绝对值编有哪些输出码制?? (12)2.3绝对值编有哪些输出码制什么是格雷码?? (13)2.4什么是格雷码2.5如何转换格雷码为二进制码如何转换格雷码为二进制码?? (13)什么是单圈绝对值编码器?? (13)2.6什么是单圈绝对值编码器什么是多圈编码器?? (14)2.7什么是多圈编码器3NAMUR本安型编码器 (15)为何需要它?? (15)3.1什么是NAMUR 本安型编码器本安型编码器,,为何需要它本安型编码器可以应用于石油精炼厂吗?? (15)3.2本安型编码器可以应用于石油精炼厂吗3.3什么是隔离栅什么是隔离栅?? (15)两者有什么区别?? (15)3.4电器设备分类IIB 和IIC两者有什么区别3.5什么是0区? (15)3.6如果不便使用隔离栅有其它选择方案吗?? (16)如果不便使用隔离栅,,有其它选择方案吗隔爆型编码器比较便宜吗?? (16)3.7隔爆型编码器比较便宜吗1 增量式编码器1.1 如何选择单圈脉冲数PPR选择增量式编码器的单圈分辨率PPR ,须考虑:a. 将所选择的单圈脉冲数PPR 和电机驱动编码器的最大转速综合考虑,计算工作频率,确保其不会引起在最大转速下脉冲输出频率超过编码器的脉冲输出频率和控制器的输入频率。

增量式 绝对值 编码器概述

增量式 绝对值 编码器概述

编码器
Q&A环节 关于绝对值编码器大家提出问题,相互讨论学习。
编码器
4 增量式编码器 编码器每旋转一定角度会发出一个脉冲,即输出脉 冲随角位移的增加而累加。增量式编码器一般与PLC 的高速计数器配合使用。 原理图:
编码器
增量式编码器根据通道数目,可将其分为: 1)单通道增量式编码器,内部只有一对光电耦合器, 只能产生一个脉冲序列。 2)双通道增量式编码器,此种编码器一般有AB两 相,编码器内部有两对光电耦合器,输出相位差为 90°的两组脉冲序列,此种输出可以判断旋转方向。
编码器
编码=t/360×
x

已知螺距t,通过 测量滚珠丝杠的角位 移,间接获得工作 台的直线位移x,构 成位置半闭环伺服系 统。
位置反馈
编码器
螺距
例题:
设 : 螺 距 t=4mm , 丝 杠 在 4s时间里转动了10圈,求:丝 杠的平均转速n(r/min)及螺母 移动了多少毫米?螺母移动 的平均速度v又为多少?
1. 收拉钢丝绳 2. 测量盘 3. 收紧弹簧轮1 4. 收紧弹簧轮2 5. 专用弹簧 6. 弹性联轴器 7. 编码器
编码器
谢谢大家的听! 以上内容仅供参考学习之用。
编码器
LED
光敏 元件
编码器
(1)用于旋转范围360度以内的测量,称为单圈绝 对值编码器。 (2)反之,则需要使用多圈绝对值编码器。根据钟 表齿轮机械的原理,当中心码盘旋转时,通过齿轮 传动另一组码盘(或多组齿轮,多组码盘),在单 圈编码的基础上再增加圈数的编码,以扩大编码器 的测量范围,这样的绝对编码器就称为多圈式绝对 编码器。
1 可以检测速度 2 可以检测旋转方向 3 可以定位
通道A 通道 B 通道Z

编码器零点

编码器零点

编码器零点旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号),主要应用于机床、电梯、伺服电机配套、纺织机械、包装机械、印刷机械、起重机械等行业。

旋转编码器按照工作原理编码器可分为增量式和绝对式两类。

A增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小;B绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

二者区别:增量型的位置从零位标记开始计算的脉冲数量确定的;而绝对型的位置是由输出代码的读数确定的。

在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。

如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

A图(结构原理)(1)注:光敏元件一般由极管组成。

(2)B图(与变频器接线)C图(增量型)D图(绝对型)我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC 的高速计数器对其脉冲信号进行计数,以获得测量结果。

