高考数学压轴题秒杀共10页
最新高考数学压轴题秒杀
秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。
压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。
很多很多人。
出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。
那种思想,在群里面我也说过,在这里就不多啰嗦了。
想领悟、把握压轴题的思路,给大家推荐几道题目。
08的除山东的外我都没做过,所以不在推荐范围内)。
09全是数学压轴题,且是理科(全国一07山东,08江西,07全国二,08全国一,可脉络依然清晰。
虽然一年过去了,做过之后,但这几道题,很多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。
记住,压轴题是出题人在微笑着和你对话。
会在以后的视频里面讲以及怎么发挥和压榨一道经典题目的最大价值,,”精“具体的题目的解的很清楚。
\ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。
:1 )我押题的第一道数列解答题。
裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简:2. 单的数列考察方式,一般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。
开始解答题了哦,先来一道最简单的。
貌似北京的大多挺简单的。
意义在只能说不大。
这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目07下面年高考题中见了很多。
10、09、08在 )分14本小题满分(22)(2≠0.b其中+1),x ln(b+x)=x(f设函数在定义域上的单调性;)x(f时,判断函数> b当)Ⅰ( 的极值点;)x(f (Ⅱ)求函数n(Ⅲ)证明对任意的正整数. 都成立ln( )不等式, ~ 有点鸡肋了..这道题我觉得重点在于前两问,最后一问这道题,太明显了对吧? 1第三问其实就是直接看出来么?想想我之前关于压轴题思路的讲解,,看压轴问的形式这道题就出来了。
高考数学第二轮复习精品资料压轴题
高考数学第二轮复习 压轴题高考坚持“有利于高校选拔人才,有利于中学实施素质教育,有利于高校扩大办学自主权”的命题原则,坚持“考查基础知识的同时,注重考查能力”,这决定了每套高考试卷都有一道或几道把关的题目,我们称之为压轴题.这类题目的分值稳定在14分左右,多以传统的综合题或常用题型,与高等数学有关知识或方法联系比较紧密.如结合函数、不等式、导数研究无理型、分式型、指对数型以及多项式函数等初等函数的图像与性质,或数列兼考查数学归纳法,或以解析几何为主的向量与解析几何交汇,或以上三类题互相交汇形成新的综合问题,这类题目综合性强,解法多,有利于高校选拔.第一讲 函数、不等式与导数型压轴题【调研1】设21()log 1x f x x +=-,1()()2F x f x x=+- (1)试判断函数()y F x =的单调性,并给出证明;(2)若()f x 的反函数为1()f x -,证明 对任意的自然数(3)n n ≥,都有1()1nf n n ->+; (3)若()F x 的反函数1()F x -,证明 方程1()0F x -=有惟一解.分析:第(1)问先具体化函数()y F x =后,再判断单调性,而判断单调性有定义法和导数法两条途径;第(2)问先具体化1()f n -,再逐步逆向分析,寻找不等式的等价条件,最后转化为不等式212nn >+的证明问题;第(3)问应分“存在有解”和“唯一性”两个方面证明. 解析:(1)∵21()log 1x f x x +=-,1()()2F x f x x =+- ∴211()log 12x F x x x+=+-- ∴函数()y F x =的定义域为(1,1)-.解法一:利用定义求解 设任意1x ,2x (1,1)∈-,且12x x <,则21()()F x F x -=212222111111(log )(log )2121x x x x x x +++-+---- =212221211111()(log log )2211x x x x x x ++-+-----=211221212(1)(1)log (2)(2)(1)(1)x x x x x x x x --++--+- ∵210x x ->,120x ->,220x -> ∴1212(1)(1)0(1)(1)x x x x -+>+-∴211221212(1)(1)log 0(2)(2)(1)(1)x x x x x x x x --++>--+- ∴函数()y F x =在(1,1)-上是增函数解法二:利用导数求解∵211()log 12x F x x x+=+--∴()F x '=22121(1)ln 2(1)(2)x x x x -⨯++--=2221ln 2(1)(2)x x +⨯--又∵11x -<< ∴()F x '=22210ln 2(1)(2)x x +>⨯--∴函数()y F x =在(1,1)-上是增函数 (2) 由21()log 1x f x x +=-得121y x x +=-,即2121y y x -=+ ∴121()21x x f x --=+(x R ∈)∴121()21n n f n --=+=2121n -+∵1111n n n =-++∴证明不等式1()1n f n n ->+(3n ≥),即证222122n n <++,也即证212nn >+(3n ≥) 以下有两条求证途径:解法一:利用数学归纳法求证①当3n =时,不等式显然成立. ②设n k =时成立,即212kk >+当1n k =+时,12222(12)k k k +=⨯>+=42222k k k +=++232(1)1k k >+=++ ∴当1n k =+时不等式也成立.由①②可知,对利用大于或等于3的自然数都有212nn >+成立.∴证明不等式1()1nf n n ->+(3n ≥) 解法二:利用放缩法求证∵2(11)112221n n n n n n =+=++++=+>+…∴等式1()1n f n n ->+(3n ≥) 故:1()1n f n n ->+ (3)∵ 211(0)log 122F =+= ∴11()02F -=,即12x =是1()0F x -=的一个根.假设1()0F x -=另外还有一个解0x (012x ≠),则10()0F x -=∴0(0)F x = (012x ≠),这与1(0)2F =相矛盾 故1()0F x -=有惟一解.【方法探究】证明不等式的方法很多,其中分析法和综合法是最基本的方法.分析法由果索因,优点是便于寻找解题思路,而综合法由因索果,优点是便于书写,所以我们在求解过程中,常常两种方法联合作战,从而衍生出“分析综合法”,在本例第(2)问以及下例第(2)问都中有所体现.【技巧点拨】对于压轴题,大多数同学都不能完全解答,如何更好发挥,争取更好的成绩?“分步解答”、“跳步解答”与“解准第一问”是很实用的夺分技巧,其中分析综合题的各小问之间的关系是非常关键.从各小问之间的相互关系来分,数学综合题有以下三类: (1)递进型 递进型解答题是指前问是后问的基础,只有前问正确解答,才能准确求解后问,若第(1)问出错,则可能“全军覆没”,这也是相当多同学不能很好发挥其数学水平的重要原因.对于这类题目,“解准第一问”是至关重要,不容丝毫的马虎.(2)并列式 并列型解答题是指前问与后问关联性不强,前问是否正确,不会影响后问作答,如本例的三个问题.但这类题目也容易丢分,同学们在作答时,常常因为前问不会答而放弃后问的分析与思考,这时“跳步解答”非常关键.(3)混合式 混合型解答题是指解答题有三个及其以上的小问,兼有以上两种类型的特点,答题时注意“分步解答”,如本例万一不会求解第(2)问,具体化1()f n -是没有问题的,争取得到一定的步骤分.【调研2】已知函数22()ln f x x a x x=++(0x >),()f x 的导函数是()f x '对任意两个不相等的正数1x 、2x 求证:(1)当0a ≤时,1212()()()22f x f x x xf ++>;(2)当4a ≤时,1212()()f x f x x x ''->-. 分析:本例以高等数学的函数凸凹性、一致连续性、中值定理等知识为内核,综合考查函数的基本性质、导数求函数极值和均值不等式等知识的应用,考查综合分析、推理论证以及运算能力.第(1)问先根据题设条件具体化12()()2f x f x +、12()2x x f +的表达式,再对二者进行比较,可以逐项比较,也可以作差比较;第(2)问先具体化12()()f x f x ''-,再逐步逆向分析,采用分析法寻找解题思路,至于书写可用分析法,也可以用综合法. 解析:(1)∵()22ln f x x a x x =++∴()()()()1222121212111ln ln 222f x f x a x x x x x x +⎛⎫=+++++ ⎪⎝⎭ ()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭ 以下有两条求解途径:解法一:逐项比较法122x x +<∴12ln 2x x +< ∵0a ≤∴12ln 2x x a a + ………………………………①∵()()22222212121212112242x x x x x x x x +⎛⎫⎡⎤+>++= ⎪⎣⎦⎝⎭……………………………………② 又∵()()2221212121224x x x x x xx x +=++> ∴1212124x x x x x x +>+ ………………③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭∴ ()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭解法二:作差比较法()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭=()22212121212121214[[()ln ]222x x x x x x x x a a x x x x ++++++-+++=22212121212121214[()()]()(ln )222x x x x x x x x a a x x x x ++++-+-++=221212121212()1()4()x x x x a x x x x --+++ ∵12x x ≠,且10x >,20x > ∴2121()04x x ->,2121212()0()x x x x x x ->+,1201<<∵0a ≤∴12ln0a ≥∴()()121222f x f x x x f ++⎛⎫-⎪⎝⎭=221212121212()1()04()x x x x a x x x x --++>+ 故()()121222f x f x x x f ++⎛⎫-⎪⎝⎭0>(2)证法一:分析综合法由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+- 欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->即证()1212122x x a x x x x +<+成立 ∵()121212122x x x x x x x x ++>+设t =,()()240u t t t t =+>,则()242u t t t '=- 令()0u t '=得t =()4u t a ≥=>≥ ∴()1212122x x x x a x x ++> ∴对任意两个不相等的正数12,x x ,恒有()()''1212f x f x x x ->-证法二:综合法1 对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> ∴ ()12221212221x x a x x x x ++->而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+-12x x >- 故:()()''1212f x f x x x ->- 证法三:综合法2由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()''12f x f x -=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+- ∵12,x x 是两个不相等的正数∴()()123221212122422x x aax x x x x x ++->+-()312442x x ≥+-设t =,()()322440u t t t t =+->,则()()'432u t t t =-,列表: ∴38127u => 即 ()12221212221x x ax x x x ++-> ∴()()()12''12121222121222x x af x f x x x x x x x x x +-==-⋅+->- 【方法探究】本例以高等数学中的函数凸凹性与中值定理为知识载体,所以也可以采取高等数学方法求解: (1)当0a ≤时,求证1212()()()22f x f x x xf ++>,联系凹(下凸)函数性质知,只需证明当0a ≤时,只需证明22()ln f x x a x x=++(0x >)为凹函数或下凸函数. 