液晶材料
液晶材料
几类非常规液晶材料的研究进展
参考文献
1 当前世界液晶材料的进展 张文志 ( 枣庄学院化学化工系 山 东 枣庄 2 7 7 1 6 0 ) 简述高分子液晶材料的结构特点,0808010229 金俊 2 液晶材料与应用 吴诗聪 美国休斯研究实验室 1995年第2期 3 液晶材料汪朝阳 (华南师范大学化学系广州510631) 2002年 第1 1期 4 手性液晶材料的研究进展 王亮,李洁,陈沛,安忠维,陈新 兵 (陕西师范大学材料科学与工程学院,陕西西安 710062) 第 41卷第7期 2012年7月 具有宽波反射特性的手征向列相液晶的研究进展 黄维 边震 宇 肖久梅 (1.北京科技大学材料物理与化学系智能与显示功能高 分子材料实验室,北京 100083;2009年6月
化学组成
液晶材料是由多种小分子有机化合物组成的, 现已发展成很多种类,例如各种联苯腈、酯类、 环己基(联)苯类、含氧杂环苯类、嘧啶环类、二 苯乙炔类、乙基桥键类和烯端基类以及各种含 氟苯环类等。
液晶分子结构 到目前为止,所发现的液晶分子,都可用下列结构来描述:
R代表侧链;A和B可以是相同或不同的芳香环;Z代表连接基团; x代表末端基团。
手性液晶是目前液晶领域的研究热点之一, 手性添加剂能诱导向列相转变为胆甾相或手 性向列相(见图1),所以在向列相液晶显示中 有着重要的应用 。
具有宽波反射特性的手征向列相液晶的研究进展
具有宽波反射特性的N*相液晶有着广阔的应用空间,其中 最受人们关注的两种用途就是应用于液晶显示器背光源系 统的光增亮膜和节能环保的建筑用玻璃或者涂料。液晶ຫໍສະໝຸດ 热致液晶近晶相 向列相 胆甾相
• 1) 向列相液晶结构:长分子向某一方向对 齐。上下、左右、前后都可滑动。对电磁 敏感,为液晶显示主要材料;2)近晶相液晶 结构:长分子凌乱分布.但全体向长轴对 齐.对齐的东西又上下方向形成层状。左 右、前后可以运动,但上下不能运动。对 电、热都不敏感。3)胆甾相液晶结构:排成 层,螺旋状结构。对热敏感.制作温度指 示剂,根据颜色变化测温度 .
液晶材料与应用
液晶材料与应用液晶材料是一种特殊的材料,具有独特的物理性质和广泛的应用领域。
本文将深入探讨液晶材料的特性、分类和常见的应用。
一、液晶材料的特性液晶材料是介于液体和固体之间的物质,具有以下几个显著的特性:1. 各向同性和各向异性:液晶材料在不同方向上的性质不同,呈现各向异性的特点。
2. 可逆性:液晶材料能够在外界刺激下改变其分子排列,并在刺激消失后恢复原来的状态。
3. 电光效应:液晶材料在电场的作用下,能够改变其透明度和折射率,实现电光调制。
二、液晶材料的分类根据液晶材料的分子结构和性质,液晶材料可以分为以下几类:1. 双折射液晶:这种液晶材料具有双折射性,适用于制造宽视角显示器。
2. 同性液晶:同性液晶材料具有相同的折射率,常用于制作电光开关和光调制器。
3. 程序液晶:程序液晶材料是一种可以通过改变驱动电压来控制透光度的材料,广泛应用于液晶显示屏等领域。
4. 胆甾类液晶:胆甾类液晶材料具有良好的生物相容性,可用于制备生物传感器和药物传递系统。
5. 高分子液晶:高分子液晶材料是由具有液晶性能的高分子构成,可用于制备高强度和高导电性的材料。
三、液晶材料的应用液晶材料在各个领域有着广泛的应用,下面列举几个常见的应用领域:1. 液晶显示技术:液晶显示器以其优秀的图像质量、低功耗和薄型化等特点,成为目前最主流的显示技术。
液晶显示器被广泛应用于电视、电脑显示器、智能手机和平板电脑等电子产品中。
2. 光电子技术:液晶材料具有优异的光学性能和电光调制特性,被广泛应用于光电开关、光调制器、光学传感器等领域。
3. 生物医学领域:液晶材料的各向异性和生物相容性使其成为制备仿生材料和生物传感器的理想选择。
4. 光学信息存储技术:液晶材料的各向异性和可逆性使其被用于光学信息存储和光学记忆技术中。
5. 光学元件制造:液晶材料可以制备各种光学元件,如偏光镜、偏光片、液晶滤光器等。
总结:液晶材料作为一种特殊的材料,具有独特的物理性质和广泛的应用领域。
液晶成分元素
液晶成分元素
液晶成分元素
液晶显示器(Liquid Crystal Display, LCD)是一种广泛应用的显示器,它利用特殊的液晶材料进行工作,而液晶材料又由几种元素构成。
下面介绍几种常见的液晶成分元素:
1. 氟:氟是液晶的主要成份,因为它可以调节液晶的光学性能,其中添加的氟浓度对于液晶的性能有重要作用,所以与其他元素相比,氟的重要性更加凸显。
2. 砷:液晶中添加砷可以促进光电子转换及其他光学效应,弥
补因氟离子有限而引起的不足,同时也可以改善液晶的加热性能。
3. 锶:添加锶可以改善液晶的发光性能,减弱黑白液晶间的差异,使得无论是在弱光或是强光下,显示器都能维持良好的可视性。
4. 钠:钠主要用作晶体析出剂,也就是说,添加有限的钠可以
对液晶结晶度产生影响,从而改善显示器的视觉效果,增强清晰度。
5. 锗:锗是一种半导体,因其具有很强的电子转移性能,可以
对液晶材料的特性产生影响,增强发光性能。
以上就是常用的几种液晶成分元素,液晶的成分影响着液晶显示器的性能,不同的液晶成分可以提高显示器的可视性、色彩度、清晰度和亮度,以满足液晶显示器的各种需求。
- 1 -。
液晶的材料
液晶的材料
液晶是一种特殊的物质状态,具有既有固态晶体的规则排列,又具有液态分子的流动性质。
液晶的材料主要由有机分子和无机分子组成,材料种类繁多,常见的有三维液晶、二维液晶和层状液晶等。
三维液晶是指分子排列呈等方向性,没有规则的排列结构。
它通常由有机化合物构成,具有较高的透明度和较低的粘度。
三维液晶常用于制造电视机和计算机显示屏等大型平面显示器件。
二维液晶是指分子排列呈二维结构,分子在水平方向有序排列,垂直方向没有规则结构。
常见的二维液晶材料有磷酸铷和磷酸锂等。
这类液晶材料通常具有较低的粘度和较快的响应速度,适用于制造智能手机、平板电脑等移动设备的显示器。
层状液晶是指分子呈层状排列,每一层的分子都在平面上有序排列,层与层之间没有规则的排列结构。
层状液晶常用的材料有蒙脱石和其他层状矿物等。
层状液晶材料具有较高的透明度和较好的光泽度,适用于制造高分辨率的电子书显示器和平面打印机等。
液晶材料的选择主要基于它们的光学性质、电学性质和物理性质等方面的考虑。
光学性质包括透射率、消光率、对偏振光的旋光等;电学性质包括导电性、带电传输性、电滞回线性等;物理性质包括粘度、分子自旋等。
通过选择不同的液晶材料和调整它们之间的相互作用,可以制造出具有不同性能的液晶显示器件。
液晶显示技术的发展不仅推动了电子显示器件的进步,也广泛应用于生物医学、光电通信和光电存储等领域。
在未来,随着研究不断深入和材料技术的不断创新,液晶材料将会在更多领域发挥重要作用。
液晶材料的种类特性及其应用
液晶材料的种类特性及其应用液晶材料是一类特殊的有机分子化合物或无机化合物,其具有一定的结晶性和流动性,可在一定的温度范围内异向地流动,同时具有电光性和热致性等特殊性质。
液晶材料广泛应用于液晶显示器、液晶电视、液晶电子墨水、液晶投影等领域。
根据液晶材料的分子排列方式,液晶材料可分为向列型(nematic)、粒晶型(smectic)、柱状型(columnar)和螺旋型(cholesteric)等不同种类。
1.向列型液晶材料:向列型液晶材料的分子排列呈现出一定的有序性,并且分子长轴大致保持垂直于液晶层面的状态。
向列型液晶材料具有快速的响应速度和良好的透明度,广泛应用于各种液晶显示器。
2.粒晶型液晶材料:粒晶型液晶材料的分子排列呈现出更有序的结构,形成层状结构。
粒晶型液晶材料具有机械强度高、导热性好、观察视角宽等特点,广泛用于液晶电子墨水和生物传感器等领域。
3.柱状型液晶材料:柱状型液晶材料的分子排列呈现出柱状的结构,分子间形成长程有序的堆积。
柱状型液晶材料具有高导电性和较好的电子输运性能,广泛用于有机太阳能电池和有机场效晶体管等领域。
4.螺旋型液晶材料:螺旋型液晶材料的分子排列呈现出一定的螺旋结构,形成螺旋向列型的液晶相。