这里所讲的确定零位指的是增量型。

1、编码器轴转动找零,编码器在安装时,旋转转轴对应零位,一般增量值与单圈绝对值会用这种方法,而轴套型的编码器也用这种方法。

缺点,零点不太好找,精度较低。

2、与上面方法相当,只是编码器外壳旋转找零,这主要是对于一些紧凑型安装的同步法兰(也有叫伺服法兰)外壳所用。

3、通电移动安装机械对零,通电将安装的机械移动到对应的编码器零位对应位置安装。

4、偏置计算,机械和编码器都不需要找零,根据编码器读数与实际位置的偏差计算,获得偏置量,以后编码器读数后减去这个偏置量。

例如编码器的读数为100,而实际位置是90,计算下在实际位置0位时,编码器的读数应该是10,而这个“10”就是偏置量,以后编码器读到的数,减去这个偏置量就是位置值。

《光电检测技术-题库》(2)

《光电检测技术-题库》(2)

《光电检测》题库一、填空题1.对于光电器件而言,最重要的参数是、和。

2.光电倍增管由阳极、光入射窗、电子光学输入系统、和等构成。

3.光电三极管的工作过程分为和。

4.激光产生的基本条件是受激辐射、和。

5. 非平衡载流子的复合大致可以分为和。

6.在共价键晶体中,从最内层的电子直到最外层的价电子都正好填满相应的能带,能量最高的是填满的能带,称为价带。

价带以上的能带,其中最低的能带常称为,与之间的区域称为。

7.本征半导体在绝对零度时,又不受光、电、磁等外界条件作用,此时导带中没有,价带中没有,所以不能。

8.载流子的运动有两种型式,和。

9. 发光二极管发出光的颜色是由材料的决定的。

10. 光电检测电路一般情况下由、、组成。

11. 光电效应分为内光电效应和效应,其中内光电效应包括和,光敏电阻属于效应。

12.半导体对光的吸收一般有、、、和这五种形式。

13. 光电器件作为光电开关、光电报警使用时,不考虑其线性,但要考虑。

14.半导体对光的吸收可以分为五种,其中和可以产生光电效应。

15.光电倍增管由阳极、光入射窗、电子光学输入系统、和等构成,光电倍增管的光谱响应曲线主要取决于材料的性质。

16.描述发光二极管的发光光谱的两个主要参量是和。

17.检测器件和放大电路的主要连接类型有、和等。

18..使用莫尔条纹法进行位移-数字量变换有两个优点,分别是和。

19.电荷耦合器件(CCD)的基本功能是和。

20.光电编码器可以按照其构造和数字脉冲的性质进行分类,按照信号性质可以分为和。

21.交替变化的光信号,必须使所选器件的大于输入信号的频率才能测出输入信号的变化。

22.随着光电技术的发展,可以实现前后级电路隔离的较为有效的器件是。

23.硅光电池在偏置时,其光电流与入射辐射通量有良好的线性关系,且动态范围较大。

24.发光二极管的峰值波长是由决定的。

二、名词解释1. 光亮度:2. 本征半导体:3. N型半导体:4. 载流子的扩散运动:5. 光生伏特效应:6. 内光电效应:7.光电效应8.量子效率9.分辨率10.二次调制11.二值化处理12.光电检测技术13.响应时间14.热电偶15.亮度中心检测法三、判断正误1. A/D变换量化误差不随输入电压变化而变化,是一种偶然误差。