即证明“函数)(x f 的二阶导数恒大于0”其具体证明如下:∵22()ln f x x a x x =++(0x >)∴22()2a f x x x x '=-+,324()2a f x x x''=+-∵0x >,0a < ∴324()20af x x x''=+->在(0,)x ∈+∞时恒成立.∴22()ln f x x a x x =++(0x >)为凹函数 故()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭(2)为证明|||)()(|2121x x x f x f ->'-',可以考虑对函数()f x 的导函数是()f x '在闭区间12[,]x x (或21[,]x x )上应用中值定理,具体证明过程如下:不妨设210x x >>,则由(1)问知22()2a f x x x x '=-+,324()2af x x x''=+-,在闭区间12[,]x x 上,由中值定理有,存在[]21,x x ∈ξ,使得: ))(()()(2121x x f x f x f -''='-'ξ.下证当4a ≤,0ξ>时,有()1f ξ''>成立∵324()2a f x x x ''=+-∴当0a ≤,0x >时,有324()22af x x x ''=+->恒成立 当04a <≤,0x >时,令324()2()a f xg x x x ''=+-=,则34212()a g x x x'=-再令34212()0a g x'=-=,得6x =列表如下:即当04a <≤,0x >时,有33324438()222110810827a a f x x x ''=+-≥->-=>∴1)(04>''>≤ξξf a 时,有,当,有212121)()()(x x x x f x f x f ->-⋅''='-'ξ故()()''1212f x f x x x ->-1.已知32()2f x x bx cx =+++(1)若()y f x =在1x =时有极值-1,求b ,c 的值.(2)当b 为非零实数时,证明()f x 的图像不存在与直线2()10b c x y -++=平行的切线;(3)记函数|()|f x '(11x -≤≤)的最大值为M ,求证32M ≥. 2.已知函数()ln(1)(1)x f x a e a x =+-+,2()(1)(ln )g x x a x f x =---且()g x 在1x =处取得极值. (1)求a 的值和()g x 的极小值; (2)判断()y f x =在其定义域上的单调性, 并予以证明;(3)已知△ ABC 的三个顶点A 、B 、C 都在函数()y f x =的图象上,且横坐标依次成等差数列,求证△ABC 是钝角三角形, 但不可能是等腰三角形.【参考答案】解析:(1)∵32()2f x x bx cx =+++ ∴2()32f x x bx c '=++ 由()f x 在1x =时有极值-1有(1)320(1)121f b c f b c '=++=⎧⎨=+++=-⎩,解之得15b c =⎧⎨=-⎩当1b =,5c =-时,2()325f x x x '=+-当1x >时,()0f x '>,当513x -<<时,()0f x '< 从而符合在1x =时,()y f x =有极值 ∴1b =,5c =-(2)假设()y f x =图象在x t =处的切线与直线2()10b c x y -++=平行,则 ∵2()32f t t bt c '=++,直线2()10b c x y -++=的斜率为2c b -∴2232t bt c c b ++=-,即22320t bt b ++=∵0b ≠ ∴△=2224(3)80b b b -=-<从而方程22320t bt b ++=无解,即不存在t ,使22()32f t t bt c c b '=++=-∴()y f x =的图象不存在与直线2()10b c x y -++=平行的切线.(3)证法一:分类讨论∵|()|f x '=22|3()()|33b b xc ++-∴①若||13b ->,则M 应是|(1)|f '-和|(1)|f '中最大的一个∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②当30b -≤<时,2|(1)||()|3b M f f ''≥-+-=2|32|||3b b c c -++-2|23|3b b ≥-+=21|(3)|3b -3> ∴32M ≥ ③当03b <≤时,2|(1)||()|3b M f f ''≥+-=2|32|||3b bc c +++-2|23|3b b ≥++=21|(3)|3b +3> ∴32M ≥综上所述,32M ≥成立.证法二:利用二次函数最值求解2()32f t t bt c '=++的顶点坐标是(3b -,332b c -),①若||13b->,则M 应是|(1)|f '-和|(1)|f '中最大的一个 ∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②若||13b -≤,则M 应是|(1)|f '-、|(1)|f '、|332b c -|中最大的一个(1)当32c ≥-时,2|(1)||(1)|M f f ''≥-+|(1)(1)|f f ''≥-+=|62|3x +≥ ∴32M ≥ (2)当32c <-时, 23||3c b M -≥=2332b c c -≥->综上所述,32M ≥成立. 证法三:利用绝对值不等式的性质∵函数|()|f x '(11x -≤≤)的最大值为M ∴|(1)|M f '≥-,|(1)|M f '≥,|(0)|M f '≥∴4|(1)||(1)|2|(0)|M f f f '''≥-++|(1)(1)2(0)|f f f '''≥-+-=6 ∴32M ≥ 2.解析:(1)∵2()(1)(ln )g x x a x f x =---∴1()2(1)1a a g x x a x x+'=---++(0x >) ∵()g x 在1x =处取得极值 ∴(1)2(1)102ag a a '=---++=,即8a =∴()8ln(1)9xf x e x =+- 2()78ln(1)9ln g x x x x x =--+-89(1)(3)(23)()271(1)x x x g x x x x x x --+'=--+=++(0x >) 令(1)(3)(23)()0(1)x x x g x x x --+'==+得1x =或3x =当13x <<时,()0g x '<,当01x <<时,()0g x '>当3x >时,()0g x '> ∴当3x =时,min ()9ln38ln 412g x =-- (2)∵()8ln(1)9x f x e x =+-∴89()9011xx xe f x e e--'=-=<++恒成立,即函数()f x 在(,)-∞+∞上是单调减函数. (3)设11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,且123x x x <<,则123()()()f x f x f x >>,1322x x x +=∴1212(,()())BA x x f x f x =+-,3232(,()())BC x x f x f x =-- ∴12321232()()[()()][()()]BA BC x x x x f x f x f x f x ⋅=--+-⋅-∵120x x -<,320x x ->,12()()0f x f x ->,32()()0f x f x -< ∴0BA BC ⋅< 故B 为钝角,△ABC 为锐角三角形.另一方面,若ABC ∆为等腰三角形,则只能是BA BC = 即222212123232()[()()]()[()()]x x f x f x x x f x f x -+-=-+- ∵2132x x x x -=-,221232[()()][()()]f x f x f x f x -=- ∴1223()()()()f x f x f x f x -=-,即13)()()f x f x f x =+22(∵()8ln(1)9x f x e x =+- ∴21221316ln(1)188[ln(1)(1)]9()x x xe x e e x x +-=++-+ ∴132122ln(1)ln(1)x x x x xe e e e ++=+++,即22122222x x x x x e e e e e +=++∴3212x x x ee e =+,但与3122x x x e e e +≥==相矛盾,所以ABC ∆不能为等腰三角形.综上所述,△ABC 是钝角三角形, 但不可能是等腰三角形.第二讲 递推数列、数学归纳法型压轴题数列和数学归纳法是初等数学与高等数学的最重要衔接点之一,是中学数学的重要组成部分,涉及知识面广、综合性强、方法灵活、试题新颖、技巧性突出,蕴含函数与方程,等价转化、分类与整合等数学思想以及错位相减法、归纳-猜想-证明、叠加(乘)法、叠代法、裂项法等大量的数学方法,是代数计算与逻辑推理训练的重要题材,因而这类题目多以压轴题的形式出现,成为高考的重头戏之一.【调研1】已知函数)(x f 是定义在R 上的不恒为零的函数, 且对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+.若1()12f =,(2)n n f a n-=(n N *∈),求①.数列{}n a 的通项公式;②.数列{}n a 的前n 项和为n S ,问是否存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立?若存在,求出m 的最小值;若不存在,则说明理由.分析: 求解本题的关键在于准确求解第(1)小问,所以准确化简(2)n f -成为求解本例的焦点.大致有以下三条途径:①.由已知条件()()()f a b af b bf a ⋅=+探索)(n a f 的规律,最后用数学归纳法证明; ②.将所给函数关系式适当变形, 根据其形式特点构造另一个函数, 设法用此函数求出)(n a f ; ③.设法将(2)n f -转化为熟悉的数列. 解析:(1)解法一:“归纳-猜想-证明”法∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+∴2()f a =()()a f a a f a ⋅+⋅=2()a f a ⋅3()f a =22()()a f a a f a ⋅+⋅=22()()a a f a a f a ⋅⋅+⋅=23()a f a 4()f a =33()()a f a a f a ⋅+⋅=233()()a a f a a f a ⋅⋅+⋅=34()a f a猜想1()()n n f a na f a -=⋅ (n N *∈)现在用数学归纳法证明: ①.显然1n =时,左边=()f a ,右边=111()a f a -⨯⋅=()f a ∴1n =时,命题1()()n n f a na f a -=⋅显然成立. ②.