螺旋型液晶材料具有结构色、光子晶体和布里渊散射等特性,广泛应用于光纤传感器和光学滤波器等领域。
液晶材料在液晶显示器和其他液晶设备中有广泛的应用。
液晶显示器是液晶材料最常见的应用之一,以便捷而高效的方式在屏幕上产生图像。
液晶电视、电脑显示器和手机屏幕都是以液晶材料为基础制造的。
液晶电子墨水则在电子书和电子纸等领域得到了广泛应用,具有较高的可读性和低功耗的优势。
液晶投影机则可以将图像以高清晰度投射到屏幕上。
此外,液晶材料还广泛用于光学信息存储、光学滤波器、光纤传感器、光学测量仪器和光子晶体等领域。
液晶材料还可以制成电子调制器件、电子窗帘和可变透明材料等,具有使窗户自动调节透光度和保护隐私的功能。
液晶显示材料
液晶显示材料
液晶显示材料是一种用于制造液晶显示器的重要材料。
液晶显示器是现代科技中最常见的显示设备之一,广泛应用于各种电子产品中,如电视、计算机显示器、手机等。
目前主流的液晶显示材料主要有n型液晶和p型液晶两种。
n型液晶是一种双偏振剪切型液晶,其分子结构中含有大量束
缚电子。
在电场作用下,束缚电子会形成长序有序排列的结构,从而改变液晶分子的排列方式,实现光的透射与反射。
n型液
晶通常具有快速响应速度和高透光率的特点,适用于动态显示。
p型液晶是一种非常稳定的液晶材料,其分子结构中含有大量
自由电子。
在电场作用下,自由电子会形成长序有序排列的结构,实现光的透射与反射。
p型液晶通常具有较低的响应速度
和较高的透光率,适用于静态显示。
除了n型液晶和p型液晶,还有其他一些液晶显示材料常用于制造液晶显示器。
例如,手电筒液晶材料常用于制造手机和手持设备的显示屏。
它具有较高的亮度和对比度,并且能够实现高速响应和低功耗。
另外,电子书液晶材料常用于制造电子书和电子阅读器的显示屏。
它能够实现高亮度、高对比度和高分辨率的显示效果,适合长时间阅读。
总的来说,液晶显示材料是液晶显示器的核心组成部分,直接影响液晶显示器的显示效果和性能。
随着科技的不断进步,液晶显示材料的研发也在不断创新和改进,以提高显示器的色彩
表现、对比度、亮度和视角等方面的性能。
同时,科学家们也在不断探索新的液晶显示材料,如有机光电材料、纳米液晶材料等,以期望未来的液晶显示器能够实现更高的分辨率、更广的色域和更低的功耗。
液晶是什么材料
液晶是什么材料液晶是一种特殊的材料,它在现代科技中扮演着重要的角色。
液晶是一种介于固体和液体之间的物质,它具有固体的结构和液体的流动性质。
液晶的独特性质使得它在显示技术、光电子学、生物医学等领域有着广泛的应用。
那么,液晶究竟是什么材料呢?接下来,我们将深入探讨液晶的性质和应用。
首先,液晶是由长链有机分子组成的。
这些有机分子具有两端不同的结构,一端是亲水性的,另一端是疏水性的。
在适当的条件下,这些有机分子可以自组装成为一种有序排列的结构,形成液晶相。
液晶分为各向同性液晶和各向异性液晶两种基本类型。
各向同性液晶中,分子的有序性不依赖于方向,而各向异性液晶中,分子的有序性与空间方向有关。
液晶材料的特殊性质使得它在显示技术中有着广泛的应用。
液晶显示器是目前最常见的显示设备之一,它利用液晶材料的光学特性来显示图像。
在液晶显示器中,液晶材料被置于两块玻璃基板之间,通过控制电场来改变液晶分子的排列状态,从而控制光的透过与阻挡,实现图像的显示。
与传统的显像管相比,液晶显示器具有体积小、重量轻、功耗低、图像清晰等优点,因此得到了广泛的应用。
除了在显示技术中的应用,液晶材料还在光电子学领域发挥着重要作用。
液晶的光学特性使得它可以被用来制作光学偏振器件、光学调制器等光学器件。
同时,液晶的电光效应和光学非线性效应也为光电子学研究提供了重要的材料基础。
此外,液晶材料还在生物医学领域有着广泛的应用。
例如,液晶材料可以被用来制作生物传感器、生物成像材料等生物医学器件,为生物医学研究和临床诊断提供了重要的技术支持。
总的来说,液晶是一种介于固体和液体之间的特殊材料,它具有独特的物理化学性质和光学特性,因此在显示技术、光电子学、生物医学等领域有着广泛的应用。
随着科技的不断发展,相信液晶材料将会发挥出更多的潜力,为人类社会的进步和发展做出更大的贡献。
液晶材料
总结与意义
作为新兴的功能材料,液晶高分子材料具有很多突出的优点。随着 人们对它的不断研究,液晶高分子材料会逐步代替目前使用的部分金属 和非金属材料。
目前,随着液晶高分子材料的研究和应用现在越来越成熟,发展日 新月异,新产品、新理论层出不穷,因此液晶材料的发展具有良好的前 景。
一.液晶材料概述
2.液晶定义 2.液晶定义
定义:一些物质的结晶结构熔融或溶解之后虽然变为了具有流动性 的 液态物质,但结构上仍保存一维或二维有序排列,在物理性质上呈现各 向异性,形成兼有部分晶体和液体性质的过渡状态,称为液晶态,而这 种状态下的物质。
晶体
液晶
液体
一.液晶材料概述
3.结构特征 3.结构特征
三.液晶材料的应用
2.液晶材料在物理学方面的应用 2.液晶材料在物理学方面的应用
液晶材料在光特性上显示出明显的各向异性,有些还具有光学活 性,可以改变光的偏振方向,其可以用在光导液晶光阀、光调制器、光 通讯用光路转换开关、超声波测量。
三.液晶材料的应用
3.液晶材料在生命科学方面的应用 3.液晶材料在生命科学方面的应用
近晶型
热致液晶
向列型
胆甾型
二.液晶材料分类
近晶型(层状) 近晶型(层状) :棒状分子互相平行排列为层状结构,层间可相对滑 动而垂直层面方向的流动困难。其粘性最大。
二.液晶材料分类
向列型液晶(线状) 向列型液晶(线状):分子长轴近似平行,分子质心无序,属一维有 序 状态,流体可以三维自由流动,黏度较小,单轴性。
二.液晶材料分类
胆甾型液晶:以胆甾醇酯为主的一类液晶。分子的长轴平行于平 面,由于手性的原因,层与层之间分子长轴不平行,有一固定夹角,这 就使液晶相中分子排列整体呈螺旋型,完成一个循环时层间距离叫螺 距。
液晶材料及应用课件
液晶在传感器中的应用案例分析
案例目的
案例原理
通过案例了解液晶在传感器中的应用和技 术,掌握液晶传感器的基本原理和特点。
介绍液晶传感器的结构、分类、工作原理 及应用,重点讲解液晶传感器的工作特点 。
案例实施
案例结果与讨论
详细描述实施过程,包括敏感材料选择、 信号处理技术、接口设计等。
对案例结果进行分析,探讨液晶传感器的 性能与应用场景之间的关系,加深对液晶 传感器的理解。
传感器应用
光电传感器
01
液晶材料可以作为光电传感器中的光敏元件,将光信号转换为
电信号,实现光强度的检测和控制。
温度传感器
02
利用液晶材料的热敏特性,可以制作温度传感器,实现温度的
检测和控制。
化学传感器
03
液晶材料还可以作为化学传感器的敏感元件,通过检测特定气
体或液体来实现化学参数的监测和控制。
热致变色应用
新世纪应用
进入21世纪,液晶材料的 应用领域不断扩大,包括 生物医学、光电子、新能 源等领域。
02
液晶材料的物理性质
电学性质
响应时间
液晶材料具有较低的响应时间, 可以在毫秒级别内响应电场变化 ,这一特性使得液晶材料在电视 、计算机显示器等领域具有广泛
应用。
电压稳定性
液晶材料的电学性质具有很好的 电压稳定性,即在施加电压时, 液晶分子会迅速响应并趋于稳定
广告牌和透明显示
液晶材料可以用于制作广告牌和透明显示器,提供高清晰度、高亮度和 低能耗的显示效果。
光调制器应用
投影仪
液晶光调制器被广泛应用于投影仪中,通过调制光线实现高清晰 度的图像投影。
太阳镜和阅读镜
利用液晶的光调制特性,可以制作出具有自动调节亮度和色温的太 阳镜和阅读镜。
液晶材料与技术工艺技术
液晶材料与技术工艺技术一、液晶材料介绍液晶是一种特殊的物质,在不稳定的状态下能够显示出特定的物理特性,在显示技术中得到广泛应用。
液晶材料通常由有机化合物或无机晶体等组成,具有一定的电光性能和优越的光学性能,能够实现图像的清晰显示。
1.1 有机液晶材料有机液晶材料是一种基于碳化合物的液晶材料,主要由液晶分子和配向剂组成。
有机液晶分子通常是长而扁平的分子,可以通过外加电场或热梯度改变其排列状态,从而调节光透过性。