如何选择合适的伺服电机编码器

如何选择合适的伺服电机编码器

如何选择合适的伺服电机编码器在工业自动化领域,伺服电机编码器扮演着至关重要的角色。

它能够将电机的运动状态转化为电信号,为控制系统提供精确的位置、速度和方向信息,从而实现对电机的精确控制。

然而,面对市场上琳琅满目的编码器产品,如何选择合适的伺服电机编码器却成为了一项颇具挑战性的任务。

接下来,我们将从多个方面探讨如何做出明智的选择。

首先,我们需要明确应用场景和需求。

不同的工业应用对编码器的性能要求差异巨大。

例如,在数控机床中,对位置精度的要求极高,需要选择分辨率高、精度高的编码器;而在一些一般的物料输送设备中,速度控制可能更为重要,对编码器的分辨率要求相对较低。

因此,在选择之前,必须清楚地了解设备的工作环境、运动速度、精度要求以及负载特性等因素。

编码器的分辨率是一个关键指标。

它决定了编码器能够测量的最小位置变化。

高分辨率的编码器可以提供更精确的位置信息,但同时也会增加成本和数据处理的复杂性。

通常,如果需要实现高精度的定位控制,应选择分辨率较高的编码器,如每转 10000 脉冲以上;而对于一些对精度要求不那么苛刻的应用,每转 1000 5000 脉冲的编码器可能就足够了。

精度也是不可忽视的因素。

编码器的精度包括绝对精度和重复精度。

绝对精度是指编码器测量值与实际位置之间的偏差,而重复精度则是指多次测量同一位置时的一致性。

一般来说,绝对值编码器的绝对精度较高,但价格也相对昂贵;增量式编码器的重复精度通常较好,价格相对较低。

在选择时,要根据实际应用对精度的要求和预算来权衡。

编码器的输出信号类型也有多种,常见的有正交脉冲(A/B 相)、串行通信(如 SSI、CANopen 等)和模拟量输出(如电压、电流)。

正交脉冲输出简单易用,成本低,但传输距离有限;串行通信输出具有抗干扰能力强、传输距离远的优点,但需要相应的接口和协议支持;模拟量输出则适用于一些特殊的控制系统。

因此,要根据控制系统的接口类型和通信要求来选择合适的输出信号类型。

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。

按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。

绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量。

伺服电机使用的编码器-增量式和绝对式之探究

伺服电机使用的编码器-增量式和绝对式之探究

线、位、分辨率、增量式、绝对式:线:编码器光电码盘的一周刻线,增量式码盘刻线可以10线100线、2500线的刻线,只要你码盘能刻得下,可任意选数;绝对值码盘其码盘刻线因格雷码的编排方式,决定其基本是2的幂次方线,如256线、1024线、8192线等。

但绝对值码盘也有特别的格雷余码输出的,如360线、720线、3600线等。

位:2的n次方,由于绝对值码盘常常是2的幂次方线输出,所以,大部分的绝对值码盘是以“位”来表达,但也有例外,如360线、720线、3600线的(格雷余码)。

增量值编码器也有用位来表示的,如15位、17位,其是通过内部细分,将计算的线数倍增后,一般大于10000线了,就用“位”来表达。

分辨率:编码器可以分辨的角度,对于一般计算,以360度/刻线数计算,目前大部分就直接用多少线来表达了。

但这样就有一些概念的混淆,如增量值编码器,如用上A/B两相的四倍频,2500线的,分辨率实际可以是360/10000的,如果内部细分计算的“线”可以更多,达到15位、17位的,所以,常常的增量编码器用“线”来表达的,代表还没有倍频细分,用“位”来表达的,是已经细分过的了。

增量式:码盘内刻线是两道:A/B,Z,通过数线累加(增量)计算旋转角度,有的增加了U\V\W,将编码器通过120度的分割,分成三个区来判断位置,称为混合型编码器。

有的通过内部细分电路,提高分辨“线”,并用内部电池记忆及用“位”来表达,常常混称为“绝对值”,实际应该是“伪绝对”。

绝对式:码盘内刻线是n道,以2,4,8,16。

编排组合,读数是以“0”“1”编码方式光盘直接读取,而非累加,故不受停电、干扰影响。

至于增量绝对哪个分辨率及精度更高,如果是实际的码盘刻线,绝对值码盘分辨“数”可以是增量码盘的一倍,如果是倍频技术,那增量值码盘分辨"数”又可以大于绝对值,但注意,我用的是“分辨数”,不代表精度,因为细分倍频是电气模拟技术,并不改善精度,精度是由码盘刻线、轴的机械安装、电气的响应综合因数决定的。