设n k =(*k N ∈)时有1()()kk f a kaf a -=⋅当1n k =+时 ∵()()()f a b af b bf a ⋅=+∴1()k f a +=()k f a a ⨯=()()k k a f a a f a ⋅+⋅=1()()k k a f a a ka f a -⋅+⋅⋅=()()k k a f a ka f a ⋅+⋅=(1)()k k a f a +⋅∴1n k =+时,命题1()()n n f a na f a -=⋅成立.由①②可知,对任意n N *∈都有1()()n n f a na f a -=⋅(n N *∈)成立.又∵1()12f =∴11111[()]()()(2)1222()2n n nn n f n f f a n n n ---⋅====故数列{}n a 的通项公式n a =11()2n -解法二:构造函数法 ∵当0≠⋅b a 时,有()()()f a b af b bf a ⋅=+ ∴bb f a a f ab ab f )()()(+= 令()()f x g x x =,则bb f a a f ab ab f )()()(+=即为: ()()()g ab g a g b =+∴()()ng a n g a =⋅ 即()()n nf a ng a a=⋅ ∴1()()()()nnnn f a f a a n g a a n na f a a-=⋅⋅=⋅⋅=⋅,即1()()n n f a na f a -=⋅余下的过程同解法一. 证法三: 转化为特殊数列求解∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+,1()12f =∴1[()]2n f =111[()]22n f -⨯=111111[()]()()2222n n f f --⨯+⨯=11111[()]()222n n f --⨯+即1[()]2n f =11111[()]()222n n f --⨯+ ∴1111[()][()]222()()22n n n n f f --=+ ∴新数列1[()]21()2n n f ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为2,首项为1()2212f =的等差数列,即1[()]221()2n n f n = ∴11()2(2)12()2n nn n n f a n n --⨯=== 故数列{}n a 的通项公式n a =11()2n -.(2)假设存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,则由(1)问可知111()2n n S -=-,所以1141()23n m ---<恒成立∴413m -≥,即7m ≥ 故存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,此时m 的最小值为7.【方法探究】本例是已知抽象函数关系, 利用函数迭代求数列通项问题.在所给的三种方法之中, 解法一利用“归纳-猜想-证明”求解,思路自然, 但较为繁琐;解法二利用构造函数法求解,比较简洁,但技巧性强;解法三转化为特殊数列求解,思维跨度大.这三种证法反应出求解数列与函数综合题的共同规律: 充分应用已知条件变形转化, 根据其形式特点构造新的数列, 然后利用数列的性质求解.【调研2】已知等差数列{}n a 的公差d 大于0,且2a 、5a 是方程027122=+-x x 的两根,数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)(1)求数列{}n a 、{}n b 的通项公式;(2)设数列{}n a 的前n 项和为n S ,试比较nb 1与1+n S 的大小. 分析:(1)由方程027122=+-x x 可求2a 、5a ,从而得到等差数列{}n a 的通项;由公式1112n n n S n a S S n -=⎧=⎨-≥⎩求解数列{}n b 的通项.(2)要比较n b 1与1+n S 的大小,应先由(1)问具体化nb 1、1+n S ,再求出前几项,探索大小规律, 最后用数学归纳法证明.解析:(1)∵2a 、5a 是方程027122=+-x x 的两根,公差d 大于0∴2a =3,5a =9,即5223a a d -==,11a = ∴21n a n =-(*n N ∈) ∵数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)∴当1n =时,111112T b b ==- ∴321=b当2≥n 时,∵n n b T 211-= ∴111122n n n n n b T T b b --=-=-∴113n n b b -=(2n ≥),即1212()333n n n b -==故21n a n =-,1212()333n n n b -==(2)解法一:归纳-猜想-证明由(1)可知2[1(21)]2n n n S n +-==,132n n b = ∴21(1)n S n +=+ 当1n =时,1132b =,24S = ∴211S b <当2n =时,2192b =,39S = ∴321S b <当3n =时,31272b =,416S = ∴431S b <当4n =时,41812b =,525S = ∴541S b >当5n =时,512432b =,636S = ∴651S b >猜想:4≥n 时,11+>n n S b以下用数学归纳法证明:(1)当4n =时,由上可知成立.(2)设n k =(*,4k N n ∈≥)时,11+>k kS b ,即2)1(23+>k K 当1n k =+时,11k b +=132k +=332k ⋅23(1)k >+2363k k =++=22(44)221k k k k ++++-2(1)1[(1)1]k k S ++>++=∴当1n k =+时,11+>n nS b 成立.由(1)(2)知n N *∈,4n ≥时,11+>n n S b .综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b .解法二:放缩法证明当1n =,2,3时,同以上解法 当n N *∈,4n ≥时1nb =32n =1223311(12)(1222)22n n n n C C C +>+⋅+⋅+⋅=1(1)(1)(2)[1248]226n n n n n n ---++⋅+⋅ ≥18[126(1)]23n n n n +++-=281636n n ++221n n >++1n S += 综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b . 【方法探究】通过对有限个特例进行考察,猜想一般的结论,然后运用数学归纳法证明,即“观察――猜想――证明”,这是中学数学中重要的解题方法,可有效解决探索性问题、存在性问题或某些与自然数有关的命题,在求解时注意“猜想大胆、求证小心”.【技巧点拨】放缩法是证明不等式的常用方法,过程简洁,但有一定难度,犹如花中的玫瑰,美丽但有刺. 成功运用放缩法求证的关键在于把握放缩尺度,在平时训练中注意多积累与整理.常见的放缩技巧有:(1)添项或减项的“添舍放缩”,如本例12233113(1222)22n n n n C C C ⨯>+⋅+⋅+⋅,只取(21)n +的二项展开式的前四项进行放缩;(2)拆项对比的“分项放缩”;(3)运用分数的性质放缩,如①分子增加正数项或分母减少正数项,分数值变大,反之变小;② a, b, m 都是正数并且a b <,有a a mb b m+<+(真分数的性质)等. (4)运用不等式串)1(11)1(12-<<+n n n n n 放缩,如在第3讲例2第(2)问中求证23π<n T 时,运用该技巧放缩后,再裂项相加求解.类似的不等式有2()4a b ab +≤≤ 222a b +,<<等. 1.已知函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3)及C (n S n ,),n S 为数列{}n a 的前n 项和,*n N ∈. (1)求n S 及n a ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n b b b b b b b b b b =++=++++∑(*n N ∈)求证:1111132n i i i bb =+≤<∑. 2.第七届国际数学教育大会的会徽的主体是由一连串直角三角形演变而成,其中OA =AB =BC =CD=DE =EF =FG =GH =HI =1.若将图2的直角三角形继续作下去,并记OA 、OB 、… 、OI 、…… 的长度所构成的数列为{}n a (1)求数列{}n a 的通项公式 (2)若函数22212111()nf n n a n a n a =+++++…+,求函数()f n 的最小值; (3)设11n n nb a a +=+,数列{n b }的前n 项和为n S .解不等式|2|4n S -≥3.已知一次函数)(x f 的反函数为)(x g ,且(1)0f =,若点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,11=a ,对于大于或等于2的任意自然数n 均有111=--+n nn n a a a a . (1)求)(x g y =的表达式;(2)求}{n a 的通项公式;O AB C DE F G H I图1图2(3)设)!2(!4!321++++=n a a a S n n ,求lim n n S →∞. 4.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.【参考答案】1.解析:(1)∵函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3) ∴2143m t m t +=⎧⎨+=⎩ 解之得11m t =⎧⎨=-⎩ ∴()21x f x =-∵函数()2x f x m t =⋅+的图象经过C (n S n ,) ∴21n n S =-(*n N ∈) ∴当1n =时,111S a ==当2≥n 时,111222n n n n n n a S S ---=-=-= ∵当1n =时,满足12n n a -= ∴数列{}n a 的通项为12n n a -= 故:12n n a -=,21n n S =-(*n N ∈)(2)由(1)可知121)1(21log 22-=+-=+=n n a b n n ,则∴11n n b b +=1(21)(21)n n -+=111()22121n n --+∴111ni i i b b -+∑=12233411111n n b b b b b b b b +++++=11111111(1)2335572121n n -+-+-++--+=11(1)221n -+(*n N ∈) ∵11(1)221n -+在*n N ∈上单调递增 ∴当1n =时min 11(1)221n -+=13 ∵1021n >+ ∴111(1)2212n -<+ 综上可得∑=+<≤n i i i b b 11211312.解析:(1)由题意有2211n n a a+=+∴ 21(1)1n a n =+-⨯=n 即n a (2)∵22212111()n f n n a n a n a =+++++…+∴1111()1232f n n n n n =++++++…+ 111111(1)23322122f n n n n n n n +=++++++++…+++ ∴111(1)()21221f n f n n n n +-=-++++=1102122n n >++- ∴(1)()f n f n +> 即函数()y f n =是递增数列∴()y f n =的最小值为11(1)112f ==+ (3)∵11n n n b a a +===+∴1)n S =++…1 ∴|2|4n S -≥即为2|4≥ 解之得48n ≥且n N ∈3.