有机液晶材料的制备工艺相对简单,广泛应用于液晶显示器制造领域。
1.2 无机液晶材料无机液晶材料是指由无机晶体构成的液晶材料,具有高稳定性和耐高温性能。
无机液晶材料在某些特定应用场景下具有较好的适用性,如高温显示器、光学传感器等。
二、液晶技术工艺液晶技术工艺是指将液晶材料应用于显示器制造中的一系列工艺操作,包括基板制备、涂敷、配向、封装等环节。
下面介绍液晶技术工艺中的关键内容。
2.1 基板制备液晶显示器的载体是基板,一般采用玻璃基板或有机基板。
玻璃基板具有优越的光学性能和稳定性,而有机基板轻质便捷。
基板制备是液晶显示器制造的第一步,关系到显示效果和产品稳定性。
2.2 涂敷涂敷是指在基板上均匀涂布液晶材料的过程,涉及到液晶分子的排列和配向。
涂敷的均匀性和顺序性对显示效果有较大影响,需要精密控制工艺参数。
2.3 配向液晶分子在外加电场或热梯度作用下会有特定的排列方向,称为液晶分子的配向。
优质的配向工艺可以提高液晶分子的排列性能和显示效果。
2.4 封装封装是指将涂敷液晶的基板与其他部件组装封装成完整的液晶显示器的过程。
封装工艺直接关系到显示器的稳定性和寿命,需要严格控制封装材料的性能和工艺流程。
三、液晶技术发展趋势随着科技的不断进步,液晶技术也在不断发展。
未来液晶技术的发展趋势包括:•全息显示技术的应用:全息技术可以实现更真实和立体的显示效果,提升用户体验。
•自发光技术的突破:自发光技术能够节约能源、提升亮度和对比度,是未来液晶显示器的方向。
液晶材料
液晶材料
概念:具有液体的流动性,又具有晶体的各向异性物质的一种高分子材料,我们就把它叫做液晶材料。
分类:
1.溶致液晶,将某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶,被称为溶致液晶。
比如:简单的脂肪酸盐、离子型和非离子型表面活性剂等。
溶致液晶广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。
2.热致液晶,热致液晶是由于温度变化而出现的液晶相。
低温下它是晶体结构,高温时则变为液体,这里的温度用熔点( TM) 和清亮点( TC ) 来标示。
液晶单分子都有各自的熔点和清亮点,在中间温度则以液晶形态存在。
目前用于显示的液晶材料基本上都是热致液晶。
在热致液晶中,又根据液晶分子排列结构分为三大类:近晶相(SMECTIC) 、向列相(NEMATIC) 和胆甾相(CHOLESTERIC) 。
应用:
液晶材料在我们的生活中有着方方面面的应用,最熟悉的当然是我们每天都在宿舍玩的笔记本电脑和我们家中的液晶电视机了,液晶材料在液晶平面显示器的组成结构上所担任的角色是相当重要的。
还有比较常见的就是我们现在看到的汽车的仪表盘,车载系统,电话机,电子表,手机,MP4,MP3等等,可以说随着LED的迅猛发展,现在液晶材料已经和我们的生活息息相关,对我们的生活带去很多的益处。
14液晶材料
液晶材料的研究现状
TFT-LCD用液晶材料
TET-LCD用液晶材料的性能要求很高,主要可分 为以下3个方面圈:@TFT-LCD用液晶材料由i0-一20 种单体液晶材料组成,且主要为稳定性良好的含氟液 晶材料和环已烷类液晶材料。②TFT-LCD用液晶材 料具有良好的光、热、和化学稳定性,高的电荷保持率 和高的电阻率,混合液晶的电荷保持率≥98.5%,电阻 率≥I X 1013 Q oCgl。@)TFT-LCD用液晶材料具有很低 的粘度、适当的光学各向异性和介电各向异性。
液晶材料的化学成分
TN-LCD用液晶材料 TN-LCD用液晶材料品种较多,各个品种的性能参数
差别很大,根据不同的驱动电压、液晶盒厚、响应速 度、工作温度和占空比等要求,需要不同性能的混合 液晶相适应,主要包括介电各向异性、折射率各向 异 性、粘度、清亮点和光电曲线的陡度等,其常用的液 晶单体如下:
采用液晶高分子制得 的高强度、高模量纤维 、薄 膜和模塑制品,在工业、交通和国防有着广 阔的应用 前景。例如,由主链液 晶高分子——聚对苯二甲酰对比 强 度为钢丝 的6~7倍 ,比模量为钢丝和玻璃纤维的 2 ~ 3倍 ,密度只有钢丝的 1/5。因此 ,利用 Kevlar 纤维 制备的绳索 ,可以用做直升飞机 吊绳 、电线支撑线、 抛锚绳 、潜水装置和海底电视 电缆等 ;在宇航及气 象方面也广泛使用,如阿波罗登月飞船所用的软着陆 落伞绳带就是 Kevlar纤维制造 的。
简介
主要内容
1、液晶材料的种类 2、液晶材料的化学成分 3、液晶材料的使用 4、液晶材料的研究现状
液晶材料的种类
液晶有固态的晶格,液态的流动性。当液晶刚发 现时,因为种类很多,所以不同研究领域对液晶会有 不同的分类方法。在1922年由G.Friedel利用偏光显微 镜所观察到的结果,将液晶大致分为Nematic, Smectic及Cholesteric【l】。
液晶材料的特性及应用
液晶材料的特性及应用液晶是一种介于固体和液体之间的物质,具有有序排列的分子结构。
液晶的特性和应用非常广泛,包括显示器、电视、手表、计算机屏幕、手机屏幕等等。
液晶材料具有下列特性:1.光电效应:液晶材料对光的吸收、反射和透射特性非常敏感。
通常情况下,液晶材料透射光而不会反射光,使得显示器可以显示清晰的图像。
2.切换速度快:液晶材料的分子可以快速地从有序排列转变为无序排列或者从无序排列转变为有序排列。
这种切换速度的快慢影响液晶显示器的响应速度。
3.自发极化:液晶材料具有自发极化的能力,可以通过外部电场改变分子的排列方向,从而改变液晶的透过性。
1.液晶显示器:液晶显示器是目前最常见的液晶应用之一、它可以根据电场的改变来调节液晶的透过性,从而显示出不同的颜色和图像。
液晶显示器具有低能耗、大视角范围、高亮度和低发热量等特点,因此被广泛应用于计算机屏幕、电视机、手机屏幕、平板电脑等电子设备。
2.双向调制器:液晶材料具有双向调制的能力,可以通过改变电场和光场的作用方式来调节透过光的多少。
这一特性使得液晶材料可以用于制造双向调制器,用于显示和隐藏图像、窗口、标志等。
双向调制器广泛应用于安全领域,例如防窃听技术和隐形墙。
3.光学器件:液晶材料可以用于制造各种光学器件。
例如,偏振光器是利用液晶材料的偏振性质制造的,可以用于调节光的偏振方向和强度。
液晶透镜是利用液晶材料的光学特性制造的,可以调节镜头的焦距和聚焦效果。
4.生物传感器:液晶材料也可以应用于生物传感器领域。
通过将液晶材料与生物分子结合,可以制造出灵敏的生物传感器,用于检测和分析生物样本中的分子和细胞。
这种生物传感器具有高灵敏度、高选择性和实时监测等特点,被广泛应用于生物医学研究和临床诊断。
总而言之,液晶材料具有光电效应、切换速度快和自发极化等特性,适用于液晶显示器、双向调制器、光学器件和生物传感器等多个应用领域。
随着科学技术的不断发展,液晶材料的应用将会越来越广泛。
液晶主要材料