光电编码器分类

光电编码器分类

光电编码器分类
光电编码器分类
光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器。

一、增量式编码器
增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。

它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。

一般来说,增量式光电编码器输出A、B两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

同时还有用。

MC-编码器信号输出接口分类和总结(1)

MC-编码器信号输出接口分类和总结(1)
绝对值编码器
EtherNet/IP 工业以太网具有许多优点 由其组成的系统兼容性和互操作性好,资源共享能力强
可以很容易的实现将控制现场的数据与信息系统上的资源共享
数据的传输距离长、传输速率高;易与Internet 连接,低成本、易组网 与计算机、服务器的接口十分方便受到了广泛的技术支持 EtherNet/IP 工业以太网缺点
堡盟编码器信号输出接口分类
坚固,精准
现场总线的应用领域
现场总线的产生对工业的发展起着非常重要的作 用,对国民经济的增长有着非常重要的影响。现场总 线主要应用于石油、化工、电力、医药、冶金、加工 制造、交通运输、国防、航天、农业和楼宇等领域。
堡盟编码器信号输出接口分类
坚固,精准
现场总线系统结构
现场总线系统对串并行接口的主要优点是可以在同一现场总线系统上 连接不同系列的编码器 (一点对多点,多点对多点)
Parallel Analog
堡盟编码器信号输出接口分类
坚固,精准
增量编码器 HTL/Push-Pull HTL
高阈值逻辑(High Threshold Logic,简称HTL)、电路为 推挽电路,具有较高的抗干扰能力。
HTL/Power-linedriver
高阈值逻辑(High Threshold Logic,简称HTL)、电路为 大功率长线驱动电路,具有信号传输距离远、抗干 扰能力强的特点。 只有重载编码器会提供该信号电 路,因此该编码器可以用于更恶略的环境中。
堡盟编码器信号输出接口分类
坚固,精准
编码器
增量编码器
HTL 绝对值 编码器
Profibus-DP
ProfiNet EtherNet/IP
CanOpen

编码器的基本概念-增量编码器和绝对值编码器

编码器的基本概念-增量编码器和绝对值编码器
2、PNP 和 PNP 集电极开路线路 该线路与 NPN 线路是相同,主要的差别是晶体管,它是 PNP 型,其发射极强制接到正电压,如果有电阻的话,
电阻是下拉型的,连接到输出与零伏之间。
3、推挽式线路(推拉输出即推挽式输出) 这种线路用于提高线路的性能,使之高于前述各种线路。事实上,NPN 电压输出线路的主要局限性是因为它们
正弦输出编码器输出的差分信号如下图所示:(没用,项目里只有绝对值编码器和增量编码器)
上图中,+A 与-A 相序相反,+A 与+B 相序相差 90 度
2、零位信号 编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲,零位脉冲用于决定零位置或标识位置。要准确测量零 位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅 为脉冲长度的一半。 3、预警信号 有的编码器还有报警信号输出,可以对电源故障,发光二极管故障进行报警,以便用户及时更换编码器。 三、输出电路(基极,集电极,发射极) 1、NPN 电压输出和 NPN 集电极开路输出线路
参数表中提到的数据和公差,在此温度范围内是保证的。如果稍高或稍低,编码器不会损坏。当恢复工作温度又能 达到技术规范 ■工作电压 编码器的供电电压。 编码器 Encoder 为传感器(Sensor)类的一种,主要用来侦测机械运动的速度、位置、角度、距离或计数,除了应用 在产业机械外,许多的马达控制如伺服马达、BLDC 伺服马达均需配备编码器以供马达控制器作为换相、速度及位 置的检出所以应用范围相当广泛。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法 及信号输出形式,分为增量式编码器和绝对式编码器。光电编码器是利用光栅衍射原理实现位移—数字变换的,从 50 年代开始应用于机床和计算仪器,因其结构简单、计量精度高、寿命长等优点,在国内外受到重视和推广,在精 密定位、速度、长度、加速度、振动等方面得到广泛的应用。 a.增量式编码器特点: 增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。编码器轴转一 圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。需要提高分辨率时,可利用 90 度相位差的 A、B 两路 信号进行倍频或更换高分辨率编码器。 b. 绝对式编码器特点 绝对式编码器有与位置相对应的代码输出,通常为二进制码或 BCD 码。从代码数大小的变化可以判别正反方向和 位移所处的位置,绝对零位代码还可以用于停电位置记忆。绝对式编码器的测量范围常规为 0—360 度。 增量型旋转编码器 从这两段话看出,上文中的 ABZ 三项式输出仅仅指的是增量式编码器。二绝对值编码器的输出是二进制数 轴的每圈转动,增量型编码器提供一定数量的脉冲。周期性的测量或者单位时间内的脉冲计数可以用来测量移动的 速度。如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲之间 相差为 90º。能使接收脉冲的电子设备接收轴的旋转感应信号, 因此可用来实现双向的定位控制;另外,三通道增 量型旋转编码器每一圈产生一个称之为零位信号的脉冲。