分析:由)(x g 为一次函数)(x f 的反函数得)(x g 也为一次函数,所以可设()g x kx b =+; 由(1)0f =得(0)1g =,从而有1b =;由“点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,且111=--+n nn n a a a a ”确定斜率k ,一旦直线)(x g y =的解析式确定,剩下的问题水到渠成. 解析:(1)∵)(x f 为一次函数,且)(x g 为其反函数 ∴设b kx x g +=)( 由(1)0f =得(0)1g =,即1)(+=kx x g ∵()1g n kn =+且1(,)n n n a A n a +(n N *∈)均在直线b kx x g +=)(上,且111=--+n n n n a aa a ∴1)1(112=-+-=+++nn a a a a k nn n n ∴1)(+=x x g (2)∵1(,)n n na A n a +(n N *∈)均在直线b kx x g +=)(上 ∴11+=+n a a nn ∴当*N n ∈时,12121(1)(2)n n n n a a an n n a a a ---⋅⋅⋅⋅⋅⋅⋅=⨯-⨯-⨯…21=n!(3)n S =123!4!(2)!n a a a n ++++=1!2!!3!4!(2)!n n ++++…=1112334(1)(2)n n +++⨯⨯++…=111111233412n n -+-++-++=1122n -+ ∴lim n n S →∞=11lim()22n n →∞-+=124.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.4.解析:(1)∵n n n a a b a a +=-(n N *∈),211()2n n na a a a +=+∴1n b +=11n n a a a a +++-=331()21()2n n n na a aa a a a a +++-=22()()n n a a a a +-=2n b 0> ∴1lg 2lg n n b b += ∵1113a a b a a +==- ∴1lg (lg3)2n n b -=⋅,即123n n b -= ∴11223131n n n a a --+=-故1n n a a a a +--=2n n a a a-=1n b +=1231n -+(2)当2≥n 时,1n a a +-=1231n n a a --+≤1()10n a a -(当且仅当2n =时取“=”) ∴321()10a a a a -≤-,431()10a a a a -<-,……,)(1011a a a a n n -<-- ∴])2([101)2(1121a n a S a n a a S n n ---<----- ∵12a a =,254a a = ∴651010(2)2(2)2n n n S a n a S a a n a ---<---- ∴11226131[(2)]189(31)n n n S n a --+<-+--251()189n a <+-23()18n a =+4()3n a <+故4()3n S n a <+.第三讲 解析几何型压轴题解析几何综合题是高考命题的一个热点内容,这类试题往往以解析几何知识为载体,综合函数、不等式、向量、数列等知识,涉及知识点多,综合性强,题目多变,解法灵活多样,能较好体现高考的选拔功能,因此这类题目常常以压轴题的形式出现.求解这类题目,注意在掌握通性通法的同时,从宏观上把握,微观上突破,在审题和解题思路上下功夫,不断跨越求解征途中可能会遇到的一道道运算难关,最终达到求解目的.【调研1】若1F ,2F 为双曲线22221b y a b -=的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足1F O PM =,11OF OP OP OM OP OMOF OP⋅⋅=.(1)求此双曲线的离心率;(2)若此双曲线过点N ,求双曲线的方程;(3)设(2)中双曲线的虚轴端点为1B ,2B (1B 在y 轴的正半轴上),过2B 作直线AB 与双曲线交于A ,B两点,求11B A B B =时,直线的方程. 分析:弄清向量表达式11OF OP OP OM OP OMOF OP⋅⋅=是求解本题的关键!由向量的数量积定义可知cos ,OP OM <>=1cos ,OF OP <>,即OP 是1F OM ∠的角平分线,联系1F O PM =可判断四边形1OMPF 是菱形.解析:(1)由1F O PM =知四边形1PFOM 是平行四边形 又由11OF OP OP OM OP OMOF OP⋅⋅=知OP 平分1F OM ∠ ∴四边形1PFOM 是菱形 设焦半距为c ,则有11OF PF PM c === ∴2122PF PF a c a =+=+ 由双曲线第二定义可知21PF e PM =,即2c aec+= ∴2e =(1e =-舍去) (2)∵2ce a== ∴2c a = ∴双曲线方程为222213x y a a -=又∵双曲线过点N ∴224313a a -=,即23a = ∴所求双曲线的方程为22139x y -=(3)由题意知()10,3B ,()20,3B -,则设直线AB 的方程为3y kx =-,()11,A xy ,()22,B x y则由223139y kx x y=-⎧⎪⎨-=⎪⎩有()2236180k x kx -+-= ∵双曲线的渐近线为y = ∴当k =时,AB 与双曲线只有一个交点,即k ≠∵12263k x x k +=-,122183x x k -⋅=- ∴()121221863y y k x x k -+=+-=-,()212121299y y k x x k x x ⋅=-++= 又∵()1113B A x y =-,,()1223B B x y =-,∵11B A B B ⊥∴()121212390xx y y y y +⋅-++=即221818939033k k --+-⋅+=-- ∴k = ∴直线AB 的方程为3y =-【方法探究】平面向量是高中数学新增内容,兼有代数和几何特性,是高中数学应用最广泛的数学工具之一,解析几何是高中数学的传统重点内容,是高考中的重头戏,而平面向量与解析几何交汇命题是近三年来新高考的一个新亮点.这类综合问题大致可分三类:(1)平面向量与圆锥曲线符号层面上的整合问题:这类题目是平面向量和圆锥曲线的简单拼盘,在平面向量刚进入高考时,比较常见,近来比较少;(2)平面向量与圆锥曲线知识层面上的整合问题:用平面向量语言包装解析几何中元素的关系,试题情境新颖,结合点选取恰到好处,命题手法日趋成熟,如本例求解过程中,明确向量式“1F O PM =”与“11OF OP OP OM OP OMOF OP⋅⋅=”含义,还原几何元素“菱形1PFOM ”是求解关键;(3)平面向量与圆锥曲线应用层面的整合问题:以平面向量作为工具,综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的轨迹、范围、最值、定值、对称等典型问题,这类问题往往更具有挑战性. 【调研2】在xoy 平面上有一系列点111(,)P x y ,222(,)P x y ,……,(,)n n n P x y ……,对每个自然数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切.若11=x ,且n n x x <+1 )(N n ∈.(1)求证数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21, 求证:23π<n T 分析:本题是数列与圆锥曲线的综合题,求解过程有两个关键点:①.由⊙n P 与⊙1+n P 彼此外切,从而构建关于n x 的递推关系式,突破的办法是具体化已知条件 “⊙n P 与⊙1+n P 彼此外切”为1n n P P +1n n r r ++=1n n y y ++; ②.经过一系列演算后得到222111]35(21)n T n =++++-,如何放缩?放缩度是把握问题的关键.解析:(1) ⊙n P 与⊙1+n P 彼此外切∴11n n n n P P r r ++=+1n n y y +=+ 两边平方并化简得1214)(++=-n n n n y y x x依题意有⊙n P 的半径2n n n x y r ==,22211()4n n n n x x x x ++-=⋅∵10n n x x +>> ∴112++=-n n n n x x x x ,即1112()n nn N x x +-=∈ ∴ 数列}1{n x 是以111x =为首项,以2为公差的等差数列. (2) 由(1)问有111(1)2n n x x =+-⋅,即121n x n =-∴2244(21)n n n n S r y x n ππππ====-, n n S S S T +⋅⋅⋅++=21])12(151311[222-++++=n π ≤])12()32(15313111[-⋅-++⋅+⋅+n n π =)]}121321()5131()311[(211{---++-+-+n n π =)]1211(211[--+n π< 【方法探究】在04年的湖南、上海、浙江卷, 05年的上海、浙江卷,06年的重庆、山东、湖北、浙江等卷都有数列与解析几何的综合问题.这类题综合性强,可以从数与形的两个角度考查理性思维能力以及函数与方程、数形结合、特殊化与一般化等数学思想.这类试题大多以点列的形式出现的,一个点的横,纵坐标分别是某两个不同数列的项,而这两个数列又由点所在的曲线建立联系,从而数列的代数特征与曲线的几何性质熔合.求解这类题目关键在于利用曲线性质建立数列的递推式,转化为代数问题求解.【技巧点拨】数列的判断与证明是数列的常考点,其求解过程常常从数列通项或递推式入手,通常有两种方法:①.定义法 证明数列每项与它的前项之差(比)是同一个常数,即证1n n a a +-=d ,d 为常数(1n na a +=q ,q 为不等于零的常数);②.中项法 证明每一项都是它的前一项和后一项的等差(比)中项,即证122n n n a a a ++=+(221++⋅=n n n a a a ).【调研3】在平面直角坐标系xOy中,有一个以(10,F和(2F的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A ,B ,且向量OM OA OB =+.求:(1)点M 的轨迹方程; (2)OM 的最小值.分析:求解本例可以根据以下步骤进行:①求立椭圆的方程,得到曲线C的方程; ②求过点P的切线方程,求出点A、B的坐标;③运用相关点法求点M 的轨迹方程; ④具体化OM ,转化为函数最值问题求解.解析:∵椭圆的焦点为(10,F、(2F,离心率为2∴椭圆方程可写为22221y x a b +=(0a b >>),其中223a b ⎧+==,解之得24a =,21b =∴曲线C的方程为y =,y '=设在曲线C上的动点00(,)P x y (0<x 0<1),则0y =∴过切点P的切线的斜率为0|x x k y ='==04x y -,过点P的切线的方程为 00004()x y x x y y =---+ ∵点,A B 是切线与x y 、轴的交点 ∴A01(,0)x ,B04(0,)y设点M为(,)x y ,则由OM →=OA → +OB →得01x x =,04y y =∵点00(,)P x y在曲线C:0y =∴点M 的轨迹方程为22141x y +=(1x >,2y >) (2)由(1)问可知2y =2411x -=2441x +- ∴2||OM =22x y +=22441x x ++-=224151x x -++-≥5=9 (当且仅当22411x x -=-,即1x =>时取等号)故当x =|OM →|的最小值为3. 【高考前沿】切线是曲线的一个重要几何性质,而导数是求曲线切线的最有力的工具,所以从切线角度与圆锥曲线综合考查,这是高考的一个新趋势,大大丰富了解析几何的研究内容,可能成为以后高考的一个新热点.导数也是求解最值问题的最常用工具,常与解析几何交汇,以最值问题的形式出现,是高考常考常新的热点.1.P 、Q 、M 、N 四点都在中心为坐标原点,离心率22=e ,左焦点)0,1(-F 的椭圆上,已知PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=,求四边形PMQN 的面积的最大值与最小值.2.