,主要材料三大主要材料:液晶,ITO玻璃,偏光片(对手彩色液晶显示器还必须加上滤色膜);其他材料:取向材料,封接材料,衬垫料,金属引线腿等:还有一些参于液晶显示器的生产过程和最终在产品中不存在的原材料:如光刻胶,各种稀释剂,溶剂,清洗剂,摩擦布等.1.液晶显示用平板玻璃(1)液晶显示对平板玻璃的要求:①含钠成分很低.因玻璃板中含钠成分600度高温时变化极小.③要求玻璃板表面光滑平整,两板之间:的间隙均匀,同时要求在加工过程中经受一定温度时,仍然保持其间隙均匀.④玻璃板表面没有缺陷咸缺陷在10nm级以下,并且没有气泡.⑤玻璃板在加热过程中不产生应力.⑥有一定的抗蚀能力.目前,只有基本上符合上述要求的玻璃;但是用普通工艺,即使加上抛光工艺,也不能达到上述要求.(2)液晶显示玻璃板的生产技术首先对玻璃成分进行优选,将碱(Li20,Na20,K20等)成分控制在(0.1-0.2)Wt%以下,同时采用新的工艺,才能制出合格的LCD用平板玻璃.生产液晶显示平板玻璃有两项新技术:①熔融拉伸法:熔融的玻璃从两个高温管之间由于重力的作用流出,形成一定厚度的均匀玻璃板.该工艺可以产生真正无缺陷的玻璃板,而不需经抛磨加工.现在利用这项技术已能生产1m 宽的玻璃板;②浮法生产玻璃板:玻璃料连续地从熔化炉中流到熔化的锡槽内,玻璃在锡上慢慢冷却,取出并退火.浮法生产的玻璃板表面较粗糙,尚需进行抛光才能满足液晶显示器的要求.(3)液晶显示用的玻璃板含石灰的玻璃板和硼硅玻璃颇舶软化点为500t,可以用于a-Si:H FT的衬底.无碱玻璃系列的硼铝硅玻璃橡(7069,1733,1724型),膨胀系数低,加工特性好,适合作有源矩阵LCD的基板.其中1733型玻璃工艺温度为615°C,是设计用于p-Si:H TFT-LCD的基板,甄1724型玻璃的工艺温度为650℃,1729玻璃板变形点是799℃,工艺温度可达775℃,接近热栅多晶硅工艺温度范围.碱土铝玻璃变形温度高达800℃,若增加硅的成分,变形温度可高于800℃.若全部成分是Si02,就是石英,工艺温度可达1000℃.随着玻璃中Si02成分增加,熔化和加工都很困难,增加了工艺难度和制造成本.玻璃的最高使用温度(工艺温度)常选在它的变形点以下25℃.一般定义玻璃变形点的粘度为1014.5泊,退火点的粘度为1013泊,软化点的粘度为107.6泊.以上提到的几种玻璃型号都是美国康宁公司的产品.其中7059型玻璃是用熔融拉伸法制造的,适合作液晶基板·,已完全商品化,供应全世界.1733,玻璃也是用熔融拉伸法制造,工艺温度比7059高,也广泛用于液晶显示,而1724,1729型则是用浮法工艺生产的.(4)玻璃板的热稳定性液晶显示板在制造过程中,尤其是制造TFT-LCD时,需要几次光刻和退火,因而对玻璃板尺寸的热稳定性要求很高.对于TFT-LCD时的玻璃板,要求尺寸热稳定为几个ppm.玻璃的稳定结构是晶体,但玻璃板制造过程中有急冷过程,所以含有大量非晶态结构.玻璃的非晶态有向晶态转化的倾向,只是转化过程与温度有关.如7059玻璃,在900℃时,几秒钟就转化完毕;在600℃时转化需几天;在300℃时,转化需要1个世纪.,在转化过程中,伴随着尺寸的缩小,称为"密化".急冷的玻璃,在变形温度下退火,尺寸变化会达到1000ppm.这对TFT-LCD玻片是不能允许的,何况这种密化程度与退火温度,退火时间和冷却速度有关,即与玻璃板的热加工历史有关.为了在液晶显示板加工过程中,玻璃板不再有大的尺寸收缩量,应对来料玻璃板进行预退火,使密化增加.退火时间在50min以上,冷却速度在1℃/min左右能达到较好的预密化(退化温度为650℃),使玻板在加工过程中尺寸的变化控制在1.5 ppm左右.(5)在玻璃板上镀阻挡层阻止碱离子迁移平板显示用玻璃板要求没有碱离子,而真正的无碱玻璃的其他特性又不易做好.目前平板显示用的玻璃板是低碱玻璃;在工艺温度低时,尚能满足要求,但在P—Si:H TFT工艺温度较高时,甚至在玻璃中碱离子含量在几个ppm情况下,也会发生碱离子传染.在玻璃板表面上,镀一层约200nm的Al2O3阻挡层能有效阻止碱离子侵人;镀Al2O3的方法有电子束蒸发和射频溅射,但溅射制成的Al2O3膜对阻挡碱离子的效果更好.Na+于675℃下在Al2O3中的扩散系数和在550℃下在Si02中相同,即Al2O3的阻挡效果优于Si02.在普通硬玻璃上,镀一层Al2O3阻挡层,就可以制造Poly-Si:H TFT的基板.(6)液晶显示板的抗蚀性HCl,H2SO4,H20对7059和1733型平板玻璃的腐蚀作用如表3.19所示,表中数字单位为μg/cm2.由上表可知①1733玻璃板比7059玻璃板更耐酸,耐碱;②·盐酸的腐蚀作用远大于硫酸,③去离子水的腐蚀作用可以忽略不计;④在强酸作用下,碱土金属氧化物,硼氧化物有一定损失2.透明导电玻璃透明导电玻璃是指在普通玻璃的—个表面镀有透明导电膜的玻璃.最早的透明导电膜的商品名为NESA膜,它是为制造防止飞机舷窗结冻和制造监视加热液体内部反应情况的透明反应管而研制的,它的成分是SnO2.但SnO2透明导膜不易刻蚀.现在采甩的ITO(1ndiumTin Oxide 氧化铟锡)的成分是In2O3和SnO2,ITO膜是在In2O3的晶核中掺人高价Sn的阳离予,掺杂的量以Sn的含量为10%重量比最佳.ITO是一种半导体透明导电材料,禁带宽度为3eV以上,具有两个施主能级,为n型施主能级,离导带很近,自由电子密度=1020~1021个/cm3;迁移率为10—30 cm3/v.s.所以电阻率很低,可低至l0-4Ω.cm量级.用Sn+4离子占据晶格中In+3离子的位置,会形成一个正1价电荷中心和1个多余的价电子,这个价电子挣脱了束缚便成为导电电子.一般的玻璃材料为钠钙玻璃,这种玻璃衬底与ITO之间要求有1层SiO2阻挡层,似阻挡玻璃中的钠离子渗透.因ITO膜生产过程中,玻璃衬底处于150'℃~300℃温度下,如果玻璃中的钠离子扩散进入ITO膜中,形成受主能级,对施主起补偿作用,引起导电性能下降.如果玻璃村底为无钠硼硅玻璃;,则可不用SiO2阻挡层.对于某些高档产晶的制造,有时需在ITO外层加1层SiO2层,这是为了增加横向的绝缘性.在玻璃衬底上制备透明导电膜的方法有喷雾法,涂覆法,浸渍法,真空蒸发法,溅射法等多种.目前大生产中主要用直流磁控溅射法,气功以稳定,膜的质量好,但靶材料利用率只有25%-30%.现在已开发出使用交流电源驱动磁场移动的方法,可使靶材料利用率增至40%左右.溅射靶材过去用高纯铟锡合金,其比例为Sn/(In+Sn)=8%~13%,合金熔点为173℃.现在直接采用氧化铟锡靶镀膜工艺,但ITO靶比铟锡合金靶贵得多,目前还是靠进口-的.用于液晶显示器的导电玻璃必须符合一定要求,具体的指标为:①透光率好.一般要求大于85%;另一方面要求光干涉颜色均匀,其不均匀性小于10%;②方块电阻小.薄膜的电阻率常用方块电阻来表示,()对于低档的TN产品,ITO膜的方块电阻要求为100~30(Ω/口),相应的膜厚为200—300A;对于STN产品要求ITO膜的R口小于10Ω/口;(对于VGA为Ω/口,;对于SVGA为3—5Ω/口),相应的膜厚为1000-2000Ao 显然,ITO层厚度增加虽然可以降低R口,但是透光率必然也变差,所以控制ITO膜制造工艺使其电阻率小是最关键的.③平整度好.平整度是指玻璃表面在一定长度乙范围内的起伏程度,用h/L表示,其中丸为长度L范围内表面最高与最低点的差值.由于液晶层厚只有10μm左右,基片不平整直接影响液晶层厚的不均匀,所以对液晶显示器的质量有直接影响.ITO玻璃基片的平整度包括玻璃表面粗糙度,表面波纹度,基板翘曲度;基板平行度和ITO膜表面租糙度,膜厚均匀度.液晶盒使用的玻璃一般厚度为芍0.3~1.1mm的浮法玻璃,用于TN-LCD时,对于1.1mm厚的要求平整度小于0.15μm/20mm;:对于0.7mm厚的要求平整度小于0.2μm/20mm,电阻不均匀性小于土15%,允许有机少量的缺陷.用于中高档STN-LCD时,玻璃要经过抛光,要求平整度小于0.075—0.05μm/mm,电阻不均匀性小于±10%.不允许有任何缺陷.3.偏光片在液晶显示器中大量使用偏光片(偏振片),它的特殊性质是只允许某一个方向振动的光波通过,这个友向称为透射轴,而其他方向振动的光将被全部或部分地阻挡,这样自然光通过偏光片以后,就成了偏振光.同样,当偏振光透过偏光片时,如果偏振光振动方向与偏光片的透射方向平行一致时,就几乎不受到阻挡,这时偏光片是透明的;如果偏振光的振动方向与偏光片的透射方向相垂直,则几乎完全不能通过,偏光片就成了不透明的了.因此,偏光片可以起检测偏振光的作用.偏光片的制备过程有4步:{1)制膜偏光片的基片常采用聚乙烯醇(PV A)膜,它是一种线性高分子聚合物,在很长的分子键上均匀地挂着许多强极性的—OH基团用来制作偏光片的PV A膜在光学上是均匀各向同性的,大分子键在各个方向上都是完全均匀的,无规律排列聚集成膜.(2)浸液将用普通方法制得的各向均匀的PV A膜浸入含碘的有机或无机化合物中进行反应,在薄膜中形成碘链.碘链的特点是能吸收振动方向平行于碘链的光,而振动方向垂直于碘链的光将可以通过,即碘链具有三向色性.