编码器的种类和基本原理

编码器的种类和基本原理

编码器的种类和基本原理
1.增量式编码器
增量式编码器是一种常见的编码器,它用于测量位置、速度和方向等参数。

它通常由一个旋转轴和一个光学刻度盘构成。

光电传感器通过读取刻度盘上的刻痕来测量位置的变化。

增量式编码器的输出信号通常是一个脉冲序列,用来确定位置和方向。

2.绝对式编码器
绝对式编码器是另一种常见的编码器类型。

与增量式编码器不同,绝对式编码器可以提供精确的位置信息。

它使用一组编码信号来表示每个位置,每个位置都有唯一的编码。

绝对式编码器的输出信号可以直接用来确定位置。

3.磁性编码器
磁性编码器是一种使用磁性材料的编码器。

它可以通过检测磁
场的变化来测量位置。

磁性编码器通常具有高分辨率和精确度,适
用于需要高精度测量的应用。

4.光学编码器
光学编码器使用光学传感器来测量位置和运动。

它通常由光源、光栅和接收器组成。

光栅上的刻痕可以通过光学传感器来读取。


学编码器具有高分辨率和快速响应的特点,被广泛应用于需要高精
度测量的领域。

5.旋转编码器
旋转编码器用于测量旋转角度。

它可以是增量式编码器或绝对
式编码器。

旋转编码器通常具有高分辨率和精确度,并且可以检测
旋转的方向。

以上是编码器的几种常见种类和基本原理。

不同种类的编码器
适用于不同的应用场景。

选择适合的编码器可以提高测量的准确性
和稳定性。

增量型编码器与绝对型编码器区别是什么意思

增量型编码器与绝对型编码器区别是什么意思

增量型编码器与绝对型编码器区别是什么意思增量型编码器与绝对型编码器区别是什么意思一、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。