设向量(1,0)i =,(0,1)j =,()a x m i y j =++,()b x m i y j =-+,且||||6a b +=,03m <<,0x >,y R ∈. (1)求动点(,)P x y 的轨迹方程;(2)已知点(1,0)A -,设直线1(2)3y x =-与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得13AB AC ⋅=?若存在,求出m 的值;若不存在,请说明理由. 3.已知曲线C :222(23)1k x k y k +-=+(k R ∈). (1)若曲线C 是双曲线,求k 的取值范围;(2)若曲线C 是焦点在x(3)对于满足条件(2)的双曲线,是否存在过点B (1,1)的直线l ,使直线l 与双曲线交于M ,N 两点且B 是线段MN 的中点?若存在,求出直线l 的方程;若不存在,请说明理由. 【参考答案】1.解析:∵椭圆的中心为坐标原点,离心率22=e ,左焦点)0,1(-F ∴椭圆方程为2212x y += ∵PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=∴直线PQ 和直线MN 都过椭圆的左焦点)0,1(-F不妨设PQ 的方程为1ky x =+,设11(,)P x y ,11(,)Q x y ,则12y y +22112ky x x y =+⎧⎪⎨+=⎪⎩ ∴22(2)210k y ky +--= ∴12222k y y k -+=-+,12212y y k -⋅=+∴12PQ y y =-=22)2k k +==+ (1)当0k ≠时,MN 的斜率为1k-,同理可得221)12k MN k +=+故四边形面积222214(2)12252k k S PQ MN k k ++==++=222212(5)2252k k k k ++-++=222252k k-++ ∵222529k k ++≥ ∴222202952k k-≤-<++,即1629S ≤<(2) 当0k =时,MN 为椭圆的长轴,MN =PQ =∴122S PQ MN ==综合(1) (2)知,四边形PQMN 面积的最大值为2,最小值为169.2.解析:(1)∵(1,0)i =,(0,1)j =,||||6a b +=6=,即为点(,)P x y 到点(,0)m -与到点(,0)m 距离之和为6记1(,0)F m -,2(,0)F m (03m <<),则12||26F F m =<∴1212||||6||PF PF F F +=> 又∵0x > ∴P 点的轨迹是以1F ,2F 为焦点的椭圆的右半部分.∵26a =,22c m =∴22229b a c m =-=-∴所求轨迹方程为222199x y m +=-(0,03x m ><<) (2)设11(,)B x y =,22(,)C x y = ∴11(1,)AB x y =+,22(1,)AC x y =+∴121212·()1AB AC x x x x y y =++++而12y y ⋅=1211(2)(2)33x x -⋅-=12121[2()4]9x x x x -++∴AB AC ⋅=121212121()1[-2()4]9x x x x x x x x ++++++=12121[107()13]9x x x x +++若存在实数m ,使得1·3AB AC =成立,则1212107()13=0x x x x +++………………………①高考数学第二轮复习 压轴题21 由⎪⎪⎩⎪⎪⎨⎧>=-+=0)(1992),-(31y 222x m y x x 得222(1)4(977)0m x x m --+-=…………………………② ∵0x > ∴22164(1)(977)0m m =--⋅->△,2124010x x m +=>-,21229-77010 m x x m =>- ∴2321940m =< 此时虽满足△>0,但21229-7728893080010 4040m x x m ==-<- ∴不存在符合题意的实数m ,使得1·3AB AC = 3.解析:(1)当1k =-、0k =或32k =时,曲线C 表示直线. 当1k ≠-且0k ≠且32k ≠时,曲线C 可化为22111223x y k k k k +=++-………………(1) 方程(1)表示椭圆的充要条件是110223k k k k ++⋅<- ∴解之得302k << (2)∵ 曲线C 是焦点在x∴212k a k +=,2123k b k +=--,从而有211223312k k k k e k k++--==+ ∴ 1k = 故曲线C 的方程为22112x y -= (3)假设存在直线l ,设11(,)M x y ,22(,)N x y ,则有⎪⎪⎩⎪⎪⎨⎧=-=-12112122222121y x y x ∴0)(2122212221=---y y x x ,即121212122()()()()x x x x y y y y -+=-+ ∵B 是线段MN 的中点 ∴221=+x x ,221=+y y∴ 直线l 的斜率22121=--=x x y y k ,即直线l :21y x =- 又直线l 与双曲线交于MN 两点,由⎪⎩⎪⎨⎧-==-1212122x y y x 得03422=+-x x , 此时0832416<-=⨯⨯-=∆,方程无实数根.即直线l 与双曲线12122=-y x 无交点. 故不存在满足条件的直线l .点评:本题易忽视直线m 与双曲线交于MN 两点的隐含条件0>∆,而得出存在直线l 为12-=x y 的错误结论.。
2024年高考数学(新高考压轴卷)(全解全析)
2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
压轴题10 导数的简单应用(原卷版)--2023年高考数学压轴题专项训练(全国通用)
压轴题10导数的简单应用题型/考向一:导数的计算及几何意义题型/考向二:利用导数研究函数的单调性题型/考向三:利用导数研究函数的极值、最值○热○点○题○型一导数的计算及几何意义1.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.3.导数中的公切线问题,重点是导数的几何意义,通过双变量的处理,从而转化为零点问题,主要考查消元、转化、构造函数、数形结合能力以及数学运算素养.一、单选题1.函数()()ln 322f x x x =--的图象在点()()1,1f 处的切线方程是()A .10x y ++=B .230x y ++=C .230x y --=D .30x y --=2.若函数()e ln xf x x a =++的图象在点()()1,1f 处的切线方程为1y kx =-,则=a ()A .1B .0C .-1D .e3.已知直线l 为曲线22ln y x x =-在1x =处的切线,则点()3,2-到直线l 的距离为()AB .10C .5D 4.若直线y x a =+与函数()x f x e =和()ln g x x b =+的图象都相切,则a b +=()A .1-B .0C .1D .35.曲线221e 24x y x -=⋅+在1x =处的切线与坐标轴围成的面积为()A .32B .3C .4916D .4986.已知函数()()21220232023ln 22f x x xf x '=-++-,则()2023f '=()A .2022B .2021C .2020D .20197.若对m ∀∈R ,,a b ∃∈R ,使得()()()f a f b f m a b-=-成立,则称函数()f x 满足性质Ω,下列函数不满足...性质Ω的是()A .()23f x x x=+B .()()211f x x =+C .()1ex f x -+=D .()()cos 12f x x =-8.已知函数()f x 的定义域是()(),00,∞-+∞U ,()f x '为()f x 的导函数,若()()()121f f x f x x'=+-,则()f x 在()0,∞+上的最小值为()A .4215-B 1C 1D 1二、多选题9.已知函数()332f x x ax =+-的极值点分别为()1212,x x x x <,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线10.若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是()A .-1B .3C .1D .211.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在π0,2⎛⎫ ⎪⎝⎭上是凸函数的是()A .()sin cos f x x x=-B .()ln 3f x x x=-C .()331f x x x =-+-D .()exf x x -=12.设函数()y f x =在区间(),a b 上的导函数为()f x ,()f x 在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''<,则称函数()f x 在区间(),a b 上为“凸函数”.已知()5421122012f x x mx x =--在()1,2上为“凸函数”则实数m 的取值范围的一个必要不充分条件为()A .1m >-B .m 1≥C .1m >D .0m >○热○点○题○型二利用导数研究函数的单调性利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.一、单选题1.函数()2e =-xf x x 的单调递增区间为()A .(),0∞-B .()ln2,+∞C .(],ln2∞-D .[)0,∞+2.已知函数()2,0,ln ,,x a xf x x x a x⎧<<⎪⎪=⎨⎪≥⎪⎩若()f x 在()0,∞+上单调递减,则实数a 的取值范围是()A .21,e ⎡⎤⎣⎦B .[]e,2eC .2,e e ⎡⎤⎣⎦D .[)e,+∞3.设0.33e a -=,0.6e b =, 1.6c =,则()A .c b a <<B .c a b <<C .b a c <<D .b c a<<4.若函数()y f x =满足()()xf x f x '>-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <5.已知()f x 是定义在R 上的偶函数,当0x ≥时,()e sin xf x x =+,则不等式()π21e f x -<的解集是()A .1π,2+⎛⎫+∞⎪⎝⎭B .1π0,2+⎛⎫⎪⎝⎭C .π1e 0,2⎛⎫+ ⎪⎝⎭D .1π1π,22-+⎛⎫⎪⎝⎭6.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞7.已知函数()x f x e =,若存在0[1,2]x ∈-使得00()()f t x f x t =+-恒成立,则0()b f x t =-的取值范围()A .10,1e ⎡⎤+⎢⎥⎣⎦B .211,e 2e⎡⎤+-⎢⎥⎣⎦C .11,1e ⎡⎤+⎢⎥⎣⎦D .21,e 2⎡⎤-⎣⎦8.已知函数()312x f x x +=+,()()42e xg x x =-,若[)12,0,x x ∀∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值范围是()A .21,e e ⎡⎤⎢⎥⎣⎦B .22,e ⎤-⎦C .)2⎡++∞⎣D .()2e,⎡+∞⎣二、多选题9.已知函数()(1)e x f x x =+的导函数为()f x ',则()A .函数()f x 的极小值点为21e -B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-10.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、解答题11.已知函数()321132f x x ax =-,a ∈R .