(3)拉伸将反应后的膜加以机械拉伸.在拉伸之后,几乎所有的大分子键都被迫按照拉伸力作用的方向伸展开来,虽然没有形成结晶式完全有序的规则排列,却达到了高度的取向,形成了像栅栏一样的结构.在这样的膜中,碘链将会沿拉伸方向整齐排列.从整体上讲,薄膜能强烈吸收沿拉伸方向振动的光,而让垂直于拉伸方向的振动光通过.(4)胶合保护膜由于PV A膜具有亲水性,在湿热环境下会很快变形,收缩,松弛,衰退,而且强度很低,质脆易破,不便于使用和加工,因而要在这种偏光膜的两边都复合上一层强度高,光学上各向同性,透光率高而又耐高热的高聚物片基,一般采用三醋酸纤维素脂,即TAC,赋予偏光片以良好的机械性能和耐气候性能,经浸液,拉伸后的PV A膜的两面复合上TAC膜后组成偏光片的基本结构,称为原偏光片.(5)粘附外保护膜原偏光片的两个外表面上通常都要粘附上一层柔软的外保护膜.为适应在液晶显示器中使用的需要,要在原偏光片的一面附上一层压敏胶,并贴上压敏胶的隔离膜,这就是透射性的偏光片.拆去隔离膜,露出压敏胶,偏光片可以方便牢固地妨剥液晶显示器的玻璃面上.反射型偏光片是在原偏光片的一面附上压敏胶及隔离膜,而在另一面复合上一层镀有金属垣光层舶反光膜.于图3—122中示出了透射型偏光片和反射型偏光片的基本结构.偏光片的总厚度约为0.45mm左右.偏光片的主要光学技术指标有:①颜色.普通偏光片为灰色,细分为中撂色和蓝灰色两种,但目前已开发出多种彩色偏光片,如红色,洋红色,蓝色,黄色,紫色,紫蓝色等.②偏光度.偏光片的偏光度也称偏光片的偏振效率,其定义为:目前,最好的偏振光的偏光度可达99%以上,通常对普通偏光片,要求偏光度大于85%;对彩色偏光片,要求偏光度大于80%.③透光串和透射光谱.实际偏光片的透光率都赂低于50%;只有在整个可见光范围内的透光率是均匀的,才能实现理想的黑白显示,否则出射光会带有颜色,影响显示效果;4.液晶显示器其他常用材料(1)取向材料液晶盒内直接与液晶接触的一薄层物质称为取向层.取向工艺虽有多种,但实际上广泛使用的工艺是:光在玻璃表面涂覆1层有机高分子薄膜,再用绒布类材料高速摩擦来实现取向.这种有机高分子薄膜最常用的材料是聚酰亚胺,简称PI.聚酰亚胺的单体是聚酰亚胺酸(PA),具有良好的可溶性,浓度和粘度调节容易,是一种透明的黄褐色液体.将PA先涂敷在液晶基片内表面,在250℃-300℃下,约1h左右,脱水固化形成PI 膜.PI膜具有优良的化学稳定性,优良的机械性能和优良的电介质特性.以摩擦方式使PI膜表面磨出沟槽;使液晶分子定向排列;以达到显示要求.液晶分子在取向层上排列时有一个预倾角,即表面分子长轴方向与取向层表面所形成的夹角.该角主要取决于PI材料的特性,另外与取向处理工艺也有关.通常TN型LCD器件要求PI层造成的预倾角为1.-2.,对于高档的STN型LCD显示器,则要求预倾角大于3'.(2) 环氧树脂环氧树脂是—种生活中常用粘接剂,具有良好粘接性,优异的电气以及机械性能的高分子化合物.在液晶显示器中作为胶粘剂将两片玻璃粘接起来,同时保持一定的间隙,称为封框胶.用于将上下玻璃电极导通时,称其为银点胶;环氧树脂的化学结构特点是大分子主链含有活泼的环氧基团.是线型大分子.在通常情况下,它是一种胶状流体.加人固化剂:如已二胺,二亚乙基三胺乙,酸酐等可将环氧树脂的单体中的环氧基团打开,使得分子间互相交联起来,形成网状结构;达到固化目的.用作边框的环氧树脂,为了提高它的粘接性和弹性,通常加入Al2O3,Si02粉末作为填料.银点胶是指在环氧树脂中加人银粉和固化剂;环氧树脂本身不导电,使用前把银点胶分为组分A和纽分B.组分A是环氧树脂和银粉,组分B是固化剂和银粉.使用时将AB两种成分以1定比例混合.如果以石墨代替银粉,则是石墨导电胶,也可用于连接上下玻片间的电极.常用封框胶固化温度在150℃左右,固化时网为1h;所以环氧树脂是热固化胶,应用比较广泛.但是在制作高精度的液晶显示屏时,则采用紫外光固化胶,固化时间小于15S.(3)紫外光固化胶紫外光固化胶是指在1定波长紫卦光照射下能发生聚合固化的高分子化合物.现在使用的紫外光固化胶是变性丙烯酸脂类化合物,外观为微黄色粘稠液体.紫外光固化胶用作封口胶,即将已灌好液晶后的注入口封死.这时不宜用热固化胶.先将封口处玻璃表面液晶擦干净,将有1定粘度的封口胶点在封口处,紫外光照射数秒钟左右即可.(4)衬垫料液晶显示器上下玻璃间的间隙决定了液晶的厚度,一般为几个微米.为保证间隙均匀性,必须加入—些村垫料,同时在显示区内也均匀散布一些衬垫料.这些衬垫料分为①玻璃纤维.这是一种直径均匀的玻璃纤维,.可根据液晶层间隙不同选择不同的玻璃纤维的直径,常用的尺寸是5.3μm,5.5μm,6.3μm,7.0μm,8.0μm等.它们以一定比例掺加到封框胶中,使两片玻璃在重合时支撑边框;②树脂粉.这是一种直径均匀的球状树脂粉,均匀地散布在液晶的显示区中,与封框胶中的玻璃纤维共同保证液晶盒间隙的一致性.树脂粉的直径要比边框中玻璃纤维直径小0.1μm ~0.3μm,其直径的不均匀性为±0.03μm.二,液晶显示器的主要工艺1.光刻工艺为了形成显示矩阵或显示字符图案,都要对透明导电层进行光刻.由于液晶显示器中线条尺寸大多是10μm以上,所以可采用接触式曝光进行光刻.其基本过程如下:(1)涂胶将光刻胶均匀地涂敷在ITO玻璃表面,涂胶方法有浸涂,甩涂,辊涂等.;辊涂质量最好,它是通过胶辊将光刻胶均匀辊涂在玻璃上.光刻胶中溶剂含量影响着光刻胶在ITO上的厚薄,选取原则是既使光刻胶具有良好的抗蚀能力,又要求有较高的分辨能力,而这两者之间对光刻胶厚度的要求是互相矛盾的,只能折衷选之.(2)前烘前烘的目的是促使胶膜内溶剂充分挥发使胶膜干燥以增加胶膜与ITO表面的粘附性和胶膜的耐磨性.目前多采用红外炉烘干,效果好且时间短.(3)曝光曝光就是在涂好光刻胶的玻璃表面覆盖掩模版,通过紫外光进行选择性照射,使受光照都位的光刻胶发生化学反应,改变了这部分胶膜在显影液中的溶解度.曝光过程中注意紫外灯预热,掩模版与ITO玻璃互相对准和控制好曝光量.(4)显影显影就是将感光部分光刻胶溶去,留下未感光部分的胶膜,从而显示出所需的图形,可见这是一种正性胶.显影时必须控制好显影的时间与温度,它们直接影响显影速度.显影过分会发生对未曝光区钻溶;显影不足,则感光区的光刻胶溶解不充分,留下残痕,保护了不该保护的ITO 部位.(5)坚膜坚膜是在显影后必须在适当温度下烘干玻璃以除去水分的工艺;增强胶膜与玻璃的粘附性. (6) 刻蚀刻蚀需用一定比例的酸液,把玻璃上未受光刻胶保护的ITO膜蚀掉;一般选用一定比例的HCl,HNO3和水的混合液作为腐蚀液,因为它能腐蚀掉1TO膜,而又不损伤玻璃表面与光刻胶.(7)去膜和清洗用碱液把刻蚀后玻璃上剩余的光刻胶去干净,同时用滚刷擦洗玻璃,最后用高纯水将玻璃上残留碱液与残胶冲洗干净.2.取向排列工艺在TN和STN液晶显示器件的制造工艺中,取向排列工艺是一个关键工艺.TN型要求两玻璃片内表面处液晶分子的排列方向互成90度;STN型要求两玻璃片内表面处液晶分子的排列方向互成180度—240度.取向排列的主要方法是倾斜蒸镀法和摩擦法,前者不适合于大生产,只能是一种实验室技术,所以在工业生产中全部使用摩擦法.直接用棉布等材料摩擦玻璃基片表面,有定向效果,但效果不佳.一般采用在玻璃基片上先涂覆一层无机物膜(如SiO2,MgO或MrF2等)或有机膜(如表面活性剂,硅烷偶合剂,聚酰亚胺树脂等),再进行摩擦可以获得良好的取向效果.由于聚酰亚胺树脂的突出优点,目前在液晶显示器制造中广泛被选用为取向材料.聚酰亚胺与A1的粘附性最好,Si次之,Si02最差.为了增加聚酰亚胺与ITO玻璃SiO2层之间的粘附性,可以在SiO2上先涂一层含硅的有机化合物活性剂,一般称为耦联剂.取向排列工艺有下列几个步聚:(1)清洗光刻工序处理后的1TO玻璃表面虽然已清洗干净,但在本工序中还必须用高纯水,超声波和高效有机溶剂作进一步彻底清洗,以除去微尘和保证玻璃表面有很小的接触角.(2)涂膜常用的涂膜方法有旋涂法,浸泡法和凸版印刷法三种.