,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

1.3混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。

重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。

摆锤冲击实验机,利用编码器计算冲击是摆角变化。

2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。

拉线位移传感器,利用收卷轮周长计量物体长度距离。

联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。

介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。

增量式 绝对值 编码器概述 PPT课件

增量式 绝对值 编码器概述 PPT课件

螺母
螺距
x=?
丝杠
编码器
x
x
末端安装包含了丝杠的传动误 差,反馈位置控制精度更高
编码器装在丝杠末端与前端 (和伺服电动机同轴)在位置控 制精度上有什么区别?
编码器
绝对型旋转编码器的机械安装有高速端安装、低速 端安装、辅助机械装置安装等多种形式。
1)高速安装
编码器
2)低速安装
编码器
3)辅助安装
编码器
绝对值编码器的输出形式: 绝对值编码器信号输出有并行输出、串行SSI输出、 现场总线型输出、变送一体型输出。
并行输出:并行输出的每一根线代表一个位,编码 器有多少位即有多少根输出线,组成一个唯一的位 置编码,所以需要的PLC输入点会很多。代码一般为 BCD或者格雷码。 (同步串行)串行SSI输出:这种输出可靠性高,传 输距离远。但是不能跟s7-200直接连接,需要s7-300 以上系列PLC。
编码器
轴式
套式
电信器
编码器
3 绝对值编码器 绝对编码器光码盘上有许多道光通道刻线,每道
刻线依次以2线、4线、8线、16线……编排,通过 读取每道刻线的通、暗,获得一组从2的零次方到2 的n-1次方的唯一的2进制编码(格雷码),这就称 为n位绝对编码器。这样的编码器是由光电码盘的机 械位置决定的,它不受停电、干扰的影响。绝对编 码器由机械位置决定的每个位置是唯一的,它无需 记忆,无需找参考点。
1. 收拉钢丝绳 2. 测量盘 3. 收紧弹簧轮1 4. 收紧弹簧轮2 5. 专用弹簧 6. 弹性联轴器 7. 编码器
编码器
谢谢大家的听! 以上内容仅供参考学习之用。
编码器
(异步串行)现场总线型输出:比较熟悉的如, ModbusRTU输出、Profibus-DP输出等。该类编码器 可以与s7-200PLC通信连接使用,使用方便,成本低。 变送一体型输出:这种输出型信号已经在编码器内 换算后直接变送输出,常用的有模拟量4—20mA输 出、RS485数字输出或者两者同时输出,即为双输出 型编码器。 (这里实物介绍并行输出和现场总线ModbusRTU输 出型编码器)

绝对编码器与增量编码器的区别

绝对编码器与增量编码器的区别

一、光电编码器:光电编码器是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量;增量式旋转编码器定义:用光信号扫描分度盘分度盘与转动轴相联,通过检测、统计信号的通断数量来计算旋转角度增量式旋转编码器的特点:1编码器每转动一个预先设定的角度将输出一个脉冲信号,通过统计脉冲信号的数量来计算旋转的角度,因此编码器输出的位置数据是相对的;2由于采用固定脉冲信号,因此旋转角度的起始位可以任意设定;3由于采用相对编码,因此掉电后旋转角度数据会丢失需要重新复位;增量式编码器综述特点:数字编码, 根据旋转角度输出脉冲信号;根据旋转脉冲数量可以转换为速度选型: - 旋转一周对应的脉冲数 256, 512, 1024, 2048;输出信号类型 TTL, HTL, push-pull mode;电压类型 5V, 24V;最大分辨速度优点:分辨能力强;测量范围大;适应大多数情况缺点:断电后丢失位置信号;技术专有,兼容性较差绝对式旋转编码器定义:用光信号扫描分度盘分度盘与传动轴相联上的格雷码刻度盘以确定被测物的绝对位置值,然后将检测到的格雷码数据转换为电信号以脉冲的形式输出测量的位移量绝对式旋转编码器的特点:1)在一个检测周期内对不同的角度有不同的格雷码编码,因此编码器输出的位置数据是唯一的;2因使用机械连接的方式,在掉电时编码器的位置不会改变,上电后立即可以取得当前位置数据;3检测到的数据为格雷码,因此不存在模拟量信号的检测误差;绝对式编码器综述特点:数字编码, 根据旋转角度输出脉冲信号;根据输出的脉冲信号可以转化为速度.选型:单编码盘 / 多编码盘测量一个或二个旋转变量;代码格雷码, BCD码, 二进制码信号传输方式并口, 串口;分辨率;最大旋转速度优点:1 结构简单2角行程编码通过旋转轴获得3线性编码激光远距离测量4掉电不影响编码数据的获得5最大24位编码缺点:比较贵混合式旋转编码器定义:用光信号扫描分度盘分度盘与转动轴相联,通过检测、统计光信号的通断数量来计算旋转角度,同时输出绝对旋转角度编码与相对旋转角度编码混合式旋转编码器的特点:具备绝对编码器的旋转角度编码的唯一性与增量编码器的应用灵活性。