(1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)讨论()f x 的单调性.12.已知函数()222ln 12x x f x x-+=.求函数()f x 的单调区间;○热○点○题○型三利用导数研究函数的极值、最值1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.一、单选题1.函数()32142f x x x x =+-的极小值为()A .43-B .1C .52-D .104272.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ()A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点3.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎥⎝⎦4.已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则()A .12x x >B .21x x >C .12x x ≥D .21x x ≥5.若函数()3222f x x ax a x =++在1x =处有极大值,则实数a 的值为()A .1B .1-或3-C .1-D .3-6.已知函数()()2ln 11f x x x =+++,则()A .0x =是()f x 的极小值点B .1x =是()f x 的极大值点C .()f x 的最小值为1ln 2+D .()f x 的最大值为37.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是()A .2e ,4⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .(]3e ,09⎧⎫-∞⎨⎬⎩⎭ D .32e e ,49 纟禳镲çú-¥睚çú镲棼铪8.已知定义域为()0,∞+的函数()f x 满足()1()1f x xf x x'+=+,()10f '=,()1122g x a ax x=+--,若01a <<,则()()f x g x -的极值情况是()A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极小值,也无极大值二、多选题9.已知函数()2211e e x x f x -+=+,则()A .()f x 为奇函数B .()f x 在区间()0,2上单调递减C .()f x 的极小值为22e D .()f x 的最大值为411e +10.设函数()ln xf x ax x=-,若函数()f x 有两个极值点,则实数a 的值可以是()A .12B .18C .2D .14-三、解答题11.已知函数()()322113f x x ax a x b =-+-+(a ,b ∈R ),其图象在点()()1,1f 处的切线方程为30x y +-=.(1)求a ,b 的值;(2)求函数()f x 的单调区间和极值;(3)求函数()f x 在区间[]2,5-上的最大值.12.已知函数()ln xf x x a=+,其中a 为常数,e 为自然对数的底数.(1)当1a =-时,求()f x 的单调区间;(2)若()f x 在区间(]0,e 上的最大值为2,求a 的值.。
高考逆袭卷01-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(原卷版)
2024年高考考前逆袭卷(新高考新题型)01数学(考试时间:120分钟试卷满分:150分)全国新高考卷的题型会有所调整,考试题型为8(单选题)+3(多选题)+3(填空题)+5(解答题),其中最后一道试题是新高考地区新增加的题型,主要涉及集合、数列,导数等模块,以解答题的方式进行考查。
预测2024年新高考地区数列极有可能出现在概率与统计大题中,而结构不良型题型可能为集合或导数模块中的一个,出现在19题的可能性较大,难度中等偏上,例如本卷第19题。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知样本数据12100,,,x x x 的平均数和标准差均为4,则数据121001,1,,1x x x ------ 的平均数与方差分别为()A .5,4-B .5,16-C .4,16D .4,42.已知向量()1,2a = ,3b = ,2a b -= ,则向量a 在向量b 上的投影向量的模长为()A .6B .3C .2D .53.已知在等比数列{}n a 中,23215a a +=,234729a a a =,则n n S a -=()A .1232n -⨯-B .()11312n --C .23n n ⨯-D .533n ⨯-4.已知三棱锥A BCD -中,6,3,AB AC BC ===三棱锥A BCD -的体积为2,其外接球的体积为500π3,则线段CD 长度的最大值为()A .7B .8C .D .105.一个信息设备装有一排六只发光电子元件,每个电子元件被点亮时可发出红色光、蓝色光、绿色光中的一种光.若每次恰有三个电子元件被点亮,但相邻的两个电子元件不能同时被点亮,根据这三个被点亮的电子元件的不同位置以及发出的不同颜色的光来表示不同的信息,则这排电子元件能表示的信息种数共有()A .60种B .68种C .82种D .108种6.已知 1.12a -=,1241log log 33b c ==,,则()A .a b c <<B .c b a <<C .b a c <<D .b c a <<7.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.158.已知双曲线22122:1(0,0)x y C a b a b-=>>与抛物线22:2(0)C y px p =>,抛物线2C 的准线过双曲线1C 的焦点F ,过点F 作双曲线1C 的一条渐近线的垂线,垂足为点M ,延长FM 与抛物线2C 相交于点N ,若34ON OF OM += ,则双曲线1C 的离心率等于()A1+BCD1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在复平面内,下列说法正确的是()A .若复数1i 1i-=+z (i 为虚数单位),则741z =-B .若复数z 满足z z =,则z ∈RC .若120z z =,则10z =或20z =D .若复数z 满足112z z -++=,则复数z 对应点的集合是以坐标原点O 为中心,焦点在x 轴上的椭圆10.设直线系:cos sin 1n m M x y θθ+=(其中0,m ,n 均为参数,02π≤≤θ,{},1,2m n ∈),则下列命题中是真命题的是()A .当1m =,1n =时,存在一个圆与直线系M 中所有直线都相切B .存在m ,n ,使直线系M 中所有直线恒过定点,且不过第三象限C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1,最小值为2D .当2m =,1n =时,若存在一点()0A a ,,使其到直线系M 中所有直线的距离不小于1,则0a ≤11.如图所示,一个圆锥SO 的底面是一个半径为3的圆,AC 为直径,且120ASC ∠=︒,点B 为圆O 上一动点(异于A ,C 两点),则下列结论正确的是()A .SAB ∠的取值范围是ππ,62⎡⎤⎢⎣⎦B .二面角S BC A --的平面角的取值范围是ππ,62⎛⎫ ⎪⎝⎭C .点A 到平面SBC 的距离最大值为3D .点M 为线段SB 上的一动点,当SA SB ⊥时,6AM MC +>第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2|60A x x x =--<,{|}B x a x a =-≤≤,若A B ⊆,则实数a 的取值范围是.13.已知三棱柱111ABC A B C -中,ABC 是边长为2的等边三角形,四边形11ABB A 为菱形,160A AB ∠=︒,平面11ABB A ⊥平面ABC ,M 为AB 的中点,N 为1BB 的中点,则三棱锥11C A MN -的外接球的表面积为.14.已知对任意()12,0,x x ∈+∞,且当12x x <时,都有:()212112ln ln 11a x x x x x x -<+-,则a 的取值范围是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC 中,内角A ,B ,C 所对的边分别a ,b ,c ,其中2,a b c =+=,且sin A C =.(1)求c 的值;(2)求tan A 的值;(3)求cos 24A π⎛⎫+ ⎪⎝⎭的值.16.(15分)如图,在三棱锥-P ABC 中,M 为AC 边上的一点,90APC PMA ∠=∠=︒,cosCAB ∠=2AB PC =PA =(1)证明:AC ⊥平面PBM ;(2)设点Q 为边PB 的中点,试判断三棱锥P ACQ -的体积是否有最大值?如果有,请求出最大值;如果没有,请说明理由.17.(15分)近年来,某大学为响应国家号召,大力推行全民健身运动,向全校学生开放了,A B 两个健身中心,要求全校学生每周都必须利用课外时间去健身中心进行适当的体育锻炼.(1)该校学生甲、乙、丙三人某周均从,A B 两个健身中心中选择其中一个进行健身,若甲、乙、丙该周选择A 健身中心健身的概率分别为112,,233,求这三人中这一周恰好有一人选择A 健身中心健身的概率;(2)该校学生丁每周六、日均去健身中心进行体育锻炼,且这两天中每天只选择两个健身中心的其中一个,其中周六选择A 健身中心的概率为12.若丁周六选择A 健身中心,则周日仍选择A 健身中心的概率为14;若周六选择B 健身中心,则周日选择A 健身中心的概率为23.求丁周日选择B 健身中心健身的概率;(3)现用健身指数[]()0,10k k ∈来衡量各学生在一个月的健身运动后的健身效果,并规定k 值低于1分的学生为健身效果不佳的学生,经统计发现从全校学生中随机抽取一人,其k 值低于1分的概率为0.12.现从全校学生中随机抽取一人,如果抽取到的学生不是健身效果不佳的学生,则继续抽取下一个,直至抽取到一位健身效果不佳的学生为止,但抽取的总次数不超过n .若抽取次数的期望值不超过23,求n 的最大值.参考数据:2930310.980.557,0.980.545,0.980.535≈≈≈.18.(17分)已知椭圆2222:1(0)x y C a b a b+=>>的上下顶点分别为12,B B ,左右顶点分别为12,A A ,四边形1122A B A B 的面积为C 上的点到右焦点距离的最大值和最小值之和为6.(1)求椭圆C 的方程;(2)过点()1,0-且斜率不为0的直线l 与C 交于,P Q (异于12,A A )两点,设直线2A P 与直线1AQ 交于点M ,证明:点M 在定直线上.19.(17分)给定整数3n ≥,由n 元实数集合P 定义其随影数集{},,Q x y x y P x y =-∈≠∣.若()min 1Q =,则称集合P 为一个n 元理想数集,并定义P 的理数t 为其中所有元素的绝对值之和.(1)分别判断集合{}{}2,1,2,3,0.3,1.2,2.1,2.5S T =--=--是不是理想数集;(结论不要求说明理由)(2)任取一个5元理想数集P ,求证:()()min max 4P P +≥;(3)当{}122024,,,P x x x = 取遍所有2024元理想数集时,求理数t 的最小值.注:由n 个实数组成的集合叫做n 元实数集合,()()max ,min P P 分别表示数集P 中的最大数与最小数.。
高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
2024全国数学高考压轴题(数列选择题)附答案
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
高考必做的 道压轴题 数学 变式题 pdf版
所以
e2
c2 a2
a2 b2 a2
1 3
,即 b2 a2
2 3
,又 b
2 11
2,
所以 b2 2 , a2 3,即 a 3 , b 2 .