由于凸版印刷法是一种选择性涂覆,可以把指向膜只印在指定范围内,而不印在边框处和银点处,所以被广泛使用.凸版印刷法的原理如图3—123所示.先将取向材料溶液加到转印版上,然后用刮刀刮平,开动印刷滚筒,将转印板上的溶液粘附在印刷用的凸板上.当滚筒开到工作台上时,凸版上的溶液进而转印到ITO玻璃上.整个过程与印刷过程一样,只是用取向溶液代替溜墨.(3)预烘膜层刚涂印完时,膜面会起伏不平,适当加温可降低粘度,使膜面平坦化.预烘温度会影响预倾角,预烘温度为80℃.(4)固化需在300~350℃下固化1—2h才能将聚酰亚胺酸脱水,生成聚酰亚胺膜,这才是所需要的取向膜.(5)摩擦取向在取向膜上用绒布向一个方向摩擦,就可以形成取向层.摩擦取向的微观机理可以从下列几个方面来理解:①摩擦形成密集的深浅,宽窄不一的沟槽,其中与液晶分子尺寸相当的纳米量级沟槽必然会对液晶分子取向产生作用;②经过摩擦后,定向层高分子会发生定向排列和电介质发生定向极化,使液晶分子按一致取向排列.由此可知,摩擦强度大小对定向质量影响巨大,极细的沟槽在取向中起了关键作用,所以摩擦强度太大,则造成较多的宽沟槽,对取向效果无益;如果摩擦强度太小,则又将造成细微沟槽密度的下降. 目前摩擦取向工艺大多数已全部自动化.3.丝网印刷制液晶盒工艺制盒即上下两玻璃基片贴合,在贴合前要用丝网印刷技术把公共电极转印点和密封胶印刷到显示面玻璃基板上.丝网印刷是将丝织物或金属丝网绷在网框上,利用感光材料通过照相制版的方法制作丝网印匪,即使丝网印版上图文部分的丝网孔为通孔,而非图文部分的丝网孔被堵住.印刷时通过刮板的挤压,使印刷胶体通过图文部分的网孔转移到承印物上,形成与原稿一样的图文.在这儿,承印物便是玻璃基片,玻璃被分为两组,一组印封框胶,则丝网印版上的图文便是要涂覆上封框胶的地方,即有一定边宽的方框;印刷胶体便是混有玻璃纤维的环氧树脂;另1组印导电点胶,则丝网印版上的图文便是公共电极的转印点,印刷胶体便是导电胶.但这组玻璃在印好导电胶点后要经过喷粉工序,使该玻璃上均匀散布一定粒径的玻璃或塑料微粒,然后两片玻璃在对位压合机上对位成盒,再经热压一定时间,环氧树脂便固化,液晶空盒便制作好了.4.灌注液晶及封口工艺在向空盒注入液晶之前,需将空盒真空除气,以将吸附在盒内表面的水气及有害气体释放掉.抽气孔便是液晶注入孔,由于孔径小,抽气要花费一定时间.若对空盒加温,可以大大提高抽气效果.注入液晶是利用毛细管现象.使液晶空盒的注人孔与吸满液晶材料的海绵条接触,在一定真空条件下,利用液晶盒的毛细管现象平静地将液晶注人液晶盒内..但这只能灌满液晶盒的大半部分,因此需要将干燥氮气充人液且灌注室内进行加压,直到充满为止.于图3—124示出灌注示意图.一般不推荐边抽真空边吸人液晶的工艺,因为吸人液晶流有喷射状,会破坏液晶在表面的取向.灌注完毕后,将封口处擦净,便可进行封口.封口工艺有两种:(1)先用封口胶把封且封涂,然后冷冻使液晶收缩带人少量的封口胶,并固化.此种方法操作简单,成本低,但盒均匀性差.(2)让液晶盒内的液晶受热膨胀从盒内排出一少部分的液晶,然后点封口胶,让胶少量收缩再将胶固化.这种方法需要设备较复杂,但盒的均匀性好,STN产品生产多采用这种方法目前封口胶多用紫外光照射固化,其固化质量比热固化容易控制.液晶盒灌注液晶之后,通常液晶的排列取向达不到要求,需要进行再排向工艺处理是将液晶盒置于加温箱内,于80℃下保温30min.三, 液晶显示器的连接方法液晶显示器的上下两块玻璃贴合在一起,但不完全重合,其中一片(或两片)的一侧有凸出台阶.台阶上有密布的透明电极引脚/金属插胶,驱动信号就是通过这些引脚加到液晶上去的.液晶显示器件与线路板(PCB)和其他零部件的连接方式与传统焊接方式不同.1.导电橡胶连接导电橡胶条是由一薄层导电橡胶(黑色)和一薄层绝缘橡胶(白色)交替地一层层叠在一起,经热压成型后,垂直于薄层面切成一条条成品,外观为黑白间隔,类似于斑马身上条纹,所以常称为斑马橡胶条.显然斑马橡胶条纵向不导电,而横向导电.一般层与层之间只有0.4~0.5mm距离,可以确保不会有电极被漏接.在使用斑马橡胶条时,胶条被专用框紧紧压在液晶显示器和印刷电路板之间,使它们彼此间的对应电极互相导通.显然印刷电路板上电极的尺寸与排列必须设计得与液晶显示器上的引脚相符合.斑马橡胶条压接原理示于图于3-126.如图3—127中示出了各种斑马橡胶条的横截面.不同的类型适用于不同的连接要求,其中YL,YI,YS,YP为普通型,YI,YS两侧有绝缘保护层,YP两侧为海绵橡胶.其他为特殊型,如YD是一种双层导电橡胶条,专门为双层外引线液晶显示器设计的.2.金属插脚连接通常的焊接方法是很可靠的,并被人们广泛地认可,金属插脚连接就是为此设计的.金属插脚为金属冲压件,外形有图3—128所示几种.首先将金属插脚插在液晶显示器外引线部位,点上导电胶,使外引线与插脚可靠地电接触,然后在外面再涂覆一层环氧树脂予以固定.这样,用户即可直接将金属插脚焊接在线路板上或直接插在线路板的插座上.3.热压胶片软连接热压导电胶带的基片是聚酯膜片,在基片上印有一条条石墨导电条,然后在导电条上涂一层导电性热粘剂,最后在导电条间隙填满绝缘热压胶.如图3—129所示.热压导电胶带是一种软膜.使用时,将热压导电胶带的一端导电条纹对准液晶显示器件外引线端,贴上,加热,加压,然后将热压导电胶带的另一端导电条纹对准线路板引线端,贴上,加热,加压,这样通过石墨导电条将液晶显示器的外引线与线路板引线端连接起来.在安装连接时,对加压和加温有严格要求,需使用专门的热压机.。
液晶材料的研究与应用前景
液晶材料的研究与应用前景液晶材料是指在一定条件下表现出了液态和晶态相互转化并具有一定的光学性质的物质。
液晶材料已在显示技术、光学通信、光学存储器等领域得到广泛应用。
本文将重点阐述液晶材料的研究现状和应用前景。
一、液晶材料的分类液晶材料根据性质和结构不同,可分为低分子液晶材料和高分子液晶材料两类。
1. 低分子液晶材料低分子液晶材料的主链由苯环、萘环、乙烯基等构成,通常呈现出高度各向同性。
低分子液晶材料具有自组装的性质,可以自组装成不同的排列方式。
其中,最简单的排列方式是平面排列,然后进一步自组装成螺旋状、立方体状等排列方式。
2. 高分子液晶材料高分子液晶材料是一种特殊的高分子聚合物,其分子结构中不仅包含传统高分子有的单体结构,还包含液晶单体。
高分子液晶材料可以通过有机合成、模板聚合、溶液共聚等方法得到。
高分子液晶材料的结构复杂,但与低分子液晶材料相比,它们具有更好的物理性质稳定性和可控性。
二、液晶材料的研究现状液晶材料的研究涉及到其物理化学性质、制备方法以及表征技术等多方面。
以下是液晶材料的研究现状:1. 液晶材料的光学性质液晶材料的光学性质深受人们关注,这是因为液晶材料的显示性能与其光学性质紧密相关。
现代显示技术大量采用了液晶材料的特定光学性质,如响应时间、透过率等,从而实现了高质量的图像显示效果。
目前,液晶材料的光学性质已经得到了广泛的研究和交叉利用。
2. 液晶材料的制备技术液晶材料制备技术包括有机合成功能分子液晶、聚合物液晶的合成方法。
常见的有机合成功能分子液晶制备方法有比例混合法、共溶法、物理混合法等,并且也有一定的优势与不足,液晶材料研究可综合考虑来选择适用的方法。
而聚合物液晶的制备方法主要有模板聚合法、乳液聚合法等,其合成效率、收率和产品的纯度、溶解度都比关键合胶法有所提高。
3. 液晶材料的表征技术液晶材料常用的表征技术包括:X-ray衍射分析、透射电子显微镜、极化光显微镜、核磁共振等。
液晶材料的合成与应用
液晶材料的合成与应用液晶材料是指在一定条件下形成长程有序液晶结构的材料,具有独特的物理、光学和电学性质,广泛应用于液晶显示器、光纤通讯、生物医学和光伏领域等。
液晶材料的合成与应用是材料科学和工程领域的重要研究方向。
一、液晶材料的分类液晶材料按照分子形态和性质分类可分为各向同性液晶(简称N 相),向列型液晶(简称 N 相)、螺旋型液晶(简称 Ch 相)和胆甾型液晶(简称 Sm 相)等几大类。
其中向列型液晶应用最广,包括烷氧基苯酰亚胺(简称 MBIA)、烷基苯酰亚胺(简称DBCO)、环氧腈酸酯、二苯乙烯类化合物等。