绝对值编码器和增量编码器的工作原理

绝对值编码器和增量编码器的工作原理

绝对值编码器与增量编码器的工作原理详解在数字信号处理和电子工程中,绝对值编码器和增量编码器是常用的编码器类型。

它们分别用于将模拟信号转换成数字信号,并在控制系统和测量系统中发挥重要作用。

本文将对绝对值编码器和增量编码器的工作原理进行详细解释。

1. 绝对值编码器绝对值编码器(Absolute Encoder)是一种用于测量系统位置的设备。

它通过将设备位置与一个确定的参考点进行比较,然后输出一个表示当前位置的二进制码。

绝对值编码器不需要在启动时进行归零操作,它可以直接输出当前位置信息,因此被广泛应用于需要精确定位的应用场景,如机器人控制、数控机床和自动化工业系统等。

工作原理绝对值编码器通常由一个固定的编码盘和一个与编码盘同轴的旋转轴构成。

编码盘上通常有一些刻痕,这些刻痕被称为光栅线。

每个光栅线上通常有一个光电传感器来检测光栅线的状态。

通常采用的光电传感器有两种类型:光电二极管(Photodiode)和光电传感器阵列(Photoelectric Sensor Array)。

当编码盘旋转时,光栅线会遮挡或透过光电传感器,从而使得光电传感器的输出状态发生变化。

每个光栅线上的光电传感器组成了一个二进制码的一位。

通过检测多个光栅线的状态改变,可以组合成一个表示当前位置的二进制码。

一种常见的绝对值编码器是自然二进制绝对值编码器(Natural Binary Absolute Encoder)。

它的工作原理如下:1.编码盘上的光栅线被划分为多个等宽的区域。

2.每个区域上的光电传感器会在光栅线通过时产生一个高电平信号。

3.将光电传感器的状态编码成二进制位,例如高电平表示1,低电平表示0。

4.根据每个光电传感器的状态生成一个二进制位序列,这个序列表示当前位置。

优缺点绝对值编码器具有以下优点:•可以直接输出位置信息,不需要在启动时进行归零操作。

•精确度高,可以实现高分辨率的位置测量。

•具有抗干扰能力强、抗磨损性能好等特点。

增量型编码器和绝对值型编码器差别

增量型编码器和绝对值型编码器差别

编码器是把角位移或直线位移转换成电信号的一种装置。

前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。

按照工作原理编码器可分为增量式和绝对式两类。

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。

绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。

这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。

在参考点以前,是不能保证位置的准确性的。

为此,在工控中就有每次操作先找参考点,开机找零等方法。

比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。

增量式编码器特点:增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。

编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。

需要提高分辨率时,可利用90 度相位差的A、B 两路信号进行倍频或更换高分辨率编码器。

绝对型旋转光电编码器,因其每一个位置绝对唯一、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。

绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增量式和绝对式编码器(绝对值编码器)的比较
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变
成计数脉冲,用脉冲的个数表示位移的大小。

绝对式编码器的每一个位置对应
一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量
的中间过程无关。

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,
当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。

这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不
能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的
量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参
考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。

在参考
点以前,是不能保证位置的准确性的。

为此,在工控中就有每次操作先找参考点,开机找零等方法。

这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需
找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它
的位置。

这样,编码器的抗干扰特性、数据的可靠性大大提高了。

由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多
地应用于工控定位中。

绝对型编码器因其高精度,输出位数较多,如仍用并行
输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接
电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输
出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出
最常用的是SSI(同步串行输出)。

相关文档
最新文档