(Ⅱ)解法 1:
由(1)知 F1, F2 两点分别为 (1, 0) , (1, 0) ,由题意可设 P(1,t) .
那么线段
PF1
中点为
N
(0,
t 2
)
,
N (x2,
y2 ) ,则
x1
x2
4k 2 2k 2 1
,
x1x2
2k 2 2k 2
2 1
.
设 MN
的中点为 Q
,则
xQ
2k 2 2k 2 1 ,
yQ
k ( xQ
1)
k, 2k 2 1
所以 Q( 2k 2 , k ) . 2k 2 1 2k 2 1
第 3 页 共 83 页
上的 离与
F1 ,
由题意可知 k 0 ,
当 k 0 时,显然 m 0 ; 当 k 0 时,
y kx 1,
由
x
2
y2
3 2 1
得 (3k2 2)x2 6kx 3 0 .
所以
x1
x2
6k 3k 2
2
,
所以 x0
x1
x2 2
3k , 3k 2 2
从而
y0
kx0
1
2 3k 2
2
.
2
所以 MN
斜率 kMN
y0 x0 m
4
2
当 x0 ¹
2 时,直线 PM、QM 的斜率分别为 kPM
2024年高考数学专项突破数列大题压轴练(解析版)
数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高考数学压轴题精选精编附详细解答试题
2021年高考数学压轴题精选精编附详细解答1、〔本小题满分是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点,过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF 是1OA 和2OA 的等比中项;〔5分〕(Ⅲ) 对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。
〔5分〕2、〔本小题满分是14分〕设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+ 〔Ⅰ〕求)0(f ;〔2分〕(Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n an a a a a a a T b b b S b n ,试比拟S n 与 n T 的大小.〔7分〕3、〔此题满分是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P 在第一象限),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下图). 〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S =-⋅∠求直线l 的方程.4、〔此题满分是14分〕数列{}n a 的前n项和nS 满足11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比拟n a 与n b 的大小,并加以证明;〔III 〕是否存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?说明理由.5、(本小题满分是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕.6、(本小题满分是14分)数列{}n a 的前n 项和为S n *()n N ∈,点〔a n ,S n 〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 合适条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++ (4分)8、〔本小题满分是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. 〔Ⅰ〕假设b =2,且h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(7分) 〔Ⅱ〕设函数f (x )的图象C 1与函数g (x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. (7分)9、〔本小题满分是14分〕设抛物线214C y mx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P . 〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假如弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题满分是14分〕〔Ⅰ〕函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;〔Ⅱ〕证明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,ka a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明: 当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、本小题满分是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程;〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题满分是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式; 〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假如存在,求出实数a 的值;假如不存在,请说明理由.13、〔小题满分是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。
高考数学历年压轴题集锦
高考数学压轴题集锦1.椭圆的中心是原点O,它的短轴长为22,相应于焦点F (c ,0)(c >0)的准线l 与x 轴相交于点A ,OF =2FA ,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若OP ⋅OQ =0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM =-λFQ . (14分)2.已知函数f (x )对任意实数x 都有f (x +1)+f (x )=1,且当x ∈[0,2]时,f (x )=|x -1|。
(1)x ∈[2k ,2k +2](k ∈Z )时,求f (x )的表达式。
(2)证明f (x )是偶函数。
(3)试问方程f (x )+log 43.(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:x +(y -3)=1。
(1)若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程;(2)过点F 的直线g 交轨迹E 于G(x 1,y 1)、H(x 2,y 2)两点,求证:x 1x 2为定值;(3)过轨迹E 上一点P 作圆C 的切线,切点为A、B,要使四边形PACB 的面积S 最小,求10点P 的坐标及S 的最小值。
8y64C2Fx -15-10-55OX-2-4-61=0是否有实数根?若有实数根,指出实数根的个数;若没有x实数根,请说明理由。
221015x 224.以椭圆2+y =1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试a 判断并推证能作出多少个符合条件的三角形.5已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a、b、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6已知过函数f(x)=x +ax +1的图象上一点B(1,b)的切线的斜率为-3。
2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)
立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。
预计2024年后命题会继续在以上几个方面进行。
高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。
高考数学压轴题精选100题汇总(含答案)
7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln
;
an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;
全国卷Ⅰ2024年高考数学压轴卷理含解析
(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
2021年高考数学压轴题100题精选含答案
∴若其内切圆半径为 r ,则有 3
3 ,即 3 ,所以内切球的表面积为
3 .故
错误.
D:正方体 ABCD ABCD 中,点 P 在底面 ABCD(所在的平面)上运动且 MAC PAC ,
即 P 的轨迹为面 ABCD 截以 AM、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线 GPK ,
利用面面垂直的判定定理与性质定理得到 A' 到平面面 BCED 的高 A'H,并根据二面角的平面角,在直
角三角形中计算求得 A'H 的值,从而判定 A;根据异面直线所成角的定义找到∠A'DN 就是直线 A'D 与 CE 所成的角,利用余弦定理计算即可判定 B;利用勾股定理检验可以否定 C;先证明底面的外接圆 的圆心为 N,在利用外接球的球心的性质进行得到四棱锥 A'-BCED 的外接球的球心为 O,则 ON⊥平面 BCED,且 OA'=OC,经过计算求解可得半径从而判定 D. 【详解】 如图所示,作 AM⊥DE,交 DE 于 M,延长 AM 交 BC 于 N,连接 A'M,A'N. 则 A'M⊥DE,MN⊥DE, ,
B1N B1M
4 3
1
,故错误;
对于 D.同 A 选项证明方法一样可证的 GC1 //B1M ,
因为
E
为棱 CC1 上的中点, C1 为棱 B1N
GC1 =
上的中点,所以
1 2
B1M
3 2
所以
D1G=
1 2
,所以
D1G
:
GC1
1:
3
,故正确.