二、液晶材料的合成液晶材料的制备主要是通过化学合成方法,包括溶液法、凝胶法、扩散法、电化学法等。
其中,溶液法是最常用的方法之一,是将液晶分子、溶剂和助剂混合后加热搅拌,生成液晶材料。
凝胶法则是在无机/有机材料的溶胶中加入液晶等有机分子制备,这种方法的特点是形成均匀、刚性的复合凝胶。
电化学法则是指使用电化学反应来制备液晶材料,这种方法能控制分子结构和偏振效应。
例如,通过电化学反应将 4-甲氧基苯酚和 PVA 溶液合成的液晶材料,能够在自然光下形成光振幅反转现象,这对于液晶显示器的应用至关重要。
三、液晶材料的应用液晶材料广泛应用于全息照相、信息存储、光通信、智能触摸屏、液晶电视、光伏电池、生物医学等领域。
其中,液晶显示器是目前液晶材料的主要应用领域,其原理是通过长程有序液晶结构的受激发态转变来实现信息显示。
液晶显示器通过调整液晶分子在电场控制下的取向来控制光的通过和不通过,从而显示出图像和文字。
这种通过电场控制液晶分子的方向而实现信息显示的方式,比传统的阴极射线管显示器更加省电、环保和占用空间更小。
随着科技的发展和人们对于图像质量和观感的要求越来越高,液晶材料也不断地改进和研究,以满足不断增长的需求。
总之,液晶材料的合成与应用是一个充满挑战和机遇的领域。
不断挖掘、研究、应用液晶材料的性质和特点,将有助于推动材料科学和工程的发展,并为人类社会带来更多的便利和创新。
液晶材料的发展与应用
液晶材料的发展与应用液晶是一种有机材料,是在电子学、光学、化学等领域都有广泛应用的重要材料。
随着科技的不断发展,液晶材料也在不断地发展与改进。
本篇文章将从液晶材料的基本概念、历史发展、目前应用等方面进行探讨。
1. 液晶材料的基本概念液晶是介于液体和固体之间的一种特殊物质,具有类似晶体的结构,但流体特性,被称为迷你晶体或分子晶体。
液晶材料分为有机液晶和无机液晶两种。
其特点是引用电场、光场或化学刺激等外部形成有序状态,即所谓的液晶相。
2. 液晶材料的历史发展液晶材料的历史可以追溯到1888年,奥地利生物学家弗雷德里希·雷贝尔(Friedrich Reinitzer)发现寒锅里的胆固醇在180℃左右形成了一种特殊的液体状态,这种状态能够随温度变化而发生变化,称之为液晶。
其后,法国物理学家Paul Friedel和外婆娜·莱维特尔(Violette Lecomte)在1904年又在胆固醇中,研制出了第一个液晶显示器,成为了液晶材料发展史上的里程碑。
而到了20世纪50年代左右,随着化学工业的发展,液晶材料得到了进一步的改进和研究。
1959年,英国凯尔文研究所的George William Gray教授率领的液晶小组首次合成了第一个有机液晶材料,这个液晶材料开启了有机液晶研究的新篇章。
3. 液晶材料的目前应用近年来,随着科技不断发展,液晶材料应用范围也越来越广。
我们可以看到,不管是生活中的家居用品,还是医疗设备、电子产品等领域,液晶材料都有着广泛的应用。
3.1 液晶显示技术现在,各种各样的显示器已经成为了各种电子设备使用的标配,而液晶显示器所应用的液晶材料技术,成为了目前最常见、最成熟的一种显示技术。
液晶显示器以其低功耗、纤薄、轻便、显示画质清晰、组装灵活等优点,已成为大众消费电子产品的主流显示器。
3.2 生活用品在生活用品中,液晶材料的应用也有所涉及。
例如智能手机、平板电脑等电子产品,不仅在屏幕上使用了液晶材料,同时也有很多其他相关液晶材料应用。
液晶材料
根据晶型的差别还可以分为Sa、Sb、Sc直至Si共十一类。 Sa型液晶分子中刚性部分的长轴垂直于层面与晶体的长轴平行,平面内分 子的分布无序,层的厚度一般小于计算得到的分子长度。Sb型分子刚性部 分的重心在层内有序排列,呈六角型排列,具有一定的三维有序性。Sc型
在分子序列中,液晶分子往往具有一维或二维远程有 序性,介于理想的液体与晶体之间,这种中间相也称 为有序流体相。
液晶材料发展历程
1854-1889年代,德国生理学家R.C.Virchow发现一种自然界的物质,此是一种溶 致型液晶,在适当的水份混合后,会呈现光学异方向性之有机分子集合体。
1888年,液晶正式发现,奥地利植物学家莱尼茨尔在研究胆甾醇类化合物的植物 生理作用中,发现液晶。
从结构上分析,除了致晶单元、取代基、末端基的影 响外,高分子链的性质、连接基团的性质均对高分子液晶 的相行为产生影响。
致晶单元与高分子链的连接方式 结构形式 名称 纵向型
液晶类型
垂直型
主链型 星型 盘型
混合型
多盘型
支链型
树枝型
梳型 多重梳型 盘梳型 侧链型 腰接型 结合型
网型
高分子液晶与小分子液晶相比特殊性
热稳定性大幅度提高; 热致性高分子液晶有较大的相区间温度; 粘度大,流动行为与一般溶液显著不同。
高分子液晶和单体液晶都具有同样的刚性分子结构和晶相结构,但 小分子单体液晶在外力作用下可以自由旋转,而高分子液晶要受到 相连接的聚合物骨架的约束。
由于聚合物链的作用使高分子液晶具有更为出色的性质,如主链 型高分子液晶具有超强的机械性能,梳状高分子液晶在电子和光 电子器件方面的应用都十分令人瞩目。
液晶种类及特点
液晶种类及特点
液晶是一种物质状态,既有固体的有序性,又有液体的流动性。
根据分子结构和性质,液晶可以分为多种类型,每种类型具有其独特的特点,适用于不同的显示技术和应用场景。
具体如下:
1、联苯液晶:这类液晶材料通常具有良好的化学稳定性和较宽的工作温度范围。
它们经常用于制作具有高可靠性和长寿命的液晶显示器件。
2、苯基环己烷液晶:这种类型的液晶材料以其高速响应时间而闻名,适合用于需要快速刷新的屏幕,如游戏显示器和智能手机屏幕。
3、酯类液晶:酯类液晶材料在光学性能和电光效应方面表现出优异的特点。
它们被广泛用于各种液晶显示器中,包括便携式设备和家用电子产品的显示屏。
除了上述基于分子结构的分类外,液晶显示器(LCD)技术也可以根据显示面板的类型进行分类:
1、TN(扭曲向列型):这是最常见的LCD类型,特点是成本低,响应时间快,但视角相对较窄,色彩还原度一般。
2、VA(垂直对齐型):提供更宽的视角和更好的对比度,但响应时间不如TN屏快。
3、IPS(平面内切换型):拥有最宽广的视角和优秀的颜色表现,适合图像密集型的应用程序,如图形设计和照片编辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sh型液晶分子的刚性部分朝六边形的顶点方向倾斜一定角度,晶型与Sf类 相同。Si型液晶分子的刚性部分朝六边形的顶点方向倾斜一定角度,其层 内结构与Se型相同。
向列型液晶
向列型液晶结构中分子相互间间沿着长轴方向保持平行,但其重心位 置是无序的,不能构成层片。
因此向列型液晶是一维有序的排列,分子可以上下左右前后滑动,特 别是沿着长轴方向相对运动而不影响晶相结构,具有更大的运动性, 在外力作用下沿着长轴方向的运动非常容易,是三种液晶中流动性 最好的一种液晶。
高分子液晶和单体液晶都具有同样的刚性分子结构和晶相结构,但 小分子单体液晶在外力作用下可以自由旋转,而高分子液晶要受到 相连接的聚合物骨架的约束。
由于聚合物链的作用使高分子液晶具有更为出色的性质,如主链 型高分子液晶具有超强的机械性能,梳状高分子液晶在电子和光 电子器件方面的应用都十分令人瞩目。
分离材料
聚二甲基硅烷和聚甲基苯基硅烷作为气液色谱的固定相应用已经有很长的历
史,在这些固定相中加入液晶材料后,材料变成了有序排列的固定相。这对 于分离沸点和极性相近而结构不同的混合物有良好的效果,因为液晶材料参 与了分离过程。 硅氧烷为骨架的侧链高分子液晶可以单独作为固定相使用,高分子化的液晶 材料避免了小分子液晶的流失现象,高分子液晶固定相正日益广泛的出现在 毛细管气相色谱和高效液相色谱中。
DSC曲线可以反应晶态结构。将加热和冷却的两条DSC曲线对比,液晶的松弛时 间较长,快速冷却时,仍保持原结构不变,而结晶在快速冷却时结构会消失。
X射线衍射法 空间结构参数,有序度