故选:ABD 【点睛】 求体积的常用方法: (1)直接法:对于规则的几何体,利用相关公式直接计算; (2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一 个面可作为三棱锥的底面进行等体积变换; (3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的 几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
高考数学压轴题——圆锥曲线大题十个大招含答案全解析
终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章压轴题秒杀很多朋友留言说想掌握秒杀的最后一层。
关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。
压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。
不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。
那种思想,在群里面我也说过,在这里就不多啰嗦了。
想领悟、把握压轴题的思路,给大家推荐几道题目。
全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。
08全国一,08全国二,07江西,08山东,07全国一一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。
都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。
记住,压轴题是出题人在微笑着和你对话。
具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。
不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。
尤其推荐我押题的第一道数列解答题。
)2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考)3:数学归纳法、不等式缩放基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。
开始解答题了哦,先来一道最简单的。
貌似北京的大多挺简单的。
这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。
意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。
(22)(本小题满分14分)设函数f(x)=x2+b ln(x+1),其中b≠0.(Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln( )都成立.这道题我觉得重点在于前两问,最后一问..有点鸡肋了~这道题,太明显了对吧?看压轴问的形式,想想我之前关于压轴题思路的讲解,看出来么?第三问其实就是直接利用第一问和第二问的结论,很明显的令 1/n 为 x 这道题就出来了。
这也证明了我之前对压轴题的评述吧。
当然这只是例子之一了,绝大多数压轴题都是这样的。
下面,下面,下面,重点来了。
大家是否眼熟这个不等式呢?ln X<= X--1 你可以利用导数去证明这个不等式的正确性,但我想说的是,这个小小的不等式,太有用了。
什么用?将一个对数形式的函数转化为一个 X--1 这样简单的线性函数,多么漂亮的一个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道题。
这也是一种很重要而且经典的缩放!不信的话大家去看07--10年的全国各地高考题,看看有多少省用到了这个不等式的!而下面这道我认为导数解答题中特经典的一道的简单解法,就是用了这个不等式!再次强调:压轴题中,见到对数函数式的不等式证明,第一个要想的是这个不等式!再举几个例子:1. 一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等差数列的公差等于__解:这个题真算的话有点难度也挺麻烦但考试的时候完全可以秒杀直接特殊化为等边三角形答案就出来了等边三角形满足题意么?满足,只要不违背题意条件随你加,随你加强所以公差为0几秒钟一道很难的题这就是秒杀的目的所在这个题条件很强,既有角的限制又有边的限制,就说明答案唯一可是,那是考试现场时的秒杀。
对一道能秒杀的题,不仅要秒杀,还要真正做出来才算详解:假设A<=B<=CA+C=2B b平方=ac用正弦定理得出COS(A-C)=1也可用余弦定理求出ABC。
第六章再说秒杀和压轴题以下为视频讲解内容:秒杀也分几类:最常用的一般是特殊性(有些人理解的特殊值,其实特殊值也是特殊化的一种罢了,还有其实技巧不在这里,而在于这个特殊值你如何取,取得好,那叫艺术,取得不好.......嗯!)第一题:A[N]是任意等比数列,它的前n项和,前2n项和,前3n项和分别是x,y,z,则下列等式恒成立的是1.X+Y=2Y2.Y(Y-X)=Z(Z-X)3.Y平方=XZ4.Y(Y-X)=X(Z-X)如何秒杀呢,很明显,取特殊值,如何取呢?以前说过,见到A[N]是任意等比数列的等等或者说见到任意两字的,往往就是我们发挥的地方。
我们令A[N]=1,呵呵,很特殊了吧,还不止,我们这里再令N=1,这样题目变成什么了呢?我翻译一下:已知A[N]是任意等比数列,它的前1项和x,前2项和Y,前3项和是z,则下列等式恒成立的是?你猜,呵呵,这样直接可以排除2,3了,那么1,4呢?我们假设A[1]=1,A[2]=2,A[3]=4,这样符合题意吧?很明显1不正确,4任然正确,答案是4第二题:如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则的值为.向量如何秒杀呢,其实就只说向量,也有两三钟秒杀的方法,我觉得好用的就是特殊化+坐标化!!呵呵,就是把三角形特殊化为等腰直角三角形,这意思也是任意三角形吧,按照题意,我们画出MN的直线,若,,根据上面的两个公式,可以求出,大家记得吗---是直线的截距式(不记得的都面壁去吧,这可是基础)根据截距式我们得出MN的直线方程为MX+NY=1,我们还有个条件没有用,直线MN过中点,明显BC中点为(1/2,1/2),对吧,带入得M+N=2这个是07年江西的一道高考题,常规方法要比这个麻烦的多,而且可能大部分同学还不会做,而换成秒杀的—就是最基本的加减运算啦!!其实秒杀呢,每张卷子都能用到的是那种集合,求范围等等的题目,就不举例子了!!还有就是三角函数,解析几何(这个主要是取特殊位置的直线),至于三角函数,也分好多种吧,比如,题目让你求一个三角函数表达式的值,而且是道选择题。
比如哦:tanA*tanB+conA*sinB等等的算式吧,然后选择项里面都是常数,也就是和AB无关,那么很明显,不管AB取什么,结果都一样,这时候,我们就可以随便给AB值,就可以得出最后结果,这样的题我见过不少!!上面说的都是一些简单但很常用的,难一点的应该算是变换,或者用到复指数等,比如函数旋转等等,就可以利用复向量的旋转特性去解决,哦,对了,还有一种很常用的,我随便出题:X平方+Y平方=1,求X+Y的取值范围常规的方法肯定是画图等等,或者消元了呗,但我们可以用三角函数去做,X平方+Y平方=1,令X=COSA,Y=SINA,也就是求conA+sinA的范围,明显是正负根2,是吧?一眼就看出来了,当然,一般题目不会这么简单,比如:3X平方+4Y平方=1,求X,Y取值范围,,这时候画图就不好使了哦,因为不是园,但三角函数依然可以,我们令3X平方=conA平方,4Y平方=sinA平方,然后是不是和上面一样了呢!!好了秒杀就这样吧!压轴题下面这道是我高考的压轴题,是道椭圆的题,不算难。
大家应该知道,压轴题一般会在数列不等式,解析几何两者之间选一道,数列的也想整一道例题,可时间有限,就算了。
下面是09年的山东理科数学压轴题:第一问:送分第二问:,呵呵,我还记得在考场上,我看到时就笑了,高考题考来考去也就是这些基本的不变的东西。
这个代表什么呢?这个是题眼,其实我们都很清楚。
OA*OB=0(向量点乘),其实看到这里,后面的不用想也能再脑中出来一推东西,我大概说下:首先OA*OB=0,所以X1X2+Y1Y2=0明显韦达定理要用了,然后要连立直线了,比如设直线AB为:Y=KX+M (设出来这个直线的时候,脑子里面应该本能的想到一个词“分类”,就是K不存在的情况,一定要分类,给大家说,只要能分类的,一定要分类,因为每一个分类就有一定的分,我们的目的就是拿分!!)然后可以得出K和M的一个等式,(有一个式子,那肯定能根据题目其它的一个条件得出另外一个式子,这两个式子联立,一般就可以做出来了)哦,这个说明下,这是看到OA*OB=0后出来的一推东西,后面的还没看呢,继续看,呵呵出来了,切线,我们都知道,根据切线,肯定能得出一个等式,这样题目思路就清晰了!上面这些,大家是不是都能熟练的背下来呢,其实这道题难得不是这些,难在你是不是明白题意。
还有对圆锥曲线问题,大家心里一定一定要坚定一个信念----那就是直线和曲线联立!!这句话很重要,只有你能找到直线和曲线联立(一定要找对哦,比如说这道题,你总不能OA和椭圆联立吧?!只有你能想到用AB去联立,那么后面的一直到韦达定理,一般就可以得8分了。
大家可能会想,谁都知道用AB联立,可是到了高考那样的氛围,你还能像平时一样大脑清醒吗?而且万一不是一条直线呢等等的情况,你真不一定找到)题目还要:并求|AB|的取值范围,若不存在说明理由玄长公式,对吧,因为知道了K和M的关系,所以玄长公式里面只有一个K,而K又有一定的范围,所以再结合不等式的知识,可以求出范围,当然还要考虑K不存在的情况,不然又要扣分!啰嗦了这么多,想告诉大家的:其实就是一定要有思路。
思路哪里来的?是不是从OA*OB=0这里展开一系列的想法呢?可以说,思路就是一个题眼,得出一个总体框架,然后在实际做题中把各个细节填满,问题在于,你如何知道哪里是题眼?就是知道,你如何正确处理?嗯,问到点子上了,我记得我高二高三的时候,每做一道很典型的题,我都会把这道题想的很透很透,然后,闲暇时,脑子里想的就是最近做过的和新学得知识,时间上了,基本上见些东西,就能本能的搜索到相应的应对方法。
大家可能会问,高考题是会变的,而且数学又是一门很灵活的东西,随便一点变化,都可以出来很多很多的题目。
其实高考是在变,而且变的很灵活。
但是高考中更多的是不变,所谓不变就是知识点不变,考点不变(相对来说吧),以及更重要的是难题的入手点不变!!或者就是说题眼不变,最多就是变个说法!!就拿OA*OB=0来说,可以衍生出很多不同的说法,比如中点,角分线等等,还有比如向量AF=3FB向量,这个也是大题中常见的。
这样的如何出处理?,带入坐标,会得到两个式子,这两个式子中的一个比较简单比如:X2=3X1,还有一个关于Y 的,如何用,任何时候,都只用其中一个,你如果两个都用,那你就...用哪个呢?很显然啊,用X2=3X1,这个对吧,因为这个简单。
然后再如何做呢?这个可以用韦达定理了吗?其实可以,只要对这个式子做几次变化,就可以用韦达定理了,从而又要联立直线。
或者你可以联立后,解除X1,X2,然后带入X2=3X1,一样可以得到一个等式。
我上面说的这些,都是需要你平时不断的积累!我之前说过,重复的做试卷----,要做的是什么?是像圆锥曲线,数列不等式,立体几何等等的很复杂的解答题。