X射线衍射法对液晶相态的研究主要集中在几种有序程度较高的液晶类型,如向 列型液晶和近晶型液晶。
核磁共振光谱法 结构分析,取向性
以上液晶分子的刚性部分均呈现长棒型,也有的液 晶分子刚性部分呈盘型,多个盘型结构跌在一起, 形成柱状结构,这些柱状结构再进行一定有序排列
形成类似于近晶型的液晶。
高分子液晶的分类
液晶分子通常是由刚性链段和柔性链段两部分组成,刚性部分多 由芳香和脂肪型环状结构通过交联剂连接为长链分子,或者是将 上述结构连接到高分子的骨架上实现高分子化。根据致晶单元与 高分子的连接方式可以将液晶分为主链型和侧链型高分子液晶, 侧链型高分子液晶又称梳状液晶。主链型液晶大多数为高强度、 高模量的材料,侧链型液晶大多数为功能性材料。 主链型液晶大多数为高强度、高模量的材料,侧链型液晶则大多 数为功能性材料。
刚性体 聚合物 骨架
连接单元
取代基
致晶单元通常由苯环、脂肪环、芳香杂环等通过刚性连接单元(X, 又称中心桥键)连接组成。
连接单元常见的化学结构包括亚氨基(-C=N-)、反式偶氮基( -N=N-)、氧化偶氮(-NO=N-)、酯基(-COO-)和反式 乙烯基(-C=C-)等。 在致晶单元的端部通常还有一个柔软、易弯曲的取代基,这个端基单 元是各种极性的或非极性的基团,对形成的液晶具有一定稳定作用 ,因此也是构成液晶分子不可缺少的结构因素。常见的R包括—R’、 —OR’、 —COOR’、 —CN、 —OOCR’、—COR’、 —CH=CH— COOR’、 —Cl、 —Br、—NO2等。
液晶的应用及发展前景
液晶是一种十分年轻的材料,至今只有几十年的发展历史,主要用于制造具 有高强度、高模量的纤维材料;制备分子复合材料;液晶显示材料以及用于 精密温度指示材料和痕量化学药品指示剂。
高分子液晶由于粘性高,松弛时间长,响应时间长,在类似小分子液晶的应 用方面受到限制,但高分子液晶也因其结构特征带来易固定性、聚集态结构 多样性等特点而具有很好的功能性。
胆甾型液晶层片具有扭转的结构,对入射光具有偏振作用,可用来作精密温度 指示材料和痕量化学药品指示剂,高分子液晶在这方面的应用也有待开发。
30
致晶单元与高分子链的连接方式 结构形式 名称 纵向型
液晶类型
垂直型
主链型 星型 盘型
混合型
多盘型
支链型
树枝型
梳型 多重梳型 盘梳型 侧链型 腰接型 结合型
网型
高分子液晶与小分子液晶相比特殊性
热稳定性大幅度提高; 热致性高分子液晶有较大的相区间温度; 粘度大,流动行为与一般溶液显著不同。
显示材料
目前只发现侧链型高分子液晶具有显示功能。聚合物液晶在电场作用下从无 序透明态到有序非透明态的转变,可以用来制备显示器件。
与小分子液晶相比,高分子液晶在开发大面积、平面、超薄以及直接沉积在 控制电极表面的显示器方面的应用更具有优势。
信息贮存
以热致型侧链高分子液晶为基材制作信息贮存介质的原理为:首先将存贮介 质制成透光的向列型晶体,这时,所测试的入射光将完全透过,证实没有信 息记录。用另一束激光照射存贮介质时,局部温度升高,聚合物熔融成各相 同性的液体,聚合物失去有序度;激光消失后,聚合物凝结为不透光的固体 ,信号被记录。
式中R、R′为烷基、烷氧基、酰氧基、氰基等,A为中央基团
研究表明,能够形成液晶的物质通常在分子结构中具有刚性部分,称为致 晶单元。从外形上看,致晶单元通常呈现近似棒状或片状的形态,这样有利 于分子的有序堆砌。这是液晶分子在液态下维持某种有序排列所必须的结构 因素。在高分子液晶中这些致晶单元被柔性链以各种方式连接在一起。
光学双折射法 折射率,空间结构
高分子液晶的化学结构
液晶是某些物质在从固态向液态转换时形成的一种具有特殊性质的 中间相态或过渡相态。显然过渡态的形成与分子结构有着内在联系。液 晶态的形成是物质的外在表现形式,而这种物质的分子结构则是液晶形 成的内在因素。 分子结构在液晶的形成过程中起着主要作用,决定着液晶的相结 构和物理化学性质。
29
高分子液晶的发展方向
高分子液晶在其相区间温度时的粘度较低,而且高度取向利用这一点,可以制
备高强度、高模量的纤维。将具有刚性棒状结构的高分子液晶材料分散在无规 线团结构的柔性高分子材料中,即可获得增强的高分子复合材料。
侧链型液晶高分子液晶具有较高的玻璃化温度,利用这一特性,可使它在室温 下保存信息,因此用液晶来制备信息记录材料前景十分广阔。
1937年, Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特 性。这是人们第一次发现生物高分子的液晶特性。
1950年,Elliott 与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作 至此展开。
目前已经发现很多刚性和半刚性的高分子以及某些柔性高分子和生物高分子都具 有液晶行为。高分子液晶在高强高模纤维的制备、液晶自增强材料的开发、光电以 及温度显示材料的应用以及生命科学的研究等方面,已经取得了迅速的发展。
分子刚性部分的长轴与层面没有垂直关系,倾斜成一定角度,有些具有光 学活性。
Sd型液晶呈现立方对称性。Se型液晶与Sb型液晶相似,不同的是分子的刚 性部分的重心成正交型排列而不是呈六边形。Sf从与层面垂直的方向看与
Sb型液晶相同,不同的是分子的刚性部分呈单斜晶型不与层面垂直,而是 朝六边形的一个边倾斜成一定角度。Sg型的分子刚性部分不与层面垂直, 而是朝六边形的一个顶点倾斜成一定角度。
在分子序列中,液晶分子往往具有一维或二维远程有 序性,介于理想的液体与晶体之间,这种中间相也称 为有序流体相。
液晶材料发展历程
1854-1889年代,德国生理学家R.C.Virchow发现一种自然界的物质,此是一种溶 致型液晶,在适当的水份混合后,会呈现光学异方向性之有机分子集合体。
1888年,液晶正式发现,奥地利植物学家莱尼茨尔在研究胆甾醇类化合物的植物 生理作用中,发现液晶。
对于热致型液晶,核磁共振技术是非常有效的方法,溶致型液晶则应用较少。
其他方法:
介电松弛谱法 极化弛豫,组成内部结构
高分子液晶是分子按照特定规律排列的聚集态,这种有序排列方式可以 通过介电松弛谱的形状得到反应。
相容性判别法 结构相似性
将一个含有液晶结构的已知样品与未知样品混合,若混合物在组成范围 内呈现为一种液晶,则可以判定未知样品也是液晶。
液晶材料
液晶材料基本概念
液晶就是液态晶体,它具有与晶体一样的各向异性,同时又具有 液体的流动性。 液晶广泛应用于电子显示器件以及非线性光学方面,对于分子量 较小的液晶材料,人们已经研究的较多,通常称为单体液晶,以 区别于迅速发展的高分子液晶材料。 高分子液晶材料尽管和单体液晶有着密切的关系,但在性质和应 用方面还是有较大的差别:
高分子液晶
液晶在分子排列形式上类似晶体呈有序排列,同时液晶又具有一 定的流动性类似于各相同性的液体。将这类液晶分子连接成大分 子或将液晶分子连接到大分子的骨架之上,使之继续保持液晶特 性就形成了高分子液晶。
液晶的分类
液晶按照分子链的长短可以分为:
单体型液晶 聚合物型液晶
按照液晶的分子排列形式来分类可分为:
近晶型液晶、 向列型液晶 胆甾型液晶
根据液晶的分子特征来分类则可以分为:
纵向型、垂直型、星形、盘型、梳形以及混合型等等。
近晶型液晶
近晶型液晶在结构上最接近固体晶相结构,分子排列成层,层内分子 长轴互相平行,但分子重心在层内无序,分子长轴与层面垂直或倾斜 排列,分子可在层内前后、左右滑动,但不能在上下层间移动。 由于分子运动相当缓慢,近晶型中间相非常粘滞,通常用符号S表示, 是二维有序的排列,在粘度性质上仍然存在着各向异性。
高性能工程材料
高分子液晶在其相区间温度的粘度较低,而且高度取向,利用这一特性进行 纺丝,不仅可以节省能耗,而且可以获得高强度、高模量的纤维。著名的 Kevlar纤维就是这类纤维的典型代表。
液晶聚合物的机械强度随材料取向度的提高而增加。在拉制过程中,材料的 横向尺能 合成纤维的研究与制备,聚合物纤维的强度主要决定于分子的取向度,同时 还受分子的刚性、分子间力、结晶度和密度的影响,材料的化学组成决定纤 维的使用温度。